Science.gov

Sample records for frequency magnetoelectric coupling

  1. Synthetic magnetoelectric coupling in a nanocomposite multiferroic

    DOE PAGES

    Jain, P.; Wang, Q.; Roldan, M.; ...

    2015-03-13

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less

  2. Synthetic magnetoelectric coupling in a nanocomposite multiferroic

    PubMed Central

    Jain, P.; Wang, Q.; Roldan, M.; Glavic, A.; Lauter, V.; Urban, C.; Bi, Z.; Ahmed, T.; Zhu, J.; Varela, M.; Jia, Q. X.; Fitzsimmons, M. R.

    2015-01-01

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO3 (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La0.7Sr0.3MnO3 (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, which we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms. PMID:25766205

  3. Magnetoelectric Coupling Induced by Interfacial Orbital Reconstruction.

    PubMed

    Cui, Bin; Song, Cheng; Mao, Haijun; Wu, Huaqiang; Li, Fan; Peng, Jingjing; Wang, Guangyue; Zeng, Fei; Pan, Feng

    2015-11-01

    Reversible orbital reconstruction driven by ferroelectric polarization modulates the magnetic performance of model ferroelectric/ferromagnetic heterostructures without onerous limitations. Mn-d(x2-y2) orbital occupancy and related interfacial exotic magnetic states are enhanced and weakened by negative and positive electric fields, respectively, filling the missing member-orbital in the mechanism of magnetoelectric coupling and advancing the application of orbitals to microelectronics.

  4. Driving ferromagnetic resonance frequency of FeCoB/PZN-PT multiferroic heterostructures to Ku-band via two-step climbing: composition gradient sputtering and magnetoelectric coupling

    PubMed Central

    Li, Shandong; Xue, Qian; Duh, Jenq-Gong; Du, Honglei; Xu, Jie; Wan, Yong; Li, Qiang; Lü, Yueguang

    2014-01-01

    RF/microwave soft magnetic films (SMFs) are key materials for miniaturization and multifunctionalization of monolithic microwave integrated circuits (MMICs) and their components, which demand that the SMFs should have higher self-bias ferromagnetic resonance frequency fFMR, and can be fabricated in an IC compatible process. However, self-biased metallic SMFs working at X-band or higher frequency were rarely reported, even though there are urgent demands. In this paper, we report an IC compatible process with two-step superposition to prepare SMFs, where the FeCoB SMFs were deposited on (011) lead zinc niobate–lead titanate substrates using a composition gradient sputtering method. As a result, a giant magnetic anisotropy field of 1498 Oe, 1–2 orders of magnitude larger than that by conventional magnetic annealing method, and an ultrahigh fFMR of up to 12.96 GHz reaching Ku-band, were obtained at zero magnetic bias field in the as-deposited films. These ultrahigh microwave performances can be attributed to the superposition of two effects: uniaxial stress induced by composition gradient and magnetoelectric coupling. This two-step superposition method paves a way for SMFs to surpass X-band by two-step or multi-step, where a variety of magnetic anisotropy field enhancing methods can be cumulated together to get higher ferromagnetic resonance frequency. PMID:25491374

  5. Magnetoelectric Coupling in Composite Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason

    In this work, we demonstrate a large charge-mediated magnetoelectric coupling in a PbZr0.2Ti0.8O3 / La0.8 Sr0.2MnO3 (PZT/LSMO) composite structure resulting from direct control of magnetism via charge carrier density. This approach has the advantage that its physical mechanism is transparent and the size of the effect can be quantified and understood qualitatively within the double-exchange model. Direct quantification of the charge-driven magnetic changes based on electronic, magnetic, and spectroscopic measurements show that both the spin state and spin configuration of LSMO are modulated. Using a combination of advanced physical vapor deposition techniques, we have grown epitaxial PZT/LSMO bilayer heterostructures on (001) SrTiO 3 substrates with excellent crystallinity, atomically smooth surfaces, low leakage current density, and abrupt interfaces. Magneto-optic Kerr effect (MOKE) magnetometry was used to directly interrogate the local magnetic state of the LSMO as a function of the PZT polarization state. We show direct control of magnetism via applied electric fields, including modulation of the magnetotransport behavior and magnetic-ordering temperature, on/off switching of magnetism, and hysteretic magnetization versus electric field (M-E) characteristics. The magnetoelectric coupling strength, which relates the change in magnetization to the applied electric field, is found to vary strongly with temperature, reaching a low temperature saturation value of +6 Oe cm / kV, much larger than observed in single-phase magnetoelectrics and too large to be explained by a simple band-filling model. To clarify the origin of the magnetoelectric coupling, we carried out near edge x-ray absorption measurements that revealed a well defined change in the position of the Mn absorption edge with the ferroelectric polarization, giving a direct measure of the change in Mn valency in LSMO. We explain these results in terms of an interfacial magnetic reconstruction, whereby the

  6. New relativistic Hamiltonian: the angular magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Mondal, Ritwik; Berritta, Marco; Dkhil, Brahim; Singh, Surendra; Oppeneer, Peter M.; Bellaiche, Laurent

    2016-10-01

    Spin-Orbit Coupling (SOC) is a ubiquitous phenomenon in the spintronics area, as it plays a major role in allowing for enhancing many well-known phenomena, such as the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, the Rashba effect, etc. However, the usual expression of the SOC interaction ħ/4m2c2 [E×p] • σ (1) where p is the momentum operator, E the electric field, σ the vector of Pauli matrices, breaks the gauge invariance required by the electronic Hamiltonian. On the other hand, very recently, a new phenomenological interaction, coupling the angular momentum of light and magnetic moments, has been proposed based on symmetry arguments: ξ/2 [r × (E × B)] M, (2) with M the magnetization, r the position, and ξ the interaction strength constant. This interaction has been demonstrated to contribute and/or give rise, in a straightforward way, to various magnetoelectric phenomena,such as the anomalous Hall effect (AHE), the anisotropic magnetoresistance (AMR), the planar Hall effect and Rashba-like effects, or the spin-current model in multiferroics. This last model is known to be the origin of the cycloidal spin arrangement in bismuth ferrite for instance. However, the coupling of the angular momentum of light with magnetic moments lacked a fundamental theoretical basis. Starting from the Dirac equation, we derive a relativistic interaction Hamiltonian which linearly couples the angular momentum density of the electromagnetic (EM) field and the electrons spin. We name this coupling the Angular MagnetoElectric (AME) coupling. We show that in the limit of uniform magnetic field, the AME coupling yields an interaction exactly of the form of Eq. (2), thereby giving a firm theoretical basis to earlier works. The AME coupling can be expressed as: ξ [E × A] • σ (3) with A being the vector potential. Interestingly, the AME coupling was shown to be complementary to the traditional SOC, and together they restore the gauge invariance of the

  7. Giant magnetoelectric effect at low frequencies in polymer-based thin film composites

    SciTech Connect

    Kulkarni, A.; Meurisch, K.; Strunskus, T.; Faupel, F.; Teliban, I.; Jahns, R.; Knöchel, R.; Piorra, A.

    2014-01-13

    A polymer-based magnetoelectric 2-2 composite was fabricated in a thin film approach by direct spin coating of polyvinylidenefluoride-co-trifluoroethylene onto a Metglas substrate without the usage of an adhesive for the mechanical coupling between the piezoelectric and magnetostrictive materials. For a prototype single-sided clamped cantilever, a magnetoelectric coefficient as high as 850 V cm{sup −1} Oe{sup −1} is observed at its fundamental bending mode resonance frequency at 27.8 Hz and a detection limit of 10 pTHz{sup −1/2} at its second bending mode resonance frequency at 169.5 Hz.

  8. Theoretical study on perpendicular magnetoelectric coupling in ferroelectromagnet system

    NASA Astrophysics Data System (ADS)

    Zhong, Chonggui; Jiang, Qing

    2002-06-01

    We apply the Heisenberg model for antiferromagnetic interaction and Diffour model for ferroelectric interaction to analyze the magnetic, electric, magnetoelectric property in the system with the spontaneous coexistence of the ferroelectric and antiferromagnetic orders below a certain temperature. The soft mode theory is used to calculate the on-site polarization and mean field theory is applied to deal with the on-site magnetization. We also present the perpendicular magnetoelectric susceptibility χme⊥, polarization susceptibility χp as a function of temperature, and discuss the effect of the inherent magnetoelectric coupling on them. In addition, it is found that an anomaly appears in the curve of the polarization susceptibility due to the coupling between the ferroelectric and antiferromagnetic orders.

  9. Nomograph method for predicting magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Bichurin, Mirza; Petrov, Vladimir; Petrov, Roman; Tatarenko, Alexander; Leontiev, Viktor; Lavrentieva, Ksenia

    2016-08-01

    Magnetoelectric (ME) composites are known to enable the achievement of ME voltage coefficients many orders of magnitude larger than previously reported values for single phase materials. The advancements have opened up many possibilities in applications of sensors, transformers, and microwave devices. We presented here a new quick test of ME composites using nomographs and showed its use in applications where an approximate answer is appropriate and useful. To draw the graphs for ME voltage coefficients, we derived approximate expressions in explicit form for magnetically induced ME effect for different operational modes and laminate composite configurations including symmetrical and asymmetrical structures.

  10. Magnetoelectric coupling in polycrystalline FeVO{sub 4}

    SciTech Connect

    Kundys, Bohdan; Martin, Christine; Simon, Charles

    2009-11-01

    We report coupling between magnetic and electric orders for antiferromagnetic polycrystalline FeVO{sub 4} in which magnetism-induced polarization has been recently found in noncollinear antiferromagnetic state below the second antiferromagnetic phase transition at T{sub N2}{approx_equal}15.7 K. In this low symmetry phase space group P1, the magnetic field dependence of electric polarization evidences a clear magnetoelectric coupling in the noncollinear spin-configured antiferromagnetic phase. The discontinuity of magnetodielectric effect observed at the vicinity of the polar to nonpolar transition evidences competition between different magnetodielectric couplings in the two different antiferromagnetic states. The existence of thermal expansion anomaly near T{sub N2} and magnetostriction effect support magnetoelastically mediated scenario of the observed magnetoelectric effect.

  11. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance

    NASA Astrophysics Data System (ADS)

    Wu, Gaojian; Nan, Tianxiang; Zhang, Ru; Zhang, Ning; Li, Shandong; Sun, Nian X.

    2013-10-01

    Resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites under the same electric and magnetic bias conditions. Resonant direct ME effect (DME) occurs at antiresonance frequency while resonant converse ME effect (CME) occurs at resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. A model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with experimental results.

  12. Studies on magnetoelectric coupling in PFN-NZFO composite at room temperature

    NASA Astrophysics Data System (ADS)

    Pradhan, Dhiren K.; Sahoo, Satyaprakash; Barik, Sujit K.; Puli, Venkata S.; Misra, Pankaj; Katiyar, Ram S.

    2014-05-01

    We report magnetoelectric coupling and Raman spectroscopic studies on [(1 - x)Pb(Fe0.5Nb0.5)O3-xNi0.65Zn0.35Fe2O4] (x = 0.20) PFN-NZFO composite. Apart from the presence of zone centre Raman active modes of the parent compound, some new peaks are observed in the low frequency region. The electric field controlled peak position (˜48 cm-1) suggests that this mode is of magnetic origin. From temperature dependent Raman scattering studies, temperature coefficients for phonons of different symmetries were estimated. Our measurements on electrical control of magnetic order and magnetic control of electrical order confirmed the existence of converse and direct magnetoelectric coupling in this composite at room temperature.

  13. Negative refraction with low absorption using Raman transitions with magnetoelectric coupling

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2010-07-15

    We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.

