SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...
DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.
Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...
INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.
A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...
IITRI RADIO FREQUENCY HEATING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT
IITRI's patented in situ RFH technology enhances the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and potentially higher soil permeability. RFH heats soil us...
DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE
Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...
Radio frequency heating for in-situ remediation of DNAPL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.
1996-08-01
In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.
SITE TECHNOLOGY CAPSULE: KAI RADIO FREQUENCY HEATING TECHNOLOGY
KAI developed a patented, in situ RFH technology to enhance the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and soil permeability that may increase with dry...
Study of Variable Frequency Induction Heating in Steel Making Process
NASA Astrophysics Data System (ADS)
Fukutani, Kazuhiko; Umetsu, Kenji; Itou, Takeo; Isobe, Takanori; Kitahara, Tadayuki; Shimada, Ryuichi
Induction heating technologies have been the standard technologies employed in steel making processes because they are clean, they have a high energy density, they are highly the controllable, etc. However, there is a problem in using them; in general, frequencies of the electric circuits have to be kept fixed to improve their power factors, and this constraint makes the processes inflexible. In order to overcome this problem, we have developed a new heating technique-variable frequency power supply with magnetic energy recovery switching. This technique helps us in improving the quality of steel products as well as the productivity. We have also performed numerical calculations and experiments to evaluate its effect on temperature distributions on heated steel plates. The obtained results indicate that the application of the technique in steel making processes would be advantageous.
Cost studies of thermally enhanced in situ soil remediation technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremser, J.; Booth, S.R.
1996-05-01
This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies willmore » ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.« less
NASA Astrophysics Data System (ADS)
He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng
2017-04-01
For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
Experimental and numerical modeling research of rubber material during microwave heating process
NASA Astrophysics Data System (ADS)
Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling
2018-05-01
This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.
Magnetoresistance effect of heat generation in a single-molecular spin-valve
NASA Astrophysics Data System (ADS)
Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing
2016-02-01
Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.
Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology
NASA Astrophysics Data System (ADS)
Mekaru, Harutaka; Takahashi, Masaharu
2009-12-01
We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed on the width of imprinted patterns. Moreover, the imprinted depth deepened as the Tg of the molding material lowered, and a progressive change according to conditions of ultrasonic vibration also became remarkable. Therefore, it seems that impressing ultrasonic vibration with a high frequency and large amplitude promotes thermal deformation and improves the molding accuracy in the ultrasonic nanoimprint technology.
Recent developments in novel freezing and thawing technologies applied to foods.
Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai
2017-11-22
This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.
Heat Pipes Cool Power Magnetics
NASA Technical Reports Server (NTRS)
Hansen, I.; Chester, M.; Luedke, E.
1983-01-01
Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.
USDA-ARS?s Scientific Manuscript database
Radio frequency (RF) heating is a commonly used food processing technology that has been applied for drying and baking as well as thawing of frozen foods. Its use in pasteurization, as well as for sterilization and disinfection of foods, is more limited. This column will review various RF heating ap...
Experimental research on the application of HTAC in small-size heating furnace
NASA Astrophysics Data System (ADS)
Zhou, Yu; Qin, Chaokui; Yang, Jun; Chen, Zhiguang
2018-03-01
High temperature air combustion (HTAC) technology, which is also known as regenerative combustion technology, has realized energy saving, CO2 and NOx emissions reduction and low-noise combustion. It has been widely applied in various types of heating furnace and has achieved good energy-saving effect. However, there is little application of this technology in small-size furnace. In this paper, a small-size regenerative heating furnace was built in the laboratory and experiments were carried out on it. The result shows that, if the transport frequency was set to a group per min, the center temperature of processed workpiece at the rated conditions (i.e. burner power is 300 kW and switching time is 60s) reached 1133°C. And the efficiency of the heating furnace was 36.8%. Then the derived comprehensive heat transfer coefficient was 168 W/(m2˙°C).
Microwave Heating of Metal Power Clusters
NASA Astrophysics Data System (ADS)
Rybakov, K. I.; Semenov, V. E.; Volkovskaya, I. I.
2018-01-01
The results of simulating the rapid microwave heating of spherical clusters of metal particles to the melting point are reported. In the simulation, the cluster is subjected to a plane electromagnetic wave. The cluster size is comparable to the wavelength; the perturbations of the field inside the cluster are accounted for within an effective medium approximation. It is shown that the time of heating in vacuum to the melting point does not exceed 1 s when the electric field strength in the incident wave is about 2 kV/cm at a frequency of 24 GHz or 5 kV/cm at a frequency of 2.45 GHz. The obtained results demonstrate feasibility of using rapid microwave heating for the spheroidization of metal particles with an objective to produce high-quality powders for additive manufacturing technologies.
Radio-Frequency Applications for Food Processing and Safety.
Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L
2018-03-25
Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.
USDA-ARS?s Scientific Manuscript database
The need for a nonthermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of the radio frequency electric fields (RFEF) process. Previously, we documented formation of surface blebs on Escherichia coli cells treate...
Ultrasonic Clothes Drying Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Viral; Momen, Ayyoub
Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.
1995-09-22
Modules 345-800 Amperes/400-3000 Votts - Current and Thermal Ratings of Module * Circuit Currents Element Data Model* Current Thermal Units...IGBTs modules (Powerex) 56 Main components for rectifiers, Diode Bridge modules (Powerex) 65 Heat Sinks (Aavid Engineering) 85 Westinghouse...exciter circuit , are not reliable enough for military applications, and they were replaced by brushless alternators. The brushless AC alternator
Analytical and numerical study of New field emitter processing for superconducting cavities
NASA Astrophysics Data System (ADS)
Volkov, Vladimir; Petrov, Victor
2018-02-01
In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.
First results from the energetic particle instrument on the OEDIPUS-C sounding rocket
NASA Astrophysics Data System (ADS)
Gough, M. P.; Hardy, D. A.; James, H. G.
The Canadian / US OEDIPUS-C rocket was flown from the Poker Flat Rocket Range November 6th 1995 as a mother-son sounding rocket. It was designed to study auroral ionospheric plasma physics using active wave sounding and prove tether technology. The payload separated into two sections reaching a separation of 1200m along the Earth's magnetic field. One section included a frequency stepped HF transmitter and the other included a synchronised HF receiver. Both sections included Energetic Particle Instruments, EPI, stepped in energy synchronously with the transmitter steps. On-board EPI particle processing in both payloads provided direct measurements of electron heating, wave-particle interactions via particle correlators, and a high resolution measurement of wave induced particle heating via transmitter synchronised fast sampling. Strong electron heating was observed at times when the HF transmitter frequency was equal to a harmonic of the electron gyrofrequency, f_ce, or equal to the upper hybrid frequency, f_uh.
The Operating Principle of a Fully Solid State Active Magnetic Regenerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fullymore » solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.« less
Numerical analysis of biomass torrefaction reactor with recirculation of heat carrier
NASA Astrophysics Data System (ADS)
Director, L. B.; Ivanin, O. A.; Sinelshchikov, V. A.
2018-01-01
In this paper, results of numerical analysis of the energy-technological complex consisting of the gas piston power plant, the torrefaction reactor with recirculation of gaseous heat carrier and the heat recovery boiler are presented. Calculations of the reactor without recirculation and with recirculation of the heat carrier in torrefaction zone at different frequencies of unloading of torrefied biomass were held. It was shown that in recirculation mode the power of the gas piston power plant, required for providing given reactor productivity, is reduced several times and the consumption of fuel gas, needed for combustion of volatile torrefaction products in the heat recovery boiler, is reduced by an order.
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bonoli, P. T.
2015-02-01
Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored.
AIM Photonics: Tomorrow’s Technology at the Speed of Light
2016-09-01
design automation companies AIM Photonics Tomorrow’s Technology at the Speed of Light Michael Liehr Defense AT&L: September-October 2010 386...in speed and complexity will increase cost, power consumption and heat too much to allow further, practical miniaturization. Light propagates...Integrated microwave photonic circuits (using light to transmit and process optical signals encoded with ana- log information at frequencies in the
Ultrasonic Clothes Drying Technology
Patel, Viral; Momen, Ayyoub
2018-01-16
Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOEâs Building Technologies Office in 2014.
NASA Astrophysics Data System (ADS)
Davletbaev, Alfred; Kireev, Victor; Kovaleva, Liana; Zainullin, Aleksey; Minnigalimov, Rais
2016-12-01
Comparative analysis for "cold" heavy oil production from fractured well in low-permeability formation, as well as heavy oil production by radio-frequency electromagnetic heating has been carried out. The results of mathematical modeling for both these technologies taking into account different fracture's lengths show that the thermal method is most effective for more "short" fractures up to some their optimal size 5-10 m.
In-pile Thermal Conductivity Characterization with Time Resolved Raman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei; Hurley, David H.
The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less
Project financing of district heating/cooling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, R.D.
1986-03-01
Two issues are discussed in detail: the project finance joint venture and technology transfers. An increase if the frequency of these issues has been served in project financings. An understanding of these issues is necessary to structure project financings of alternate energy projects in the future. Capitalization needs are outlined, and typical provisions of a joint finance structure are outlined. The issue of exclusivity as it applies to technology transfers is discussed.
Huang, Zhi; Marra, Francesco; Subbiah, Jeyamkondan; Wang, Shaojin
2018-04-13
Radio frequency (RF) heating has great potential for achieving rapid and volumetric heating in foods, providing safe and high-quality food products due to deep penetration depth, moisture self-balance effects, and leaving no chemical residues. However, the nonuniform heating problem (usually resulting in hot and cold spots in the heated product) needs to be resolved. The inhomogeneous temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms or insects may not be controlled in the cold spots. The mathematical modeling for RF heating processes has been extensively studied in a wide variety of agricultural products recently. This paper presents a comprehensive review of recent progresses in computer simulation for RF heating uniformity improvement and the offered solutions to reduce the heating nonuniformity. It provides a brief introduction on the basic principle of RF heating technology, analyzes the applications of numerical simulation, and discusses the factors influencing the RF heating uniformity and the possible methods to improve heating uniformity. Mathematical modeling improves the understanding of RF heating of food and is essential to optimize the RF treatment protocol for pasteurization and disinfestation applications. Recommendations for future research have been proposed to further improve the accuracy of numerical models, by covering both heat and mass transfers in the model, validating these models with sample movement and mixing, and identifying the important model parameters by sensitivity analysis.
NASA Astrophysics Data System (ADS)
Li, Zhi-Ming; Hao, Yue; Zhang, Jin-Cheng; Xu, Sheng-Rui; Ni, Jin-Yu; Zhou, Xiao-Wei
2009-11-01
Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the susceptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.
NASA Astrophysics Data System (ADS)
Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi
Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.
Flux-tunable heat sink for quantum electric circuits.
Partanen, M; Tan, K Y; Masuda, S; Govenius, J; Lake, R E; Jenei, M; Grönberg, L; Hassel, J; Simbierowicz, S; Vesterinen, V; Tuorila, J; Ala-Nissila, T; Möttönen, M
2018-04-20
Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits. Our device consists of two coupled resonators. The first resonator has a high quality factor and a fixed frequency whereas the second resonator is designed to have a low quality factor and a tunable resonance frequency. We engineer the low quality factor using an on-chip resistor and the frequency tunability using a superconducting quantum interference device. When the two resonators are in resonance, the photons in the high-quality resonator can be efficiently dissipated. We show that the corresponding loaded quality factor can be tuned from above 10 5 down to a few thousand at 10 GHz in good quantitative agreement with our theoretical model.
Conceptual design of the EU DEMO EC-system: main developments and R&D achievements
NASA Astrophysics Data System (ADS)
Granucci, G.; Aiello, G.; Alberti, S.; Avramidis, K. A.; Braunmüller, F.; Bruschi, A.; Chelis, J.; Franck, J.; Figini, L.; Gantenbein, G.; Garavaglia, S.; Grossetti, G.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Kalaria, P.; Latsas, G.; Moro, A.; Pagonakis, I. Gr.; Peponis, D.; Poli, E.; Rispoli, N.; Rzesnicki, T.; Scherer, T.; Strauss, D.; Thumm, M.; Tigelis, I.; Tsironis, C.; Wu, C.; Franke, T.; Tran, M. Q.
2017-11-01
For the development of a DEMOnstration Fusion Power Plant the design of auxiliary heating systems is a key activity in order to achieve controlled burning plasma. The present heating mix considers electron cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) with a target power to the plasma of about 50 MW for each system. The main tasks assigned to the EC system are plasma breakdown and assisted start-up, heating to L-H transition and plasma current ramp up to burn, MHD stability control and assistance in plasma current ramp down. The consequent requirements are used for the conceptual design of the EC system, from the RF source to the launcher, with an extensive R&D program focused on relevant technologies to be developed. Gyrotron: the R&D and Advanced Developments on EC RF sources are targeting for gyrotrons operating at 240 GHz, considered as optimum EC Current Drive frequency in case of higher magnetic field than for the 2015 EU DEMO1 baseline. Multi-purpose (multi-frequency) and frequency step-tunable gyrotrons are under investigation to increase the flexibility of the system. As main targets an output power of significantly above 1 MW (target: 2 MW) and a total efficiency higher than 60% are set. The principle feasibility at limits of a 236 GHz, conventional-cavity and, alternatively, of a 238 GHz coaxial-cavity gyrotron are under investigation together with the development of a synthetic diamond Brewster-angle window technology. Advanced developments are on-going in the field of multi-stage depressed collector technologies. Transmission line (TL): different TL options are under investigation and a preliminary study of an evacuated quasi-optical multiple-beam TL, considered for a hybrid solution, is presented and discussed in terms of layout, dimensions and theoretical losses. Launcher: remote steering antennas have been considered as a possible launcher solution especially under the constraints to avoid movable mirrors close to the plasma. With dedicated beam tracing calculations, the deposition locations coverage and the wave absorption efficiency have been investigated, considering a selection of frequencies, injection angles and launching points. An option for the EC system structure is proposed in clusters, in order to allow the necessary redundancy and flexibility to guarantee the required EC power in the different phases of the plasma pulse. Number and composition of the clusters are analysed to have high availability and therefore maximum reliability with a minimum number of components.
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.
Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler
NASA Astrophysics Data System (ADS)
McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.
2017-12-01
This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy Dilek, C.A.; Jarosch, T.R.; Fliermans, C.B.
The overall objective of the Integrated Demonstration Project for the Remediation of Organics at Nonarid Sites at the Savannah River Site (SRS) is to evaluate innovative remediation, characterization, and monitoring systems to facilitate restoration of contaminated sites. The first phase of the demonstration focused on the application and development of in situ air stripping technologies to remediate sediments and groundwater contaminated with volatile organic compounds (VOCs). The second phase focused on the enhancement of the in situ air stripping process by adding selected nutrients to stimulate naturally occurring microorganisms that degrade VOCs. The purpose of the third phase was tomore » evaluate the use of heating technologies [radio frequency (rf) and ohmic heating] to enhance the removal of contamination from clay layers where mass transfer is limited. The objective of this report is to document pretest and post-test data collected in support of the rf heating demonstration. The following data are discussed in this report: (1) a general description of the site including piezometers and sensors installed to monitor the remedial process; (2) stratigraphy, lithology, and a detailed geologic cross section of the study site; (3) tabulations of pretest and post-test moisture and VOC content of the sediments; (4) sampling and analysis procedures for sediment samples; (5) microbial abundance and diversity; (6) three-dimensional images of pretest and post-test contaminant distribution; (7) volumetric calculations.« less
NASA Astrophysics Data System (ADS)
Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco
2018-05-01
Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.
1979-01-01
losses including radiation out the walls, heat loss in both the dielectric and copper, and surface waves. Thus, assuming the surface wave power is small... supplied by the source, the power consumed in the dielectric and the ,netallic parts of the antenna cannot be neglected except in the thickest...has its own resonance frequency. -Depending upon the momentary frequency, the feed network will supply - power (in the transmitting -case) to the
NASA Technical Reports Server (NTRS)
Smetana, J.; Curren, A. N.
1979-01-01
The performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite (CTS) measured during its first 2 years in orbit are presented. The TEP consists of a nominal 200 watt output stage tube (OST), a supporting power processing system (PPS), and a variable conductance heat pipe system (VCHPS). The OST, a traveling wave tube augmented with a 10 stage depressed collector has an overall saturated average efficiency of 51.5 percent and an average saturated radio frequency (rf) output power at center band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the OST to a 52 by 124 centimeter radiator fin, maintained the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, rf output power, thermal performance, and efficiency. Communications characteristics were evaluated by using both video and audio modulated signals. On four occasions, the TEP experienced temporary thermal control system malfunctions. The anomalies were terminated safely, and the problem was investigated because of the potential for TEP damage due to the signficant temperature increases. Safe TEP operating procedures were established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ding; Han, Xiaoyan; Newaz, Golam
Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less
Thermal Conductivity of Carbon Nanotube Composite Films
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.
2004-01-01
State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.
Two-stage collaborative global optimization design model of the CHPG microgrid
NASA Astrophysics Data System (ADS)
Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng
2017-06-01
With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.
NASA Technical Reports Server (NTRS)
1977-01-01
Measured performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite for the first 90 operating days in orbit are presented. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power processing system (PPS), and a variable-conductance heat pipe system (VCHPS). The OST, a traveling-wave tube augmented with a 10-stage depressed collector, has an overall saturated average efficiency of 51.5 percent and an average saturated radiofrequency (RF) output power at center-band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 percent to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the body of the OST to a 52-centimeter by 124-centimeter (20.5-in. by 48.75-in.) radiator fin, maintained by the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, RF output power, efficiency, and distortions. Communications characteristics were evaluated by using both video and audio modulated signals.
Recent Progress on ECH Technology for ITER
NASA Astrophysics Data System (ADS)
Sirigiri, Jagadishwar
2005-10-01
The Electron Cyclotron Heating and Current Drive (ECH&CD) system for ITER is a critical ITER system that must be available for use on Day 1 of the ITER experimental program. The applications of the system include plasma start-up, plasma heating and suppression of Neoclassical Tearing Modes (NTMs). These applications are accomplished using 27 one megawatt continuous wave gyrotrons: 24 at a frequency of 170 GHz and 3 at a frequency of 120 GHz. There are DC power supplies for the gyrotrons, a transmission line system, one launcher at the equatorial plane and three upper port launchers. The US will play a major role in delivering parts of the ECH&CD system to ITER. The present state-of-the-art includes major advances in all areas of ECH technology. In the US, a major effort is underway to supply gyrotrons of up to 1.5 MW power level at 110 GHz to General Atomics for use in heating the DIII-D tokamak. This presentation will include a brief review of the state-of-the-art, worldwide, in ECH technology. The requirements for the ITER ECH&CD system will then be reviewed. ITER calls for gyrotrons capable of operating from a 50 kV power supply, after potential depression, with a minimum of 50% overall efficiency. This is a very significant challenge and some approaches to meeting this goal will be presented. Recent experimental results at MIT showing improved efficiency of high frequency, 1.5 MW gyrotrons will be described. These results will be incorporated into the planned development of gyrotrons for ITER. The ITER ECH&CD system will also be a challenge to the transmission lines, which must operate at high average power at up to 1000 seconds and with high efficiency. The technology challenges and efforts in the US and other ITER parties to solve these problems will be reviewed. *In collaboration with E. Choi, C. Marchewka, I. Mastovosky, M. A. Shapiro and R. J. Temkin. This work is supported by the Office of Fusion Energy Sciences of the U. S. Department of Energy.
Thermal Management Using Pulsating Jet Cooling Technology
NASA Astrophysics Data System (ADS)
Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.
2014-07-01
The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.
Heat loading of hoist brakes by example of drum brakes
NASA Astrophysics Data System (ADS)
Vöth, S.; Vasilyeva, M. A.
2017-10-01
Due to the technological development in drive technology, drives controlled by frequency inverters in hoists of cranes are almost standard. Since these drives offer the possibility of electric braking, the operation of the mechanical brakes changes as a result. As a result, the mechanical brakes are used more rarely and, if so, more likely in critical operating conditions. In this paper, an analysis of the changes that occur in the structure under the influence of thermal load is presented.
FREQUENCY CONTROL OF RF HEATING OF GASEOUS PLASMA
Herold, E.W.
1962-09-01
This invention relates to the heating of gaseous plasma by radiofrequency ion-cyclotron resonance heating. The cyclotron resonance frequencies are varied and this invention provides means for automatically controlling the frequency of the radiofrequency to maximize the rate of heating. To this end, a servo-loop is provided to sense the direction of plasma heating with frequency and a control signal is derived to set the center frequency of the radiofrequency energy employed to heat the plasma. (AEC)
Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.
Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B
2014-09-01
Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Vacuum Processing Technique for Development of Primary Standard Blackbodies
Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.
1999-01-01
Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.
Vibration-Induced Droplet Atomization
NASA Technical Reports Server (NTRS)
Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.
1999-01-01
Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance condition. This occurs when the initial acceleration of the diaphragm is higher than the critical acceleration and the driving frequency is larger than the initial resonance frequency of the diaphragm-droplet system. We have incorporated this droplet atomization device into a design for a new heat transfer cell for use in a microgravity environment. The cell is essentially a cylindrical container with a hot surface on one end and a cold surface on the other. The vibrating diaphragm is mounted in the center of the cold surface. Heat transfer occurs through droplet evaporation and condensation on the hot and cold ends of the cell. A prototype of this heat transfer cell has been built and tested. It can operate continuously and provides a modest level of heat transfer, about 20 W/sq cm. Our work during the next few years will be to optimize the design of this cell to see if we can produce a device that has significantly better performance than conventional heat exchangers and heat pipes.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
Induction Hardening of External Gear
NASA Astrophysics Data System (ADS)
Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.
2018-03-01
Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.
Simulation of the microwave heating of a thin multilayered composite material: A parameter analysis
NASA Astrophysics Data System (ADS)
Tertrais, Hermine; Barasinski, Anaïs; Chinesta, Francisco
2018-05-01
Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred to the material that can absorb it at specific frequencies. The complex physics involved in this process is far from being understood and that is why a simulation tool has been developed in order to solve the electromagnetic and thermal equations in such a complex material as a multilayered composite part. The code is based on the in-plane-out-of-plane separated representation within the Proper Generalized Decomposition framework. To improve the knowledge on the process, a parameter study in carried out in this paper.
Heat convection in a micro impinging jet system
NASA Astrophysics Data System (ADS)
Mai, John Dzung Hoang
2000-10-01
This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.
Lee, Su-Yeon; Ryu, Sangryeol
2013-01-01
The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform. PMID:23023752
Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun
2013-01-01
The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.
Reflexion measurements for inverse characterization of steel diffusion bond mechanical properties
NASA Astrophysics Data System (ADS)
Le Bourdais, Florian; Cachon, Lionel; Rigal, Emmanuel
2017-02-01
The present work describes a non-destructive testing method aimed at securing high manufacturing quality of the innovative compact heat exchanger developed under the framework of the CEA R&D program dedicated to the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). The heat exchanger assembly procedure currently proposed involves high temperature and high pressure diffusion welding of stainless steel plates. The aim of the non-destructive method presented herein is to characterize the quality of the welds obtained through this assembly process. Based on a low-frequency model developed by Baik and Thompson [1], pulse-echo normal incidence measurements are calibrated according to a specific procedure and allow the determination of the welding interface stiffness using a nonlinear fitting procedure in the frequency domain. Performing the characterization of plates after diffusion welding using this method allows a useful assessment of the material state as a function of the diffusion bonding process.
Further Developments in Microwave Ablation of Prostate Cells
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey; Ngo, Phong
2005-01-01
A report presents additional information about the subject matter of Microwave Treatment of Prostate Cancer and Hyperplasia (MSC-23049), NASA Tech Briefs, Vol. 29, No. 6 (June 2005), page 62. To recapitulate: the basic idea is to use microwaves to heat and thereby kill small volumes of unhealthy prostate tissue. The prostate is irradiated with microwaves from one or more antennas positioned near the prostate by means of catheters inserted in the urethra and/or colon. The microwave frequency, power, and exposure time, phasing, positions, and orientations of the antennas may be chosen to obtain the desired temperature rise in the heated region and to ensure that the location and extent of the heated region coincides with the region to be treated to within a few millimeters. Going beyond the description in the cited previous article, the report includes a diagram that illustrates typical placement of urethra and colon antenna catheters and presents results of computationally simulated prostate-heating profiles for several different combinations of antenna arrangements, frequencies, and delivered- energy levels as well as experimental results within phantom materials. The advantage of the two-antenna technology is that the heat generated at each antenna is significantly reduced from that associated with only one antenna. The microwave energy radiated from each antenna is focused at the tumor center by adjusting the phasing of the irradiated microwave signal from the antennas.
High frequency-heated air turbojet
NASA Technical Reports Server (NTRS)
Miron, J. H. D.
1986-01-01
A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.
Development of novel magnetic nanoparticles for hyperthermia cancer therapy
NASA Astrophysics Data System (ADS)
Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack
2011-03-01
Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values.
Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.
Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali
2017-02-01
In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litaudon, X; Bernard, J. M.; Colas, L.
2013-01-01
To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Toremore » Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.« less
Nonsurgical tightening of skin laxity: a new radiofrequency approach.
Rusciani, Antonio; Curinga, Giuseppe; Menichini, Giulio; Alfano, Carmine; Rusciani, Luigi
2007-04-01
Improvement in skin laxity can be difficult to achieve without invasive surgical procedures. Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. RF technology produces an electric current that generates heat through resistance in the dermis and subcutaneous tissue. The thermal effect depends on the conductivity features of the treated tissue. When heated, collagen fibrils will denature and contract, which is believed to lead to the observed tissue tightening. Ninety-three consecutive patients with mild to moderate laxity were included in the study. The Surgitron Dual Frequency RF (Radiowave technology, Ellman International) was used to treat skin laxity. The application of RF energy took place in an ambulatory setting with no need for skin sterilization or anesthesia. Patients immediately noticed a microlifting retraction in the treated tissues according to the vectors mapped in the area. There were no significant complications and the majority of patients were satisfied with the procedure and able to return to their daily routine after leaving the office, thereby substantiating the popularity of noninvasive rejuvenating procedures.
Microwave Treatment for Cardiac Arrhythmias
NASA Technical Reports Server (NTRS)
Hernandez-Moya, Sonia
2009-01-01
NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.
Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Luo, E. C.; Li, S. F.; Yu, B.; Dai, W.
2008-05-01
A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang
2018-02-01
Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.
Muley, Pranjali D; Boldor, Dorin
2012-01-01
Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.
Thermal anomalies of the transmitter experiment package on the communications technology satellite
NASA Technical Reports Server (NTRS)
Alexovich, R. E.; Curren, A. N.
1979-01-01
The causes of four temporary thermal-control-system malfunctions that gave rise to unexpected temperature excursions in the 12-gigahertz, 200-watt transmitter experiment package (TEP) on the Communications Technology Satellite were investigated. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power-processing system (PPS), and a variable-conductance heat-pipe system (VCHPS). The VCHPS, which uses three heat pipes to conduct heat from the body of the OST to a radiator fin, was designed to maintain the TEP at safe operating temperatures at all operating conditions. On four occasions during 1977, all near the spring and fall equinoxes, the OST body temperature and related temperatures displayed sudden, rapid, and unexpected rises above normal levels while the TEP was operating at essentially constant, normal conditions. The temperature excursions were terminated without TEP damage by reducing the radio frequency (RF) output power of the OST. Between the anomalies and since the fourth, the thermal control system has apparently functioned as designed. The results indicate the most probable cause of the temperature anomalies is depriming of the arteries in the variable-conductance heat pipes. A mode was identified in which the TEP, as presently configured, may operate with stable temperatures and with minimum change in performance level.
[Influence of infra-red and super high frequency heating on food value of the beef meat].
Beliaeva, M A
2005-01-01
In clause results of research of influence infrared and super high frequency heating on amino acid, fatty fabric and mineral; substances fresh beef are shown meat, after infra-red and the super high frequency of processing, also are shown influence of various modes infra-red heating of processing on amino acid of meat. Advantage of an infra-red way of processing is shown in comparison with super high frequency heating.
Schmidt, Patrick; Mackay, Alex
2016-01-01
People heat treated silcrete during the Middle Stone Age (MSA) in southern Africa but the spatial and temporal variability of this practice remains poorly documented. This paucity of data in turn makes it difficult to interrogate the motive factors underlying the application of this technique. In this paper we present data on heat treatment of silcrete through the Howiesons Poort and post-Howiesons Poort of the rock shelter site Mertenhof, located in the Western Cape of South Africa. In contrast to other sites where heat treatment has been documented, distance to rock source at Mertenhof can be reasonably well estimated, and the site is known to contain high proportions of a diversity of fine grained rocks including silcrete, hornfels and chert at various points through the sequence. Our results suggest the prevalence of heat treatment is variable through the sequence but that it is largely unaffected by the relative abundance of silcrete prevalence. Instead there is a strong inverse correlation between frequency of heat treatment in silcrete and prevalence of chert in the assemblage, and a generally positive correlation with the proportion of locally available rock. While it is difficult to separate individual factors we suggest that, at Mertenhof at least, heat treatment may have been used to improve the fracture properties of silcrete at times when other finer grained rocks were less readily available. As such, heat treatment appears to have been a component of the MSA behavioural repertoire that was flexibly deployed in ways sensitive to other elements of technological organisation.
Dynamic gas temperature measurement system. Volume 2: Operation and program manual
NASA Technical Reports Server (NTRS)
Purpura, P. T.
1983-01-01
The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.
Motto: We work for people and environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcik, M.
1995-12-31
This target has been under Danfoss realization for over 60 years, both in Denmark and all over the world. The operational range of the enterprise: is very wide. Danfoss manufactures a large assortment of products, starting from heat automatic control systems, through heat metering devices, industrial and refrigeration automatic control, compressors, flow meters, frequency converters, control systems, and monitoring. The four mainstays of the business activity are based on: high quality products; advanced manufacturing technology; care of the environment, and engagement of the staff. Since 1992 Danfoss has been manufacturing heat radiator thermostats in Poland. A unique solution - namelymore » the use of a gas thermostatic head secures the highest energy savings and operational reliability. In 1993, Danfoss as the sixth company in Poland and the first in its business field, gained a ISO 9002 certificate.« less
JPRS report: Science and technology. Central Eurasia: Engineering and equipment
NASA Astrophysics Data System (ADS)
1993-10-01
Translated articles cover the following topics: transient gas dynamic processes in ramjet engines; aerodynamic characteristics of delta wings with detached leading edge shock wave at hypersonic flight velocities; effect of atmospheric density gradient on aerodynamic stabilization; measurement of target radar scattering characteristics using frequency synthesized signals; assessing survivability and ensuring safety of large axial-flow compressor blades; procedure for experimentally determining transient aerodynamic forces caused by flat vane cascade; analysis of aerodynamic interaction of profile and vortex; laser machine for balancing dynamically adjusted gyros; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.
A pre-heating method based on sinusoidal alternating current for lithium-ion battery
NASA Astrophysics Data System (ADS)
Fan, Wentao; Sun, Fengchun; Guo, Shanshan
2018-04-01
In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.
Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis
2015-01-01
High-power ultrasound is a versatile technology which can potentially be used in many food processing applications including food preservation. This is part 2 of a series of review articles dealing with the effectiveness of nonthermal food processing technologies in food preservation focusing on their effect on enzymes. Typically, ultrasound treatment alone does not efficiently cause microbial or enzyme inactivation sufficient for food preservation. However, combined with mild heat with or without elevated pressure (P ≤ 500 kPa), ultrasound can effectively inactivate enzymes and microorganisms. Synergistic effects between ultrasound and mild heat have been reported for the inactivation of both enzymes and microorganisms. The application of ultrasound has been shown to enhance the rate of inactivation of quality degrading enzymes including pectin methylesterase (PME), polygalacturonase (PG), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) at mild temperature by up to 400 times. Moreover, ultrasound enables the inactivation of relatively heat-resistant enzymes such as tomato PG1 and thermostable orange PME at mild temperature conditions. The extent to which ultrasound enhances the inactivation rate depends on the type of enzyme, the medium in which the enzyme is suspended, and the processing condition including frequency, ultrasonic intensity, temperature, and pressure. The physical and chemical effects of cavitation are considered to be responsible for the ultrasound-induced inactivation of enzymes, although the dominant mechanism depends on the structure of the enzyme.
Information technology equipment cooling method
Schultz, Mark D.
2015-10-20
According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.
Microwave Regenerable Air Purification Device
NASA Technical Reports Server (NTRS)
Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.
1996-01-01
The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.
NASA Astrophysics Data System (ADS)
Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.
2012-05-01
Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.
NASA Astrophysics Data System (ADS)
Schuengel, Edmund
2014-10-01
The processing of large area surfaces in capacitive radio-frequency plasmas is a crucial step in the manufacturing of various high-technological products. To optimize these discharges for applications, understanding and controlling the dynamics of electrons and ions is vitally important. A recently proposed method of controlling these dynamics is based on the Electrical Asymmetry Effect (EAE): By driving the capacitive discharge with a dual-frequency voltage waveform composed of two consecutive harmonics, the symmetry of the discharge can be varied by tuning the relative phase. In this experimental study, the EAE is tested in hydrogen diluted silane discharges. The electron dynamics visualized by Phase Resolved Optical Emission Spectroscopy depends on the electrical asymmetry, the heating mode, and the presence of dust particles agglomerating in the plasma volume. In particular, a transition from the α-mode (heating by sheath expansion and field reversal) to the Ω-mode (heating by drift field in the bulk) is observed. The ion dynamics are strongly affected by the sheaths electric fields, which can be controlled via the EAE: Separate control of the flux and mean energy of ions onto the electrodes is possible via the EAE. Furthermore, investigations of the spatially resolved ion flux in the electromagnetic regime, i.e. using higher driving frequencies, reveal that the ion flux profile is controllable via the phase, as well, allowing for a significant improvement of the uniformity. Thus, it is demonstrated that the EAE is a powerful tool to control the properties of large area capacitive discharges in the volume and at the surfaces in various ways. Funded by the German Federal Ministry for the Environment, Nature conservation, and Nuclear Safety (0325210B).
Information technology equipment cooling system
Schultz, Mark D.
2014-06-10
According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.
NASA Astrophysics Data System (ADS)
Dhavalikar, Rohan; Rinaldi, Carlos
2016-12-01
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.
Microwave Heating as an Alternative Quarantine Method for Disinfestation of Stored Food Grains
Kumar, Girish; Shah, Narendra G.
2013-01-01
Insects and pests constitute a major threat to food supplies all over the world. Some estimates put the loss of food grains because of infestation to about 40% of the world production. Contemporary disinfestation methods are chemical fumigation, ionizing radiation, controlled atmosphere, conventional hot air treatment, and dielectric heating, that is, radio frequency and microwave energy, and so forth. Though chemical fumigation is being used extensively in stored food grains, regulatory issues, insect resistance, and environmental concerns demand technically effective and environmentally sound quarantine methods. Recent studies have indicated that microwave treatment is a potential means of replacing other techniques because of selective heating, pollution free environment, equivalent or better quality retention, energy minimization, and so forth. The current paper reviews the recent advances in Microwave (MW) disinfestation of stored food products and its principle and experimental results from previous studies in order to establish the usefulness of this technology. PMID:26904615
Interface conductance modal analysis of lattice matched InGaAs/InP
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Henry, Asegun
2016-05-01
We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.
Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos
2012-07-11
The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.
The radio frequency (RF) heating process can be used to volumetrically heat and thus decontaminate uncontrolled landfills and hazardous substances from spills. After the landfills are heated, decontamination of the hazardous substances occurs due to thermal decomposition, vaporiz...
Occurrence of ion upflow associated with ion/electron heating in the polar cap and cusp regions
NASA Astrophysics Data System (ADS)
Ji, E. Y.; Jee, G.; Kwak, Y. S.
2017-12-01
We investigate the occurrence frequency of ion upflow in association with ion/electron heating in the polar cap and cusp regions, using the data obtained from the European Incoherent Scatter Svalbard radar (ESR) during the period of 2000 to 2010. We classify the upflow events by four cases: driven by ion heating (case 1), electron heating (case 2), both ion and electron heatings (case 3), and without any heating (case 4). The statistical analysis of the data shows that the upflow normaly starts at around 350 km altitude and the occurrence seems to peak at 11 MLT. Among the four cases, the occurrence frequency of the upflow is maximized for the case 3 and then followed by case 2, case 1 and case 3, which indicates that both ion and electron heatings are associated with ion upflow. At around 500 km altitude, however, the occurrence frequency is maximized when there is no heating (case 4). We also investigate the dependence of the occurrence frequency of the upflow on Kp and F10.7 indices. The maximum occurrence frequency seems to occur at moderate geomagnetic condition (2 ≤ Kp < 5). As for the solar activity, the occurrence frequency is higher for low solar activity than for high solar activity. The results of this study suggest that the ion upflow occurring in the polar cap/cusp region is mostly driven by both ion and electron heatings.
Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Zhang, R.; Levine, B. D.
2000-01-01
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.
The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge
NASA Astrophysics Data System (ADS)
Gudmundsson, J. T.; Snorrason, D. I.; Hannesdottir, H.
2018-02-01
We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the evolution of the charged particle density profiles, electron heating mechanism, the electron energy probability function (EEPF), and the ion energy distribution in a single frequency capacitively coupled oxygen discharge, with driving frequency in the range 12-100 MHz. At a low driving frequency and low pressure (5 and 10 mTorr), a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed and the DA-mode dominates the time averaged electron heating. As the driving frequency or pressure are increased, the heating mode transitions into a pure α-mode, where electron heating in the sheath region dominates. At low pressure (5 and 10 mTorr), this transition coincides with a sharp decrease in electronegativity. At low pressure and low driving frequency, the EEPF is concave. As the driving frequency is increased, the number of low energy electrons increases and the relative number of higher energy electrons (>10 eV) increases. At high driving frequency, the EEPF develops a convex shape or becomes bi-Maxwellian.
In Situ Observations of Harmonic Alfvén Waves and Associated Heavy Ion Heating
NASA Astrophysics Data System (ADS)
Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui
2018-06-01
Resonant ion heating by high-frequency Alfvén waves has long been believed to be the primary dissipation mechanism for solar coronal heating, and these high-frequency Alfvén waves are considered to be generated via cascade from low-frequency Alfvén waves. In this study, we report an unusual harmonic Alfvén event from in situ observations by the Van Allen Probes in the magnetosphere, having an environment similar to that in the solar corona. The harmonic Alfvén waves, which propagate almost along the wave vector of the fundamental waves, are considered to be generated due to the interaction between quasi-parallel Alfvén waves and plasma density fluctuations with almost identical frequency. These high-frequency harmonic Alfvén waves can then cyclotron resonantly heat the heavy ions. Our observations provide an important insight into solar corona heating by Alfvén waves.
Thermal heat-balance mode flow-to-frequency converter
NASA Astrophysics Data System (ADS)
Pawlowski, Eligiusz
2016-11-01
This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.
Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G
2011-09-09
We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.
Inactivation of Microorganisms
NASA Astrophysics Data System (ADS)
Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio
Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).
Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology.
Salema, Arshad Adam; Afzal, Muhammad T; Bennamoun, Lyes
2017-06-01
Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E
2008-08-22
In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.
Approximate analytical solution for induction heating of solid cylinders
Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...
2015-10-20
An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida
Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less
Find information on the benefits of renewable heating and cooling technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.
Ryan, K L; D'Andrea, J A; Jauchem, J R; Mason, P A
2000-02-01
Currently, technology is being developed that makes use of the millimeter wave (MMW) range (30-300 GHz) of the radio frequency region of the electromagnetic spectrum. As more and more systems come on line and are used in everyday applications, the possibility of inadvertent exposure of personnel to MMWs increases. To date, there has been no published discussion regarding the health effects of MMWs; this review attempts to fill that void. Because of the shallow depth of penetration, the energy and, therefore, heat associated with MMWs will be deposited within the first 1-2 mm of human skin. MMWs have been used in states of the former Soviet Union to provide therapeutic benefit in a number of diverse disease states, including skin disorders, gastric ulcers, heart disease and cancer. Conversely, the possibility exists that hazards might be associated with accidental overexposure to MMWs. This review attempts to critically analyze the likelihood of such acute effects as burn and eye damage, as well as potential long-term effects, including cancer.
Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Morabito, David D.; Edquist, Karl
2005-01-01
The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. MSL will be the first mission to demonstrate the new technology of 'smart landers', which include precision landing and hazard avoidance in order to -land at scientifically interesting sites that would otherwise be unreachable. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have an X-band direct-to-Earth (DTE) link as well as a UHF proximity link. There is also a possibility of an X-band proximity link. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, hazard avoidance, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized plasma for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this report is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal likely trajectory to quantify likelihood of blackout for such cases.
Ultrafast Modulation and Switching of Quantum-Well Lasers using Terahertz Fields
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Hughes, S.; Citrin, D.; Saini, Subhash (Technical Monitor)
1998-01-01
Modulation and switching of semiconductor lasers are important for laser-based information technology. Typically the speed of modulation and switching is limited by interband processes such as stimulated and spontaneous recombinations which occur on a nanosecond time scale. This is why the diode laser modulation has been restricted to tens of GHz. Modulation at higher speed is highly desirable as the information technology enters into the so-called tera-era. In this paper, we study the possibility of utilizing THz-field-induced plasma heating to modulate quantum-well lasers. This is a timely study since, with the advancement of THz solid-state sources and free-electron lasers, THz physics and related technology is currently coming out of its infancy. The investigation of interplaying THz and optical fields is also of intruiging fundamental interest. First, we introduce theoretical plasma heating results for the quantum-well optical amplifier in the presense of an intense half-cycle THz pulse. The heated carrier distributions are then utilized to calculate the THz-pulse-induced change in refractive index and gain profile. Since the electron-hole-plasma is heated using intraband transitions, we circumvent the usual complications due to an overall change in density, and the nonlinear recovery is governed solely by the carrier-LO-phonon interactions, typically 5 ps for a complete recovery. This procedure implies THz and sub-THz switching and recovery rates, respectively; using either gain modulation or index modulation. Plasma heating via steady-state THz fields is also studied. Finally, numerical simulation of a coupled set of equations to investigate the THz modulation based on a simplified model for quantum-well lasers is presented. Our results show that a semiconductor laser can be modulated at up to 1 THz with little distortion with a THz field amplitude at the order of a few kV/cm. Laser responses to a change in THz frequency will be shown. Constraints, practicalities, and applications will be discussed.
Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.
Advantages of high-frequency Pulse-tube technology and its applications in infrared sensing
NASA Astrophysics Data System (ADS)
Arts, R.; Willems, D.; Mullié, J.; Benschop, T.
2016-05-01
The low-frequency pulse-tube cryocooler has been a workhorse for large heat lift applications. However, the highfrequency pulse tube has to date not seen the widespread use in tactical infrared applications that Stirling cryocoolers have had, despite significant advantages in terms of exported vibrations and lifetime. Thales Cryogenics has produced large series of high-frequency pulse-tube cryocoolers for non-infrared applications since 2005. However, the use of Thales pulse-tube cryocoolers for infrared sensing has to date largely been limited to high-end space applications. In this paper, the performances of existing available off-the-shelf pulse-tube cryocoolers are examined versus typical tactical infrared requirements. A comparison is made on efficiency, power density, reliability, and cost. An outlook is given on future developments that could bring the pulse-tube into the mainstream for tactical infrared applications.
Parametric nanomechanical amplification at very high frequency.
Karabalin, R B; Feng, X L; Roukes, M L
2009-09-01
Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.
Surfactants for Bubble Removal against Buoyancy
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179
Surfactants for Bubble Removal against Buoyancy
NASA Astrophysics Data System (ADS)
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.
NASA Astrophysics Data System (ADS)
Chipanshi, A.; Qi, D.; Zhang, Y.; Cherneski, P.
2017-12-01
In an attempt to understand how agriculture will adapt to the changing and variable climate, crop based agrometeorological indices including the Effective Growing Degree Days (EGDDs), Growing Season Length (GSL), Heat waves, Water Demand (Precipitation - Evapotranspiration) and the Standardized Precipitation Evapotranspiration Index (SPEI) were analyzed in terms of frequency, duration and trend over a 63-year timeframe (1950 to 2012) from the Canadian Prairies and related to crop production. The heat based indices (EGDD, GSL and Heat waves) increased over the analysis period due to an upward increase in the observed mean temperature. The change was most noticeable in the northern portion of the study area where agriculture is limited by insufficient heat units under the present climate. Heat waves became more frequent in the southern parts of the study area (there were more days above the 30oC threshold). Water availability as assessed from water demand (P-PE) and SPEI trended downward especially in Alberta and Saskatchewan. In spite of the increased severity and frequency in water deficits, there was a noticeable reduction in the variability of crop yield over time. This was attributed to the increased adaptive capacity that has been gained through the use of improved seed hybrids, fertilizer, the use of fungicides and adoption of best management practices such as zero till and direct seeding. After crop yields were de-trended to remove effects of technology, the cumulative precipitation during the growing season explained the majority of the variance in crop yield. This initial analysis has set the stage for analyzing the characteristics of agrometeorological indices under climate change scenarios and how accumulated precipitation during the growing season will affect crop yield and production.
Low-G fluid behavior technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.
1974-01-01
This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.
Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P
2012-02-01
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.
NASA Astrophysics Data System (ADS)
Lan, Mingming; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan
2015-03-01
In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni-Fe alloy method. The effects of cathode vibration frequency on the content of Ni-Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni-Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band.
NASA Astrophysics Data System (ADS)
Bhayani, K. R.; Rajwade, J. M.; Paknikar, K. M.
2013-01-01
Dextran stabilized La0.7Sr0.3MnO3 (Dex-LSMO) is an alternative cancer hyperthermia agent holding considerable promise. Here, we have carried out a comparative study on radio frequency (˜264 kHz) induced Dex-LSMO mediated heating and extraneous heating (mimicking generalized hyperthermia) in terms of changes in the morphology, proliferation pattern and induction of heat shock proteins in a human melanoma cell line (A375). Our results clearly show that the cellular effects seen with extraneous heating (60 min at 43 °C) could be reproduced by just six minutes of radio frequency induced Dex-LSMO mediated heating. More importantly, the observed enhanced levels of HSP 70 and 90 (molecular markers of heat shock that trigger favorable immunological reactions) seen with Dex-LSMO mediated heating were comparable to extraneous heating. These results suggest the possible utility of Dex-LSMO as a cancer hyperthermia agent.
Skylab electronic technological advancements
NASA Technical Reports Server (NTRS)
Hornback, G. L.
1974-01-01
The present work describes three electronic devices designed for use in the Skylab airlock module: the teleprinter system, the quartz crystal microbalance contamination monitor (QCM), and the speaker. Design considerations, operation, characteristics, and system development are described for these systems, with accompanying diagrams, graphs, and photographs. The teleprinter is a thermal dot printer used to produce hard copy messages by electrically heating print elements in contact with heat-sensitive paper. The QCM was designed to estimate contamination buildup on optical surfaces of the earth resources experiment package. A vibrating quartz crystal is used as a microbalance relating deposited mass to shifts in the crystal's resonant frequency. Audio devices provide communication between crew members and between crew and STDN, and also provide audible alarms, via the caution and warning system, of out-of-limit-conditions.
Finite Element Analysis of Three Methods for Microwave Heating of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2012-01-01
In-Situ Resource Utilization will be Ground Breaking technology for sustained exploration of space. Volatiles are present in planetary regolith, but water by far has the most potential for effective utilization. The presence of water at the lunar poles and Mars opens the possibility of using the hydrogen for propellant on missions beyond Earth orbit. Likewise, the oxygen could be used for in-space propulsion for lunar ascent/descent and for space tugs from low lunar orbit to low Earth orbit. Water is also an effective radiation shielding material as well as a valuable expendable (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating regolith effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within, much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on regolith dielectric properties. New methods for delivery of microwaves into lunar and planetary surfaces is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. Recent results are discussed.
High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant
NASA Technical Reports Server (NTRS)
Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.
2011-01-01
Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.
IN SITU AND SOIL DECONTAMINATION BY RADIO FREQUENCY HEATING
In situ radio frequency heating is performed by applying electromagnetic energy in the radio frequency band to an array of electrodes placed in bore holes drilled through the contaminated soil. he process removes organic contaminants from large volumes of soil by volatilization, ...
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
Low-Frequency Waves in HF Heating of the Ionosphere
NASA Astrophysics Data System (ADS)
Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.
2016-02-01
Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.
USDA-ARS?s Scientific Manuscript database
Radio frequency (RF) treatments have potential as alternatives to chemical fumigation for phytosanitary disinfestation treatments in the dried nut industry. To develop effective RF treatment protocols for almonds, it is desirable to determine heating uniformity and the occurrence of differential hea...
Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil
USDA-ARS?s Scientific Manuscript database
To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...
Modelling transport phenomena in a multi-physics context
NASA Astrophysics Data System (ADS)
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Francesco
2015-01-22
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. Inmore » the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.« less
Initial results of stimulated radiation measurements during the HAARP campaign of September 2017
NASA Astrophysics Data System (ADS)
Yellu, A. D.; Scales, W. A.; Mahmoudian, A.; Siefring, C.; Bernhardt, P.