  14. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  15. Inversion of ferrimagnetic magnetization by ferroelectric switching via a novel magnetoelectric coupling

    SciTech Connect

    Weng, Yakui; Lin, Lingfang; Dagotto, Elbio; Dong, Shuai

    2016-07-12

    Although several multiferroic materials or heterostructures have been extensively studied, finding strong magnetoelectric couplings for the electric field control of the magnetization remains challenging. Here, a novel interfacial magnetoelectric coupling based on three components (ferroelectric dipole, magnetic moment, and antiferromagnetic order) is analytically formulated. As an extension of carrier-mediated magnetoelectricity, the new coupling is shown to induce an electric-magnetic hysteresis loop. In addition, realizations employing BiFeO3 bilayers grown along the [111] axis are proposed. Without involving magnetic phase transitions, the magnetization orientation can be switched by the carrier modulation driven by the field effect, as confirmed using first-principles calculations.

  16. Inversion of ferrimagnetic magnetization by ferroelectric switching via a novel magnetoelectric coupling

    DOE PAGES

    Weng, Yakui; Lin, Lingfang; Dagotto, Elbio; ...

    2016-07-12

    Although several multiferroic materials or heterostructures have been extensively studied, finding strong magnetoelectric couplings for the electric field control of the magnetization remains challenging. Here, a novel interfacial magnetoelectric coupling based on three components (ferroelectric dipole, magnetic moment, and antiferromagnetic order) is analytically formulated. As an extension of carrier-mediated magnetoelectricity, the new coupling is shown to induce an electric-magnetic hysteresis loop. In addition, realizations employing BiFeO3 bilayers grown along the [111] axis are proposed. Without involving magnetic phase transitions, the magnetization orientation can be switched by the carrier modulation driven by the field effect, as confirmed using first-principles calculations.

  17. Research Update: Electrical manipulation of magnetism through strain-mediated magnetoelectric coupling in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Zhao, Y. G.

    2016-03-01

    Electrical manipulation of magnetism has been a long sought-after goal to realize energy-efficient spintronics. During the past decade, multiferroic materials combining (anti)ferromagnetic and ferroelectric properties are now drawing much attention and many reports have focused on magnetoelectric coupling effect through strain, charge, or exchange bias. This paper gives an overview of recent progress on electrical manipulation of magnetism through strain-mediated magnetoelectric coupling in multiferroic heterostructures.

  18. Strong magnetoelectric and spin phonon coupling in SmFeO3/PMN-PT composite

    NASA Astrophysics Data System (ADS)

    Ahlawat, Anju; Satapathy, S.; Sathe, V. G.; Choudhary, R. J.; Gupta, P. K.

    2016-08-01

    We have investigated spin phonon coupling in the strain coupled magnetoelectric SmFeO3/0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) composite in the temperature range of 300-650 K by Raman spectroscopy and magnetic measurements. The SmFeO3/PMN-PT composite shows sharp rise in magnetic moment across ferroelectric transition temperature (Tc) of PMN-PT. Around this transition temperature (Tc of PMN-PT), the temperature evolution of Raman spectra of the composite also shows anomalies in the phonon frequencies and line width corresponding to the SmFeO3 phase which indicate structural modifications in the SmFeO3 phase around Tc of PMN-PT. The observed structural, magnetic, and phonon anomalies of SmFeO3 around Tc of PMN-PT in SmFeO3/PMN-PT are attributed to spin-phonon coupling providing evidence of strong strain mediated magnetoelectric effects.

  19. Mechanism for strong magnetoelectric coupling in dilute magnetic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-11-01

    The manipulation of atomic-scale magnetization is important from both a fundamental and a practical perspective. Using first-principles density-functional-theory calculations within the hybrid functional approach, we systematically study spin-lattice coupling effects for isolated 3 d4-3 d7 transition-metal dopants in a nonmagnetic, ferroelectric PbTiO3 host material. When present at the B-site, a low-spin (or intermediate-spin) to high-spin crossover induces marked ferroelectric-like distortions in the local geometry, characterized by a shift of the dopant ion with respect to the surrounding O6 octahedral cage. The origins of this microscopic multiferroic effect are discussed in terms of the pseudo-Jahn-Teller theory for ferroelectricity. The possibility to exploit this phenomenon to achieve strong magnetoelectric coupling, including controlled spin switching, is also investigated. These results provide a further understanding of ferroelectricity and multiferroicity in perovskite oxides, and they suggest a possible pathway to manipulate single atomic spins in semiconductor solid solutions.

  20. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface

    PubMed Central

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A.; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M.; Brown, Gail J.; Sun, Nian X.

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling. PMID:24418911

  1. Magnetoelectric Coupling, Ferroelectricity, and Magnetic Memory Effect in Double Perovskite La3Ni2NbO9.

    PubMed

    Dey, K; Indra, A; De, D; Majumdar, S; Giri, S

    2016-05-25

    We observe ferroelectricity in an almost unexplored double perovskite La3Ni2NbO9. Ferroelectricity appears below ∼60 K, which is found to be correlated with the significant magnetostriction. A reasonably large value of spontaneous electric polarization is recorded to be ∼260 μC/m(2) at 10 K for E = 5 kV/cm, which decreases signifi- cantly upon application of a magnetic field (H), suggesting considerable magnetoelectric coupling. The dielectric permittivity is also influenced by H below the ferroelectric transition. The magnetodielectric response scales linearly to the squared magnetization, as described by the Ginzburg-Landau theory. Meticulous studies of static and dynamic features of dc magnetization and frequency dependent ac susceptibility results suggest spin-glass state below 29 K. Intrinsic magnetic memory effect is observed from zero-field cooled magnetization and isothermal remanent magnetization studies, also pointing spin-glass state below 29 K. Appearance of ferroelectricity together with a significant magnetoelectric coupling in absence of conventional long-range magnetic order is promising for searching new magnetoelectric materials.

  2. Multiferroicity and Magnetoelectric Coupling in TbMnO3 Thin Films.

    PubMed

    Hu, Ni; Lu, Chengliang; Xia, Zhengcai; Xiong, Rui; Fang, Pengfei; Shi, Jing; Liu, Jun-Ming

    2015-12-09

    In this work, we report the growth and functional characterizations of multiferroic TbMnO3 thin films grown on Nb-doped SrTiO3 (001) substrates using pulsed laser deposition. By performing detailed magnetic and ferroelectric properties measurements, we demonstrate that the multiferroicity of spin origin known in the bulk crystals can be successfully transferred to TbMnO3 thin films. Meanwhile, anomalous magnetic transition and unusual magnetoelectric coupling related to Tb moments are observed, suggesting a modified magnetic configuration of Tb in the films as compared to the bulk counterpart. In addition, it is found that the magnetoelectric coupling enabled by Tb moments can even be seen far above the Tb spin ordering temperature, which provides a larger temperature range for the magnetoelectric control involving Tb moments.

  3. Nonlinear resonance converse magnetoelectric effect modulated by voltage for the symmetrical magnetoelectric laminates under magnetic and thermal loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Liu, Hui; Zhou, Yun; Hu, Wen-Wen

    2016-12-01

    Based on the tri-layer symmetrical magnetoelectric laminates, a equivalent circuit for the nonlinear resonance converse magnetoelectric coupling effect is established. Because the nonlinear thermo-magneto-mechanical constitutive equations of magnetostrictive material were introduced, a converse magnetoelectric coefficient model was derived from the equivalent circuit, which can describe the influence of bias electric field, bias magnetic field and ambient temperature on the resonance converse magnetoelectric coupling effect. Especially, the model can well predict the modulation effect of bias electric field/voltage on the magnetism of magnetoelectric composite or the converse magnetoelectric coefficient, which is absolutely vital in applications. Both of the converse magnetoelectric coefficient and the resonance frequency predicted by the model have good agreements with the existing experimental results in qualitatively and quantitatively, and the validity of the model is confirmed. On this basis, according to the model, the nonlinear trends of the resonance converse magnetoelectric effect under different bias voltages, bias magnetic fields and ambient temperatures are predicted. From the results, it can be found that the bias voltage can effectively modulate the curve of the resonance converse magnetoelectric coefficient versus bias magnetic field, and then change the corresponding optimal bias magnetic field of the maximum converse magnetoelectric coefficient; with the increasing volume ratio of piezoelectric layers, the modulation effect of bias voltage becomes more obvious; under different bias magnetic fields, the modulation effect of bias voltage on the converse magnetoelectric effect has nonvolatility in a wide temperature region.

  4. Influences of Orientation on Magnetoelectric Coupling at La1-x Sr x MnO3/BaTiO3 Interface from Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy Trang; Yamauchi, Kunihiko; Oguchi, Tamio; Hoang, Nam Nhat

    2017-01-01

    An ab initio study on the magnetoelectric coupling at interfaces of ferromagnetic perovskite Sr-doped LaMnO3 (LSMO) and ferroelectric perovskite BaTiO3 (BTO) with (001) and (111) perovskite orientations is presented. It was found that the interfaces with both orientations exhibit significant magnetoelectric couplings. The effects of the orientation on the magnetoelectric coupling are discussed on the basis of the electronic structure, suggesting that the enhancement of electrostatic-screening-induced magnetoelectric coupling at the (111) interface in comparison with the (001) interface is mainly due to strengthened interfacial coupling.

  5. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery.

    PubMed

    Chen, Xiang-Zhong; Hoop, Marcus; Shamsudhin, Naveen; Huang, Tianyun; Özkale, Berna; Li, Qian; Siringil, Erdem; Mushtaq, Fajer; Di Tizio, Luca; Nelson, Bradley J; Pané, Salvador

    2017-02-01

    An FeGa@P(VDF-TrFE) wire-shaped magnetoelectric nanorobot is designed and fabricated to demonstrate a proof-of-concept integrated device, which features wireless locomotion and on-site triggered therapeutics with a single external power source (i.e., a magnetic field). The device can be precisely steered toward a targeted location wirelessly by rotating magnetic fields and perform on-demand magnetoelectrically assisted drug release to kill cancer cells.

  6. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism.

    PubMed

    Quickel, Thomas E; Schelhas, Laura T; Farrell, Richard A; Petkov, Nikolay; Le, Van H; Tolbert, Sarah H

    2015-03-10

    Coupled ferromagnetic and ferroelectric materials, known as multiferroics, are an important class of materials that allow magnetism to be manipulated through the application of electric fields. Bismuth ferrite, BiFeO3, is the most-studied intrinsic magnetoelectric multiferroic because it maintains both ferroelectric and magnetic ordering to well above room temperature. Here we report the use of epitaxy-free wet chemical methods to create strained nanoporous BiFeO3. We find that the strained material shows large changes in saturation magnetization on application of an electric field, changing from 0.04 to 0.84 μb per Fe. For comparison, non-porous films produced using analogous methods change from just 0.002 to 0.01 μb per Fe on application of the same electric field. The results indicate that nanoscale architecture can complement strain-layer epitaxy as a tool to strain engineer magnetoelectric materials.

  7. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism

    NASA Astrophysics Data System (ADS)

    Quickel, Thomas E.; Schelhas, Laura T.; Farrell, Richard A.; Petkov, Nikolay; Le, Van H.; Tolbert, Sarah H.

    2015-03-01

    Coupled ferromagnetic and ferroelectric materials, known as multiferroics, are an important class of materials that allow magnetism to be manipulated through the application of electric fields. Bismuth ferrite, BiFeO3, is the most-studied intrinsic magnetoelectric multiferroic because it maintains both ferroelectric and magnetic ordering to well above room temperature. Here we report the use of epitaxy-free wet chemical methods to create strained nanoporous BiFeO3. We find that the strained material shows large changes in saturation magnetization on application of an electric field, changing from 0.04 to 0.84 μb per Fe. For comparison, non-porous films produced using analogous methods change from just 0.002 to 0.01 μb per Fe on application of the same electric field. The results indicate that nanoscale architecture can complement strain-layer epitaxy as a tool to strain engineer magnetoelectric materials.