2018-02-01
Initial results of stimulated electromagnetic radiation observed during an ionosphere heating experiment conducted at the High-Frequency Active Auroral Program (HAARP) facility are reported. The frequency of the pump wave used in the heating is in the neighborhood of the third harmonic of the electron cyclotron frequency, and of interest are simulated electromagnetic emissions (SEEs) within ? kHz of the heating frequency known as narrowband SEE (NSEE) and the commonly known wideband SEE (WSEE) which occur within ? kHz of the pump wave frequency. With the transmit power maintained at maximum, and all other conditions of the experiment invariable, the characteristics of NSEE and WSEE as time progresses from the time the transmitter is switched on are detailed in the results. The dependence of the characteristics of the NSEE and WSEE with temporal evolution into the heating cycle are observed to be fundamentally different.
David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington
2012-01-01
Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...
USDA-ARS?s Scientific Manuscript database
Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....
NASA Astrophysics Data System (ADS)
Arakelyan, E. K.; Andryushin, A. V.; Burtsev, S. Y.; Andryushin, K. A.
2017-11-01
The analysis of technical and parametric constraints on the adjustment range of highpower CCP and recommended technological solutions in the technical literature for their elimination. Established that in the conditions of toughening the requirements for economy, reliability and maneuverability on the part of the system operator with the participation of CCP in control the frequency and power in the power system, existing methods do not ensure the fulfillment of these requirements. The current situation in the energy sector — the lack of highly manoeuvrable power equipment leads to the need participate in control of power consumption diagrams for all types of power plants, including CCP, although initially they were intended primarily for basic loads. Large-scale research conducted at the department of Automated control systems of technological processes, showed the possibility of a significant expansion of the adjustment range of CCP when it operating in the condensing mode and in the heating mode. The report presents the main results of these research for example the CCP-450 and CCP-450T. Various technological solutions are considered: when CCP in the condensation mode — the use of bypass steam distribution schemes, the transfer of a part of the steam turbine into a low-steam mode; when CCP operation in the heating mode — bypass steam distribution and the transfer CCP to gas turbine unit — power heating plants mode with the transfer the steam turbine to the motor mode. Data on the evaluation of the technical and economic feasibility of the proposed innovative technological solutions are presented in comparison with the methods used to solve this problem, which are used in practice, such as passing through the failures of the electric load graphs by transferring the CCP to the mode of operation with incomplete equipment. When comparing, both the economics, and the maneuverability and reliability of the equipment are considered.
Microwave-assisted green synthesis of silver nanostructures.
Nadagouda, Mallikarjuna N; Speth, Thomas F; Varma, Rajender S
2011-07-19
Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample. This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold-palladium (Au-Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers, the solvents, and the operation reaction temperature. In general, nanostructures with smaller sizes, narrower size distributions, and a higher degree of crystallization have been obtained more consistently via MW heating than by heating with a conventional oil-bath. The use of microwaves to heat samples is a viable avenue for the greener synthesis of nanomaterials and provides several desirable features such as shorter reaction times, reduced energy consumption, and better product yields.
NASA Astrophysics Data System (ADS)
Burchill, Johnathan Kerr
Low-energy (Ek ˜ 10-1--10 1 eV) ions comprise the bulk of Earth's ionosphere, and represent the initial stages of ion heating and outflow from Earth's auroral regions. The suprathermal ion imager (SII) is a fast (˜93 images/sec), compact, two-dimensional ion energy (0 < Ek < 20 eV) and direction-of-arrival analyzer designed to observe the energy distributions of these ions in detail, with emphasis on exploring small-scale (˜10--100 m) structure in the ionosphere. The SII was flown into an auroral substorm on the GEODESIC sounding rocket from Poker Flat, Alaska, on 26 February 2000. The technical element of this thesis deals with the development of a computer model of the SII, and techniques for extracting and interpreting physical quantities from the SII observations. Laboratory and in-flight calibrations demonstrate that the analyzer imaging capability departs from the ideal model. Nevertheless, the SII represents a technological step forward, and has yielded new scientific results. The scientific element of this thesis focuses on simultaneous observations of ion energy distributions and low-frequency plasma waves in the topside (500--1000 km) auroral ionosphere. GEODESIC encountered three types of plasma wave which have previously been associated with ion heating. However, heated ions were only observed in association with localized density depletions and wave enhancements known as lower-hybrid solitary structures (LHSS). Approximately 90% of the LHSS ion number density is comprised of the ambient isotropic sub-eV core population. The remaining 10% corresponds to transverse acceleration of ions (TAI) to within 5° transverse to the geomagnetic field and to mean energies up to 5--10 eV, consistent with previous findings. Contrary to previously published observations, the GEODESIC TAI is consistent with localized bulk heating of some of the ambient core. Ion heating was not observed in association with large-scale (>1 km) broadband extremely low frequency (BB ELF) wave enhancements. Similarly, no ion heating was detected in the presence of large amplitude, short perpendicular wavelength Alfven waves. Differences between low-frequency ion flow fluctuations and convection drift fluctuations can be explained only partially by ion polarization drift physics.
Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui
2013-03-01
The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.
In-Band and Out-of-Band VLF Scattering by Modulated D-region Heating at the Arecibo Observatory
NASA Astrophysics Data System (ADS)
Burch, H.; Moore, R. C.
2017-12-01
The HF heating facility at the Arecibo Observatory is able to create an artificial disturbance in the D-region ionosphere through HF heating, a phenomenon which has been well documented at HAARP. Very Low Frequency (VLF, 3-30 kHz) waves radiated by Navy transmitters propagate around the globe in the Earth-Ionosphere waveguide and scatter from this artificially disturbed region. We investigated this effect at the Arecibo Observatory during the July 2017 HF heating campaign using an amplitude-modulated HF signal at modulation frequencies from below 1 Hz to approximately 5 kHz. VLF receivers stationed in Puerto Rico measured the amplitude and phase of propagating VLF transmitter signals under HF-heated and ambient ionospheric conditions. We interpret the scattered VLF signals in the context of an ionospheric HF heating model that has been successfully used to interpret the results of HAARP experiments for a number of years. We present initial results regarding the generation and detection of nonlinear mixing components at the VLF transmitter frequency +/- the HF modulation frequency.
NASA Astrophysics Data System (ADS)
Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen
2013-10-01
The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.
Terahertz Photoresponse of a Single InAs Quantum Wire
NASA Astrophysics Data System (ADS)
Peralta, X. G.; Allen, S. J.; Kono, J.; Sakaki, H.; Sugihara, T.; Sasa, S.; Inoue, M.
1997-03-01
The terahertz (THz) photoresponse of a single InAs quantum wire in a high magnetic field has been studied as a function of frequency, polarization and THz field strength. The wire was fabricated by wet chemical etching of a InAs/AlGaSb single quantum well with a mobility of 92000 cm^2/Vs and a density of 7.3x10^11 cm-2. The length of the wire is 2 μm. At high THz field strength , we observe non-resonant heating of the quasi-1-D electron gas in the wire which produces a temperature modulation of the Shubnikov-de Haas oscillations. While the period of the oscillations is independent of THz polarization and frequency, the magnetic field dependent amplitude depends on THz polarization. At low THz power a resonant peak whose position depends on THz frequency is identified as a magnetoplasmon in the single wire. We project the low power results on models of 1-D magnetoplasma oscillations. We are particularly interested in excitations at high terahertz field strength which are beyond the scope of exisiting models. This work is supported by ONR, QUEST and NSF Science and Technology Center, Japan Science and Technology Corporation and Consejo Nacional de Ciencia y Tecnología, México.
Climate change scenarios of heat waves in Central Europe and their uncertainties
NASA Astrophysics Data System (ADS)
Lhotka, Ondřej; Kyselý, Jan; Farda, Aleš
2018-02-01
The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970-1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020-2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070-2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.
Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide.
Min Lee, Seung; Hwan Yum, Jung; Larsen, Eric S; Chul Lee, Woo; Keun Kim, Seong; Bielawski, Christopher W; Oh, Jungwoo
2017-10-16
Silicon-on-insulator (SOI) technology improves the performance of devices by reducing parasitic capacitance. Devices based on SOI or silicon-on-sapphire technology are primarily used in high-performance radio frequency (RF) and radiation sensitive applications as well as for reducing the short channel effects in microelectronic devices. Despite their advantages, the high substrate cost and overheating problems associated with complexities in substrate fabrication as well as the low thermal conductivity of silicon oxide prevent broad applications of this technology. To overcome these challenges, we describe a new approach of using beryllium oxide (BeO). The use of atomic layer deposition (ALD) for producing this material results in lowering the SOI wafer production cost. Furthermore, the use of BeO exhibiting a high thermal conductivity might minimize the self-heating issues. We show that crystalline Si can be grown on ALD BeO and the resultant devices exhibit potential for use in advanced SOI technology applications.
1.5-GW S-band relativistic klystron amplifier
NASA Astrophysics Data System (ADS)
Ferguson, Patrick E.
1992-04-01
There is a strong symbiotic relationship between a developing technology and its applications. New technologies can generate applications previously either unrealizable or impractical. Conversely, applications can demand the development of new technological capability. Examples of both types of development can be found in the evolution of HPM. The high power and energy output made possible by HPM have created a technology driven interest in directed energy weapons and short pulse radar. On the other hand, the requirements for heating of fusion plasmas have resulted in an application driven program to develop high average power microwave devices. In this paper we address these and other applications such as RF electron linacs, laser pumping, and beaming of power. Emerging applications, such as ionispheric modification and environmental cleanup, are also touched upon. The approach of this paper will be to review each application separately and then compare the requirements of the applications in terms of the power, frequency and other key requirements necessary for HPM to usefully address the application.
Heat pipe technology: A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1971-01-01
The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.
Jia, Tao; Gao, Di
2018-04-03
Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.
Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes
NASA Astrophysics Data System (ADS)
Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr
2015-04-01
The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.
Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel
2014-10-01
Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.
Modeling of High Capacity Passive Cooling System
2009-03-01
Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat
Multifrequency ultrasound transducers for conformal interstitial thermal therapy.
Chopra, Rajiv; Luginbuhl, Chris; Foster, F Stuart; Bronskill, Michael J
2003-07-01
Control over the pattern of thermal damage generated by interstitial ultrasound heating applicators can be enhanced by changing the ultrasound frequency during heating. The ability to change transmission frequency from a single transducer through the use of high impedance front layers was investigated in this study. The transmission spectrum of multifrequency transducers was calculated using the KLM equivalent circuit model and verified with experimental measurements on prototype transducers. The addition of a quarter-wavelength thick PZT (unpoled) front layer enabled the transmission of ultrasound at two discrete frequencies, 4.7 and 9.7 MHz, from a transducer with an original resonant frequency of 8.4 MHz. Three frequency transmission at 3.3, 8.4, and 10.8 MHz was possible for a transducer with a half-wavelength thick front layer. Calculations of the predicted thermal lesion size at each transmission frequency indicated that the depth of thermal lesion could be varied by a factor of 1.6 for the quarter-wavelength front layer. Heating experiments performed in excised liver tissue with a dual-frequency applicator confirmed this ability to control the shape of thermal lesions during heating to generate a desired geometry. Practical interstitial designs that enable the generation of shaped thermal lesions are feasible.
The impact of frequency on the performance of microwave ablation.
Sawicki, James F; Shea, Jacob D; Behdad, Nader; Hagness, Susan C
2017-02-01
The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.
Thermoregulatory responses to heat and vibration in men
NASA Technical Reports Server (NTRS)
Spaul, W. A.; Spear, R. C.; Greenleaf, J. E.
1986-01-01
The effect of vibration on thermoregulatory responses was studied in heat-acclimated men exposed suddenly to simultaneous heat and whole body vibrations (WBVs) at two intensity levels, each at graded frequencies between 5 and 80 Hz. The mean rectal temperature (Tre) became elevated more quickly in the WBV exposures than in the controls (heat exposure alone). Both intensity- and frequency-dependent WBV relationships were recorded in localized blood flows and in sweat rates. Thus, vibration appears to reduce the efficiency of the cooling mechanisms during a heat exposure.
The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement
Hua, Zilong; Ban, Heng; Hurley, David H.
2015-05-05
A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less
The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Zilong; Ban, Heng; Hurley, David H.
A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muntini, Melania Suweni, E-mail: melania@physics.its.ac.id; Pramono, Yono Hadi; Yustiana
As the world’s oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted intomore » heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.« less
Ionospheric modifications in high frequency heating experiments
NASA Astrophysics Data System (ADS)
Kuo, Spencer P.
2015-01-01
Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, MARIAH ENERGY CORPORATION HEAT PLUS POWER SYSTEM
The Greenhouse Gas Technology Center (GHG Center) has recently evaluated the performance of the Heat PlusPower(TM) System (Mariah CDP System), which integrates microturbine technology with a heat recovery system. Electric power is generated with a Capstone MicroTurbine(TM) Model ...
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Morabito, David D.; Edquist, Karl T.
2005-01-01
The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have a UHF proximity link as the primary path for EDL communications and may have an X-band direct-to-Earth link as a back-up. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized particles for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this rep0rt is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal trajectory to quantify likelihood of blackout for such cases.
Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-09-01
TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.
New acoustical technology of sound absorption based on reverse horn
NASA Astrophysics Data System (ADS)
Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting
2016-12-01
In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.
NASA Astrophysics Data System (ADS)
Farahani, Somayeh Davoodabadi; Kowsary, Farshad
2017-09-01
An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.
Ling, Bo; Liu, Xiaoli; Zhang, Lihui; Wang, Shaojin
2018-03-13
Dielectric heating including microwave (MW) and radio frequency (RF) energy has been regarded as alternative thermal treatments for food processing. To develop effective rice bran (RB) stabilization treatments based on RF and MW heating, dielectric properties (DPs) with dielectric constant (ε') and loss factor (ε″) of RB samples at frequencies (10-3000 MHz), temperatures (25-100 °C), moisture content (MC, 10.36-24.69% w.b.) and three metal salt levels (0.05-2.00%) were determined by an open-ended coaxial probe and impedance analyzer. Results indicated that both ε' and ε″ of RB samples increased with increasing temperature and MC. The increase rate was greater at higher temperature and moisture levels than at lower levels, especially at frequencies lower than 300 MHz. Cubic order models were developed to best fit the relationship between DPs of RB samples and temperature/MC at five frequencies with R 2 greater than 0.994. Both ε″ and RF heating rate of RB samples increased significantly with added NaCl (2%), KCl (1%) and Na 6 O 18 P 6 (2%). The obtained data are useful in developing computer models and simulating dielectric heating for RB stabilization and may also provide theoretical basis for synergistic stabilization of RB under combined dielectric heating with metal salts.
Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits
NASA Astrophysics Data System (ADS)
Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa
2017-12-01
Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.
EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung
2012-01-01
The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung
2013-01-01
The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.
Tubes in space - Very much alive
NASA Technical Reports Server (NTRS)
Kosmahl, H. G.
1983-01-01
Some advantages of TWTs over SSDs are discussed. Wideband TWTs have been developed which can produce 20 W of RF power at 20 GHz with 40 percent efficiency, a figure three or four times that available from SSDs such as FETs. The basic performance of TWTs exceeds that of SSDs for any given bandwidth and frequency. SSDs are transit time limited, and their performance deteriorates fundamentally as the reciprocal of the square of the operating frequency. Power limits for SSDs have been reached or are quickly being approached. Free electron devices such as tubes have an efficiency advantage because electrons in the vacuum travel faster than bulk charges in SSDs. Combined SSD devices are prone to burnout and incur penalties due to the need to dissipate heat. TWTs have a 6.7:1 advantage in radiator area ratio. Recent progress in TWT technology has produced a tenfold increase in CW output power, doubled to quadrupled the efficiency, and pushed frequency ranges into the terahertz region, orders of magnitude beyond the SSD cutoff.
Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia
2015-09-01
Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.
Optimization of pelvic heating rate distributions with electromagnetic phased arrays.
Paulsen, K D; Geimer, S; Tang, J; Boyse, W E
1999-01-01
Deep heating of pelvic tumours with electromagnetic phased arrays has recently been reported to improve local tumour control when combined with radiotherapy in a randomized clinical trial despite the fact that rather modest elevations in tumour temperatures were achieved. It is reasonable to surmise that improvements in temperature elevation could lead to even better tumour response rates, motivating studies which attempt to explore the parameter space associated with heating rate delivery in the pelvis. Computational models which are based on detailed three-dimensional patient anatomy are readily available and lend themselves to this type of investigation. In this paper, volume average SAR is optimized in a predefined target volume subject to a maximum allowable volume average SAR outside this zone. Variables under study include the position of the target zone, the number and distribution of radiators and the applicator operating frequency. The results show a clear preference for increasing frequency beyond 100 MHz, which is typically applied clinically, especially as the number of antennae increases. Increasing both the number of antennae per circumferential distance around the patient, as well as the number of independently functioning antenna bands along the patient length, is important in this regard, although improvements were found to be more significant with increasing circumferential antenna density. However, there is considerable site specific variation and cases occur where lower numbers of antennae spread out over multiple longitudinal bands are more advantageous. The results presented here have been normalized relative to an optimized set of antenna array amplitudes and phases operating at 100 MHz which is a common clinical configuration. The intent is to provide some indications of avenues for improving the heating rate distributions achievable with current technology.
Air Conditioning and Heating Technology--II.
ERIC Educational Resources Information Center
Gattone, Felix
Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thekdi, Arvind; Nimbalkar, Sachin U.
2015-01-01
The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.
Effect of frequency on the uniformity of symmetrical RF CCP discharges
NASA Astrophysics Data System (ADS)
Liu, Yue; Booth, Jean-Paul; Chabert, Pascal
2018-05-01
A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15–45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions.
Ion Cyclotron Resonant Heating (ICRH) system used on the Tandem Mirror Experiment-Upgrade (TMX-U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, S.W.; Maxwell, T.M.; Antelman, D.R.
1985-11-11
Ion Cyclotron Resonant Heating (ICRH) is part of the plasma heating system used on the TMX-U experiment. Radio frequency (RF) energy is injected into the TMX-U plasma at a frequency near the fundamental ion resonance (2 to 5 MHz). The RF fields impart high velocities to the ions in a direction perpendicular to the TMX-U magnetic field. Particle collision then converts this perpendicular heating to uniform plasma heating. This paper describes the various aspects of the ICRH system: antennas, power supplies, computer control, and data acquisition. 4 refs., 10 figs.
Stirling Space Engine Program. Volume 1; Final Report
NASA Technical Reports Server (NTRS)
Dhar, Manmohan
1999-01-01
The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.
Apparatus and method for prevention of cracking in welded brittle alloys
Kronberg, James W.; Younkins, Robert M.
2000-01-01
An apparatus and method for reducing cracking in a heated material as the material cools. The apparatus includes a variable frequency electric signal generator that is coupled to a transducer. The transducer produces a variable frequency acoustic signal in response to the variable frequency electric signal, which is applied to the heated material to reduce cracking as the material cools.
The calculation of molecular Eigen-frequencies
NASA Technical Reports Server (NTRS)
Lindemann, F. A.
1984-01-01
A method of determining molecular eigen-frequencies based on the function of Einstein expressing the variation of the atomic heat of various elements is proposed. It is shown that the same equation can be utilized to calculate both atomic heat and optically identifiably eigen-frequencies - at least to an order of magnitude - suggesting that in both cases the same oscillating structure is responsible.
The effect of coolants on the performance of magnetic micro-refrigerators.
Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P
2014-06-01
Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.
Kim, Sang-Soon; Choi, Won; Kang, Dong-Hyun
2017-05-01
The purpose of this study was to inactivate foodborne pathogens effectively by ohmic heating in buffered peptone water and tomato juice without causing electrode corrosion and quality degradation. Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes were used as representative foodborne pathogens and MS-2 phage was used as a norovirus surrogate. Buffered peptone water and tomato juice inoculated with pathogens were treated with pulsed ohmic heating at different frequencies (0.06-1 kHz). Propidium iodide uptake values of bacterial pathogens were significantly (p < 0.05) larger at 0.06-0.5 kHz than at 1 kHz, and sub-lethal injury of pathogenic bacteria was reduced by decreasing frequency. MS-2 phage was inactivated more effectively at low frequency, and was more sensitive to acidic conditions than pathogenic bacteria. Electrode corrosion and quality degradation of tomato juice were not observed regardless of frequency. This study suggests that low frequency pulsed ohmic heating is applicable to inactivate foodborne pathogens effectively without causing electrode corrosion and quality degradation in tomato juice. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan
2012-04-01
In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).
Innovative food processing technology using ohmic heating and aseptic packaging for meat.
Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko
2014-02-01
Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.
Design and evaluation of a flow-to-frequency converter circuit with thermal feedback
NASA Astrophysics Data System (ADS)
Pawlowski, Eligiusz
2017-05-01
A novel thermal flow sensor with a frequency output is presented. The sensor provides a pulse-train output whose frequency is related to the fluid flow rate around a self-heating thermistor. The integrating properties of the temperature sensor have been used, which allowed for realization of the pulse frequency modulator with a thermal feedback loop, stabilizing the temperature of the sensor placed in the flowing medium. The system assures a balance of the amount of heat supplied in the impulses to the sensor and the heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output pulse-train is proportional to the medium flow velocity around the sensor. The special feature of the presented solution is the total integration of the thermal sensor with the measurement signal conditioning system. i.e. the sensor and conditioning system are not separate elements of the measurement circuit, but constitute a whole in the form of a thermal heat-balance mode flow-to-frequency converter. The frequency signal from the converter may be directly connected to the microprocessor digital input, which with use of the standard built-in counters may convert the frequency into a numerical value of high precision. The sensor has been experimentally characterized as a function of the average flow velocity of air at room temperature.
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya
2014-01-01
The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.
PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCDONALD,R.J.
1999-04-01
The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their helpmore » and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.« less
NASA Astrophysics Data System (ADS)
Park, Keun; Lee, Sang-Ik
2010-03-01
High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, J.W.; Wu, X.; Sorensen, B.F.
The influence of loading frequency on the fatigue life and internal (frictional) heating of unidirectional SiC-fiber/calcium aluminosilicate-matrix composites was investigated at room temperature. Specimens were subjected to tension-tension fatigue at sinusoidal loading frequencies from 25 to 350 Hz and maximum fatigue stresses of 180 to 240 MPa. The key findings of the study were that (1) fatigue life decreased sharply as the loading frequency was increased, (2) for all loading frequencies, fatigue failures occurred at stress levels that were significantly below the monotonic proportional limit stress if [approximately]285 MPa, and (3) pronounced internal heating occurred during fatigue, with the surfacemore » temperature of the fatigue specimens increasing by 160 K during 350-Hz fatigue at a peak stress of 240 MPa.« less
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
Automated calculation of surface energy fluxes with high-frequency lake buoy data
Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.
2015-01-01
Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.
Optimum Construction of Heating Coil for Domestic Induction Cooker
NASA Astrophysics Data System (ADS)
Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai
2010-10-01
The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.
Terahertz time-domain spectroscopy of edible oils
Valchev, Dimitar G.
2017-01-01
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05–2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min. PMID:28680681
Terahertz time-domain spectroscopy of edible oils
NASA Astrophysics Data System (ADS)
Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek
2017-06-01
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.
Status of the ITER Electron Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji
2016-01-01
The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.
Terahertz time-domain spectroscopy of edible oils.
Dinovitser, Alex; Valchev, Dimitar G; Abbott, Derek
2017-06-01
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.
Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina
2018-06-22
Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.
Graphene-based photovoltaic cells for near-field thermal energy conversion
Messina, Riccardo; Ben-Abdallah, Philippe
2013-01-01
Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat. PMID:23474891
Graphene-based photovoltaic cells for near-field thermal energy conversion.
Messina, Riccardo; Ben-Abdallah, Philippe
2013-01-01
Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.
Passively Adaptive Inflatable Structure for the Shooting Star Experiment
NASA Technical Reports Server (NTRS)
Tinker, Michael L..
1998-01-01
An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.
Schlisselberg, Dov B; Kler, Edna; Kalily, Emmanuel; Kisluk, Guy; Karniel, Ohad; Yaron, Sima
2013-01-01
The consumer demand for fresh tasting, high quality, low salt, preservative-free meals which require minimal preparation time magnifies the safety concern and emphasizes the need to use innovative technologies for food processing. A modern technique to uniformly heat and cook foods is based on a combination of convection and controlled radio frequency (RF) energy. However any advantage conferred on meat cooked by this method would be lost if application of the technology results in decreased safety. Our main goal was to study the inactivation efficacy of this method of cooking against pathogens in ground meat in comparison to standard convection cooking. Meat balls were artificially inoculated with GFP expressing Escherichia coli, Salmonella Typhimurium and Listeria monocytogenes as well as spores of Bacillus cereus and Bacillus thuringiensis and cooked by convection heating (220°C, 40 min), by using energy generated from frequencies in the RF bandwidth (RF cooking, 7.5 min) or by combined heating (5.5 min), until the center temperature of each sample reached 73°C. The mean reductions in total indigenous bacteria obtained by RF and convection were 2.8 and 2.5 log CFU/g, respectively. Cooking of meat balls with convection reduced the E. coli population (8 log CFU/g) by 5.5 log CFU/g, whilst treatment with RF reduced E. coli population to undetectable levels. The mean reductions of S. Typhimurium obtained by RF and convection were 5.7 and 6.5 log CFU/g, respectively. The combined treatment reduced the Salmonella population to undetectable levels. In contrast, L. monocytogenes was poorly affected by RF cooking. The mean reduction of L. monocytogenes obtained by RF energy was 0.4 log CFU/g, while convection cooking resulted in undetectable levels. Interestingly, the combined treatment also resulted with undetectable levels of Listeria although time of cooking was reduced by 86%. One-step cooking had negligible effects on the Bacillus spores and therefore a 2-step treatment of RF or convection was applied. This 2-step treatment proved to be efficient with 4.5 log CFU/g reduction for both RF and convection. In conclusion, here we show that combination of RF with convection cooking resulted in similar or even better effects on selected foodborne pathogens compared to convection only, while the time required for safe cooking is cut down by up to 86%. The equal or better results in the levels of all investigated pathogens using RF with convection compared with convection only suggest that this technology looks promising and safe for ground beef cooking. Copyright © 2012 Elsevier B.V. All rights reserved.
Experimental investigation of the ecological hybrid refrigeration cycle
NASA Astrophysics Data System (ADS)
Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman
2014-09-01
The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
High-power radio-frequency attenuation device
Kerns, Q.A.; Miller, H.W.
1981-12-30
A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.
High power radio frequency attenuation device
Kerns, Quentin A.; Miller, Harold W.
1984-01-01
A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.
Utilization of Satellite Data to Identify and Monitor Changes in Frequency of Meteorological Events
NASA Astrophysics Data System (ADS)
Mast, J. C.; Dessler, A. E.
2017-12-01
Increases in temperature and climate variability due to human-induced climate change is increasing the frequency and magnitude of extreme heat events (i.e., heatwaves). This will have a detrimental impact on the health of human populations and habitability of certain land locations. Here we seek to utilize satellite data records to identify and monitor extreme heat events. We analyze satellite data sets (MODIS and AIRS land surface temperatures (LST) and water vapor profiles (WV)) due to their global coverage and stable calibration. Heat waves are identified based on the frequency of maximum daily temperatures above a threshold, determined as follows. Land surface temperatures are gridded into uniform latitude/longitude bins. Maximum daily temperatures per bin are determined and probability density functions (PDF) of these maxima are constructed monthly and seasonally. For each bin, a threshold is calculated at the 95th percentile of the PDF of maximum temperatures. Per each bin, an extreme heat event is defined based on the frequency of monthly and seasonal days exceeding the threshold. To account for the decreased ability of the human body to thermoregulate with increasing moisture, and to assess lethality of the heat events, we determine the wet-bulb temperature at the locations of extreme heat events. Preliminary results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, F.C.
1996-08-01
The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less
Evaluation of Virginia's first heated bridge.
DOT National Transportation Integrated Search
2000-12-01
This study is a contribution to the Heated Bridge Technology Program established in 1991 under the Intermodal Surface Transportation Efficiency Act. The goal of the program was to find durable and environmentally friendly heated bridge technologies f...
Method of and apparatus for thermomagnetically processing a workpiece
Kisner, Roger A.; Rios, Orlando; Wilgen, John B.; Ludtka, Gerard M.; Ludtka, Gail M.
2014-08-05
A method of thermomagnetically processing a material includes disposing a workpiece within a bore of a magnet; exposing the workpiece to a magnetic field of at least about 1 Tesla generated by the magnet; and, while exposing the workpiece to the magnetic field, applying heat energy to the workpiece at a plurality of frequencies to achieve spatially-controlled heating of the workpiece. An apparatus for thermomagnetically processing a material comprises: a high field strength magnet having a bore extending therethrough for insertion of a workpiece therein; and an energy source disposed adjacent to an entrance to the bore. The energy source is an emitter of variable frequency heat energy, and the bore comprises a waveguide for propagation of the variable frequency heat energy from the energy source to the workpiece.
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexin Wang
2011-12-19
The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less
Gold nanoshell thermal confinement of conformal laser thermal therapy in liver metastasis
NASA Astrophysics Data System (ADS)
Elliott, Andrew M.; Wang, James; Shetty, Anil M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason
2008-02-01
Cooled fiber tip technology has significantly improved the volume coverage of laser induced thermal therapy (LITT), making LITT an attractive technology for the minimally invasive treatment of cancer. Gold coated nanoshells can be tuned to experience a plasmon resonance at a desired laser frequency, there introduction into the treatment region can greatly amplify the effectiveness of the thermal treatment. The goal is to conformaly heat the target, while sparing surrounding healthy tissue. To this end a treatment option that is self-confining to the target lesion is highly desirable. This can be achieved in the liver by allowing nanoshells to be taken up by the healthy tissue of the liver as part of their natural removal from the blood stream. The lesion is then incased inside the nanoshell laden tissue of the surrounding healthy tissue. When an interstitial laser probe is introduced into the center of the lesion the thermal radiation scatters outward until it interacts with and is absorbed by the nanoshells located around the lesion periphery. As the periphery heats it acts as secondary source of thermal radiation, sending heat back into lesion and giving rise to ablative temperatures within the lesion while sparing the surrounding tissue. In order to better monitor therapy and know when the target volume has been ablated, or exceeded, accurate knowledge is needed of both the spatial distribution of heating and the maximum temperature achieved. Magnetic resonance temperature imaging (MRTI) is capable of monitoring the spatiotemporal distribution of temperature in vivo[1]. Experiments have been performed in vitro using a dog liver containing nanoshells (concentration 860ppm) and a tissue like lesion phantom designed to have the optical properties of liver metastasis [2].
Spatial and temporal control of thermal waves by using DMDs for interference based crack detection
NASA Astrophysics Data System (ADS)
Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias
2016-02-01
Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.
Investigation on micromachining technologies for the realization of LTCC devices and systems
NASA Astrophysics Data System (ADS)
Haas, T.; Zeilmann, C.; Bittner, A.; Schmid, U.
2011-06-01
Low temperature co-fired ceramics (LTCC) has established as a widespread platform for advanced functional ceramic devices in different applications, such as in the space and aviation sector, for micro machined sensors as well as in micro fluidics. This is due to high reliability, excellent physical properties, especially in the high frequency range, and the possibility to integrate passive components in the monolithic LTCC body, offering the potential for a high degree of miniaturisation. However, for further improvement of this technology and for an ongoing increase of the integration level, the realization of miniaturized structures is of utmost importance. Therefore, novel techniques for micro-machining are required providing channel structures and cavities inside the glass-ceramic body, enabling for further application scenarios. Those techniques are punching, laser cutting and embossing. One of the most limitations of LTCC is the poor thermal conductivity. Hence, the possibility to integrate channels enables innovative active cooling approaches using fluidic media for heat critical devices. Doing so, a by far better cooling effect can be achieved than by passive devices as heat spreaders or heat sinks. Furthermore, the realization of mechanic devices as integrated pressure sensors for operation under harsh environmental conditions can be realized by integrating the membrane directly into the ceramic body. Finally, for high power devices substantial improvement can be provided by filling those channel structures with electrical conductive material, so that the resistivity can be decreased drastically without affecting the topography of the ceramics.
Heat exposure in the Canadian workplace.
Jay, Ollie; Kenny, Glen P
2010-08-01
Exposure to excessive heat is a physical hazard that threatens Canadian workers. As patterns of global climate change suggest an increased frequency of heat waves, the potential impact of these extreme climate events on the health and well-being of the Canadian workforce is a new and growing challenge. Increasingly, industries rely on available technology and information to ensure the safety of their workers. Current Canadian labor codes in all provinces employ the guidelines recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) that are Threshold Limit Values (TLVs) based upon Wet Bulb Globe Temperature (WBGT). The TLVs are set so that core body temperature of the workers supposedly does not exceed 38.0 degrees C. Legislation in most Canadian provinces also requires employers to install engineering and administrative controls to reduce the heat stress risk of their working environment should it exceed the levels permissible under the WBGT system. There are however severe limitations using the WGBT system because it only directly evaluates the environmental parameters and merely incorporates personal factors such as clothing insulation and metabolic heat production through simple correction factors for broadly generalized groups. An improved awareness of the strengths and limitations of TLVs and the WGBT index can minimize preventable measurement errors and improve their utilization in workplaces. Work is on-going, particularly in the European Union to develop an improved individualized heat stress risk assessment tool. More work is required to improve the predictive capacity of these indices. Copyright 2010 Wiley-Liss, Inc.
Heat Pipe Technology: A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1974-01-01
This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.
NASA Astrophysics Data System (ADS)
Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza
2018-04-01
In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.
Ren, Jun-Guo; Wang, Dong-Zhi; Lei, Lei; Kang, Li; Liu, Jian-Xun
2017-05-01
To find the relationship between traditional efficacy of Chinese medicine and modern pharmacological action by using data mining, and provide information and reference for further research and development for the pharmacology research of traditional Chinese medicine.The information of 547 kinds of traditional Chinese medicines, 335 kinds of Chinese medicine effects and 86 kinds of pharmacological actions were collected and processed in Clinical Guide to the Chinese Pharmacopoeia published in 2010; Access and Excel software were used to analyze the frequence and frequency of single effect, pharmacological action, and both. In addition, the relationship between efficacy and pharmacology was analyzed with the clearing heat and antibacterial effects as the example. The analysis results showed that 547 kinds of Chinese medicines involved 335 kinds of Chinese medicine effects and 86 kinds of pharmacological actions. Among them, the most frequent Chinese medicine effect was"clearing heat", whose frequence was 130 and the frequency was 0.24; the most frequent pharmacological action was "anti-inflammatory action" whose frequence was 191 and the frequency was 0.35. The most common efficacy-pharmacological action group was "clearing heat" and "anti-bacterial action", whose frequence was 75 and the frequency was 0.26. The couple of "purgation" and "cathartic effect" had the largest frequency of 0.30, but they just appeared together for 3 times. There were 52 kinds of pharmacological actions that occurred together with clearing heat, of which, the top 10 were anti-bacterial action, anti-inflammatory action, antineoplastic action, anti-hepatic injury action, immunoregulation action, antipyretic action, antiviralaction, hypoglycemic action, antioxidant action and analgesic action. There were 161 kinds of Chinese medicine effects that occurred together with anti-bacterial action, of which, the top 10 were clearing heat, detoxification, detumescence, analgesia, resolving dampness, pesticide, cooling blood, expelling wind, eliminating dampness and hemostasis. These results suggested that there was a certain relationship between traditional Chinese medicine effects and modern pharmacological actions. Copyright© by the Chinese Pharmaceutical Association.
Non Debye approximation on specific heat of solids
NASA Astrophysics Data System (ADS)
Bhattacharjee, Ruma; Das, Anamika; Sarkar, A.
2018-05-01
A simple non Debye frequency spectrum is proposed. The normalized frequency spectrum is compared to that of Debye spectrum. The proposed spectrum, provides a good account of low frequency phonon density of states, which gives a linear temperature variation at low temperature in contrast to Debye T3 law. It has been analyzed that the proposed model provides a good account of excess specific heat for nanostructure solid.
Variable frequency microwave heating apparatus
Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.
1999-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
The internet of things and the development of network technology in China
NASA Astrophysics Data System (ADS)
Wang, Ruxin; Zhao, Jianzhen; Ma, Hangtong
2018-04-01
The English name of the Internet of Things the Internet of Things, referred to as: the IOT. Internet of Things through the pass, radio frequency identification technology, global positioning system technology, real-time acquisition of any monitoring, connectivity, interactive objects or processes, collecting their sound, light, heat, electricity, mechanics, chemistry, biology, the location of a variety of the information you need network access through a variety of possible things and things, objects and people in the Pan-link intelligent perception of items and processes, identification and management. The Internet of Things IntelliSense recognition technology and pervasive computing, ubiquitous network integration application, known as the third wave of the world's information industry development following the computer, the Internet. Not so much the Internet of Things is a network, as Internet of Things services and applications, Internet of Things is also seen as Internet application development. Therefore, the application of innovation is the core of the development of Internet of Things, and 2.0 of the user experience as the core innovation is the soul of Things.
Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma
NASA Astrophysics Data System (ADS)
South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat
2000-10-01
There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.
The Expanded Owens Valley Solar Array
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.
2011-05-01
The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.
Thermal death kinetics of fifth-instar Plodia interpunctella (Lepidoptera: Pyralidae).
Johnson, J A; Wang, S; Tang, J
2003-04-01
Heat treatments have been suggested as alternatives to chemical fumigants for control of postharvest insects in dried fruits and nuts. Conventional forced hot air treatments heat product too slowly to be practical, but radio frequency treatments are capable of more rapid product heating. While developing radio frequency heat treatments for dried fruits and nuts, the heat tolerance of nondiapausing and diapausing fifth-instar larvae of the Indianmeal moth, Plodia interpunctella (Hübner), was determined using a heating block system developed by Washington State University. Both a 0.5th order kinetic model and a classical empirical model were used to estimate lethal exposure times for temperatures of 44-52 degrees C for nondiapausing fifth-instar larvae. We obtained 95% mortality at exposures suitable for practical radio frequency treatments (< or = 5 min) with temperatures of 50 and 52 degrees C. Diapausing larvae were significantly more tolerant than nondiapausing larvae at the lowest treatment temperature and shortest exposure, but differences were not significant at more extreme temperature-time combinations. Previous studies showed that fifth-instar larvae of the navel orangeworm, Amyelois transitella (Walker), were more heat tolerant than either diapausing or nondiapausing Indianmeal moth larvae. Consequently, efficacious treatments for navel orangeworm would also control Indianmeal moth.
NASA Astrophysics Data System (ADS)
Manzella, A.
2015-08-01
Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.
Characteristics of low-temperature short heat pipes with a nozzle-shaped vapor channel
NASA Astrophysics Data System (ADS)
Seryakov, A. V.
2016-01-01
This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.
External heating of stents by radio waves Pilot studies in rabbit aorta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitt, Adam B.; Robinson, Keith; Chronos, Nicolas A.F.
Purpose: This experiment was designed to assess the feasibility of radio frequency energy delivered by a prototype radio frequency generator inductive heating device (REVAX) positioned external to the body, for transient heating of stents after arterial implant. Methods and Materials: Twenty-one New Zealand White rabbits underwent stenting of their infrarenal aorta. Nine rabbits were stented and immediately placed in the REVAX for external stent heating with internal temperature probes in place. Twelve rabbits were stented and 3 days later either heated or placed in the generator as a sham for 20 min. The animals were terminated 28 days later. Results:more » The REVAX was able to heat the aortic stents in a controlled fashion; in Phase II experiments, the stent temperature was raised to 42 deg. C for 20 min. In Phase I mild necrosis was noted at the stent struts. In Phase II, necrosis and mineralization of the media was seen at the stent struts, and evidence of neointimal suppression was observed. Conclusion: This study demonstrated that external heating of stents in a blood vessel in a live animal via radio frequency energy is feasible. Further studies will be needed to assess whether any specific heating regimen might inhibit fibrocellular neointimal hyperplasia.« less
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, T.; Bartsch, M.; Becker, U.
1997-02-01
MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D--3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures. {copyright} {ital 1997 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, T.; Bartsch, M.; Becker, U.
1997-02-01
MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D-3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures.« less
Repetitively Pulsed High Power RF Solid-State System
NASA Astrophysics Data System (ADS)
Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan
2017-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.
Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.
Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman
2014-01-01
Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.
Development of Pulsating Twin Jets Mechanism for Mixing Flow Heat Transfer Analysis
Abdullah, Shahrir
2014-01-01
Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency. PMID:24672370
NASA Astrophysics Data System (ADS)
Motwani, Tanuj
Starch-water interactions occurring during gelatinization are critical for developing a mechanistic understanding of the gelatinization process. The overall goal of this project was to investigate the state of water in starch-water systems in the gelatinization temperature range using dielectric relaxation spectroscopy. In the first part of the project, the dielectric response of native wheat starch-water slurries was measured at seven different starch concentrations between 5--60% starch (w/w) in the frequency range of 200 MHz--20 GHz at 25°C. The deconvolution of the dielectric spectra using the Debye model revealed presence of up to three relaxation processes. The relaxation time range of what were considered to be the high, intermediate and low frequency relaxations were 4--9 ps, 20--25 ps and 230--620 ps, respectively. The high frequency relaxation was observed at all starch concentrations, while the intermediate and low frequency relaxation were only observed at starch concentrations of 10% and above, and 30% and above, respectively. The high frequency relaxation was attributed to bulk water, while the intermediate and low frequency relaxations were attributed to rotationally restrained water molecules present in the starch-water system. To investigate the state of water in the gelatinization temperature range, the dielectric response, gelatinization enthalpy and water absorption by 10%, 30% or 50% starch slurries were measured after heating the slurries to different end temperatures between 40--90°C for 30 min. The high frequency relaxation time for 10% starch slurry dropped significantly (P<0.001) upon heating up to 60°C. For 30% and 50% starch slurries, high frequency relaxation times were not significantly influenced (P>0.159) by heating up to 80°C. The intermediate and low frequency relaxation times were not significantly influenced (P>0.712) by heating for all starch concentrations. Also, the amount of water associated with the three relaxations was not significantly influenced by heating (P >0.187). The water absorption results indicated that highest water uptake was achieved in the 10% starch slurry. The endothermic peak associated with gelatinization either vanished or was diminished after heating the slurries to 60°C and above, suggesting that native granular order was not necessary for the existence of the three separate states of water. In the second part of the project, the dielectric response of starch-water systems was investigated in the presence or absence of glucose or maltose. Dielectric response of 10% starch + 10% sugar, 10% starch + 20% sugar or 10% starch + 30% sugar slurries was measured in the frequency range of 200 MHz--20 GHz after heating the slurries to different end temperatures between 25--90°C for 30 min. The dielectric spectra of the slurries could be deconvoluted to obtain up to three Debye-type relaxations. The relaxation time range of high, intermediate and low frequency relaxations were 4--7 ps, 17--26 ps and 175--335 ps, respectively, at 25°C. The high frequency relaxation was the dominant relaxation in slurries containing 10% sugar, and the intermediate frequency relaxation was the dominant relaxation in slurries containing 30% sugar at 25°C. The high frequency relaxation time decreased upon heating up to 60°C but was not significantly influenced (P>0.102) by the concentration or the type of sugar. Intermediate and low frequency relaxation times were not significantly influenced (P>0.419) by heating or sugar type. The relative strengths of the intermediate frequency relaxation dropped while that of high frequency relaxation increased upon heating up to 50°C. The relative strength of low frequency relaxation (P>0.561) was not influenced by heating. The static dielectric constant decreased upon heating but was not influenced by the type of sugar or solids in the slurry. This indicated that the water molecules present in the system were the major contributors to the polarization observed. At the same concentration of solids, conductivity of the sugar containing slurries was lower than that of the non-sugar-containing starch slurries, which suggested that conductivity was mostly associated with starch. Glucose or maltose did not exert any differential effect on the swelling behavior or dielectric relaxation parameters of starch-water-sugar slurries. This project presents novel insights into the starch-water interactions occurring in the gelatinization temperature range. The results of this project can be used to develop a dielectric relaxation based technique to monitor water mobility during industrial processing of starch-based foods. Dielectric response was not unique to any of the solids used in the study suggesting that dielectric spectroscopy could be used for monitoring state of water in food systems containing different types of solids. Also, the dielectric relaxation parameters obtained in this study can be used to predict water mobility in simple food systems having water, sugar and starch as major components, and hence, can possibly be used to estimate shelf life of food products.
Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel
NASA Astrophysics Data System (ADS)
Moghadam, Ali Jabari
2015-10-01
A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.
Design of Remote Heat-Meter System Based on Trusted Technology
NASA Astrophysics Data System (ADS)
Yu, Changgeng; Lai, Liping
2018-03-01
This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.
Development and application of soil coupled heat pump
NASA Astrophysics Data System (ADS)
Liu, Lu
2017-05-01
Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.
Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models
NASA Astrophysics Data System (ADS)
Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying
2017-05-01
Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.
Heat Pipes Reduce Engine-Exhaust Emissions
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.
Laser heating and detection of bilayer microcantilevers for non-contact thermodynamic measurements
NASA Astrophysics Data System (ADS)
Burke, Brian G.; LaVan, David A.
2013-01-01
We describe a method for optical detection (frequency and position) and heating of bilayer microcantilevers (BMCs) to high temperatures at fast heating rates (106°C/s to 109°C/s) for non-contact thermodynamic measurements of small quantities of materials in the femtogram range. The current experimental apparatus with a 2 μm × 10 μm BMC achieves a deflection sensitivity of 0.1 Å, heating rate of 3.0 × 106°C/s, and heat sensitivity of 18 pJ in a 3 kHz bandwidth in air. By measuring the resonant frequency shift after sample loading, we achieve a mass resolution of 2.67 fg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolon, A.; Maingi, R.; Mansfield, D. K.
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less
Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...
2017-03-23
Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less
Numerical Simulation of Flow and Heat Transfer Characteristic of 4k Regenerators at High Frequency
NASA Astrophysics Data System (ADS)
Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin
Regenerator is a key component for all regenerative cryocoolers. 4K regenerative cryocoolers can be applied to provide cooling for low temperature superconductors, space and military infrared detectors, and medical examination etc. Stirling type pulse tube cryocoolers (SPTC), one type of regenerative cryocoolers, operate at high frequencies. As a result, SPTCs have the advantage of compact structure and low weight compared with G-M type pulse tube cryocoolers operating at low frequencies. However, as the frequency increase the thermal penetration depth of helium gas in the regenerator is greatly reduced which makes the heat transfer between the gas and the regenerator worse. In order to improve the heat transfer efficiency, regenerator materials with smaller hydraulic diameters are used. Therefore the flow resistance between the gas and the regenerator material will increase leading to larger pressure drop from the hot end to the cold end of the regenerator. The cooling performance is deteriorated due to the decreased pressure ratio (maximum pressure divided by minimum pressure) at the cold end. Also, behavior of helium at 4K deviates remarkably from that of ideal gas which has a significant influence both the flow and heat transfer characteristic within a regenerator. In this paper numerical simulation on the behavior of a 4K regenerator at high frequency is carried out to provide guidance for the optimization of the flow and heat transfer performance within a regenerator. Thermodynamic analysis of effect of the non-ideal gas behavior of helium at 4K on 4K regenerator at high frequency is investigated.
Research on synchronization technology of frequency hopping communication system
NASA Astrophysics Data System (ADS)
Zhao, Xiangwu; Quan, Houde; Cui, Peizhang
2018-05-01
Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.
Plasma Heating and Flow in an Auroral Arc
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.
1996-01-01
We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.
Are Ducted Mini-Splits Worth It?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.
Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi
A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less
PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)
NASA Astrophysics Data System (ADS)
2015-09-01
The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.
FinFET and UTBB for RF SOI communication systems
NASA Astrophysics Data System (ADS)
Raskin, Jean-Pierre
2016-11-01
Performance of RF integrated circuit (IC) is directly linked to the analog and high frequency characteristics of the transistors, the quality of the back-end of line process as well as the electromagnetic properties of the substrate. Thanks to the introduction of the trap-rich high-resistivity Silicon-on-Insulator (SOI) substrate on the market, the ICs requirements in term of linearity are fulfilled. Today partially depleted SOI MOSFET is the mainstream technology for RF SOI systems. Future generations of mobile communication systems will require transistors with better high frequency performance at lower power consumption. The advanced MOS transistors in competition are FinFET and Ultra Thin Body and Buried oxide (UTBB) SOI MOSFETs. Both devices have been intensively studied these last years. Most of the reported data concern their digital performance. In this paper, their analog/RF behavior is described and compared. Both show similar characteristics in terms of transconductance, Early voltage, voltage gain, self-heating issue but UTBB outperforms FinFET in terms of cutoff frequencies thanks to their relatively lower fringing parasitic capacitances.
Heat pipe technology for advanced rocket thrust chambers
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1971-01-01
The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.
A regenerative elastocaloric heat pump
NASA Astrophysics Data System (ADS)
Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini
2016-10-01
A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.
Korkut, Süleyman; Kök, M Samil; Korkut, Derya Sevim; Gürleyen, Tuğba
2008-04-01
Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on technological properties of Red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures (120 degrees C, 150 degrees C and 180 degrees C) and for varying durations (2h, 6h and 10h). The technological properties of heat-treated wood samples and control samples were tested. Compression strength parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength, and tension strength perpendicular to grain were determined. The results showed that technological strength values decreased with increasing treatment temperature and treatment times. Red-bud maple wood could be utilized by using proper heat treatment techniques with minimal losses in strength values in areas where working, and stability such as in window frames, are important factors.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Graphene-Based Josephson-Junction Single-Photon Detector
NASA Astrophysics Data System (ADS)
Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung
2017-08-01
We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.