  8. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  9. Magnetoelectric Coupling through the Spin Flop Transition in Ni_{3}TeO_{6}.

    PubMed

    Yokosuk, M O; Al-Wahish, Amal; Artyukhin, Sergey; O'Neal, K R; Mazumdar, D; Chen, P; Yang, Junjie; Oh, Yoon Seok; McGill, Stephen A; Haule, K; Cheong, Sang-Wook; Vanderbilt, David; Musfeldt, J L

    2016-09-30

    We combined high field optical spectroscopy and first principles calculations to analyze the electronic structure of Ni_{3}TeO_{6} across the 53 K and 9 T magnetic transitions, both of which are accompanied by large changes in electric polarization. The color properties are sensitive to magnetic order due to field-induced changes in the crystal field environment, with those around Ni1 and Ni2 most affected. These findings advance the understanding of magnetoelectric coupling in materials in which magnetic 3d centers coexist with nonmagnetic heavy chalcogenide cations.

  10. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    PubMed Central

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  11. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-02-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  12. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure.

    PubMed

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X; Yang, Xi; Liu, Ming

    2016-02-05

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also "store" the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  13. Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite

    NASA Astrophysics Data System (ADS)

    Liu, Guoxi; Li, Xiaotian; Chen, Jianguo; Shi, Huaduo; Xiao, Wenlei; Dong, Shuxiang

    2012-10-01

    Colossal low-frequency resonant magnetomechanical (MM) and magnetoelectric (ME) coupling effects have been found in a three-phase composite made of Pb(Zr,Ti)O3 ceramic fibers/phosphor copper-sheet unimorph and NdFeB magnets. The experimental results revealed that the ferromagnetic/elastic/piezoelectric three-phase composite with a cantilever beam structure could show huge bending MM coefficient of ˜145.9 × 10-3/Oe (unit in bending radian per Oe) and ME voltage coefficient of ˜16 000 V/cm.Oe at the first-order bending resonance frequency of ˜5 Hz. The achieved results related to ME effect are at least one order of magnitude higher over those of other ME materials and devices reported ever. The extremely strong MM and ME couplings in the three-phase composite are due to strong magnetic force moment effect induced by the interaction between NdFeB magnets and the applied magnetic field, and further resonant enhancement via the strain-mediated phosphor copper-sheet with a relatively high mechanical quality factor.

  14. Large Magnetoelectric Coupling Near Room Temperature in Synthetic Melanostibite Mn2 FeSbO6.

    PubMed

    Dos Santos-García, Antonio J; Solana-Madruga, Elena; Ritter, Clemens; Andrada-Chacón, Adrián; Sánchez-Benítez, Javier; Mompean, Federico J; Garcia-Hernandez, Mar; Sáez-Puche, Regino; Schmidt, Rainer

    2017-04-10

    Multiferroic materials exhibit two or more ferroic orders and have potential applications as multifunctional materials in the electronics industry. A coupling of ferroelectricity and ferromagnetism is hereby particularly promising. We show that the synthetic melanostibite mineral Mn2 FeSbO6 (R3‾ space group) with ilmenite-type structure exhibits cation off-centering that results in alternating modulated displacements, thus allowing antiferroelectricity to occur. Massive magnetoelectric coupling (MEC) and magnetocapacitance effect of up to 4000 % was detected at a record high temperature of 260 K. The multiferroic behavior is based on the imbalance of cationic displacements caused by a magnetostrictive mechanism, which sets up an unprecedented example to pave the way for the development of highly effective MEC devices operational at or near room temperature.

  15. Spin dynamics and magnetoelectric properties of the coupled-spin tetrahedral compound Cu2Te2O5Cl2

    NASA Astrophysics Data System (ADS)

    Besara, T.; Choi, E. S.; Choi, K.-Y.; Kuhns, P. L.; Reyes, A. P.; Lemmens, P.; Berger, H.; Dalal, N. S.

    2014-08-01

    We report on the spin dynamics and discovery of magnetoelectricity in the coupled-spin tetrahedral compound Cu2Te2O5Cl2. Te125 NMR measurements show an anomalous resonance frequency shift and a signal wipe-out phenomenon around the Néel temperature TN = 18.2 K, which could be attributed to the anomalous critical slowing down of the Cu spin fluctuations on the NMR time scale (˜10-100 MHz). The critical exponent of (T1T)-1∝(T-TN)-α is 0.40 ± 0.03, as compared to 0.5 for a three-dimensional mean-field model. This is in contrast to the Br compound [S.-H. Baek et al., Phys. Rev. B 86, 180405 (2012), 10.1103/PhysRevB.86.180405], which exhibits pronounced singlet dynamics with a large spin gap. Electric polarization (Pc) is observed along the c axis for temperatures below TN under finite magnetic field but not sensitive to the electric poling. Pc increases sharply over zero to 2 T and then reaches saturation. Below TN, Pc changes its sign depending on the applied magnetic field direction, positive for the H⊥c axis and negative for H ∥ c axis. We discuss possible explanations for the observed magnetoelectric (ME) behavior in terms of linear ME effect, spin-driven multiferroicity, and an exchange striction of intertetrahedral exchange paths involving the Te4+ lone-pair ions. Our results suggest that Cu2Te2O5Cl2 is a type of ME material whose properties are tuned by intertetrahedral exchange interactions involving polarizable Te4+ ions.

  16. Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling.

    PubMed

    Niu, Hongjun; Pitcher, Michael J; Corkett, Alex J; Ling, Sanliang; Mandal, Pranab; Zanella, Marco; Dawson, Karl; Stamenov, Plamen; Batuk, Dmitry; Abakumov, Artem M; Bull, Craig L; Smith, Ronald I; Murray, Claire A; Day, Sarah J; Slater, Ben; Cora, Furio; Claridge, John B; Rosseinsky, Matthew J

    2017-02-01

    The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO3 system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3-type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe(3+) cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.

  17. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-11-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO3 (BFO) thin films have been deposited on Pt/TiO2/SiO2/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d33) ~94 pm/V at 0.6 MV/cm. High dielectric constant ~900 and low dielectric loss ~0.25 were observed at room temperature. M-H loops have shown relatively high saturation magnetization ~35 emu/cm3 at a maximum field of H ~20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films.

  18. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    SciTech Connect

    Shah, Jyoti Kotnala, Ravinder K. E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  19. Direct and converse magneto-electric coupling in ferromagnetic shape memory alloys based thin film multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2015-12-01

    The ferromagnetic shape memory driven alterations in strain mediated direct and converse magnetoelectric coupling (DME & CME) was realized in sputtered deposited PZT/Ni-Mn-In multiferroic hetero-junctions. The ferroelectric (P-E loops), dielectric (ɛ vs frequency, ɛ-E), and voltage modulated magnetic anisotropy measurements (M-E curves) were executed in the plane (hard axis) and out of the plane (easy axis) of the functional magnetic material based PZT/Ni-Mn-In bilayer structure. A gain of ˜16 μC/cm2 in maximum polarization (Pmax) and ˜12% in tunability (nr) were observed along an easy magnetic axis of Ni-Mn-In. The butterfly shaped normalized magnetization (M/Ms) vs electric field (applied across the heterostructure) [M-E] plots evident the strain character of CME coupling. The co-action of (i) dissimilar carrier concentration between high symmetric austenitic cubic phase and low symmetry martensite phase of ferromagnetic shape memory alloys and (ii) martensitic transformation induced magnetization change in Ni-Mn-In cause an electrical field modulated hall resistivity; a change of ˜42% in hall resistivity was observed at 60 kV/cm electric field and 0.2 T magnetic field at 270 K. The reversible manipulation of remnant magnetization (Mr) with applied electric field was demonstrated as on/off switch using a square pulse of 60 kV/cm amplitude.

  20. Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling.

    PubMed

    Yi, Di; Liu, Jian; Okamoto, Satoshi; Jagannatha, Suresha; Chen, Yi-Chun; Yu, Pu; Chu, Ying-Hao; Arenholz, Elke; Ramesh, R

    2013-09-20

    We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La(0.5)Ca(0.5)MnO(3) and a multiferroic BiFeO(3) (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La(0.5)Ca(0.5)MnO(3) (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t(2g) spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism.

  1. Strain-mediated converse magnetoelectric coupling strength manipulation by a thin titanium layer

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Gang; Morley, Nicola A.; Sharp, Joanne; Tian, Ye; Rainforth, W. Mark

    2016-01-01

    The manipulation of the strain-mediated magnetoelectric (ME) coupling strength is investigated by inserting a thin Ti layer (0-10 nm) between a 50 nm Co50Fe50 layer and a (011) oriented lead magnesium niobate-lead titanate (PMN-PT) substrate. A record high remanence ratio (Mr/Ms) tunability of 100% has been demonstrated in the 50 nm CoFe/8 nm Ti/PMN-PT heterostructure, when a total in-plane piezoelectric strain of -1821 ppm was applied at an electric field (E-field) of 16 kV/cm. The ME coupling strength is gradually optimized as the Ti layer thickness increases. Magnetic energy calculation showed that with increasing Ti layer thickness the uniaxial magnetic anisotropy energy (Euni) was reduced from 43 ± 1 kJ/m3 to 29.8 ± 1 kJ/m3. The reduction of Euni makes the strain effect dominant in the total magnetic energy, thus gives an obvious enhanced ME coupling strength.

  2. Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film

    PubMed Central

    Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi

    2014-01-01

    Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi5Ti3FeO15 with high ferroelectric Curie temperature of ~1000 K. Bi5Ti3FeO15 thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi5Ti3FeO15 with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature. PMID:24918357

  3. First-principles studies of magnetoelectric coupling in hexagonal LuFeO3 under applied electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Wang, Hongwei; Dhuvad, Pratikkumar; Xu, Xiaoshan; Stengel, Massimiliano; Wu, Xifan

    The recently stabilized hexagonal LuFeO3 thin-film provides an opportunity in realizing the magnetoelectric coupling in multiferroic materials, in which the weak ferromagnetism due to Dzyaloshinskii-Moriya interaction was found to be closely associated with the trimerization (K3) mode. Here, we performed first-principles calculations in hexagonal LuFeO3 and studied the variations of weak ferromagnetic moment under applied electric fields. It is found that the weak ferromagnetism is a property that can be directly tuned by the external electric fields. As an improper ferroelectric material, such a magnetoelectric coupling is realized by the strong interaction between the trimerization mode and ferroelectric mode. Under the electric field poling, ferroelectric mode will respond. A change in ferroelectric distortion will in turn affect the amplitude of trimerization mode, and therefore, the weak ferromagnetism. Interestingly, the magnetoelectric coupling in LuFeO3 shows a strong nonlinear behavior originating again from the coupling between the trimerization and ferroelectric modes due to its improper nature.

  4. Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi

    2014-06-01

    Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi5Ti3FeO15 with high ferroelectric Curie temperature of ~1000 K. Bi5Ti3FeO15 thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi5Ti3FeO15 with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe.cm even at room temperature.

  5. Room temperature magnetoelectric coupling in Zn1-xCoxO/BaTiO3 bilayer system

    NASA Astrophysics Data System (ADS)

    Sundararaj, Anuraj; Annal Therese, Helen; Ramaswamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Annamalai, Karthigeyan

    2014-09-01

    We report on room temperature magnetoelectric coupling in Zn1-xCoxO/BaTiO3 (x = 0.02, 0.05, and 0.10) bilayer thinfilm multiferroic system (BLS) grown on SrTiO3 (100) substrate. All the BLSs exhibit room temperature ferroelectric response. The BLS with x = 0.02 is paramagnetic, while the BLS with x = 0.05 and 0.10 is weakly ferromagnetic. Increase in Co concentration of the BLS results in reduction of permittivity and electric polarization along with increase of coercive voltage, coercive field, and magnetic moment. The d33 value change from 23 pm/V to 30 pm/V with increase in external magnetic field from 1500 G to 2500 G for BLS with x = 0.05. This shows that Zn1-xCoxO/BaTiO3 is magnetoelectrically coupled at room temperature.

  6. Enhancement of Magnetoelectric Coupling in CoGaxFe2-xO4/BaTiO3 Composite

    NASA Astrophysics Data System (ADS)

    Ni, Yan; Zhang, Zhen; Jiles, David; Nlebedim, Cajetan

    2015-03-01

    Multiferroic materials exhibit magnetoelectric coupling and promise new device applications including magnetic sensors, generators and filters. An effective method for developing magnetoelectric (ME) materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, enhancement of magnetoelectric coupling was found by systematically studying the electrical and magnetic properties of CoGaxFe2-xO4/BaTiO3 composite. It is found that Ga doping not only stabilizes the magnetic phase of composites but also increases the sensitivity of magnetoelastic response by 30%. Moreover, Ga doping reduces the electrical conductivity and the dielectric loss of composite. An enhancement of the electrostrain with doping Ga is also observed in CoGaxFe2-xO4/BaTiO3 (x =0.3). As both the sensitivity of magnetostriction and the change in the electric field with strain increase, the ME voltage coefficient also increase. Thus, our work is beneficial for the application of CoFe2O4/BaTiO3-based multiferroic materials. This work was supported by the USDoE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at Ames Laboratory, operated for the USDoE by Iowa State University (contract # DE-AC02-07CH11358)

  7. Predicting a ferrimagnetic phase of Zn(2)FeOsO(6) with strong magnetoelectric coupling.

    PubMed

    Wang, P S; Ren, W; Bellaiche, L; Xiang, H J

    2015-04-10

    Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of practical interest for the development of novel memory devices that allow for electrical writing and nondestructive magnetic readout operation. The great challenge is to create room temperature multiferroic materials with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings. BiFeO_{3} is the most heavily investigated single-phase multiferroic to date due to the coexistence of its magnetic order and ferroelectric order at room temperature. However, there is no net magnetic moment in the cycloidal (antiferromagneticlike) magnetic state of bulk BiFeO_{3}, which severely limits its realistic applications in electric field controlled memory devices. Here, we predict that LiNbO_{3}-type Zn_{2}FeOsO_{6} is a new multiferroic with properties superior to BiFeO_{3}. First, there are strong ferroelectricity and strong ferrimagnetism at room temperature in Zn_{2}FeOsO_{6}. Second, the easy plane of the spontaneous magnetization can be switched by an external electric field, evidencing the strong magnetoelectric coupling existing in this system. Our results suggest that ferrimagnetic 3d-5d LiNbO_{3}-type material may therefore be used to achieve voltage control of magnetism in future memory devices.

  8. Predicting a Ferrimagnetic Phase of Zn2FeOsO6 with Strong Magnetoelectric Coupling

    NASA Astrophysics Data System (ADS)

    Wang, P. S.; Ren, W.; Bellaiche, L.; Xiang, H. J.

    2015-04-01

    Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of practical interest for the development of novel memory devices that allow for electrical writing and nondestructive magnetic readout operation. The great challenge is to create room temperature multiferroic materials with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings. BiFeO3 is the most heavily investigated single-phase multiferroic to date due to the coexistence of its magnetic order and ferroelectric order at room temperature. However, there is no net magnetic moment in the cycloidal (antiferromagneticlike) magnetic state of bulk BiFeO3 , which severely limits its realistic applications in electric field controlled memory devices. Here, we predict that LiNbO3 -type Zn2FeOsO6 is a new multiferroic with properties superior to BiFeO3 . First, there are strong ferroelectricity and strong ferrimagnetism at room temperature in Zn2FeOsO6 . Second, the easy plane of the spontaneous magnetization can be switched by an external electric field, evidencing the strong magnetoelectric coupling existing in this system. Our results suggest that ferrimagnetic 3 d -5 d LiNbO3 -type material may therefore be used to achieve voltage control of magnetism in future memory devices.

  9. Tunable fringe magnetic fields induced by converse magnetoelectric coupling in a FeGa/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Fitchorov, Trifon; Chen, Yajie; Hu, Bolin; Gillette, Scott M.; Geiler, Anton; Vittoria, Carmine; Harris, Vincent G.

    2011-12-01

    The fringe magnetic field, induced by magnetoelectric coupling in a bilayer Fe-Ga/Pb(Mg1/3Nb2/3)O3_PbTiO3 (PMN-PT) multifunctional composite, was investigated. The induced external field is characterized as having a butterfly hysteresis loop when tuned by an applied electric field. A tuning coefficient of the electrically induced fringe magnetic field is derived from the piezoelectric and magnetostrictive properties of the composite. A measured maximum tuning coefficient, 4.5 Oe/(kV cm-1), is found to agree well with theoretical prediction. This work establishes a foundation in the design of transducers based on the magnetoelectric effect.

  10. Gauge-discontinuity contributions to the Chern-Simons orbital magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Liu, Jianpeng; Vanderbilt, David

    We propose a new method for calculating the Chern-Simons orbital magnetoelectric coupling, conventionally parametrized in terms of a phase angle θ. We propose to relax the periodicity condition in one direction (kz) so that a gauge discontinuity is introduced on a 2D k plane normal to kz. The total θ response then has contributions from both the integral of the Chern-Simons 3-form over the 3D bulk BZ and the gauge discontinuity expressed as a 2D integral over the k plane. Sometimes the boundary plane may be further divided into subregions by 1D ``vortex loops'' which make a third kind of contribution to the total θ, expressed as a combination of Berry phases around the vortex loops. The total θ thus consists of three terms which can be expressed as integrals over 3D, 2D and 1D manifolds. When time-reversal symmetry is present and the gauge in the bulk BZ is chosen to respect this symmetry, both the 3D and 2D integrals vanish; the entire contribution then comes from the vortex-loop integral, which is either 0 or π corresponding to the ℤ2 classification of 3D time-reversal invariant insulators. We demonstrate our method by applying it to the Fu-Kane-Mele model with an applied staggered Zeeman field.

  11. Enhancement of the magnetoelectric coupling in an A-line shape magnetostrictive/piezoelectric structure

    NASA Astrophysics Data System (ADS)

    Zhang, Juanjuan; Kang, Yan; Yu, Yang; Gao, Yuanwen

    2017-01-01

    In this study, a new kind of magnetoelectric (ME) structure is designed with Terfenol-D, PZT-5A and nonmagnetic and nonelectric trestle. The configuration of this ME structure presents "A-line" type, PZT-5A and Terfenol-D are respectively bonded with the trestles, which adopt the knuckle joint assembly. Differently from the conventional ME layered structure, in the new structure, the deformation of the PZT-5A of larger size is driven by a Terfenol-D layer of smaller size at an external magnetic field. Since the driven force is applied at the ends of piezoelectric layer through the trestles, the whole piezoelectric layer can be completely stretched or compressed, and the larger voltage should be induced. For the new ME structure with mica trestle, the maximum value of αE is twice higher than that for the conventional laminated ME structure. Furthermore, a wider range of response frequency is also observed in this structure. For the new ME structure with ABS trestle, the experimental results indicate that the maximum ME voltage coefficient is measured as high as 31.85 V/cm Oe at 405 Oe.

  12. Multiferroic Ni0.6Zn0.4Fe2O4-BaTiO3 nanostructures: Magnetoelectric coupling, dielectric, and fluorescence

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Singh, Sukhdeep; Tripathi, S. K.; Kotnala, R. K.

    2014-09-01

    Multiferroic nanostructures of Ni0.6Zn0.4Fe2O4-BaTiO3 (NZF/BT) have been prepared by two synthesis routes, i.e., chemical combustion (CNZF/BT) and hydrothermal (HNZF/BT). The synthesis of CNZF/BT results in nanoparticles of average size 4 nm at 500 °C annealing. However, the synthesis of HNZF/BT with hydrolysis temperature 180 °C/48 h shows nanowires of diameter 3 nm and length >150 nm. A growth mechanism in the fabrication of nanoparticles and wires is given. X-ray diffraction is used to identify the crystalline phase. The transmission electron microscopy shows the dimensions of NZF/BT nanostructures. The ferromagnetism, ferroelectricity, and magnetoelectric coupling show more enhancements in HNZF/BT nanowires than CNZF/BT nanoparticles. The observed polarization depends upon shape of nanostructures, tetragonal phase, and epitaxial strain. The tension induced by the surface curvature of nanowire counteracts the near-surface depolarizing effect and meanwhile leads to unusual enhancement of polarization. The ferromagnetism depends upon superficial spin canting, spin pinning of nanocomposite, and oxygen vacancy clusters. The magnetoelectric coefficient as the function of applied dc magnetizing field under ac magnetic field 5 Oe and frequency 1093 Hz is measured. The nanodimensions of NZF/BT are observed dielectric constant up to 120 MHz. The optical activity of NZF/BT nanostructures is shown by Fluorescence spectra.

  13. Giant magnetoelectric coupling interaction in BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} trilayer multiferroic heterostructures

    SciTech Connect

    Kotnala, R. K. E-mail: rkkotnala@gmail.com; Gupta, Rekha; Chaudhary, Sujeet

    2015-08-24

    Multiferroic trilayer thin films of BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} were prepared by RF-magnetron sputtering technique at different thicknesses of BiFeO{sub 3} layer. A pure phase polycrystalline growth of thin films was confirmed from X-ray diffraction results. The film showed maximum remnant electric polarization (2P{sub r}) of 13.5 μC/cm{sup 2} and saturation magnetization (M{sub s}) of 61 emu/cc at room temperature. Thermally activated charge transport dominated via oxygen vacancies as calculated by their activation energy, which was consistent with current–voltage characteristics. Magnetic field induced large change in resistance and capacitance of grain, and grain boundary was modeled by combined impedance and modulus spectroscopy in the presence of varied magnetic fields. Presence of large intrinsic magnetoelectric coupling was established by a maximum 20% increase in grain capacitance (C{sub g}) with applied magnetic field (2 kG) on trilayer having 20 nm BiFeO{sub 3} layer. Substantially higher magnetoelectric coupling in thinner films has been observed due to bonding between Fe and Ti atoms at interface via oxygen atoms. Room temperature magnetoelectric coupling was confirmed by dynamic magnetoelectric coupling, and maximum longitudinal magnetoelectric coupling of 515 mV/cm-Oe was observed at 20 nm thickness of BiFeO{sub 3}. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications for obtaining higher voltage at lower applied magnetic field.