A source mechanism producing HF-induced plasma lines (HFPLS) with up-shifted frequencies
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1992-01-01
Attention is given to a nonlinear scattering process analyzed as a source mechanism producing the frequency up-shifted HFPLs observed in the Arecibo ionospheric heating experiments. A physical picture is offered to explain how Langmuir waves with frequencies greater than the HF heater wave frequency can be produced in the heating experiments and be detected by incoherent radars as frequency up-shifted HFPLs. Since the considered scattering process occurs in a region near the reflection height, it explains why the frequency up-shifted HFPLs should originate from the altitude near the reflection height as observed. The theory also shows that the amount of frequency up-shift is inversely proportional to the frequency of the HF heater and increases linearly with the electron temperature. The quantitative analysis of the theory shows a good agreement with the experimental results.
Apparatus and method for microwave processing of materials
Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.
1996-05-28
Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.
21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...
21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF...
21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...
21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...
21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...
Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems
NASA Technical Reports Server (NTRS)
Gibson, Marc; Sanzi, James; Locci, Ivan
2013-01-01
Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.
NASA Astrophysics Data System (ADS)
Dietrich, André; Nacke, Bernard
2018-05-01
With the induction heating technology, it is possible to heat up blanks for the press hardening process in 20 s or less. Furthermore, the dimension of an induction system is small and easy to control in comparison to conventional heating systems. To bring the induction heating technology to warm forming industry it is necessary to analyze the process under the view of induction. This paper investigates the edge- and end-effects of a batch heated blank. The results facilitate the later design of induction heating systems for the batch process.
Induction heating apparatus and methods of operation thereof
Richardson, John G.
2006-08-01
Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.
NASA Astrophysics Data System (ADS)
Tereshchenko, E. D.; Yurik, R. Yu.; Yeoman, T. K.; Robinson, T. R.
2008-11-01
We present the first results of observations of the stimulated electromagnetic emission (SEE) in the ionosphere modified by the Space Plasma Exploration by Active Radar (SPEAR) heating facility. Observation of the SEE is the key method of ground-based diagnostics of the ionospheric plasma disturbances due to high-power HF radiation. The presented results were obtained during the heating campaign performed at the SPEAR facility in February-March 2007. Prominent SEE special features were observed in periods in which the critical frequency of the F 2 layer was higher than the pump-wave frequency (4.45 MHz). As an example, such special features as the downshifted maximum and the broad continuum in the region of negative detunings from the pump-wave frequency are presented. Observations clearly demonstrate that the ionosphere was efficiently excited by the SPEAR heating facility despite the comparatively low pump-wave power.
Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa
Fayose, Folasayo; Huan, Zhongjie
2016-01-01
Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668
NASA Astrophysics Data System (ADS)
Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.
2016-12-01
The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment
Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard
2015-01-01
The data presented in this article were the basis for the study reported in the research articles entitled ‘Climate responsive behaviour heat pipe technology for enhanced passive airside cooling’ by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article “CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices” by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design. PMID:26958604
Li, Kun; Yu, Zhuang
2008-01-01
Urban heat islands are one of the most critical urban environment heat problems. Landsat ETM+ satellite data were used to investigate the land surface temperature and underlying surface indices such as NDVI and NDBI. A comparative study of the urban heat environment at different scales, times and locations was done to verify the heat island characteristics. Since remote sensing technology has limitations for dynamic flow analysis in the study of urban spaces, a CFD simulation was used to validate the improvement of the heat environment in a city by means of wind. CFD technology has its own shortcomings in parameter setting and verification, while RS technology is helpful to remedy this. The city of Wuhan and its climatological condition of being hot in summer and cold in winter were chosen to verify the comparative and combinative application of RS with CFD in studying the urban heat island. PMID:27873893
Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.
Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard
2015-12-01
The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.
Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal
2017-03-28
Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying solely on conventional thin film materials-to provide a path for the experimental demonstration of NFTPV energy conversion.
NASA Astrophysics Data System (ADS)
Zhu, Jiangong; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng; Gu, Weijun
2017-11-01
Effect of the AC (alternating current) pulse heating method on battery SoH (state of health) for large laminated power lithium-ion batteries at low temperature is investigated experimentally. Firstly, excitation current frequencies, amplitudes, and voltage limitations on cell temperature evolution are studied. High current amplitudes facilitate the heat accumulation and temperature rise. Low frequency region serves as a good innovation to heat the battery because of the large impedance. Wide voltage limitations also enjoy better temperature evolution owing to the less current modulation, but the temperature difference originated from various voltage limitations attenuates due to the decrement of impedance resulting from the temperature rise. Experiments with the thermocouple-embedded cell manifest good temperature homogeneity between the battery surface and interior during the AC heating process. Secondly, the cell capacity, Direct Current resistance and Electrochemical Impedance Spectroscopy are all calibrated to assess the battery SoH after the hundreds of AC pulse heating cycles. Also, all cells are disassembled to investigate the battery internal morphology with the employment of Scanning Electron Microscope and Energy-Dispersive x-ray Spectroscopy techniques. The results indicate that the AC heating method does not aggravate the cell degradation even in the low frequency range (0.5 Hz) under the normal voltage protection limitation.
Fundamentals of Solar Heating. Correspondence Course.
ERIC Educational Resources Information Center
Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.
This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordonez-Miranda, Jose, E-mail: jose.ordonez@cnrs.pprime.fr; Ezzahri, Younès; Drevillon, Jérémie
2016-05-28
Far-field radiative heat transport in a thermal transistor made up of a vanadium dioxide base excited with a laser of modulated intensity is analytically studied and optimized. This is done by solving the equation of energy conservation for the steady-state and modulated components of the temperature and heat fluxes that the base exchanges with the collector and emitter. The thermal bistability of VO{sub 2} is used to find an explicit condition on the laser intensity required to maximize these heat fluxes to values higher than the incident flux. For a 1 μm-thick base heated with a modulation frequency of 0.5 Hz, itmore » is shown that both the DC and AC components of the heat fluxes are about 4 times the laser intensity, while the AC temperature remains an order of magnitude smaller than the DC one at around 343 K. Higher AC heat fluxes are obtained for thinner bases and/or lower frequencies. Furthermore, we find that out of the bistability temperatures associated with the dielectric-to-metal and metal-to-dielectric transitions of VO{sub 2}, the amplification of the collector-to-base and base-to-emitter heat fluxes is still possible, but at modulation frequencies lower than 0.1 Hz.« less
Bio-logging of physiological parameters in higher marine vertebrates
NASA Astrophysics Data System (ADS)
Ponganis, Paul J.
2007-02-01
Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity
NASA Technical Reports Server (NTRS)
Smith, Marc K.; Glezer, Ari
1996-01-01
In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.
Nucleate boiling performance evaluation of cavities at mesoscale level
Mu, Yu-Tong; Chen, Li; He, Ya-Ling; ...
2016-09-29
Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. Here, a 3D multi-relaxation-time (MRT) phase-change lattice Boltzmann method in conjunction with conjugated heat transfer treatment is proposed and then applied to the study of cavities behaviours for nucleation on roughened surfaces for an entire ebullition cycle without introducing any artificial disturbance. The bubble departure diameter, departure frequency and total boiling heat transfer rate are also explored. We demonstrate that the cavity shapes show significant influence on the features of NBHT. The total heat transfer rate increases with the cavity mouth and cavitymore » base area while decreases with the increase in cavity bottom wall thickness. The cavity with low wetting can enhance the heat transfer and improve the bubble release frequency.« less
Electrical heating of soils using high efficiency electrode patterns and power phases
Buettner, Harley M.
1999-01-01
Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
NASA Astrophysics Data System (ADS)
Maxworth, Ashanthi; Golkowski, Mark; University of Colorado Denver Team
2013-10-01
ELF/VLF wave generation via HF modulated ionospheric heating has been practiced for many years as a unique way to generate waves in the ELF/VLF band (3 Hz - 30 kHz). This paper presents experimental results and associated theoretical modeling from work performed at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. An experiment was designed to investigate the modulation frequency dependence of the generated ELF/VLF signal amplitudes and polarization at multiple sites at distances of 37 km, 50 km and 99 km from the facility. While no difference is observed for X mode versus O mode modulation of the heating wave, it is found that ELF/VLF amplitude and polarization as a function of modulated ELF/VLF frequency is different for each site. An ionospheric heating code is used to determine the primary current sources leading to the observations.
Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations
NASA Astrophysics Data System (ADS)
Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.
2017-12-01
Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.
The economic feasibility and limitations of technologies investigated will be evaluated, including for liquid foam insulation, subsoil heat storages, and compost exhaust heating. These systems will save most of the energy and money spent to heat greenhouses in exchange for a h...
Application of induction heating in food processing and cooking: A Review
USDA-ARS?s Scientific Manuscript database
Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...
NASA Astrophysics Data System (ADS)
Gábor, Béres; Zsolt, Dugár; Dávid, Kis; Pál, Hansághy
2015-04-01
The researcher work pushes the borders of the application of a high efficiency equipment, in the matter of metals. With this equipment, which already testified in the compound industry, a flasher query of some metal-related technological parameters could be easily available. Towards the searching, we shaped different compound copper-alloy samples, in different states, and accordingly we monitored the realignments. Following the shaping, the DMTA detected such microscopic transformations (as we expected), according to heating rate, whereby we could determine the specialities of the transformations. In order to monitor the effect of the work hardening, we applied two different shaping grade: 50% and 75%. The heat treatment already took place in the DMTA, using 3 K/min heating rate. The specimens were loaded by inflection in the 2-point bending support with constant frequency and amplitude. Our current object was the monitoring of the recrystallization, and the investigation of the influential factors of this process, but other transitions were also regarded. Those measurements’ results, that the DMTA presented, had been compared with DSC and hardness analysis, whereby we try to conclude to the utility of DMTA, in matter of metal alloys.
NASA Astrophysics Data System (ADS)
Manzella, A.
2017-07-01
Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.
Second Sound in Systems of One-Dimensional Fermions
Matveev, K. A.; Andreev, A. V.
2017-12-27
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies the second sound mode is damped, and the propagation of heat is diffusive.
Second Sound in Systems of One-Dimensional Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies the second sound mode is damped, and the propagation of heat is diffusive.
Second Sound in Systems of One-Dimensional Fermions
NASA Astrophysics Data System (ADS)
Matveev, K. A.; Andreev, A. V.
2017-12-01
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to the ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies, the second sound mode is damped, and the propagation of heat is diffusive.
NASA Astrophysics Data System (ADS)
Kashin, V. V.; Nikolaev, D. A.; Rusanov, S. Ya; Tsvetkov, V. B.
2015-01-01
We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO2 laser (LHPG-method).
NASA Astrophysics Data System (ADS)
Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team
2017-12-01
Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.
Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker
2008-04-01
Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.
NASA Astrophysics Data System (ADS)
Hilger, Ingrid; Kießling, Andreas; Romanus, Erik; Hiergeist, Robert; Hergt, Rudolf; Andrä, Wilfried; Roskos, Martin; Linss, Werner; Weber, Peter; Weitschies, Werner; Kaiser, Werner A.
2004-08-01
The minimally invasive elimination of tumours using heating as a therapeutic agent is an emerging technology in medical applications. Particularly, the intratumoural application of magnetic nanoparticles as potential heating sources when exposed to an alternating magnetic field has been demonstrated. The present work deals with the estimation of the basic relationships when the magnetic material has access and binds to structures on cell membranes of target cells at the tumour region, particularly as a consequence of administration through tumour supplying vessels. Therefore, using mouse endothelial cells in culture, the binding of dextran coated magnetic nanoparticles (mean hydrodynamic particle diameter 65 nm) was modelled using the periodate method. The efficacy of cell labelling was demonstrated by magnetorelaxometry (MRX)—a selective method for the detection of only those magnetic nanoparticles that were immobilized—as well as by electron microscopy and iron staining. The amount of iron immobilized on cells was found to be 153 ± 56 µg Fe per 1 × 107 cells as determined by atomic absorption spectrometry. Moreover, after exposure of those 1 × 107 labelled cells to an alternating magnetic field (frequency 410 kHz, amplitude 11 kA m-1) for 5 min, temperature increases of 2 °C were achieved. The consequences of particle immobilization are reflected by the results of the measurements related to the specific heating power (SHP) of the magnetic material. Basically, the heating potential is explained by the superposition of Brown and Neél relaxation while for immobilized nanoparticles the Brown contribution is absent. In the long term the data could open the door to targeted magnetic heating after further optimization of the heating potential of magnetic material as well as after functionalization with biomolecules which recognize specific structures on the surface of cells at the target region.
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
Technical Reports - FY16 Q1 - October-December 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lordi, Vincenzo; Rubenstein, Brenda M.; Ray, Keith G.
2016-01-20
Recent experiments have demonstrated that the frequency dependence of motional heating rates in ion traps can vary dramatically with temperature.1-6 More specifically, it has been shown that, at temperatures below roughly 70 K, heating rates are substantially lower than those observed at temperatures above 70 K.1,2 These observations, combined with experiments that show that ion bombardment may also reduce heating rates,4,5 suggest that one potential source of heating may be the presence of unwanted adatoms on trap surfaces. Based upon this evidence, this past quarter, we have used our previously detailed microscopic model of anomalous heating to study which adatomsmore » may be responsible for the observed temperature-dependent scaling of motional heating rates with frequency. We have also examined the validity of one of the key assumptions in our model - that surface adatom dipoles can be accurately obtained from a variational ansatz - by using more direct DFT calculations of the dipole moments. Our current results suggest that the adatoms potentially responsible for the observed motional heating rates should bind weakly to the electrode surface and likely have a mass that exceeds that of Ne. Preliminary DFT calculations suggest that an analytical adatom dipole model,9 previously used in the ion trap noise literature7 to obtain the dipole as a function of adatom-surface distance, may be insufficiently accurate. Therefore, we are working toward obtaining a tabulation of the distance-dependent dipole for several adsorbates using first principles calculations for more accurate input to the heating model. The accurate calculation of the adatom dipole is important because its fluctuation is what couples to and heats the trapped ion qubit. Future work will focus on calculating the frequency spectra of a variety of hydrocarbons, which should have the binding characteristics identified below as necessary for reproducing experimental results. Upcoming efforts will moreover be directed toward deriving an improved microscopic model of heating which will enable direct comparisons of heating rates with measured ion-surface distances and will more accurately account for experimental parameters such as the trapping frequency, ion-electrode distance, and RF power applied to the electrodes.« less
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Advanced Wavefront Control Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S S; Brase, J M; Avicola, K
2001-02-21
Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less
VOCs in Non-Arid Soils Integrated Demonstration: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated withmore » VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.« less
Artificial excitation of ELF waves with frequency of Schumann resonance
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Artificial Excitation of Schumann Resonance with HAARP
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Chang, C. L.
2014-12-01
We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.
NASA Astrophysics Data System (ADS)
Shihab, Mohammed
2018-06-01
The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.
Thermal management system technology development for space station applications
NASA Technical Reports Server (NTRS)
Rankin, J. G.; Marshall, P. F.
1983-01-01
A short discussion of the history to date of the NASA thermal management system technology development program is presented, and the current status of several ongoing studies and hardware demonstration tasks is reported. One element of technology that is required for long-life, high-power orbital platforms/stations that is being developed is heat rejection and a space-constructable radiator system. Aspects of this project include high-efficiency fin concepts, a heat pipe quick-disconnect device, high-capacity heat pipes, and an alternate interface heat exchanger design. In the area of heat acquisition and transport, developments in a pumped two-phase transport loop, a capillary pumped transport loop using the concept of thermal utility are reported. An example of a thermal management system concept is provided.
Artificial Aurora Generated by HAARP (Invited)
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Kendall, E. A.
2013-12-01
We present results from the ionospheric heating experiment conducted on March 12, 2013 at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. During the experiment HAARP transmitted X-mode 4.57 MHz waves modulated with the frequency 0.9 mHz and pointed in the direction of the magnetic zenith. The beam was focused to ~20 km spot at the altitude 100 km. The heating produces two effects: First, it generates magnetic field-aligned currents producing D and H components of the magnetic field with frequency 0.9 mHz detected by fluxgate magnetometer in Gakona. Second, the heating produced bright luminous structures in the heated region detected with the SRI telescope in 427.8 nm, 557.7 nm, 630.0 nm wavelengths. We emphasize, that for the best of our knowledge, this is the first experiment where the heating of the ionosphere with X-mode produces luminous structures in the ionosphere. We classify this luminosity as an 'artificial aurora', because it correlate with the intensity of the magnetic field-aligned currents, and such correlation is constantly seen in the natural aurora.
Combined Natural Gas and Solar Technologies for Heating and Cooling in the City of NIS in Serbia
NASA Astrophysics Data System (ADS)
Stefanović, Velimir P.; Bojić, Milorad Lj.
2010-06-01
The use of conventional systems for heat and electricity production in Niš and Serbia means a constant waste of energy, and money. This problem is present in both industrial and public sector. Using conventional systems, means not only low-energy efficient systems, and technologies, but also using very "dirty" technologies, which cause heavy environment pollution. The lack of electricity in our country, and region is also present. The gas pipeline in Niš was finished not long ago, and second gas pipeline is about to be made in the next couple of years. This opens a door for implementing new technologies and the use of new methods for production of heat and electricity, while preserving our environment. This paper reports discussion of this technology with management of public institutions, which use both heat and electricity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, V.P.; Tkacheva, O.N.
1986-03-01
Heat treatment entails considerable expenditure of power and often requires expensive equipment. One of the fundamental problems arising in the elaboration of heat treatment technology is the selection of the economically optimal process, which also has to ensure the quality of finished parts required by the customer. To correctly determine the expenditures on the basic kinds of resources it is necessary to improve the methods of calculating prime costs and to carry out such a calculation at the earliest stages of the technological preparation of production. A new method of optimizing synthesis of the structure of devising technological processes ofmore » heat treatment using the achievements of cybernetics and the possibilities of computerization is examined in this article. The method makes it possible to analyze in detail the economy of all possible variants of a technological process when one parameter is changed, without recalculating all items of prime cost.« less
NASA Astrophysics Data System (ADS)
1981-01-01
The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.
Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications
Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2012-01-01
Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments. PMID:28348300
Climate change and human health: impacts, vulnerability, and mitigation.
Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C
2006-06-24
It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways--eg, as a result of increased frequency and intensity of heat waves, reduction in cold-related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases, and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries might also be adversely affected. Adaptation to climate change requires public-health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing the use of a number of renewable energy technologies should improve health in the near term by reducing exposure to air pollution.
Climate change and human health: impacts, vulnerability and public health.
Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C
2006-07-01
It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways, for example as a result of increased frequency and intensity of heat waves, reduction in cold related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries may also be adversely affected. Adaptation to climate change requires public health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing a number of uses of the renewable energy technologies should improve health in the near-term by reducing exposure to air pollution.
[New welding processes and health effects of welding].
La Vecchia, G Marina; Maestrelli, Piero
2011-01-01
This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.
Status of FAA Studies in Thermal Acoustics
NASA Astrophysics Data System (ADS)
Lively, John; Ouyang, Zhong; Brasche, Lisa; Holland, Steve; Eisenmann, David; Bantel, Tom; Hassan, Waled
2008-02-01
As with many aerospace applications, commercial jet engine components are operated in demanding environments, often at extreme temperature and stress conditions. The predominant used surface inspection method used on these components is fluorescent penetrant inspection. Research has been ongoing for a number of years on a new technology using a short burst of low frequency (˜20 KHz) ultrasound to "heat up" cracks and make them visible in the infrared range. The basic premise of the Thermal Acoustic method is to use an energy source with recent efforts using an ultrasonic horn originally intended for use in ultrasonic welding to excite the component. The energy source causes an increase in local heating, which is detectable with infrared cameras typically used in Thermographic inspection. While considerable research is underway, additional information on the sensitivity and applicability of this technique to engine components and alloys is needed prior to widespread use in the aviation industry. The purpose of this program is to provide additional data to determine applicability of this method to engine components.
The technological raw material heating furnaces operation efficiency improving issue
NASA Astrophysics Data System (ADS)
Paramonov, A. M.
2017-08-01
The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.
Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges
NASA Astrophysics Data System (ADS)
Smalcerz, A.; Przylucki, R.
2013-04-01
The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.
Superconducting-circuit quantum heat engine with frequency resolved thermal baths
NASA Astrophysics Data System (ADS)
Hofer, Patrick P.; Souquet, Jean-René; Clerk, Aashish A.
The study of quantum heat engines promises to unravel deep, fundamental concepts in quantum thermodynamics. With this in mind, we propose a novel, realistic device that efficiently converts heat into work while maintaining reasonably large output powers. The key concept in our proposal is a highly peaked spectral density in both the thermal baths as well as the working fluid. This allows for a complete separation of the heat current from the working fluid. In our setup, Cooper pairs tunnelling across a Josephson junction serve as the the working fluid, while two resonant cavities coupled to the junction act as frequency-resolved thermal baths. The device is operated such that a heat flux carried entirely by the photons induces an electrical current against a voltage bias, providing work.
Wave Modeling of the Solar Wind.
Ofman, Leon
The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.
NASA Astrophysics Data System (ADS)
Alkhasov, A. B.
2018-03-01
Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium carbonate and sodium chloride.
NASA Astrophysics Data System (ADS)
Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.
2015-12-01
The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations of the collected data to investigate the impact on soil moisture dynamics of i) forest evolution (long timescale), (ii) seasonality and, (iii) high-frequency forcing, are discussed.
Investigation of lunar base thermal control system options
NASA Technical Reports Server (NTRS)
Ewart, Michael K.
1993-01-01
Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.
NASA Astrophysics Data System (ADS)
Kochemasov, G.
"Orbits make structures". This fundamental concept unfolded in four theorems of the wave planetary tectonics [1] simply means that Keplerian non-circular orbits imply inertia forces which make planetary bodies oscillate and produce structures. Many examples of regular wave woven structures on surfaces of planets (and asteroids and comets - Borrelli !) and satellites prove it. Theorem 3 ("Celestial bodies are granular "[1]) connects a size of tectonic granulation with an orbital frequency. But what to do with satellites having more orbits than planets ? Here acts the wave modulation pro- cess. A low frequency modulates a high frequency producing lower and higher side frequencies. Actually we explained ubiquitous tectonic dichotomy (Theorem 1, [1]) by modulation of all frequencies in the Solar System (SS) by the very low galactic frequency of the SS. In this case we considered the lower side frequency. But at the opposite side there are the higher side frequencies which fall into a range of radio- and microwave frequencies so typical for bodies of the SS [2]. These higher side frequen- cies depend on a body's radius and its orbital frequency. For example, the Io orbital frequency is modulated by the Jupiter orbital frequency and by the galactic orbital frequency of the SS (1/12 years and ~1/200 000 000 years). The Io circumsolar fre- quency (together with Jupiter) is also modulated by the galactic frequency. So, there are three higher side frequencies for Io to which correspond three wavelengths: 4.62 km (Io orbits Jupiter),68 cm (Io's circumsolar orbit in the galactic orbit), 0.276 mm (Io's circumjovian orbit in the galactic orbit). For smaller and faster Amalthea these wave oscillations are: 93.2 m - 4.88 cm - 0.0056 mm. So "microwave stove" heating might be an appreciable source of heating for Io as well as for Amalthea (also anoma- lously heated body) [3]. Very variable Io's surface and very short wave (upto 10 m) crossing patterns are already observed. Io's 5 micron outbursts are reported [4]. They could be produced by the heated Io's body. Surprisingly, 5 micron (0.0056 mm) oscil- 1 lations we calculate for Amalthea. The 2002 y. meeting "Galileo" with Amalthea will bring additional information. References: [1] Kochemasov G.G.(1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v.1, #3, 700; [2] Kochemasov G.G. (2001) Vernadsky-Brown 34th microsymp. Topics in comparative planetology. Abstr., Moscow, (CD-ROM); [3] Kochemasov G.G. (1997) Ibid. 26th, 58-59; [4]Sinton W.M. (1980) Astrophys.J., v. 235, #1, 149-151. 2
High-efficiency V-band GaAs IMPATT diodes
NASA Technical Reports Server (NTRS)
Ma, Y. E.; Benko, E.; Trinh, T.; Erickson, L. P.; Mattord, T. J.
1984-01-01
Double-drift GaAs IMPATT diodes were designed for V-band frequency operations and fabricated using molecular-beam epitaxy. The diodes were fabricated in two configurations: (1) circular mesa diodes with silver-plated (integrated) heat sinks: (2) pill-type diodes bonded to diamond heat sinks. Both configurations utilized a miniature quartz-ring package. Output power greater than 1 W CW was achieved at V-band frequencies from diodes on diamond heat sinks. The best conversion efficiency was 13.3 percent at 55.5 GHz with 1 W output power.