  14. Magnetoelectric Heterostructures for Spintronics and Magnetic Sensing

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang

    Magnetoelectric heterostructures with coupled magnetization and electric polarization across their interfaces enable significantly improvement of performance of many devices such as magnetic sensors, microwave magnetic devices, and spintronics. I will first show that by utilizing a unique ferroelastic polarization switching pathway, one can achieve non-volatile electric-field-switching of magnetism in multiferroic heterostructures with different ferroelectric single crystals through a strain-mediated magnetoelectric coupling. In the same system, with atomically-thin ferromagnets, the interfacial charge-mediated should also be taken into account. The charge- and strain-mediated coupling mechanisms are demonstrated and precisely quantified by the electric-field-tuning of ferromagnetic resonance. With the same technique, magnetic relaxation including intrinsic and extrinsic damping has also been shown to be strongly correlated to the strain, which is attributed to the electric-field-modification of spin-orbit coupling. Moreover, I will also show the tuning of spin-orbit torques from the spin-Hall effect with applied voltage probed with spin-torque ferromagnetic resonance and show the possible application on voltage tunable spin-Hall nano-oscillators. In the second part of my thesis, I will show an ultra-miniaturized magnetoelectric nano-electromechanical system (NEMS) resonator based on an AlN/FeGaB magnetoelectric heterostructure for detecting wide band magnetic fields. With the high Quality factor and the ultra-high resonance frequency, a low DC magnetic field detection limit of 300 pT has been demonstrated.

  15. Gauge-discontinuity contributions to Chern-Simons orbital magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Liu, Jianpeng; Vanderbilt, David

    2015-12-01

    We propose a method for calculating Chern-Simons orbital magnetoelectric coupling, conventionally parametrized in terms of a phase angle θ . According to previous theories, θ can be expressed as a three-dimensional (3D) Brillouin-zone (BZ) integral of the Chern-Simons 3-form defined in terms of the occupied Bloch functions. Such an expression is valid only if a smooth and periodic gauge has been chosen in the entire Brillouin zone, and even then, convergence with respect to the k -space mesh density can be difficult to obtain. In order to solve this problem, we propose to relax the periodicity condition in one direction (say, the kz direction) so that a gauge discontinuity is introduced on a two-dimensional (2D) k plane normal to kz. The total θ response then has contributions from both the integral of the Chern-Simons 3-form over the 3D bulk BZ and the gauge discontinuity expressed as a 2D integral over the k plane. Sometimes, the boundary plane may be further divided into subregions by 1D "vortex loops" which make a third kind of contribution to the total θ , expressed as a combination of Berry phases around the vortex loops. The total θ thus consists of three terms which can be expressed as integrals over 3D, 2D, and 1D manifolds. When time-reversal symmetry is present and the gauge in the bulk BZ is chosen to respect this symmetry, both the 3D and 2D integrals vanish; the entire contribution then comes from the vortex-loop integral, which is either 0 or π corresponding to the Z2 classification of 3D time-reversal-invariant insulators. We demonstrate our method by applying it to the Fu-Kane-Mele model with an applied staggered Zeeman field.

  16. Strain mediated magnetoelectric coupling in a NiFe2O4-BaTiO3 multiferroic composite

    NASA Astrophysics Data System (ADS)

    Gorige, Venkataiah; Kati, Raju; Yoon, D. H.; Kumar, P. S. Anil

    2016-10-01

    In this paper we demonstrate significant magnetoelectric coupling in ferrimagnetic, NiFe2O4, and ferroelectric, BaTiO3, multiferroic composite bulk materials by measuring temperature dependent magnetization. X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy data show that the two phases coexist with a highly crystalline and sharp interface without any detectable impurities, which enables significant magnetoelectric (ME) coupling. The temperature dependent magnetization data of the composite clearly show the jumps in magnetization curves at the structural phase transitions of BaTiO3, thereby indicating their origin in ME coupling. The change in coercivity of composite sample in different ferroelectric phases of BaTiO3 has been observed compared to the NiFe2O4 sample. The different lattice strains corresponding to different ferroelectric phases of BaTiO3 could be the driving force for modulating the magnetization and coercivity of the composite material. This is clear evidence of strain mediated ME coupling in ferrimagnetic and ferroelectric composite materials.

  17. Strain tuned magnetoelectric coupling in orthorhombic YMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Marti, X.; Fina, I.; Skumryev, V.; Ferrater, C.; Varela, M.; Fábrega, L.; Sánchez, F.; Fontcuberta, J.

    2009-10-01

    Orthorhombic YMnO3 epitaxial thin films were grown on Nb(0.5%)-doped SrTiO3(001) substrates. Film's thickness was varied to tune the epitaxial strain. Structural and magnetic properties are well correlated, presenting a more pronounced ferromagnetic behavior as the unit cell becomes more distorted. Dielectric properties were investigated as a function of the temperature and magnetic field. The dielectric peak occurring at temperatures below the antiferromagnetic ordering is proved to be magnetoelectric and its amplitude is dependent on the unit cell distortion. These findings allow tailoring ferromagnetic and magnetoelectric properties via epitaxial strain.

  18. Low-temperature Spin Spray Deposited Ferrite/piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling

    DTIC Science & Technology

    2014-01-08

    tunabilities of the Fe3O4/ZnO multilayer were demonstrated by electro- static-field-induced in-plane FMR field changes at room temperature, as shown...observed through voltage induced in-plane ferromagnetic resonance ( FMR ) field shift in the Fe3O4/ZnO hetero- structures. Compared to the high process...Microwave ME coupling of thin films Fe3O4/ZnO heterostructures was carried out by custom- made microwave FMR spectrometer. 3 Results and discussion 3.1

  19. Multiferroic heterostructures of Fe3O4/PMN-PT prepared by atomic layer deposition for enhanced interfacial magnetoelectric couplings

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Zhang, Le; Zhou, Ziyao; Peng, Bin; Wang, Chenying; Lin, Qijing; Jiang, Zhuang-De; Ren, Wei; Ye, Zuo-Guang

    2017-02-01

    In this work, multiferroic heterostructures have been prepared by in situ growing oxide magnetic films on ferroelectric single crystal substrates using atomic layer deposition (ALD). Strong interfacial mechanical coupling between the magnetic and ferroelectric phases has been created, arising from the formation of chemical bonds at the interface due to the nature of layer-by-layer self-limiting growth mechanism of the ALD technique. An enhanced magnetoelectric (ME) coupling has been achieved, which allows an electric field to robustly switch magnetic anisotropy up to 780 Oe. In addition, electrical impulse non-volatile tuning of magnetism has also been realized through partially coupled ferroelectric/ferroelastic domain switching. The ALD growth of magnetic oxide films onto ferroelectric substrates provides an effective platform for the preparation of multiferroic heterostructures at low temperatures with an improved ME coupling, demonstrating a great potential for applications in 3D spintronics, microelectronics and data storages.

  20. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  1. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  2. Design and analysis of a self-biased broadband magnetoelectric cantilever operated at multi-frequency windows

    NASA Astrophysics Data System (ADS)

    Ma, J. N.; Xin, C. Z.; Ma, J.; Lin, Y. H.; Nan, C. W.

    2017-03-01

    Magnetoelectric (ME) composites with self-biased and wide resonance frequency band properties are promising candidates for magnetic field sensor and energy harvester. Here, we present a ME cantilever by in-series connecting a few SrFe12O19/Metglas/Pb(Zr,Ti)O3 components. Due to the in-built magnetic bias of SrFe12O19, the ME cantilever shows self-biased property. Meanwhile, by merging the resonance responses of the in-series ME components together, the ME cantilever presents multi-wide resonance bands (i.e., 500 Hz ˜ 700 Hz, 3.3 kHz ˜ 4.4 kHz and 44 kHz ˜ 70 kHz). In these three wide frequency windows, the ME voltage coefficients (α V) of the ME cantilever are higher than 40 mV/Oe, 115 mV/Oe and 400 mV/Oe, respectively.

  3. Giant low-frequency multipeak self-biased magnetoelectric properties in four-phase structure with stepped ultrasonic horn

    NASA Astrophysics Data System (ADS)

    Li, Jie; Lu, Caijiang

    2016-11-01

    This paper develops a self-biased magnetoelectric (ME) heterostructure FeCuNbSiB/terfenol-d/ultrasonic-horn/PZT by sandwiching a piezoelectric Pb(Zr,Ti)O3 (PZT) plate and a magnetization-graded FeCuNbSiB/terfenol-d layer on a rectangular-stepped ultrasonic horn substrate. The rectangular-stepped ultrasonic horn substrate severs as the resonance frequency determining element of the ME heterostructure, converges and amplifies the vibration excited by the magnetization-graded FeCuNbSiB/terfenol-d layer. The experiments show that fifteen large peaks of ME response with magnitudes of 0.2-7.5 V/(cm·Oe) in 0.5-50 kHz range are observed at zero-biased magnetic field. This demonstrates that the proposed multi-peak self-biased heterostructure may be useful for multifunctional devices for multi-frequency operation.

  4. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO{sub 3}/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    SciTech Connect

    Dai, Jian-Qing Zhang, Hu; Song, Yu-Min

    2015-08-07

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.

  5. The Origin and Coupling Mechanism of the Magnetoelectric Effect in TM Cl 2 -4SC(NH 2 ) 2 ( TM = Ni and Co)

    DOE PAGES

    Mun, Eundeok; Wilcox, Jason; Manson, Jamie L.; ...

    2014-01-01

    Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Molecule-based materials are a relatively new field in which to search for magnetoelectric multiferroics and to explore new coupling mechanisms between electric and magnetic order. We present magnetoelectric behavior in NiCl 2 -4SC(NH 2 ) 2 (DTN) and CoCl 2 -4SC(NH 2 ) 2 (DTC). These compounds form tetragonal structures where the transition metal ion (Ni or Co) is surrounded by four electrically polar thiourea molecules [SC(NH 2 ) 2 ]. By tracking the magnetic and electric properties of these compounds as a function ofmore » magnetic field, we gain insights into the coupling mechanism by observing that, in DTN, the electric polarization tracks the magnetic ordering, whereas in DTC it does not. For DTN, all electrically polar thiourea molecules tilt in the same direction along the c -axis, breaking spatial-inversion symmetry, whereas, for DTC, two thiourea molecules tilt up and two tilt down with respect to c -axis, perfectly canceling the net electrical polarization. Thus, the magnetoelectric coupling mechanism in DTN is likely a magnetostrictive adjustment of the thiourea molecule orientation in response to magnetic order.« less

  6. In-plane anisotropic converse magnetoelectric coupling effect in FeGa/polyvinylidene fluoride heterostructure films

    NASA Astrophysics Data System (ADS)

    Zuo, Zhenghu; Zhan, Qingfeng; Dai, Guohong; Chen, Bin; Zhang, Xiaoshan; Yang, Huali; Liu, Yiwei; Li, Run-Wei

    2013-05-01

    We investigated the converse magnetoelectric (CME) effect in the Fe81Ga19/polyvinylidene fluoride (PVDF) heterostructure films. A weak in-plane uniaxial magnetic anisotropy was observed in the as-deposited magnetostrictive FeGa films. When a positive (negative) electric field is applied on the ferroelectric PVDF substrates, both the coercivity and the squareness of magnetic hysteresis loops of FeGa films for the magnetic field parallel to the easy axis become larger (smaller), but for the magnetic field parallel to the hard axis the coercivity and the remanence get smaller (larger), indicating an anisotropic CME effect in FeGa/PVDF heterostructure films.

  7. Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition

    NASA Astrophysics Data System (ADS)

    Tang, Zhehong; Chen, Jieyu; Bai, Yulong; Zhao, Shifeng

    2016-08-01

    Lead-free magnetoelectric composite films combining Bi4Ti3O12 and CoFe2O4 were synthesized by chemical solution deposition on Pt (100)/Ti/SiO2/Si substrate. Morphological and electrical domain structure, ferroelectric, leakage, dielectric, piezoelectric, magnetic and magnetoelectric properties were investigated for Bi4Ti3O12/CoFe2O4 composite films. Well-defined interfaces between Bi4Ti3O12 and CoFe2O4 film layers and electrical domain structure were observed. The composite films show the coexistence of ferroelectric and ferromagnetic orders at room temperature. Larger piezoelectric coefficient and magnetization are obtained for the composite films, which is contributed to the magnetoelectric effect since it originates from the interface coupling through mechanical strain transfer. This work presents a feasible way to modulate the magnetoelectric coupling in ferromagnetic/ferroelectric composite films for developing lead-free micro-electro-mechanical system and information storage devices.