Sun, Jing; Wang, Wenlong; Yue, Qinyan
2016-01-01
Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355
USDA-ARS?s Scientific Manuscript database
Sensible heat flux measurements are used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. Surface renewal is a relatively inexpensive technique for sensible heat flux estimation because it requires only a fast-resp...
IR thermography for dynamic detection of laminar-turbulent transition
NASA Astrophysics Data System (ADS)
Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven
2016-05-01
This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.
The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
NASA Astrophysics Data System (ADS)
Watkins, B. J.; Fallen, C. T.; Secan, J. A.
2013-12-01
We present new results from O-mode ionospheric heating experiments at the HAARP facility in Alaska to demonstrate that the magnitude of artificial ionization production is critically dependent on the choice of HF frequency near gyro-harmonics. For O-mode heating in the lower F-region ionosphere, typically about 200 km altitude, artificial ionization enhancements are observed in the lower ionosphere (about 150 - 220 km) and also in the topside ionosphere above about 500 km. Lower ionosphere density enhancements are inferred from HF-enhanced ion and plasma-line signals observed with UHF radar. Upper ionospheric density enhancements have been observed with TEC (total electron content) experiments by monitoring satellite radio beacons where signal paths traverse the HF-modified ionosphere. Both density enhancements and corresponding upward plasma fluxes have also been observed in the upper ionosphere via in-situ satellite observations. The data presented focus mainly on observations near the third and fourth gyro-harmonics. The specific values of the height-dependent gyro-harmonics have been computed from a magnetic model of the field line through the HF heated volume. Experiments with several closely spaced HF frequencies around the gyro-harmonic frequency region show that the magnitude of the lower-ionosphere artificial ionization production maximizes for HF frequencies about 1.0 - 1.5 MHz above the gyro-harmonic frequency. The response is progressively larger as the HF frequency is increased in the frequency region near the gyro-harmonics. For HF frequencies that are initially greater than the gyro-harmonic value the UHF radar scattering cross-section is relatively small, and non-existent or very weak signals are observed; as the signal returns drop in altitude due to density enhancements the HF interaction region passes through lower altitudes where the HF frequency is less than the gyro-harmonic value, for these conditions the radar scattering cross-section is significantly increased and strong signals persist while the high-power HF is present . Simultaneous observations of topside TEC measurements and lower-ionosphere UHF radar observations suggest there is an optimum altitude region to heat the lower F-region in order to produce topside ionosphere density enhancements. The observations are dependent on HF power levels and we show several examples where heating results are only observed for the high-power levels attainable with the HAARP facility.
Electron Information in Single- and Dual-Frequency Capacitive Discharges at Atmospheric Pressure.
Park, Sanghoo; Choe, Wonho; Moon, Se Youn; Shi, Jian Jun
2018-05-14
Determining the electron properties of weakly ionized gases, particularly in a high electron-neutral collisional condition, is a nontrivial task; thus, the mechanisms underlying the electron characteristics and electron heating structure in radio-frequency (rf) collisional discharges remain unclear. Here, we report the electrical characteristics and electron information in single-frequency (4.52 MHz and 13.56 MHz) and dual-frequency (a combination of 4.52 MHz and 13.56 MHz) capacitive discharges within the abnormal α-mode regime at atmospheric pressure. A continuum radiation-based electron diagnostic method is employed to estimate the electron density (n e ) and temperature (T e ). Our experimental observations reveal that time-averaged n e (7.7-14 × 10 11 cm -3 ) and T e (1.75-2.5 eV) can be independently controlled in dual-frequency discharge, whereas such control is nontrivial in single-frequency discharge, which shows a linear increase in n e and little to no change in T e with increases in the rf input power. Furthermore, the two-dimensional spatiotemporal evolution of neutral bremsstrahlung and associated electron heating structures is demonstrated. These results reveal that a symmetric structure in electron heating becomes asymmetric (via a local suppression of electron temperature) as two-frequency power is simultaneously introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, H. C.; Research and Development Division, SK Hynix Semiconductor Inc., Icheon 467-701; Jung, S. Y.
2014-03-15
The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50 eV.
MM-wave cyclotron auto-resonance maser for plasma heating
NASA Astrophysics Data System (ADS)
Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.
2014-02-01
Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.
Electrode wells for powerline-frequency electrical heating of soils
Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.
1999-05-25
An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.
Electrode wells for powerline-frequency electrical heating of soils
Buettner, Harley M.; Daily, William D.; Aines, Roger D.; Newmark, Robin L.; Ramirez, Abelardo L.; Siegel, William H.
1999-01-01
An electrode well for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichioroethylene (TCE) as it is heated.
Spaceborne power systems preference analyses. Volume 2: Decision analysis
NASA Technical Reports Server (NTRS)
Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.
1985-01-01
Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study.
Plasma Heating: An Advanced Technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.
Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source
NASA Astrophysics Data System (ADS)
Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.
2017-12-01
Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.
Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.
Liao, H J; Qian, Q; Liu, X D
2014-06-01
Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott
2012-01-01
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Astrophysics Data System (ADS)
Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
Apparatus and method for microwave processing of materials using field-perturbing tool
Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.
2001-01-01
A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.
High-frequency and hot-platen curing of medium-density fiberboards
R.R. Stevens; G.E. Woodson
1977-01-01
The effects of two curing methods- high-frequency heating and hot-platen heating- on the properties of a ure-formaldehyd-bonded medium-density fiberboard prepared with a southern-hardwoods furnish (50% southern red oak, 25% mockernut hickory, and 25% sweetgum) were studied. Boards of three densities- 38, 44, and 50 lb./ft.3- were cured by the two...
Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films
NASA Astrophysics Data System (ADS)
Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.
2017-03-01
An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.
Ground based studies of thermocapillary flows in levitated drops
NASA Technical Reports Server (NTRS)
Sadhal, Satwindar Singh; Trinh, Eugene H.
1994-01-01
Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.
Chikata, Yusuke; Imanaka, Hideaki; Onishi, Yoshiaki; Ueta, Masahiko; Nishimura, Masaji
2009-08-01
High-frequency oscillation ventilation (HFOV) is an accepted ventilatory mode for acute respiratory failure in neonates. As conventional mechanical ventilation, inspiratory gas humidification is essential. However, humidification during HFOV has not been clarified. In this bench study, we evaluated humidification during HFOV in the open circumstance of ICU. Our hypothesis is that humidification during HFOV is affected by circuit design and ventilatory settings. We connected a ventilator with HFOV mode to a neonatal lung model that was placed in an infant incubator set at 37 degrees C. We set a heated humidifier (Fisher & Paykel) to obtain 37 degrees C at the chamber outlet and 40 degrees C at the distal temperature probe. We measured absolute humidity and temperature at the Y-piece using a rapid-response hygrometer. We evaluated two types of ventilator circuit: a circuit with inner heating wire and another with embedded heating element. In addition, we evaluated three lengths of the inspiratory limb, three stroke volumes, three frequencies, and three mean airway pressures. The circuit with embedded heating element provided significantly higher absolute humidity and temperature than one with inner heating wire. As an extended tube lacking a heating wire was shorter, absolute humidity and temperature became higher. In the circuit with inner heating wire, absolute humidity and temperature increased as stroke volume increased. Humidification during HFOV is affected by circuit design and ventilatory settings.
MacIntyre, Hugh L; Cullen, John J
2016-08-01
Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5-chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat-killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per-cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live-dead classification was essentially error free. But overlap between the frequency distributions of living and heat-killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat-killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8-10 of 24 species (i.e., 33%-42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone. © 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin
2013-05-01
The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system was evaluated based on the Capstone 30kW Microturbine developed by Cain Ind...
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...
Developing the science and technology for the Material Plasma Exposure eXperiment
NASA Astrophysics Data System (ADS)
Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Isler, R. C.; Lumsdaine, A.; Beers, C. J.; Bjorholm, T.; Bradley, C.; Canik, J. M.; Donovan, D.; Duckworth, R. C.; Ellis, R. J.; Graves, V.; Giuliano, D.; Green, D. L.; Hillis, D. L.; Howard, R. H.; Kafle, N.; Katoh, Y.; Lasa, A.; Lessard, T.; Martin, E. H.; Meitner, S. J.; Luo, G.-N.; McGinnis, W. D.; Owen, L. W.; Ray, H. B.; Shaw, G. C.; Showers, M.; Varma, V.; the MPEX Team
2017-11-01
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1-10 eV and electron densities of 1021{\\text{}}-1020 m-3 . The resulting heat fluxes are about 10 MW m-2 . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW m-2 was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to 1.1 × 1020 m-3 at high magnetic fields of 1.0 T at the target. The experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL’s High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.
Elman, Monica; Vider, Itzhak; Harth, Yoram; Gottfried, Varda; Shemer, Avner
2010-04-01
Abstract The last few years have shown an increased demand for non-invasive skin tightening to improve body contour. Since light (lasers or intense pulsed light sources) has a limited ability to penetrate deep into the tissue, radio frequency (RF) modalities were introduced for the reduction of lax skin to achieve skin tightening and body circumference reduction. This study presents the use of the novel 3DEEP technology for body contouring. 3DEEP is a next generation RF technology that provides targeted heating to deeper skin layers without pain or other local or systemic side effects associated with the use of the earlier generation RF systems available today. The study included 30 treatment areas on 23 healthy volunteers at two sites. The treatment protocol included four weekly and two bi-weekly (n= 6) treatments on different body areas. Results were evaluated by standardized photography and by circumference measurements at the treatment area, and were compared to changes in body weight. Significant improvement could be observed in wrinkles and skin laxity, and in the appearance of stretch marks and cellulite. Some changes appeared as early as after a single treatment. Circumference changes of up to 4.3 cm were measured.
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-01-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599
NASA Astrophysics Data System (ADS)
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-08-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.
Apparatus and method for microwave processing of materials
Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.
1996-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-12-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
Dry coating, a novel coating technology for solid pharmaceutical dosage forms.
Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui
2008-06-24
Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.
Increasing probability of mortality during Indian heat waves.
Mazdiyasni, Omid; AghaKouchak, Amir; Davis, Steven J; Madadgar, Shahrbanou; Mehran, Ali; Ragno, Elisa; Sadegh, Mojtaba; Sengupta, Ashmita; Ghosh, Subimal; Dhanya, C T; Niknejad, Mohsen
2017-06-01
Rising global temperatures are causing increases in the frequency and severity of extreme climatic events, such as floods, droughts, and heat waves. We analyze changes in summer temperatures, the frequency, severity, and duration of heat waves, and heat-related mortality in India between 1960 and 2009 using data from the India Meteorological Department. Mean temperatures across India have risen by more than 0.5°C over this period, with statistically significant increases in heat waves. Using a novel probabilistic model, we further show that the increase in summer mean temperatures in India over this period corresponds to a 146% increase in the probability of heat-related mortality events of more than 100 people. In turn, our results suggest that future climate warming will lead to substantial increases in heat-related mortality, particularly in developing low-latitude countries, such as India, where heat waves will become more frequent and populations are especially vulnerable to these extreme temperatures. Our findings indicate that even moderate increases in mean temperatures may cause great increases in heat-related mortality and support the efforts of governments and international organizations to build up the resilience of these vulnerable regions to more severe heat waves.
Heat transport by phonons in crystalline materials and nanostructures
NASA Astrophysics Data System (ADS)
Koh, Yee Kan
This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ≤ ℓ ≤ 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machida, S.; Goertz, C.K.
1988-09-01
We study the nonlinear saturation of the Farley-Buneman instability in a collisional plasma by a 2 1/2 dimensional electrostatic particle simulation which includes inelastic and elastic collisions of electrons and elastic collision of ions with neutrals. In our simulation, a uniform convection electric field is applied externally so that the relative velocity between the electrons and ions is greater than the ion sound speed and destabilizes the instability. We find a nonlinear frequency shift from higher to lower frequencies and diffusion of the wave spectrum in two dimensional wave number space. We are especially interested in finding whether the saturatedmore » wave turbulence can account for the anomalous heating rates observed in the polar ionosphere by Schlegel and St.-Maurice (1981). We find that the dominant mechanism for electron heating is due to an enhanced effective electron collision frequency and hence enhanced resistive heating as suggested by Primdahl (1986) and Robinson (1986) and not due to the heating of electrons by the electric field of the waves parallel to the magnetic field. For the ionospheric conditions discussed by Schlegel and St.-Maurice (1981) we find an anomalous heating rate of about 4 x 10/sup -7/ W/m/sup 3/. copyright American Geophysical Union 1988« less
Green Remediation Best Management Practices: Implementing In Situ Thermal Technologies
Over recent years, the use of in situ thermal technologies such as electrical resistance heating, thermal conductive heating, and steam enhanced extraction to remediate contaminated sites has notably increased.
Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes
NASA Astrophysics Data System (ADS)
Dudchenko, Alexander V.; Chen, Chuxiao; Cardenas, Alexis; Rolf, Julianne; Jassby, David
2017-07-01
Water shortages and brine waste management are increasing challenges for coastal and inland regions, with high-salinity brines presenting a particularly challenging problem. These high-salinity waters require the use of thermally driven treatment processes, such as membrane distillation, which suffer from high complexity and cost. Here, we demonstrate how controlling the frequency of an applied alternating current at high potentials (20 Vpp) to a porous thin-film carbon nanotube (CNT)/polymer composite Joule heating element can prevent CNT degradation in ionizable environments such as high-salinity brines. By operating at sufficiently high frequencies, these porous thin-films can be directly immersed in highly ionizable environments and used as flow-through heating elements. We demonstrate that porous CNT/polymer composites can be used as self-heating membranes to directly heat high-salinity brines at the water/vapour interface of the membrane distillation element, achieving high single-pass recoveries that approach 100%, far exceeding standard membrane distillation recovery limits.
Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...
2017-08-01
Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, D.; Haase, S.
2009-07-01
This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less
NASA Astrophysics Data System (ADS)
Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power
NASA Technical Reports Server (NTRS)
Mason, Lee
2010-01-01
Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.
Development of glass fibre reinforced composites using microwave heating technology
NASA Astrophysics Data System (ADS)
Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.
2017-10-01
Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.
Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader
2014-06-01
We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.
Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo
2014-11-01
Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Projection of heat waves variation over a warming climate in China
NASA Astrophysics Data System (ADS)
Yue, X.; Wu, S.; Pan, T.
2016-12-01
Heat waves (HW) have adverse impacts on economies, human health, societies and environment, which have been observed around the world and are expected to increase in a warming climate. However, the variations of HW under climate change over China are not clear yet. Using the HadGEM2-ES RCP4.5 and RCP8.5 daily maximum temperature and humidity dataset, variation of heat waves in China for 2021-2050 comparing to 1991-2000 as baseline were analyzed. The CMA-HI (Heat Index standardized by China Meteorological Administration) index was used to calculate the frequency and intensity of head waves. This paper classified the HW into three intensity levels including mild HW, moderate HW and severe HW , and defined a heat wave event (HWE) as that CMA-HI are all above or equal to 2.8 and keep at a intensity level more than five consecutive days. Results show that during 2021to 2050, the distribution area, frequency and duration of each intensity level have an increasing trend over China, and those of severe HW will increase mostly. The distribution area of mild, moderate and severe HW will increase 18%, 22%, 35% respectively. Average HWE frequency of each level will concentrate on 0.5-1instead of 0-0.3 in baseline period. Maximum frequency of each intensity can reach to almost 3 times a year. During 1991-2000, the average frequency of mild HW, moderate HW and severe HW kept a downward sequence. But it will change to increase in the future, and the shift occurs during 2031-2040. In addition, only severe HW duration will increase in the future. Its average value will increase from 9days to 13days, and keep a maximum duration of 42days.While the average duration of mild HW and moderate HW just keep almost 6 days and 8 days as usual. Regionally, both the frequency and duration will keep high value in the region of eastern China, central China, southern China and central Xinjiang autonomous region in the future. And only severe HW has a great change in distribution. Under RCP 8.5 climate scenario, China will suffer much more severe heat waves. The result of prediction of heat waves can give scientific basis to climate change risk management and adaptation strategies.
Heating, Ventilating, and Air Conditioning. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
NASA Astrophysics Data System (ADS)
Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.
2015-08-01
In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime. It is noted that the profile and dynamics of the ELF perturbation frequency spectrum conform to the assumption of their connection with quasistatic small-scale electron-density inhomogeneities occurring in the heated region and having lifetimes of a few seconds or more. The possible mechanisms of the ELF/VLF perturbation formation in the ionospheric plasma above the high-latitude HAARP facility at the DEMETER flyby altitudes are discussed.
NASA Technical Reports Server (NTRS)
Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory
2013-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.
High sensitivity real-time NVR monitor
NASA Technical Reports Server (NTRS)
Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)
1997-01-01
A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.
Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-29
This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.
Outpatient clinic visits during heat waves: findings from a large family medicine clinical database.
Vashishtha, Devesh; Sieber, William; Hailey, Brittany; Guirguis, Kristen; Gershunov, Alexander; Al-Delaimy, Wael K
2018-03-10
The purpose of this study was to determine whether heat waves are associated with increased frequency of clinic visits for ICD-9 codes of illnesses traditionally associated with heat waves. During 4 years of family medicine clinic data between 2012 and 2016, we identified six heat wave events in San Diego County. For each heat wave event, we selected a control period in the same season that was twice as long. Scheduling a visit on a heat wave day (versus a non-heat wave day) was the primary predictor, and receiving a primary ICD-9 disease code related to heat waves was the outcome. Analyses were adjusted for age, gender, race/ethnicity and marital status. Of the 5448 visits across the heat wave and control periods, 6.4% of visits (n = 346) were for heat wave-related diagnoses. Scheduling a visit on heat wave day was not associated with receiving a heat wave-related ICD code as compared with the control period (adjusted odds ratio: 1.35; 95% confidence interval: 0.86-1.36; P = 0.51). We show that in a relatively large and demographically diverse population, patients who schedule appointments during heat waves are not being more frequently seen for diagnoses typically associated with heat waves in the acute setting. Given that heat waves are increasing in frequency due to climate change, there is an opportunity to increase utilization of primary care clinics during heat waves.
NASA Astrophysics Data System (ADS)
Kovalev, Yu. M.; Kuropatenko, V. F.
2018-05-01
An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.
Cooling the vertical surface by conditionally single pulses
NASA Astrophysics Data System (ADS)
Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor
2017-10-01
You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.
Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.
Zhang, Xiaoyong; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei; Yan, Xiaojun
2016-06-01
This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young's modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz-97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.
2014-05-01
utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can
Magnetic Microspheres for Therapeutical Applications
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Hyperthermia is a well known cancer therapy and consists of heating a tumor region to the elevated temperatures in the range of 40-45 C for an extended period of time (2-8 hours). This leads to thermal inactivation of cell regulatory and growth processes with resulting widespread necrosis, carbonization and coagulation. Moreover, heat boosts the tumor response to other treatments such as radiation, chemotherapy or immunotherapy. Of particular importance is careful control of generated heat in the treated region and keeping it localized. Higher heating, to about 56 C can lead to tissue thermo-ablation. With accurate temperature control, hyperthermia has the advantage of having minimal side effects. Several heating techniques are utilized for this purpose, such as whole body hyperthermia, radio-frequency (RF) hyperthermia, ultrasound technique, inductive microwave antenna hyperthermia, inductive needles (thermoseeds), and magnetic fluid hyperthermia (MFH).MFH offers many advantages as targeting capability by applying magnets. However, this technology still suffers significant inefficiencies due to lack of thermal control. This paper will provide a review of the topic and outline the ongoing work in this area. The main emphasis is in devising ways to overcome the technical difficulty in hyperthermia therapy of achieving a uniform therapeutic temperature over the required region of the body and holding it steady. The basic obstacle of the present heating methods are non-uniform thermal properties of the tissue. Our approach is to develop a novel class of magnetic fluids which have inherent thermoregulating properties. We have identified a few magnetic alloys which can serve as a suitable nano-particle material. The objective is to synthesize, characterize and evaluate the efficacy of TRMF for hyperthermia therapy.
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack
2016-11-01
Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
Variable conductance heat pipe technology
NASA Technical Reports Server (NTRS)
Marcus, B. D.; Edwards, D. K.; Anderson, W. T.
1973-01-01
Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.
Study of thermal management for space platform applications
NASA Technical Reports Server (NTRS)
Oren, J. A.
1980-01-01
Techniques for the management of the thermal energy of large space platforms using many hundreds of kilowatts over a 10 year life span were evaluated. Concepts for heat rejection, heat transport within the vehicle, and interfacing were analyzed and compared. The heat rejection systems were parametrically weight optimized over conditions for heat pipe and pumped fluid approaches. Two approaches to achieve reliability were compared for: performance, weight, volume, projected area, reliability, cost, and operational characteristics. Technology needs are assessed and technology advancement recommendations are made.
Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, Miles; Childress, Amy; Hiibel, Sage
2014-12-16
Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less
Amplitude-frequency effect of Y-cut langanite and langatate.
Kim, Yoonkee
2003-12-01
Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhao, S.; Zhou, C.
2016-12-01
Based on the electric field observation at VLF frequency band onboard DEMETER satellite, the spatial distribution was studied about some VLF transmitters at different latitudes on ground, as while the maximal intensity, the attenuation rate and affected areas, including NWC and GBZ with high power, and some transmitters with low radiated power. As while the full wave propagation model is used to simulate the theoretical results at topside ionosphere. The results show that, (1) the intensity of electromagnetic waves at topside ionosphere with 1000kW radiated power is higher as one or two orders of magnitude than those with 500 kW power; (2) at same station, the amplitudes in electric field are larger with high frequency signals than those lower ones at the same station; (3) at same frequency points, the ionospheric background affected strongly the waves penetrating into the ionosphere, for the intensity of same frequency signals differed apparently at different transmitters. Due to the high energy of VLF transmitters, the heating phenomena were also observed extensively at DEMETER satellite. Here the VLF-induced ionospheric heating perturbations were selected and analyzed during the solar minimum years of 2008-2009. There are three main features in VLF heating, (1) the temperature of electron and ion increased, while the electron density and O+ density at topside ionosphere decreased; (2) the low hybrid waves were excited at 10-20kHz; (3) the plasma frequency was emitted at some points around 1.92MHz; (4) the VLF induced heating phenomena were associated closely with the radiated power of transmitters, while the transmitters with power <500kW are hard to cause the ionospheric disturbances directly. Considering the propagation and heating process of VLF electromagnetic wave, these features above were discussed and compared with HF heating processes. By learning for the man-made signals propagating from ground into ionosphere, it is helpful to further understand the coupling mechanism among different earth spheres. Acknowledgement: This paper is supported by the International Cooperation Project (2014DFR21280).
Generalized thermoelastic diffusive waves in heat conducting materials
NASA Astrophysics Data System (ADS)
Sharma, J. N.
2007-04-01
Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James
2017-01-01
The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.
Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin
2018-03-23
Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan
2014-02-18
Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath andmore » slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.« less
Near-term viability of solar heat applications for the federal sector
NASA Astrophysics Data System (ADS)
Williams, T. A.
1991-12-01
Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.
Optimizing sonication protocols for transthoracic focused ultrasound surgery
NASA Astrophysics Data System (ADS)
Gao, J.; Volovick, A.; Cao, R.; Nabi, G.; Cochran, S.; Melzer, A.; Huang, Z.
2012-11-01
During transthoracic focused ultrasound surgery (TFUS), the intervening ribs absorb and reflect the majority of the ultrasound energy excited by an acoustic source, resulting in pain, bone injuries and insufficient energy delivered to the target organs of liver, kidney, and pancreas. Localized hot spots may also exist at the interfaces between the ribs and soft tissue and in the highly absorptive regions such as the skin and connective tissue. The aims of this study were to clarify the effects of focal beam distortion and frequency-dependent rib heating in TFUS and to propose possible techniques to reduce the side-effects of rib heating and increase ultrasound efficacy. Frequency-dependent heating at the target and the ribs were estimated using finite element analysis (PZFlex, Weidlinger Associates Inc, USA) along with experimental verification on a range of different phantoms. The ratio of ultrasonic power density at the target and the ribs, the time-varying spatial distribution of temperature, and the ablated focus of each sonication were taken as key indicators to determine the optimal operating frequency. Comparison with a patient specific model was also made. TFUS seems to be useful to treat tumours that are small and near the surface of the abdominal organs. For targets deep inside these organs, severe attenuation of energy occurs, suggesting that purely ultrasound thermal ablation with advanced heating patterns will have limited effects in improving the treatment efficacy. Results demonstrate that the optimal ultrasound frequency is around 0.8 MHz for the configurations considered, but this may shift to higher frequencies with changes in the axial and lateral positions of the tumours relative to the ribs. To date, we have elucidated the most important effects and correlated these with idealised anatomical geometry. The changes in frequency and other techniques such as selection of excited element patterns in FUS arrays had some effect. However, more advanced techniques need to be explored for further enhanced localised heating in the TFUS study, if this is to prove fully effective.
Danielle E. Marias; Frederick C. Meinzer; Christopher Still
2017-01-01
Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica...
Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM
2004-07-27
A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.
Calculating the Velocity in the Moss
NASA Technical Reports Server (NTRS)
Womebarger, Amy R.; Tripathi, Durgesh; Mason, Helen
2011-01-01
The velocity of the warm (1 MK) plasma in the footpoint of the hot coronal loops (commonly called moss) could help discriminate between different heating frequencies in the active region core. Strong velocities would indicated low-frequency heating, while velocities close to zero would indicate high-frequency heating. Previous results have found disparaging observations, with both strong velocities and velocities close to zero reported. Previous results are based on observations from Hinode/EIS. The wavelength arrays for EIS spectra are typically calculated by assuming quiet Sun velocities are zero. In this poster, we determine the velocity in the moss using observations with SoHO/SUMER. We rely on neutral or singly ionized spectral lines to determine accurately the wavelength array associated with the spectra. SUMER scanned the active region twice, so we also report the stability of the velocity.
Magnetic Microspheres and Tissue Model Studies for Therapeutical Applications
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Mazuruk, K.
2003-01-01
Hyperthermia is a well known cancer therapy and consists of heating a tumor region to the elevated temperatures in the range of 40-45 C for an extended period of time (2-8 hours). This leads to thermal inactivation of cell regulatory and growth processes with resulting widespread necrosis, carbonization and coagulation. Moreover, heat boosts the tumor response to other treatments such as radiation, chemotherapy or immunotherapy. Of particular importance is careful control of generated heat in the treated region and keeping it localized. Higher heating, to about 56 C can lead to tissue thermo-ablation. With accurate temperature control, hyperthermia has the advantage of having minimal side effects. Several heating techniques are utilized for this purpose, such as whole body hyperthermia, radio-frequency (RF) hyperthermia, ultrasound technique, inductive microwave antenna hyperthermia, inductive needles (thermoseeds), and magnetic fluid hyperthermia (MFH).MFH offers many advantages as targeting capability by applying magnets. However, this technology still suffers significant inefficiencies due to lack of thermal control. This paper will provide a review of the topic and outline the ongoing work in this area. The main emphasis is in devising ways to overcome the technical difficulty in hyperthermia breast therapy of achieving a uniform therapeutic temperature over the required region of the body and holding it steady for an extended period (2-3 hours). The basic shortcomings of the presently utilized heating methods stem from the non-uniform thermal properties of the tissue and the point heating characteristics of the techniques without any thermal control. Our approach is to develop a novel class of magnetic fluids, which have inherent thermoregulating properties. We have identified a few magnetic alloys which can serve as suitable nano to micron-size particle material. The objective is to synthesize, characterize and evaluate the efficacy of Thermo Regulating Magnetic Fluids (TRMF) for hyperthermia therapy. The development of a tissue model and testing the fluid dynamics of particle motion, settling, distribution in the tissue matrix and heat generation will be discussed.
Solubilization of bovine gelatin using power ultrasound: gelation without heating.
Farahnaky, Asgar; Zendeboodi, Fatemeh; Azizi, Rezvan; Mesbahi, Gholamreza; Majzoobi, Mahsa
2017-04-01
The aim of this study was to investigate the efficacy of power ultrasound without using any heating stage in solubilizeing gelatin dispersions, and to characterize the mechanical and microstructural properties of the resulting gels using texture analysis and scanning electron microscopy, respectively. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. For solubilising gelatin, an ultrasound equipment with a frequency of 20 kHz, amplitude of 100% and power range of 50-150 W was used. Aqueous gelatin dispersions (4% w/v) were subjected to ultrasound for different times (40-240 s) at a constant temperature of 13C. Applying ultrasound to gelatin dispersions caused increases in water absorption and water solubility of the hydrocolloid. The textural parameters of the resulting gelatin gels, increased with increasing time and power of ultrasound. Moreover, a generalized Maxwell model with three elements was used for calculating relaxation times of the gels. The microstructural observations by SEM showed that the structural cohesiveness of the gels increased by increasing ultrasonication time. Ultrasound-assisted solubilization of gelatin can have emerging implications for industrial uses in pharmaceuticals, food and non-food systems. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. Therefore, the use of gelatin as a hydrocolloid in food processings or pharmaceutical formulations which lack a heating step has been a technological and practical challenge. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. Ultrasound-assisted solubilisation of gelatin can have emerging implications for industrial uses in pharmaceuticals, food, and non-food systems, for example, to conserve heat sensitive compounds. © 2016 Wiley Periodicals, Inc.
Flow Pattern Phenomena in Two-Phase Flow in Microchannels
NASA Astrophysics Data System (ADS)
Keska, Jerry K.; Simon, William E.
2004-02-01
Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.
CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system
NASA Astrophysics Data System (ADS)
Nagarajan, Booma; Reddy Sathi, Rama
2016-01-01
This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.
2005-01-01
Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.
Heat Shield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2017-01-01
The Heat Shield for Extreme Entry Environment Technology (HEEET) project seeks to mature a game changing Woven Thermal Protection System (TPS) technology to enable in situ robotic science missions recommended by the NASA Research Council Planetary Science Decadal Survey committee. Recommended science missions include Venus probes and landers; Saturn and Uranus probes; and high-speed sample return missions.
Gas Engine-Driven Heat Pump with Desiccant Dehumidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abu-Heiba, Ahmad
About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
Biomethane production system: Energetic analysis of various scenarios.
Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan
2016-04-01
The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu; Yang, Mo
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heatmore » transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.« less
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)
2003-01-01
Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.
NASA Astrophysics Data System (ADS)
Yang, Fan; Dames, Chris
2015-04-01
The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.
Behavioral and autonomic thermoregulation in hamsters during microwave-induced heat exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, C.J.; Long, M.D.; Fehlner, K.S.
1984-01-01
Preferred ambient temperature (Ta) and ventilatory frequency were measured in free-moving hamsters exposed to 2450-MHz microwaves. A waveguide exposure system that permits continuous monitoring of the absorbed heat load accrued from microwave exposure was imposed with a longitudinal temperature gradient which allowed hamsters to select their preferred Ta. Ventilatory frequency was monitored remotely by analysing the rhythmic shifts in unabsorbed microwave energy passing down the waveguide. Without microwave exposure hamsters selected an average T2 of 30.2 C. This preferred Ta did not change until the rate of heat absorption (SAR) from microwave exposure exceeded approx. 2 W kg-1. In amore » separate experiment, a SAR of 2.0 W kg-1 at a Ta of 30C was shown to promote an average 0.5 C increase in colonic temperature. Hamsters maintained their ventilatory frequency at baseline levels by selecting a cooler Ta during microwave exposure. These data support previous studies suggesting that during thermal stress behavioral thermo-regulation (i.e. preferred Ta) takes prescedence over autonomic thermoregulation (i.e. ventilatory frequency). It is apparent that selecting a cooler Ta is a more efficient and/or effective than autonomic thermoregulation for dissipating a heat load accrued from microwave exposure.« less
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1982-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study
NASA Technical Reports Server (NTRS)
Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth
1987-01-01
The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.
Quantum thermal diode based on two interacting spinlike systems under different excitations.
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam
2018-03-01
Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adhesive bonding using variable frequency microwave energy
Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua
1998-01-01
Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.
Adhesive bonding using variable frequency microwave energy
Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.
1998-08-25
Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.
Adhesive bonding using variable frequency microwave energy
Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.
1998-09-08
Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.
Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.
Wasserscheid, Peter; Seiler, Matthias
2011-04-18
One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heatingmore » and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.
A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less
Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers
NASA Technical Reports Server (NTRS)
Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain
2010-01-01
The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work for this design is to apply the high output power from both the 250 and 300 GHz to multiple chains in order to generate milliwatts at 2.3 THz. Using the first generation of results for this innovation, 40 mW of output power were produced from a 240-GHz tripler at 350-mW input power, and 27- mW output power was produced from a 300-GHz tripler at 408-mW input power. This is two times higher than the current state-of-the-art output power capability. A finite-element thermal simulation also shows that 30-microns thick diamond dropped the temperature of the anodes by at least 200 C.
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
Ballistic heat conduction and mass disorder in one dimension.
Ong, Zhun-Yong; Zhang, Gang
2014-08-20
It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
Zhang, Zhiqiang; Liao, Xiaoping
2017-01-01
To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively. PMID:28629144
Zhang, Zhiqiang; Liao, Xiaoping
2017-06-17
To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.
Monitoring water content dynamics of biological soil crusts
Young, Michael H.; Fenstermaker, Lynn F.; Belnap, Jayne
2017-01-01
Biological soil crusts (hereafter, “biocrusts”) dominate soil surfaces in nearly all dryland environments. To better understand the influence of water content on carbon (C) exchange, we assessed the ability of dual-probe heat-pulse (DPHP) sensors, installed vertically and angled, to measure changes in near-surface water content. Four DPHP sensors were installed in each of two research plots (eight sensors total) that differed by temperature treatment (control and heated). Responses were compared to horizontally installed water content measurements made with three frequency-domain reflectometry (FDR) sensors in each plot at 5-cm depth. The study was conducted near Moab, Utah, from April through September 2009. Results showed significant differences between sensor technologies: peak water content differences from the DPHP sensors were approximately three times higher than those from the FDR sensors; some of the differences can be explained by the targeted monitoring of biocrust material in the shorter DPHP sensor and by potential signal loss from horizontally installed FDR sensors, or by an oversampling of deeper soil. C-exchange estimates using the DPHP sensors showed a net C loss of 69 and 76 g C m−2 in control and heated plots, respectively. The study illustrates the potential for using the more sensitive data from shallow installations for estimating C exchange in biocrusts.
Status of the Development of Low Cost Radiator for Surface Fission Power - II
NASA Technical Reports Server (NTRS)
Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.
2016-01-01
NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.
NASA Astrophysics Data System (ADS)
Chevalier, S.; Meyer, O.; Weil, R.; Fourrierlamer, A.; Petit, A.; Loupy, A.; Maurel, F.
2001-09-01
An instrumentation system for measuring wide frequency band complex permittivity of a sample submitted to a microwave irradiation has been optimized in order to allow macroscopic temperature measurements. The reaction of saponification of aromatic esters is studied using this instrumentation. We take interest in the behavior of the ionic conductivity phenomenon occurring in the reactive medium during microwave heating, and we compare it with the results obtained under classical heating. We show that the activation energy associated with ionic conductivity is lower when the reaction is performed under microwaves than when it is performed under classical heating. We thus deduce that microwaves act on the reaction advancement as a catalyst, and thus makes the reaction easier.
A New Global Multi-fluid MHD Model of the Solar Corona
NASA Astrophysics Data System (ADS)
van der Holst, B.; Chandran, B. D. G.; Alterman, B. L.; Kasper, J. C.; Toth, G.
2017-12-01
We present a multi-fluid generalization of the AWSoM model, a global magnetohydrodynamic (MHD) solar corona model with low-frequency Alfven wave turbulence (van der Holst et al., 2014). This new extended model includes electron and multi-ion temperatures and velocities (protons and alpha particles). The coronal heating and acceleration is addressed via outward propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in turbulent energy cascade. To apportion the wave dissipation to the electron and ion temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011, 2013). This heat partitioning results in a more than mass proportional heating among ions.
Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.
Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D
2010-06-22
Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.
NASA Astrophysics Data System (ADS)
Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.
2018-03-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoyong, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Yan, Xiaojun, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191
This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies.more » Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.« less
Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat
NASA Astrophysics Data System (ADS)
Utlu, Z.; Önal, B. S.
2018-02-01
In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.
The role of spring precipitation deficits on European and North American summer heat wave activity
NASA Astrophysics Data System (ADS)
Cowan, Tim; Hegerl, Gabi
2017-04-01
Heat waves are relatively short-term climate phenomena with potentially severe societal impacts, particularly on health, agriculture and the natural environment. In water-limited regions, increased heat wave activity over intra-decadal periods is often associated with protracted droughts, as observed over North America's Central and Southern Great Plains in the 1930s and 1950s, highlighting the importance of land surface-atmosphere feedbacks. Here we present an analysis of the covariability of spring precipitation deficit and summer heat waves for North America and Europe, the latter having experienced an increase in summer heat wave frequency since the 1950s (Perkins et al. 2012). Over the Great Plains summer heat waves are significantly earlier, longer and hotter if following dry rather than wet springs, with the mega-heat waves of the 1930s Dust Bowl decade an extreme example (e.g. Cowan et al. 2017). Similar relationships can be found in some parts of Europe for heat wave frequency and duration, namely Southern and Eastern Europe, although the heat wave timing and amplitude (i.e. the hottest events) appear less sensitive to spring drying. Climate model results investigating the relationship between heat waves and precipitation deficit in regions in Europe and North America will also be presented. It is necessary to pinpoint the causes of large decadal variations in heat wave metrics, as seen in the 1930s over North America and more recently across Central Europe, for event attribution purposes and to improve near-decadal prediction. The tight link between spring drought and summer heat waves will also be important for understanding the impacts of these climatic events and supports the development of compound event analysis techniques. References: Cowan, T., G. Hegerl, I. Colfescu, A. Purich and G. Boshcat (2016), Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl. Journal of Climate, doi: 10.1175/JCLI-D-16-0436.1 (in press). Perkins, S. E., L. V. Alexander, and J. R. Nairn (2012), Increasing frequency, intensity and duration of observed global heatwaves and warm spells, Geophys. Res. Lett., 39, L20714, doi:10.1029/2012GL053361.
USDA-ARS?s Scientific Manuscript database
IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...
2015-06-25
NASA's mission to push the limits of human exploration to beyond low earth orbit and to Mars will take humans farther than ever before. Achieving these goals requires collaborations and development of new technology. NASA Ames' expertise in re-entry technology is helping develop the architecture to achieve these goals. The Orion Heat Shield is an example of the materials and technology development needed to sustain heating rates far greater than missions returning from the International Space Station. Jeremy Vander Kam describes details working with this engineering and scientific marvel.
Advanced two-phase heat transfer systems
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Future large spacecraft, such as the Earth Observing System (EOS) platforms, will require a significantly more capable thermal control system than is possible with current 'passive' technology. Temperatures must be controlled much more tightly over a larger surface area. Numerous heat load sources will often be located inside the body of the spacecraft without a good view to space. Power levels and flux densities may be higher than can be accommodated with traditional technology. Integration and ground testing will almost certainly be much more difficult with such larger, more complex spacecraft. For these and similar reasons, the Goddard Space Flight Center (GSFC) has been developing a new, more capable thermal control technology called capillary pumped loops (CPL's). CPL's represent an evolutionary improvement over heat pipes; they can transport much greater quantities of heat over much longer distances and can serve numerous heat load sources. In addition, CPL's can be fabricated into large cold plates that can be held to tight thermal gradients. Development of this technology began in the early 1980's and is now reaching maturity. CPL's have recently been baselined for the EOS-AM platform (1997 launch) and the COMET spacecraft (1992 launch). This presentation describes this new technology and its applications. Most of the viewgraphs are self descriptive. For those that are less clear additional comments are provided.
Diamond-based heat spreaders for power electronic packaging applications
NASA Astrophysics Data System (ADS)
Guillemet, Thomas
As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging potential of the two heat-spreading solutions invoked was evaluated. This study was carried out within the framework of a French-American collaboration between the Electrical Engineering department of the University of Nebraska-Lincoln (United States, U.S.) and the Institute of Condensed Matter Chemistry of the University of Bordeaux (France). This study was financed by the Office of Naval Research in the U.S., and by the Region Aquitaine in France.
NASA Technical Reports Server (NTRS)
George, William K.; Rae, William J.; Woodward, Scott H.
1991-01-01
The importance of frequency response considerations in the use of thin-film gages for unsteady heat transfer measurements in transient facilities is considered, and methods for evaluating it are proposed. A departure frequency response function is introduced and illustrated by an existing analog circuit. A Fresnel integral temperature which possesses the essential features of the film temperature in transient facilities is introduced and is used to evaluate two numerical algorithms. Finally, criteria are proposed for the use of finite-difference algorithms for the calculation of the unsteady heat flux from a sampled temperature signal.
NASA Astrophysics Data System (ADS)
Li, Mo
Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition, results suggest that the regional electricity fuel mix and volatile energy prices significantly influence the benefits of employing GSHP technologies in Minnesota from both environmental and economic perspectives. It is worthy noting that with the historically low natural gas price in 2012, the conventional system's energy bill reduction would be large enough to bring its life-cycle cost below those of the GSHPs. As a result, the environmentally favorable GSHP technologies would become economically unfavorable, unless they are additionally subsidized. Improved understanding these effects, along with design and performance characteristics of GSGP technologies specific to Minnesota's cold climate, allows better decision making among homeowners considering these technologies and policy makers providing incentives for alternative energy solutions.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
About opportunities of the sharing of city infrastructure centralized warmly - and water supply
NASA Astrophysics Data System (ADS)
Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.
2017-11-01
It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.
Conceptual design of a lunar base thermal control system
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.
1992-01-01
Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.
Moore, Natalie; Haines, Victoria; Lilley, Debra
2015-11-01
Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords' and tenants' experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords' and tenants' experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service.
Moore, Natalie; Lilley, Debra
2015-01-01
Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords’ and tenants’ experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords’ and tenants’ experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service. PMID:26539060
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
NASA Astrophysics Data System (ADS)
Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.
2015-10-01
We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
High-frequency large-amplitude oscillations of a non-isothermal N/S boundary
NASA Astrophysics Data System (ADS)
Bezuglyj, A. I.; Shklovskij, V. A.
2016-10-01
Within the framework of a phenomenological approach based on the heat balance equation and the current dependence of the critical temperature of the superconductor, the effect of high-frequency current of large amplitude and arbitrary waveform on the non-isothermal balance of an oscillating N/S interface in a long superconductor was studied. Self-consistent average temperature field of the rapidly oscillating non-isothermal N/S boundary (heat kink) was introduced, which allowed us to go beyond the well-known concept of mean-square heating and consider the effect of the current waveform. With regard to experiments on the effects of high-power microwave radiation on the current-voltage (IV) characteristics of superconducting films, their classification was performed and the families of IV curves of inhomogeneous superconductors carrying a current containing a high-frequency component of large amplitude. Several IV curves exhibited a hysteresis of thermal nature.
NASA Astrophysics Data System (ADS)
Wilczek, Sebastian; Trieschmann, Jan; Schulze, Julian; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Derzsi, Aranka; Korolov, Ihor; Donkó, Zoltan
2013-09-01
The electron heating in capacitive discharges at very low pressures (~1 Pa) is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. By varying the driving frequency or the gap size of the discharge, energetic electrons reach the sheath edge at different temporal phases, i.e., the collapsing or expanding phase, or the moment of minimum sheath width. This work reports numerical experiments based on Particle-In-Cell simulations which show that at certain frequencies the discharge switches abruptly from a low density mode in a high density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This behavior is explained by the complex interaction of the bulk and the sheath. This work is supported by the German Research Foundation in the frame of TRR 87.
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
Proceedings of the 1997 oil heat technology conference and workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, R.J.
1997-09-01
This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference weremore » to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Heat pipe technology: A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1971-01-01
A cumulative bibliography on heat pipe research and development projects is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) testing and operation, (6) subject and author index, and (7) heat pipe related patents.
Terahertz magnonics: Feasibility of using terahertz magnons for information processing
NASA Astrophysics Data System (ADS)
Zakeri, Khalil
2018-06-01
An immediate need of information technology is designing fast, small and low-loss devices. One of the ways to design such devices is using the bosonic quasiparticles, such as magnons, for information transfer/processing. This is the main idea behind the field of magnonics. When a magnon propagates through a magnetic medium, no electrical charge transport is involved and therefore no energy losses, creating Joule heating, occur. This is the most important advantage of using magnons for information transfer. Moreover the mutual conversion between magnons and the other carriers e.g. electrons, photons and plasmons shall open new opportunities to realize tunable multifunctional devices. Magnons cover a very wide range of frequency, from sub-gigahertz up to a few hundreds of terahertz. The magnon frequency has an important impact on the performance of magnon-based devices (the larger the excitation frequency, the faster the magnons). This means that the use of high-frequency (terahertz) magnons would provide a great opportunity for the design of ultrafast devices. However, up to now the focus in magnonics has been on the low-frequency gigahertz magnons. Here we discuss the feasibility of using terahertz magnons for application in magnonic devices. We shall bring the concept of terahertz magnonics into discussion. We discuss how the recently discovered phenomena in the field of terahertz magnons may inspire ideas for designing new magnonic devices. We further introduce methods to tune the fundamental properties of terahertz magnons, e.g. their eigenfrequency and lifetime.
NASA Technical Reports Server (NTRS)
Caton, R.; Selim, R.; Buoncristiani, A. M.
1992-01-01
The electronic link connecting cryogenically cooled radiation detectors to data acquisition and signal processing electronics at higher temperatures contributes significantly to the total heat load on spacecraft cooling systems that use combined mechanical and cryogenic liquid cooling. Using high transition temperature superconductors for this link has been proposed to increase the lifetime of space missions. Herein, several YBCO (YBa2Cu3O7) superconductor-substrate combinations were examined and total heat loads were compared to manganin wire technology in current use. Using numerical solutions to the heat-flow equations, it is shown that replacing manganin technology with YBCO thick film technology can extend a 7-year mission by up to 1 year.
NASA Astrophysics Data System (ADS)
You, Weilong; Pei, Binbin; Sun, Ke; Zhang, Lei; Yang, Heng; Li, Xinxin
2017-10-01
This paper presents an oven controlled N++ [1 0 0] length-extensional mode silicon resonator, with a lookup-table based control algorithm. The temperature coefficient of resonant frequency (TCF) of the N++ doped resonator is nonlinear, and there is a turnover temperature point at which the TCF is equal to zero. The resonator is maintained at the turnover point by Joule heating; this temperature is a little higher than the upper limit of the industrial temperature range. It is demonstrated that the control algorithm based on the thermoresistor on the substrate and the lookup table for heating voltage versus chip temperature is sufficiently accurate to achieve a frequency stability of ±0.5 ppm over the industrial temperature range. Because only two leads are required for electrical heating and piezoresistive sensing, the power required for heating of this resonator can be potentially lower than that of the oscillators with closed-loop oven control algorithm. It is also shown that the phase noise can be suppressed at the turnover temperature because of the very low value of the TCF, which justifies the usage of the heating voltage as the excitation voltage of the Wheatstone half-bridge.
Infrared thermometry study of nanofluid pool boiling phenomena
2011-01-01
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754
NASA Technical Reports Server (NTRS)
1997-01-01
Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.
Health impacts of the July 2010 heat wave in Québec, Canada.
Bustinza, Ray; Lebel, Germain; Gosselin, Pierre; Bélanger, Diane; Chebana, Fateh
2013-01-21
One of the consequences of climate change is the increased frequency and intensity of heat waves which can cause serious health impacts. In Québec, July 2010 was marked by an unprecedented heat wave in recent history. The purpose of this study is to estimate certain health impacts of this heat wave. The crude daily death and emergency department admission rates during the heat wave were analyzed in relation to comparison periods using 95% confidence intervals. During the heat wave, the crude daily rates showed a significant increase of 33% for deaths and 4% for emergency department admissions in relation to comparison periods. No displacement of mortality was observed over a 60-day horizon. The all-cause death indicator seems to be sufficiently sensitive and specific for surveillance of exceedences of critical temperature thresholds, which makes it useful for a heat health-watch system. Many public health actions combined with the increased use of air conditioning in recent decades have contributed to a marked reduction in mortality during heat waves. However, an important residual risk remains, which needs to be more vigorously addressed by public health authorities in light of the expected increase in the frequency and severity of heat waves and the aging of the population.
Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae).
Johnson, J A; Valero, K A; Wang, S; Tang, J
2004-12-01
While developing radio frequency heat treatments for dried fruits and nuts, we used a heating block system developed by Washington State University to identify the most heat-tolerant life stage of red flour beetle, Tribolium castaneum (Herbst), and to determine its thermal death kinetics. Using a heating rate of 15 degrees C/min to approximate the rapid heating of radio frequency treatments, the relative heat tolerance of red flour beetle stages was found to be older larvae > pupae and adults > eggs and younger larvae. Lethal exposure times for temperatures of 48, 50, and 52 degrees C for the most heat-tolerant larval stage were estimated using a 0.5th order kinetic model. Exposures needed for 95% mortality at 48 degrees C were too long to be practical (67 min), but increasing treatment temperatures to 50 and 52 degrees C resulted in more useful exposure times of 8 and 1.3 min, respectively. Red flour beetle was more sensitive to changes in treatment temperature than previously studied moth species, resulting in red flour beetle being the most heat-tolerant species at 48 degrees C, but navel orangeworm, Amyelois transitella (Walker), being most heat tolerant at 50 and 52 degrees C. Consequently, efficacious treatments for navel orangeworm at 50-52 degrees C also would control red flour beetle.