  8. Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites

    NASA Astrophysics Data System (ADS)

    Hasanyan, D.; Gao, J.; Wang, Y.; Viswan, R.; Li, M.; Shen, Y.; Li, J.; Viehland, D.

    2012-07-01

    In this paper, we discuss a theoretical model with experimental verification for the resonance enhancement of magnetoelectric (ME) interactions at frequencies corresponding to bending-tension oscillations. A dynamic theory of arbitrary laminated magneto-elasto-electric bars was constructed. The model included bending and longitudinal vibration effects for predicting ME coefficients in laminate bar composite structures consisting of magnetostrictive, piezoelectric, and pure elastic layers. The thickness dependence of stress, strain, and magnetic and electric fields within a sample are taken into account, as such the bending deformations should be considered in an applied magnetic or electric field. The frequency dependence of the ME voltage coefficients has obtained by solving electrostatic, magnetostatic, and elastodynamic equations. We consider boundary conditions corresponding to free vibrations at both ends. As a demonstration, our theory for multilayer ME composites was then applied to ferromagnetic-ferroelectric bilayers, specifically Metglas-PZT ones. A theoretical model is presented for static (low-frequency) ME effects in such bilayers. We also performed experiments for these Metglas-PZT bilayers and analyzed the influence of Metglas geometry (length and thickness) and Metglas/PZT volume fraction on the ME coefficient. The frequency dependence of the ME coefficient is also presented for different geometries (length, thickness) of Metglas. The theory shows good agreement with experimental data, even near the resonance frequency.

  9. Tuning magnetoelectric coupling using porosity in multiferroic nanocomposites of ALD-grown Pb(Zr,Ti)O3 and templated mesoporous CoFe2O4

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Buditama, Abraham N.; Schelhas, Laura T.; Kang, Hye Yeon; Robbennolt, Shauna; Chang, Jane P.; Tolbert, Sarah H.

    2016-09-01

    In this manuscript, we examine ways to create multiferroic composites with controlled nanoscale architecture. We accomplished this by uniformly depositing piezoelectric lead zirconate titanate (PZT) into templated mesoporous, magnetostrictive cobalt ferrite (CFO) thin films to form nanocomposites in which strain can be transferred at the interface between the two materials. To study the magnetoelectric coupling, the nanostructure was electrically poled ex situ prior to magnetic measurements. No samples showed a change in in-plane magnetization as a function of voltage due to substrate clamping. Out-of-plane changes were observed, but contrary to expectations based on total PZT volume fraction, mesoporous CFO samples partially filled with PZT showed more change in out-of-plane magnetization than the sample with fully filled pores. This result suggests that residual porosity in the composite adds mechanical flexibility and results in greater magnetoelectric coupling.

  10. Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films.

    PubMed

    Alberca, A; Munuera, C; Azpeitia, J; Kirby, B; Nemes, N M; Perez-Muñoz, A M; Tornos, J; Mompean, F J; Leon, C; Santamaria, J; Garcia-Hernandez, M

    2015-12-09

    We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30-40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2-5) · 10(-7) s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite.

  11. Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films

    PubMed Central

    Alberca, A.; Munuera, C.; Azpeitia, J.; Kirby, B.; Nemes, N. M.; Perez-Muñoz, A. M.; Tornos, J.; Mompean, F. J.; Leon, C.; Santamaria, J.; Garcia-Hernandez, M.

    2015-01-01

    We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30–40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2–5)·10−7 s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite. PMID:26648002

  12. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-04-01

    This letter develops a self-biased magnetoelectric (ME) structure Metglas/Terfenol-D/Be-bronze/PMN-PT (MTBP) consisting of a magnetization-graded Metglas/Terfenol-D layer, a elastic Be-bronze plate, and a piezoelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) plate. By using the magnetization-graded Metglas/Terfenol-D layer and the elastic Be-bronze plate, multi-peak self-biased ME responses are obtained in MTBP structure. The experimental results show that the MTBP structure with two layers of Metglas foil has maximum zero-biased ME voltage coefficient (MEVC). As frequency increases from 0.5 to 90 kHz, eleven large peaks of MEVC with magnitudes of 0.75-33 V/(cm Oe) are observed at zero-biased magnetic field. The results demonstrate that the proposed multi-peak self-biased ME structure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.

  13. Predicting a Ferrimagnetic-Ferroelectric Phase of Zn2FeOsO6 with Strong Magnetoelectric Coupling

    NASA Astrophysics Data System (ADS)

    Xiang, Hongjun; Wang, P. S.; Ren, Wei; Bellaiche, L.

    2015-03-01

    Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of fundamental interest for the development of novel memory devices that allow for electrical writing and non-destructive magnetic readout operation. The great challenge is to create room temperature multiferroic materials with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings. BiFeO3 has been the most heavily investigated single-phase multiferroic to date due to the coexistence of its magnetic order and ferroelectric order at room temperature. However, there is no net magnetic moment in the cycloidal (antiferromagnetic-like) magnetic state of bulk BiFeO3, which severely limits its realistic applications in electric field controlled spintronic devices. Here, we predict that double perovskite Zn2FeOsO6 is a new multiferroic with properties superior to BiFeO3. First, there are strong ferroelectricity and strong ferrimagnetism at room temperature in Zn2FeOsO6. Second, the easy-plane of the spontaneous magnetization can be switched by an external electric field, evidencing the strong magnetoelectric coupling existing in this system. Our results suggest that ferrimagnetic 3d-5d double perovskite may therefore be used to achieve voltage control of magnetism in future spintronic devices.

  14. Evidence of Magnetoelectric coupling in Bi2(1-x)Ho2xFe4O9 (x=0, 0.01) multiferroic ceramics

    NASA Astrophysics Data System (ADS)

    Mohapatra, S. R.; Singh, A. K.; Kaushik, S. D.

    2017-02-01

    We report structural, magnetic, dielectric and magnetoelectric properties of orthorhombic Bi2(1-x)Ho2xFe4O9 (x=0, 0.01) ceramics (space group ‘Pbam’) synthesized by conventional solid state reaction route. Rietveld refined X-ray diffraction (XRD) shows phase formation of the samples along with reduction in lattice parameters and cell volume due to lower ionic radii substitution of Ho3+ at Bi3+-site. DC magnetization study revealed antiferromagnetic transition (TN) of the parent (BFO = 250 K) as well as 1% Ho substituted sample (BHFO1 = 253 K) along with increase in magnetization. Opening of hysteresis was observed for BHFO1 sample implying onset of weak ferromagnetism with dominating antiferromagnetic behaviour. Moreover, temperature dependent dielectric (ε') study and its derivative (dε'/dT) for both the samples show significant anomaly around the antiferromagnetic transition (TN) thus, implying a plausible magnetoelectric coupling between the magnetic as well as the electric order parameters in the studied samples. Magnetoelectric coupling was also confirmed from temperature and magnetic field (1.3 T) dependant tan loss plots.

  15. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  16. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO{sub 3} interface (invited)

    SciTech Connect

    Radaelli, G. Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R.

    2014-05-07

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO{sub 3} (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures.

  17. Equivalent circuit model including magnetic and thermo sources for the thermo-magneto-electric coupling effect in magnetoelectric laminates

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Le; Zhou, Hao-Miao

    2015-07-01

    The nonlinear thermo-magneto-mechanical magnetostrictive constitutive and the linear thermo-mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo-magneto-electric coupling effect in magnetoelectric (ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient. This paper can not only provide a new idea for the study of the thermo-magneto-electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).

  18. Converse magnetoelectric coupling in NiFe/Pb(Mg1/3Nb2/3)O3-PbTiO3 nanocomposite thin films grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Hu, Jiamian; Wang, Jianjun; Li, Zheng; Shu, Li; Nan, C. W.

    2013-11-01

    Multiferroic NiFe (˜30 nm)/Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT, ˜220 nm) bilayered thin films were grown on common Pt/Ti/SiO2/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMN-PT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMN-PT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMN-PT nanocomposite thin films.

  19. Composition-driven enhanced magnetic properties and magnetoelectric coupling in Gd substituted BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayasundaram, S. V.; Suresh, G.; Mondal, R. A.; Kanagadurai, R.

    2016-11-01

    Bi1-xGdxFeO3 (x=0, 0.05 and 0.1) samples were synthesized by modified sol-gel process. X-ray diffraction studies confirmed that the crystal structures of Gd substituted samples remain stable for x<0.1, while compositional-driven structural phase transition from rhombohedral to orthorhombic was observed in the case of x=0.1. The average particle sizes of pure and Gd substituted BiFeO3 nanoparticles were found to be in the range 62-46 nm. The size of the oblate spherical particles decreased with increasing Gd concentration. XPS studies revealed the trivalent oxidation states of Bi and Fe ions along with sample purity. Pure BiFeO3 exhibited linear M-H loop indicating its antiferromagnetic characteristics, whereas obvious non-linear M-H loops were observed in Gd substituted samples. In contrast to the observed room temperature magnetization (0.36 emu/g) under 40 kOe for BiFeO3, the sample with 10% Gd exhibited appreciable enhancement of magnetization (1.88 emu/g). A leaky type P-E hysteresis loop was observed for the pure one, whereas concave-like ferroelectric loops were obtained for Gd substituted samples. The possible origins of enhanced multiferroic properties have been explained on the basis of substituent, its concentration, phase purity, particle size, structural distortion and the modified magnetic structure. The measurement of magnetoelectric studies at room temperature revealed the coupling between magnetic and ferroelectric ordering, which is desirable for multifunctional device applications of multiferroics.

  20. An In Situ Electric Field Study of Magnetoelectric Coupling in PZT-LSMO Thin Film Heterostructures Using Polarized Neutron Reflectometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven; Sloppy, Jennifer; Huang, Esther; Vasudevan, Rama; Lofland, Samuel; Lauter, Valeria; Valanoor, Nagarajan; Taheri, Mitra

    2013-03-01

    The development of ``spintronics'' devices based on charge and spin transport has signaled a paradigm shift in the design of data storage and computing technologies. Magnetoelectric materials, which exhibit intrinsic coupling between electronic and magnetic order, are ideal for these applications. Unfortunately, single-phase magnetoelectrics are exceedingly rare in nature and attention has turned to composite heterostructures that display coupled functionalities at interfaces. A promising system in which to explore this coupling is a thin film oxide heterostructure of the piezoelectric Pb(Zr0.2Ti0.8)O3 (PZT) and the half-metal La0.7Sr0.3MnO3 (LSMO). We show that it is possible to construct a capacitor-type device structure from these materials that may form the basis for an electrically-switched magnetic memory. We conduct polarized neutron reflectometry (PNR) measurements and measure changes in the magnetization depth profile throughout the composite under the reversal of an in situ electric field. We then correlate these PNR results to local strain and chemistry using transmission electron microscopy (TEM). We find that a combination of charge doping and strain mechanisms governs coupling in this system.

  1. Purely antiferromagnetic magnetoelectric random access memory.

    PubMed

    Kosub, Tobias; Kopte, Martin; Hühne, Ruben; Appel, Patrick; Shields, Brendan; Maletinsky, Patrick; Hübner, René; Liedke, Maciej Oskar; Fassbender, Jürgen; Schmidt, Oliver G; Makarov, Denys

    2017-01-03

    Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.

  2. Purely antiferromagnetic magnetoelectric random access memory

    NASA Astrophysics Data System (ADS)

    Kosub, Tobias; Kopte, Martin; Hühne, Ruben; Appel, Patrick; Shields, Brendan; Maletinsky, Patrick; Hübner, René; Liedke, Maciej Oskar; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys

    2017-01-01

    Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.

  3. Room temperature magnetoelectric coupling in BaTi{sub 1−x}Cr{sub x}O{sub 3} multiferroic thin films

    SciTech Connect

    Sundararaj, Anuraj; Chandrasekaran, Gopalakrishnan Therese, Helen Annal; Annamalai, Karthigeyan

    2016-01-14

    We report on room temperature (RT) magnetoelectric coupling in tetragonal BaTi{sub 1−x}Cr{sub x}O{sub 3} thin film multiferroics (BTCO) sputter deposited on (100) SrTiO{sub 3} (where x = 0.005, 0.01, 0.02, and 0.03). As-deposited thin films are vacuum annealed by electron beam rapid thermal annealing technique. 50 nm thick BTCO with “x = 0.01” shows RT ferromagnetic and ferroelectric response with saturation magnetic moment of 1120 emu/cc and polarization of 14.7 microcoulomb/cm{sup 2}. Piezoresponse/magnetic force microscope images shows RT magnetoelectric coupling in BTCO with “x = 0.01,” which is confirmed using magnetocapacitance measurement where an increase in capacitance from 17.5 pF to 18.4 pF is observed with an applied magnetic field.

  4. Tuning of magnetoelectric coupling in (1-y)Bi0.8Dy0.2FeO3-yNi0.5Zn0.5Fe2O4 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Mazumdar, S. C.; Khan, M. N. I.; Islam, Md. Fakhrul; Hossain, A. K. M. Akther

    2016-03-01

    Magnetoelectric composites (1-y)Bi0.8Dy0.2FeO3 (BDFO)-yNi0.5Zn0.5Fe2O4 (NZFO) with y=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0 are synthesized by conventional solid state reaction route. The X-ray diffraction analysis confirms the coexistence of orthorhombic perovskite BDFO and spinel NZFO phases with no third phase. Microstructural and surface morphology are studied by Field Emission Scanning Electron Microscopy. Quantitative elemental analysis of the samples is carried out by Energy Dispersive X-ray Spectroscopy. The real part of the initial permeability increases and relative quality peak broadens with the ferrite content in the composites. Dielectric constant, loss tangent, relative quality factor and ac conductivity are measured as a function of frequency at room temperature. The dielectric constant shows usual dielectric dispersion at lower frequencies due to Maxwell-Wagner type interfacial polarization. The complex impedance spectroscopy is used to distinguish between the grain and grain boundary contribution to the total resistance. The modulus study reveals the ease of polaron hopping and negligibly small contribution of electrode effect. The magnetic hysteresis has been studied to know the response of NZFO phase to the applied magnetic field in the composite. The saturation and remanent magnetization are found to increase with increase in NZFO in the composite. The magnetoelectric voltage coefficient, αME is measured as a function of applied dc magnetic field. The tuning of ferrite percentage and dc magnetic field results in highest αME (~66 mV/cm Oe) for the composite with 40% NZFO at 4.7 kOe which is attributed to the enhanced mechanical coupling between the two phases. The incorporation of BDFO and NZFO enhances the multiferroic properties in the present composite which are quite promising from application point of view.

  5. Magnetoelectric coupling study in multiferroic Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics through small and large electric signal standard measurements

    SciTech Connect

    Raymond, Oscar; Siqueiros, Jesus M.; Font, Reynaldo; Portelles, Jorge

    2011-05-01

    Multifunctional multiferroic materials such as the single phase compound Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN), where ferroelectric and antiferromagnetic order coexist, are very promising and have great interest from the academic and technological points of view. In this work, coupling of the ferroelectric and magnetic moments is reported. For this study, a combination of the small signal response using the impedance spectroscopy technique and the electromechanical resonance method with the large signal response through standard ferroelectric hysteresis measurement, has been used with and without an applied magnetic field. The measurements to determine the electrical properties of the ceramic were performed as functions of the bias and poling electric fields. A simultaneous analysis of the complex dielectric constant {epsilon}-tilde, impedance Z-tilde, electric modulus M-tilde, admittance Y-tilde, and the electromechanical parameters and coupling factors is presented. The results are correlated with a previous study of structural, morphological, small signal dielectric frequency-temperature response, and the ferroelectric hysteretic, magnetic and magnetodielectric behaviors. The observed shifts of the resonance and antiresonance frequency values can be associated with change of the ferroelectric domain size favored by the readjustment of the oxygen octahedron when the magnetic field is applied. From P-E hysteresis loops obtained without and with an external applied magnetic field, a dc magnetoelectric coupling effect with maximum value of 4 kV/cm T (400 mV/cm Oe) was obtained.

  6. Magnetoelectric coupling tuned by competing anisotropies in Mn1-xNixTiO3

    DOE PAGES

    Chi, Songxue; Ye, Feng; Zhou, H. D.; ...

    2014-10-24

    A flop of electric polarization from Pmore » $$\\|$$c (Pc) to P$$\\|$$ a (Pa) is observed in MnTiO3 as a spin flop transtion is triggered by a c-axis magnetic field, H$$\\|$$c=7 T. The critical magnetic field for Pa is significantly reduced in Mn1-xNixTiO3 (x=0.33). Neutron diffraction measurements revealed similar magnetic arrangements for the two compositions where the ordered spins couple antiferromagnetically with their nearest intra- and inter-planar neighbors. In the x=0.33 system, the single ion anisotropies of Mn2+ and Ni2+ compete and give rise to an additional spin reorientation transition at TR. A magnetic field, Hc, aligns the spins along c for TRN. The rotation of the collinear spins away from the c-axis for TR alters the magnetic point symmetry and gives rise to new ME susceptibility tensor form. Such linear ME response provides satisfactory explanation for behavior of field-induced electric polarization in both compositions. As the Ni content increases to x=0.5 and 0.68, the ME effect disappears as a new magnetic phase emerges.« less

  7. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  8. Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Xie, Shuhong; Ma, Feiyue; Liu, Yuanming; Li, Jiangyu

    2011-08-01

    Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers have been synthesized by coaxial electrospinning in combination with a sol-gel process. The core-shell configuration of nanofibers has been verified by scanning electron microscopy and transmission electron microscopy, and the spinel structure of CoFe2O4 and perovskite structure of Pb(Zr0.52Ti0.48)O3 have been confirmed by X-ray diffraction and selected area electron diffraction. The multiferroic properties of core-shell nanofibers have been demonstrated by magnetic hysteresis and piezoresponse force microscopy, and their magnetoelectric coupling has been confirmed by evolution of piezoresponse under an external magnetic field, showing magnetically induced ferroelectric domain switching and changes in switching characteristics. The lateral magnetoelectric coefficient is estimated to be 2.95 × 104 mV/cmOe, two orders of magnitude higher than multiferroic thin films of similar composition.

  9. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  10. Magnetoelectric polymer nanocomposite for flexible electronics

    SciTech Connect

    Alnassar, M. Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-05-07

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  11. Magnetoelectric sensor excitations in hexaferrite slabs

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  12. Influence of Interface and Polarization on Magnetoelectric Coupling in Ni-LEAD Zirconium TITANATE-Ni Trilayers Derived by Electroless Deposition

    NASA Astrophysics Data System (ADS)

    Bi, K.; Wang, Y. G.

    2012-06-01

    Magnetoelectric (ME) coupling in layered structures of magnetostrictive and piezoelectric phases are mediated by mechanical deformation and depends strongly on the interface conditions. Ni-lead zirconium titanate-Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure of the electroless deposited Ni layer was characterized by X-ray diffraction. The cross-section of the Ni/PZT layers was investigated using scanning electron microscopy. The value of ME voltage coefficient (αE,31) increases as the interface roughness increases. The maximum of αE,31 for the Ni/PZT/Ni trilayers polarized after electroless deposition is higher than that for the Ni/PZT/Ni trilayers polarized before electroless deposition. It is essential to optimize the interface and the polarization to obtain higher ME voltage coefficient.

  13. Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers

    SciTech Connect

    Calderon, M. J.; Liang, Shuhua; Yu, Rong; Salafranca, Juan; Scalapino, D. J.; Dong, Shuai; Yunoki, Seiji; Brey, L.; Moreo, Adriana; Dagotto, Elbio R

    2011-01-01

    Electric-field controlled exchange bias in a heterostructure composed of the ferromagnetic manganite La0.7Sr0.3MO3 and the ferroelectric antiferromagnetic BiFeO3 has recently been demonstrated experimentally. By means of a model Hamiltonian, we provide a possible explanation for the origin of this magnetoelectric coupling. We find, in agreement with experimental results, a net ferromagnetic moment at the BiFeO3 interface. The induced ferromagnetic moment is the result of the competition between the eg-electron double exchange and the t2g-spin antiferromagnetic superexchange that dominates in bulk BiFeO3. The balance of these simultaneous ferromagnetic and antiferromagnetic tendencies is strongly affected by the interfacial electronic charge density, which, in turn, can be controlled by the BiFeO3 ferroelectric polarization.

  14. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions

    NASA Astrophysics Data System (ADS)

    Nan, Ce-Wen; Bichurin, M. I.; Dong, Shuxiang; Viehland, D.; Srinivasan, G.

    2008-02-01

    Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity and ferromagnetism, have recently stimulated a sharply increasing number of research activities for their scientific interest and significant technological promise in the novel multifunctional devices. Natural multiferroic single-phase compounds are rare, and their magnetoelectric responses are either relatively weak or occurs at temperatures too low for practical applications. In contrast, multiferroic composites, which incorporate both ferroelectric and ferri-/ferromagnetic phases, typically yield giant magnetoelectric coupling response above room temperature, which makes them ready for technological applications. This review of mostly recent activities begins with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972. In such composites the magnetoelectric effect is generated as a product property of a magnetostrictive and a piezoelectric substance. An electric polarization is induced by a weak ac magnetic field oscillating in the presence of a dc bias field, and/or a magnetization polarization appears upon applying an electric field. So far, three kinds of bulk magnetoelectric composites have been investigated in experimental and theoretical, i.e., composites of (a) ferrite and piezoelectric ceramics (e.g., lead zirconate titanate), (b) magnetic metals/alloys (e.g., Terfenol-D and Metglas) and piezoelectric ceramics, and (c) Terfenol-D and piezoelectric ceramics and polymer. The elastic coupling interaction between the magnetostrictive phase and piezoelectric phase leads to giant magnetoelectric response of these magnetoelectric composites. For example, a Metglas/lead zirconate titanate fiber laminate has been found to exhibit the highest magnetoelectric coefficient, and in the vicinity of resonance, its magnetoelectric voltage coefficient as high as 102V/cmOe orders has been achieved, which exceeds the

  15. Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yin, L. H.; Yang, J.; Dai, J. M.; Song, W. H.; Zhang, R. R.; Sun, Y. P.

    2014-01-20

    DyFe{sub 0.5}Cr{sub 0.5}O{sub 3} has been synthesized using a sol-gel method. It exhibits ferroelectricity at the antiferromagnetic ordering temperature T{sub N1}∼261 K. Large magnetocaloric effect (MCE) (11.3 J/kg K at 4.5 T) enhanced by magnetoelectric coupling due to magnetic field and temperature induced magnetic transition was observed. Temperature-dependent Raman study shows an anomalous behavior near T{sub N1} in the phonon modes related to the vibration of Dy atoms and stretching of CrO{sub 6}/FeO{sub 6} octahedra, suggesting the ferroelectricity in DyFe{sub 0.5}Cr{sub 0.5}O{sub 3} is associated with the spin-phonon coupling with respect to both Dy and Cr/Fe ions. These results suggest routes to obtain high-temperature multiferroicity and large MCE for practical applications.