Thermal remediation technologies, which includes steam enhanced extraction, electrical resistance heating, and thermal conductive heating, have been developed based on technologies employed by the enhanced oil recovery industry. Although mobilization and/or volatilization of con...
Advances in induction-heated plasma torch technology
NASA Technical Reports Server (NTRS)
Poole, J. W.; Vogel, C. E.
1972-01-01
Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.
NASA Astrophysics Data System (ADS)
Bordikar, M. R.; Scales, W. A.; Samimi, A. R.; Bernhardt, P. A.; Brizcinski, S.; McCarrick, M. J.
2013-04-01
This work presents the first observations of unique narrowband emissions ordered near the hydrogen ion (H+) gyrofrequency (fcH) in the stimulated electromagnetic emission spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during ionospheric modification experiments. The frequency structuring of these newly discovered emission lines is quite unexpected since H+ is known to be a minor constituent in the interaction region which is near 160 km altitude. The spectral lines are typically shifted from the pump wave frequency by harmonics of a frequency about 10% less than fcH (≈ 800 Hz) and have a bandwidth of less than 50 Hz which is near the O+ gyrofrequency fcO. A theory is proposed to explain these emissions in terms of a parametric decay instability in a multi-ion species plasma due to possible proton precipitation associated with the disturbed conditions during the heating experiment. The observations can be explained by including several percent H+ ions into the background plasma. The implications are new possibilities for characterizing proton precipitation events during ionospheric heating experiments.
Nordbeck, Peter; Ritter, Oliver; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Burkard, Natalie; Herold, Volker; Jakob, Peter M; Ertl, Georg; Ladd, Mark E; Quick, Harald H; Bauer, Wolfgang R
2011-01-01
Implanted medical devices such as cardiac pacemakers pose a potential hazard in magnetic resonance imaging. Electromagnetic fields have been shown to cause severe radio frequency-induced tissue heating in some cases. Imaging exclusion zones have been proposed as an instrument to reduce patient risk. The purpose of this study was to further assess the impact of the imaging landmark on the risk for unintended implant heating by measuring the radio frequency-induced electric fields in a body phantom under several imaging conditions at 1.5T. The results show that global radio frequency-induced coupling is highest with the torso centered along the superior-inferior direction of the transmit coil. The induced E-fields inside the body shift when changing body positioning, reducing both global and local radio frequency coupling if body and/or conductive implant are moved out from the transmit coil center along the z-direction. Adequate selection of magnetic resonance imaging landmark can significantly reduce potential hazards in patients with implanted medical devices. © 2010 Wiley-Liss, Inc.
[Application of microwave irradiation technology to the field of pharmaceutics].
Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin
2014-03-01
Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.
Development of silicon growth techniques from melt with surface heating
NASA Astrophysics Data System (ADS)
Kravtsov, Anatoly
2018-05-01
The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.
NASA Technical Reports Server (NTRS)
Iacomini, Christine; Powers, Aaron; Bowers, Chad; Straub-Lopez, Katie; Anderson, Grant; MacCallum, Taber; Paul, Heather
2007-01-01
Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the vent loop. Once fully loaded, the adsorbent is then warmed externally by the vent loop (approx. 300K), rejecting the captured CO2 to Mars ambient. Two beds are used to effect a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the vent loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available at Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments was conducted which lead to the selection and partial characterization of an appropriate adsorbent. The adsorbent NaX successfully removed CO2 from a simulated vent loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions.
Helicons, History, High Technology and Heliacs
NASA Astrophysics Data System (ADS)
Boswell, Rod
1998-11-01
Helicon waves depend basically on the Hall effect and propagate between the ion and electron gyro frequencies: they are whistlers masquerading under another name hence their history goes back to the great war and subsequently involved such people as Appleton, Hartree and Storey. Considerable experimental and theoretical research was carried out on linear propagation during the 1960's and at the end of the decade it was discovered that the wave could actually heat the plasma electrons and increase the ionisation rate considerably. Nothing much happened during the 1970's but in the early 1980's it was realised that this high density source could be used for processing thin films and an increasing number of papers were published, which continues to this day. The first experiments on using helicons to create and heat toroidal plasmas were carried out at the end of the 1980's in a small heliac. Recent experiments with helicon excitation in the large heliac H1 at the ANU have shown that the ion temperature increases with the wave power. This mystery is being actively investigated.
Transient Thermoelectric Solution Employing Green's Functions
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.
Danielle E. Marias; Frederick C. Meinzer; David R. Woodruff; Katherine A. McCulloh; David Tissue
2016-01-01
Temperature and the frequency and intensity of heat waves are predicted to increase throughout the 21st century. Germinant seedlings are expected to be particularly vulnerable to heat stress because they are in the boundary layer close to the soil surface where intense heating occurs in open habitats. We quantified leaf thermotolerance and whole-plant physiological...
NASA Astrophysics Data System (ADS)
N'Djin, W. Apoutou; Mougenot, Charles; Kobelevskiy, Ilya; Ramsay, Elizabeth; Bronskill, Michael; Chopra, Rajiv
2012-11-01
Ultrasound thermal therapy of localized prostate cancer offers a minimally-invasive non-ionizing alternative [1-3] to surgery and radiotherapy. MRI-controlled transurethral ultrasound prostate therapy [4-6] has previously been investigated in a pilot human feasibility study [7], by treating a small sub-volume of prostate tissue. In this study, the feasibility of transurethral dual-frequency ultrasound focal therapy has been investigated in gel phantom. A database of pelvic anatomical models of human prostate cancer patients have been created using MR clinical images. The largest prostate boundary (47 cm3) was used to fabricate an anatomical gel phantom which included various MR characteristics to mimic prostate tissues, 4 localized tumors and surrounding prostate tissues. A 9-element transurethral ultrasound applicator working in dual-frequency mode (f = 4.6/14.5 MHz) was evaluated to heat: (i) the entire prostate volume (Full prostate treatment strategy), (ii) a prostate region restricted to tumors (Focal therapy). Acoustic power of each element and rotation rate of the device were adjusted in realtime based on MR-thermometry feedback control (nine thermal slices updated every 6.2s). Experiments have been performed using dual-frequency ultrasound exposures (surface Pmax: 20W.cm-2). (i) For full prostate heating, 7 elements of the device were used to cover the entire prostate length. The heating process was completed within 35 min. Ultrasound exposures at the fundamental frequency allowed full heating of the largest prostate radii (>18 mm), while exposures at the 3rd harmonic ensured homogeneous treatment of the smallest radii. Undertreated and overtreated regions represented respectively 2% and 17% of the prostate volume. (ii) For focal therapy, the target region was optimized to maintain safe regions in the prostate and to cover all tumor-mimics. Only 5 ultrasound elements were used to treat successfully all tumor-mimics within 26 min. Undertreated and overtreated regions each represented 7% of the prostate volume. MRI-guided transurethral ultrasound procedure enables full treatment and focal therapy in human prostate geometry. Prostate volume heating was fast compared to standard HIFU prostate treatments. Dual-frequency ultrasound exposures allowed optimal heat deposition in all prostate regions. The focal therapy strategy is promising as regard to safety and could contribute to enhance the post-treatment autonomy of the patient.
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less
Three-year program to improve critical 1-micron Qsw laser technology for Earth observation
NASA Astrophysics Data System (ADS)
Sakaizawa, Daisuke; Chishiki, Yoshikazu; Satoh, Yohei; Hanada, Tatsuyuki; Yamakawa, Shiro; Ogawa, Takayo; Wada, Satoshi; Ishii, Shoken; Mizutani, Kohei; Yasui, Motoaki
2012-11-01
Laser remote sensing technologies are valuable for a variety of scientific requirements. These measurement techniques are involved in several earth science areas, including atmospheric chemistry, aerosols and clouds, wind speed and directions, prediction of pollution, oceanic mixed layer depth, vegetation canopy height (biomass), ice sheet, surface topography, and others. Much of these measurements have been performed from the ground to aircraft over the past decades. To improve knowledge of these science areas with transport models (e.g. AGCM), further advances of vertical profile are required. JAXA collaborated with NICT and RIKEN started a new cross-sectional 3-year program to improve a technology readiness of the critical 1-micron wavelengths from 2011. The efficient frequency conversions such as second and third harmonic generation and optical parametric oscillation/generation are applied. A variety of elements are common issues to lidar instruments, which includes heat rejection using high thermal conductivity materials, laser diode life time and reliability, wavelength control, and suppression of contamination control. And the program has invested in several critical areas including advanced laser transmitter technologies to enable science measurements and improvement of knowledge for space-based laser diode arrays, Pockels cells, advanced nonlinear wavelength conversion technology for space-based LIDIRs. Final goal is aim to realize 15 watt class Q-switched pulse laser over 3-year lifetime.
Infrared heating as an efficient method for drying foods and agricultural products
USDA-ARS?s Scientific Manuscript database
Because agricultural and food sector demands energy efficient and environmentally friendly drying technologies, the application of infrared (IR) heating for drying has recently been extensively studied. IR drying, as an alternative to current drying technologies, has attractive merits such as unifor...
2010-01-01
from steel pipe , copper plate for heating distinct zones and sheet pile. Sheet pile electrodes allow for quick installation with little to no drilling...as electrodes. Electrodes constructed using Thermal Remediation Services - Electrical Resistance Heating ER-0314 18 Appendix B steel pipe are...who authored state- of-the-art descriptions for the most common in-situ thermal technologies currently employed: Electrical Resistance Heating
Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds.
Jeong, Seul-Gi; Baik, Oon-Doo; Kang, Dong-Hyun
2017-08-02
This study was conducted to investigate the efficacy of radio-frequency (RF) heating to reduce Salmonella enterica serovars Enteritidis, Typhimurium, and Senftenberg in raw shelled almonds compared to conventional convective heating, and the effect of RF heating on quality by measuring changes in the color and degree of lipid oxidation. Agar-grown cells of three pathogens were inoculated onto the surface or inside of raw shelled almonds using surface inoculation or the vacuum perfusion method, respectively, and subjected to RF or conventional heating. RF heating for 40s achieved 3.7-, 6.0-, and 5.6-log reductions in surface-inoculated S. Enteritidis, S. Typhimurium, and S. Senftenberg, respectively, whereas the reduction of these pathogens following convective heating for 600s was 1.7, 2.5, and 3.7 log, respectively. RF heating reduced internally inoculated pathogens to below the detection limit (0.7 logCFU/g) after 30s. However, conventional convective heating did not attain comparable reductions even at the end of treatment (600s). Color values, peroxide values, and acid values of RF-treated (40-s treatment) almonds were not significantly (P>0.05) different from those of nontreated samples. These results suggest that RF heating can be applied to control internalized pathogens as well as surface-adhering pathogens in raw almonds without affecting product quality. Copyright © 2017. Published by Elsevier B.V.
Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma
2010-06-18
We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.
Ionospheric Modification from Under-Dense Heating by High-Power HF Transmitter
2011-03-03
Auroral Research Program ( HAARP ) is a HF transmitter, which delivers 0.36 to 3.6 GW effective isotropic radiated powers (F.IRP) for the radiation...dense heating, the EIRP of the HAARP heater can be increased significantly by increasing the heater frequency. With higher heater frequency, the loss...1304 local time) and on 13 April from 0812 to 0844 UTC (0012 to 0044 local time), using the HAARP transmitter facility at Gakona, AK, at full power
Resonant-cavity antenna for plasma heating
Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.
1984-01-10
This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.
Heat pipe technology: A biblography with abstracts
NASA Technical Reports Server (NTRS)
1972-01-01
A bibliography of heat pipe research and development projects conducted during April through June 1972, is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) test and operation, (6) subject and author index, and (7) heat pipe related patents.
Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-03-01
The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.
High Frequency Resolution TOA Analysis for ELF/VLFWave Generation Experiments at HAARP
NASA Astrophysics Data System (ADS)
Ruddle, J. D.; Moore, R. C.
2014-12-01
Modulated HF heating of the ionosphere in the presence of natural ionospheric current sources has been used as a method to generate electromagnetic ELF/VLF waves since the 1970's. In the ~1-5 kHz band, the amplitude and phase of the received ELF/VLF signal depends on the amplitude and phase of the conductivity modulation generated throughout the HF-heated ionospheric body, as well as on the signal propagation parameters (i.e., the attenuation and phase constants) between each of the current sources and the receiver. Recent signal processing advances have produced an accurate ELF/VLF time-of-arrival (TOA) analysis technique that differentiates line-of-sight and ionospherically-reflected signal components, determining the amplitude and phase of each component observed at the receiver. This TOA method requires a wide bandwidth (> 2.5 kHz) and therefore is relatively insensitive to the frequency-dependent nature of ELF/VLF wave propagation. In this paper, we present an improved ELF/VLF TOA method that is capable of providing high frequency resolution. The new analysis technique is applied to experimental observations of ELF/VLF signals generated by modulated heating at HAARP. We present measurements of the amplitude and phase of the received ELF/VLF signal as a function of frequency and compare the results with the predictions of an HF heating model.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Dateo, Christopher E.; Taylor, Peter R.
1995-01-01
The XCN and XNC (X = F, Cl) isomers have been investigated using the CCSD(T) method in conjunction with correlation consistent basis sets. Equilibrium geometries, harmonic frequencies, anharmonic constants, fundamental frequencies, and heats of formation have been evaluated. Agreement with experiment for the fundamental frequencies is very good, even for nu(sub 2), for CICN, which is subject to a strong Fermi resonance with 2nu(sub 3). It is also shown that a second-order perturbation theory approach to solving the nuclear Schroedinger equation gives results in excellent agreement with essentially exact variational calculations. This is true even for nu(sub 2) of ClCN, provided that near-singular terms are eliminated from the perturbation theory formulas and the appropriate Fermi interaction energy matrix is then diagonalized. A band at 615/cm, tentatively assigned as the Cl-N stretch in ClNC in matrix isolation experiments, is shown not to be due to ClNC. Accurate atomization energies are determined and are used to evaluate accurate heats of formation (3.1 +/- 1.5, 33.2 +/- 1.5, 72.6 +/- 1.5, and 75.9 +/- 1.5 kcal/mol for FCN, ClCN, FNC, and ClNC, respectively). It is expected that the theoretical heats of formation for FCN, FNC, and ClNC are the most accurate available.
Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat
NASA Astrophysics Data System (ADS)
Utlu, Z.; Önal, B. S.
2018-02-01
In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.
The polar-ionosphere phenomena induced by high-power radio waves from the spear heating facility
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Janzhura, A. S.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.
2008-11-01
We present the results of experimental studies of specific features in the behavior of small-scale artificial field-aligned irregularities (AFAIs) and the DM component in the spectra of stimulated electromagnetic emission (SEE). Analysis of experimental data shows that AFAIs in the polar ionosphere are generated under different background geophysical conditions (season, local time, the presence of sporadic layers in the E region, etc.). It is shown that AFAIs can be excited not only in the F region, but also in “thick” sporadic E s layers of the polar ionosphere. The AFAIs were observed in some cycles of heating when the HF heater frequency exceeded the critical frequency by 0.3-0.5 MHz. Propagation paths of diagnostic HF radio waves scattered by AFAIs were modelled for geophysical conditions prevailing during the SPEAR heating experiments. Two components, namely, a narrow-banded one with a Doppler-spectrum width of up to 2 Hz and a broadband one observed in a band of up to 20 Hz, were found in the sporadic E s layer during the AFAI excitation. Analysis of the SEE spectra shows that the behavior of the DM component in time is irregular, which is possibly due to strong variations in the critical frequency of the F 2 layer from 3.5 to 4.6 MHz. An interesting feature observed in the SPEAR heating experiments is that the generation of the DM component was similar to the excitation of AFAIs when the heater frequency was up to 0.5 MHz higher than the critical frequency.
No Heat Spray Drying Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beetz, Charles
No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less
Pool boiling of ethanol and FC-72 on open microchannel surfaces
NASA Astrophysics Data System (ADS)
Kaniowski, Robert; Pastuszko, Robert
2018-06-01
The paper presents experimental investigations into pool boiling heat transfer for open microchannel surfaces. Parallel microchannels fabricated by machining were about 0.3 mm wide, and 0.2 to 0.5 mm deep and spaced every 0.1 mm. The experiments were carried out for ethanol, and FC-72 at atmospheric pressure. The image acquisition speed was 493 fps (at resolution 400 × 300 pixels with Photonfocus PHOT MV-D1024-160-CL camera). Visualization investigations aimed to identify nucleation sites and flow patterns and to determine the bubble departure diameter and frequency at various superheats. The primary factor in the increase of heat transfer coefficient at increasing heat flux was a growing number of active pores and increased departure frequency. Heat transfer coefficients obtained in this study were noticeably higher than those from a smooth surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.
Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, theremore » are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.« less
R and D plans for Broad Area Energy Utilization Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Yozo; Ishida, Hiromi; Yanagishita, Hiroshi
1995-12-31
In Japan, approximately 60 percent of the primary energy supply is lost as waste heat due to low thermal energy conversion efficiency. A lot of effort has been made towards energy conservation in industry since 1973 when the oil crisis happened. However, waste heat is not recovered sufficiently at low temperature. Since most of energy in residential and commercial areas is used for air-conditioning and hot water, the temperature of heat for residential and commercial use is almost equal to that of waste heat discharged from industrial sources. Therefore, the Broad Area Energy Utilization Network System (Eco-Energy City) project, whichmore » started in 1993 and will continue over a period of 8 years, is a large-scale national energy conservation project of the Agency of Industrial Science and technology (AIST) of the Ministry of International Trade and Industry (MITI). The aim of this project is to accelerate the full scale utilization of industrial waste heat for residential and commercial use by technological breakthroughs. The concept of the project is as follows: (1) Waste and unutilized heat discharged from industrial sources at relatively high temperature is recovered very efficiently, in multiple stages and in various ways. (2) Recovered heat is transported with a small heat loss over a long distance to residential and commercial areas that have various patterns of consuming relatively low-temperature heat. (3) Transported heat is supplied at consumer sites in different ways depending on the individual consumption pattern. (4) Thermal energy is utilized in the following forms: Cascaded use, combined use and recycling. The key to success is to develop innovative technologies of heat recovery, heat transport, heat supply and systematization of energy supply and demand.« less
Applications and challenges for thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.; Tomlinson, J. T.
1991-04-01
New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.
Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.
1997-04-01
This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less
NASA Astrophysics Data System (ADS)
Janovcová, Martina; Jandačka, Jozef; Malcho, Milan
2015-05-01
Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.
Economic analysis of electric heating based on critical electricity price
NASA Astrophysics Data System (ADS)
Xie, Feng; Sun, Zhijie; Zhou, Xinnan; Fu, Chengran; Yang, Jie
2018-06-01
The State Grid Corporation of China proposes an alternative energy strategy, which will make electric heating an important task in the field of residential electricity consumption. This article takes this as the background, has made the detailed introduction to the inhabitant electric heating technology, and take the Zhangjiakou electric panels heating technology as an example, from the expense angle, has carried on the analysis to the electric panels heating economy. In the field of residential heating, electric panels operating costs less than gas boilers. After customers implying energy-saving behavior, electric panels operating cost is even lower than coal-fired boilers. The critical price is higher than the execution price, which indicates that the economic performance of the electric panels is significantly higher than that of the coal boiler.
USDA-ARS?s Scientific Manuscript database
The dielectric properties of food greatly influence its interaction with RF and MW electromagnetic fields and subsequently determine the absorption of microwave energy and consequent heating behavior of food materials in microwave heating and processing applications. Microwave heating is usually re...
Collisionless electron heating in inductively coupled discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K.C.; Aydemir, A.Y.
1996-07-01
A kinetic theory of collisionless electron heating is developed for inductively coupled discharges with a finite height L. The novel effect associated with the finite-length system is the resonance between the bounce motion of the electrons and the wave frequency, leading to enhanced heating. The theory is in agreement with results of particle simulations.
Effects of high frequency current in welding aluminum alloy 6061
NASA Technical Reports Server (NTRS)
Fish, R. E.
1968-01-01
Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.
Developing the science and technology for the Material Plasma Exposure eXperiment
Rapp, J.; Biewer, T. M.; Bigelow, T. S.; ...
2017-07-27
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1–10 eV and electron densities ofmore » $$10^{21}{\\text{}}\\!-\\!10^{20}$$ $${\\rm m}^{-3}$$. The resulting heat fluxes are about 10 MW $${\\rm m}^{-2}$$ . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW $${\\rm m}^{-2}$$ was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to $$1.1 \\times 10^{20}$$ $${\\rm m}^{-3}$$ at high magnetic fields of 1.0 T at the target. Finally, the experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL's High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.« less
Developing the science and technology for the Material Plasma Exposure eXperiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, J.; Biewer, T. M.; Bigelow, T. S.
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1–10 eV and electron densities ofmore » $$10^{21}{\\text{}}\\!-\\!10^{20}$$ $${\\rm m}^{-3}$$. The resulting heat fluxes are about 10 MW $${\\rm m}^{-2}$$ . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW $${\\rm m}^{-2}$$ was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to $$1.1 \\times 10^{20}$$ $${\\rm m}^{-3}$$ at high magnetic fields of 1.0 T at the target. Finally, the experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL's High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.« less
NASA Astrophysics Data System (ADS)
Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.
1989-07-01
The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.
Thermal protection in space technology
NASA Technical Reports Server (NTRS)
Salakhutdinov, G. M.
1982-01-01
The provision of heat protection for various elements of space flight apparata has great significance, particularly in the construction of manned transport vessels and orbital stations. A popular explanation of the methods of heat protection in rocket-space technology at the current stage as well as in perspective is provided.
NASA Astrophysics Data System (ADS)
Sayar, Ersin
2017-07-01
The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D
2014-11-07
Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.
Heat adaptation of bioabsorbable craniofacial plates: a critical review of science and technology.
Pietrzak, William S
2009-11-01
Bioabsorbable fixation plates often require adaptation to the bone. This is typically accomplished by heating the plates to above the glass transition temperature and placing the softened plates against the bone or a prebent template until cool. Upon cooling, the plates regain stiffness and can be attached to bone to obtain anatomic fixation. This procedure is both efficient and effective and has been used throughout the craniofacial skeleton. There are many types of equipment available to heat the plates, each with advantages and disadvantages. Although a conceptually simple process, there are several nuances that have been reported in the literature, including transient effects on plate mechanical properties, memory effects, differences between wet and dry heating, and others. Upon the backdrop of the overwhelming clinical success of heat adaptation, this review critically evaluates the method and provides a comprehensive examination and explanation of the basic science and technology involved. This should help give surgeons a better understanding of the process that can help improve their use and further advance the technology.
Technologies for Upgrading Light Water Reactor Outlet Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar
Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less
2001-04-30
APPROACH - Reduce cooling system weight and power thru miniaturization of its compressor, heat exchangers , and other components; and thru highly...research, but a visualized concept provides direction – Microelectromechanical Systems – Nanotech based materials – Fused sensor displays – MCC microtubes ...and Spine impact protection • Anti-Fog Face shield • Flame/ Heat resistance • Compatible with Body Cooling System • Technology Transition to Public
NASA Astrophysics Data System (ADS)
Chunping, Zhang; Wei, Liu; Zhichun, Yang; Zhengyu, Li; Xiaoqing, Zhang; Feng, Wu
2012-05-01
A small size standing wave thermoacoustic refrigerator driven by a high frequency loudspeaker has been experimentally studied. Instead of water cooling, the cold heat exchanger of the refrigerator was cooled by air through fins on it. By working at 600-700 Hz and adjusting the position of the thermoacoustic core components including the stack and adjacent exchangers, the influences of it on the capability of refrigeration were experimentally investigated. The lowest temperature of 4.1 °C in the cold heat exchanger with the highest temperature difference of 21.5 °C between two heat exchangers were obtained. And the maximum cooling power of 9.7 W has been achieved.
NASA Astrophysics Data System (ADS)
Knysh, Yu A.; Xanthopoulou, G. G.
2018-01-01
The object of the study is a catalytic combustion chamber that provides a highly efficient combustion process through the use of effects: heat recovery from combustion, microvortex heat transfer, catalytic reaction and acoustic resonance. High efficiency is provided by a complex of related technologies: technologies for combustion products heat transfer (recuperation) to initial mixture, catalytic processes technology, technology for calculating effective combustion processes based on microvortex matrices, technology for designing metamaterials structures and technology for obtaining the required topology product by laser fusion of metal powder compositions. The mesoscale level structure provides combustion process with the use of a microvortex effect with a high intensity of heat and mass transfer. High surface area (extremely high area-to-volume ratio) created due to nanoscale periodic structure and ensures catalytic reactions efficiency. Produced metamaterial is the first multiscale product of new concept which due to combination of different scale level periodic topologies provides qualitatively new set of product properties. This research is aimed at solving simultaneously two global problems of the present: ensure environmental safety of transport systems and power industry, as well as the economy and rational use of energy resources, providing humanity with energy now and in the foreseeable future.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.