  16. Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites

    NASA Astrophysics Data System (ADS)

    Fang, F.; Jing, W. Q.

    2016-01-01

    Magnetic field-induced polarization rotation and magnetoelectric coupling effects are studied for [110]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3/Tb0.3Dy0.7Fe2(PMN-xPT/Terfenol-D) multiferroic composites. Two compositions of the [110]-oriented relaxor ferroelectric single crystals, PMN-28PT and PMN-33PT, are used. In [110]-oriented PMN-28PT, domains of rhombohedral (R) and monoclinic (MB) phases coexist prior to the magnetic loadings. Upon the applied magnetic loadings, phase transition from monoclinic MB to R phase occurs. In [110]-oriented PMN-33PT, domains are initially of mixed orthorhombic (O) and MB phases, and the phase transition from O to MB phase takes place upon the external magnetic loading. Compared to PMN-28PT, the PMN-33PT single crystal exhibits much finer domain boundary structure prior to the magnetic loadings. Upon the magnetic loadings, more domain variants are induced via the phase transition in PMN-33PT than that in PMN-28PT single crystal. The finer domain band structure and more domain variants contribute to stronger piezoelectric activity. As a result, the composite of PMN-33PT/Terfenol-D manifests a stronger ME coupling than PMN-28PT/Terfenol-D composite.

  17. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hee; Kézsmáki, István; Fishman, Randy S.

    2016-04-01

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. This manuscript has been written by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

  18. Microscopic evidence of strain-mediated magnetoelectric coupling in Co/Pt multilayers/PMN-PT(011) heterostructures

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wang, Wenbo; Wu, Weida; Zheng, Xiaoli; Cai, Jianwang; Zhao, Yonggang; Liu, Ming

    A promising way to control magnetization(M) via an electric field(E-field) is using magnetoelectric(ME) effect in FM/FE heterostructures. We use magnetic(electric) force microscopy(M(e)FM) to study the strain-mediated E-field modulation of M in (Co/Pt)n with perpendicular magnetic anisotropy(PMA) or in-plane anisotropy on PMN-PT(011) substrates. MFM were performed on (Co/Pt)n with an DC E-field applied to PMN-PT. In MeFM, we superimpose an AC modulation on a DC one and utilize lock-in technique to detect weak ME effect. For (Co/Pt)n with PMA, MFM images show stripe domains with no obvious changes at varied DC E-fields. However, MeFM shows interesting structures and the image contrast reverses sign at opposite strain slopes of the PMN-PT substrate. For sample with in-plane anisotropy, both MFM and MeFM images show dipole-like domains. Interestingly, the MeFM image contrast reverses sign at opposite strain slopes of the substrate. The sign reversal of MeFM contrast indicates that features revealed by MeFM are intrinsic local ME effect. Our MeFM data are consistent with the ferromagnetic resonance results showing that strain-induced anisotropy change will cause part of M switching to the in-plane direction. Possible scenarios will be discussed.

  19. A multilevel nonvolatile magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Shang, Dashan; Chai, Yisheng; Shen, Shipeng; Zhai, Kun; Sun, Young

    2016-09-01

    The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics. Because the states of α depends on the relative orientation between magnetization and polarization, one can reach different levels of α by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of α can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of α is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells.

  20. A multilevel nonvolatile magnetoelectric memory

    PubMed Central

    Shen, Jianxin; Cong, Junzhuang; Shang, Dashan; Chai, Yisheng; Shen, Shipeng; Zhai, Kun; Sun, Young

    2016-01-01

    The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics. Because the states of α depends on the relative orientation between magnetization and polarization, one can reach different levels of α by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of α can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of α is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells. PMID:27681812

  1. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    DOE PAGES

    Kezsmarki, I.; Fishman, Randy Scott

    2016-04-18

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams calledmore » non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less

  2. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    SciTech Connect

    Kezsmarki, I.; Fishman, Randy Scott

    2016-04-18

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.

  3. Observation of strong magnetoelectric coupling and ferromagnetism at room temperature in Fe substituted ferroelectric BaZr0.05Ti0.95O3 thin films

    NASA Astrophysics Data System (ADS)

    Kumari, Mukesh; Barrionuevo Diestra, Danilo G.; Katiyar, Ram; Shah, Jyoti; Kotnala, R. K.; Chatterjee, Ratnamala

    2017-01-01

    Single phase polycrystalline thin films (˜100 nm) of BaZr0.05(FexTi1-3x/4)0.95O3, with x = 0 (BZT) and 0.015 (BZFT15), were grown on Pt/TiO2/SiO2/Si substrate using pulsed laser deposition technique. Room temperature ferromagnetism with a remanent magnetization (Mr) ˜ 1.1 × 10-1 emu/cm3 and a coercive field (Hc) ˜ 0.1 kOe was observed in BZFT15 film. The ferroelectric domain switching in both BZT and BZFT15 films is confirmed by piezoresponse force microscopy (PFM). The magnetoelectric coupling coefficient (α) measured at room temperature in the BZFT15 film in in-plane magnetized-out of plane polarized configuration (L-T mode) was found to be ˜165 mV/cm Oe. It is argued that the observed ferromagnetism in BZFT15 films arises from the oxygen vacancy (Ov) mediated (Fe3+-Ov-Fe3+) exchange.

  4. Purely antiferromagnetic magnetoelectric random access memory

    PubMed Central

    Kosub, Tobias; Kopte, Martin; Hühne, Ruben; Appel, Patrick; Shields, Brendan; Maletinsky, Patrick; Hübner, René; Liedke, Maciej Oskar; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys

    2017-01-01

    Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics. PMID:28045029

  5. Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2017-02-01

    The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.

  6. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    NASA Astrophysics Data System (ADS)

    Pazos, Enrique; Brizuela, David; Martín-García, José M.; Tiglio, Manuel

    2010-11-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (ℓ=2, m=±2) perturbations and odd-parity (ℓ=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that—in contrast to previous predictions in the literature—the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  7. Uniformity of direct and converse magnetoelectric effects in magnetostrictive-piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Liu, Guoxi; Dong, Shuxiang

    2014-09-01

    In this paper, we theoretically and experimentally confirmed the uniformity of magnetoelectric (ME) coupling coefficients for the direct and converse ME (DME and CME) effects in longitudinal-transverse (L-T) mode magnetostrictive-piezoelectric two-phase composites, both at low frequencies and in the electromechanical resonance region. We also discussed the flaws in previous measurements of the ME coupling coefficients, which led to misunderstandings in the uniformity between the DME and CME effects. Our current work provided a correct method to correctly understand ME coupling in magnetostrictive-piezoelectric two-phase composites.

  8. Static and Dynamic Magnetoelectric Effects in Multiferroic Hexaferrites

    NASA Astrophysics Data System (ADS)

    Chun, Sae Hwan

    2014-03-01

    Multiferroics, wherein magnetism and ferroelectricity coexist, are of great interest for the prospect of new multifunctional devices by utilizing cross-coupling between the electric and magnetic properties. In most multiferroics currently known, however, the magnetoelectric (ME) coupling does not reach the level enough for the practical applications and the cross control of electric polarization by magnetic field or magnetization by electric field has been realized only at low temperature. Hence, for use in the ME devices, it is essential to increase both the ME sensitivity and the operating temperature. From investigation of multiferroic hexaferrites, we discover a chemical route to effectively tailor the critical magnetic field inducing electric polarization in (Ba,Sr)2Zn2 Fe12O22 (Zn2Y-type) by Al-substitution, yielding a giant magnetoelectric susceptibility. In (Ba,Sr)3Co2Fe24O41 (Co2Z-type) hexaferrite single crystals, we realize the control of magnetization by electric field at room temperature. In addition to those static ME properties, a dynamic ME effect, electric-dipole-active magnon resonance in THz frequency range, is also found in the Co2Z-type hexaferrite, exhibiting the spectral weight even at room temperature. The unprecedented supreme static and dynamic ME phenomena in the hexaferrites may provide a pathway to overcome the challenge in application of multiferroics for the real devices. Currently at Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.

  9. Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai

    2013-09-01

    Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).

  10. Magneto-Electric Nano-Particles for Non-Invasive Brain Stimulation

    PubMed Central

    Yue, Kun; Guduru, Rakesh; Hong, Jeongmin; Liang, Ping; Nair, Madhavan; Khizroev, Sakhrat

    2012-01-01

    This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm−1 Oe−1 in the aqueous solution) is 3×106 particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz. PMID:22957042

  11. Doping effects on trimerization and magnetoelectric coupling of single crystal multiferroic (Y,Lu)MnO3

    NASA Astrophysics Data System (ADS)

    Choi, Seongil; Sim, Hasung; Kang, Soonmin; Choi, Ki-Young; Park, Je-Geun

    2017-03-01

    Hexagonal RMnO3 is a multiferroic compound with a giant spin–lattice coupling at an antiferromagnetic transition temperature, Lee et al (2008 Nature 451 805). Despite extensive studies over the past two decades, the origin and underlying microscopic mechanism of strong spin–lattice coupling remain very much elusive. In this study, we have tried to address this problem by measuring the thermal expansion and dielectric constant of doped single crystals Y1‑x Lu x MnO3 where x  =  0, 0.25, 0.5, 0.75, and 1.0. From these measurements, we confirm that there is a progressive change in the physical properties with doping. At the same time, all our samples exhibit clear anomalies at T N, even in the samples where x  =  0.5 and 0.75. This is opposed to some earlier ideas, which suggests an unusual doping dependence of the anomaly. Our work reveals yet another interesting facet of the spin–lattice coupling issue in hexagonal RMnO3.

  12. Assessing transient cross-frequency coupling in EEG data.

    PubMed

    Cohen, Michael X

    2008-03-15

    Synchronization of oscillatory EEG signals across different frequency bands is receiving waxing interest in cognitive neuroscience and neurophysiology, and cross-frequency coupling is being increasingly linked to cognitive and perceptual processes. Several methods exist to examine cross-frequency coupling, although each has its limitations, typically by being flexible only over time or over frequency. Here, a method for assessing transient cross-frequency coupling is presented, which allows one to test for the presence of multiple, dynamic, and flexible cross-frequency coupling structure over both time and frequency. The method is applied to intracranial EEG data, and strong coupling between gamma ( approximately 40-80 Hz) and upper theta ( approximately 7-9 Hz) was observed. This method might have useful applications in uncovering the electrophysiological correlates of cognitive processes.

  13. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    DOE PAGES

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; ...

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying amore » small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

  14. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    SciTech Connect

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; Tretiakov, O. A.

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.

  15. Enhanced converse magnetoelectric effect in cylindrical piezoelectric-magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Wu, Gaojian; Zhang, Ru; Zhang, Ning

    2016-10-01

    Enhanced converse magnetoelectric (ME) effect has been experimentally observed in cylindrical PZT-Terfenol-D piezoelectric-magnetostrictive bilayered composites, where the piezoelectric and magnetostrictive components are coupled through normal stresses instead of shear stresses that act in most of previous multiferroic composites. A theoretical model based on elastodynamics analysis has been proposed to describe the frequency response of converse ME effect for axial and radial modes in the bilayered cylindrical composites. The theory shows good agreement with the experimental results. The different variation tendency of resonant converse ME coefficient, as well as different variation rate of resonance frequency with bias magnetic field for axial and radial modes is interpreted in terms of demagnetizing effect. This work is of theoretical and technological significance for the application of converse ME effect as magnetic sensor, transducers, coil-free flux switch, etc.

  16. Current-induced nonlinear magnetoelectric effects in strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Zavislyak, I. V.; Popov, M. A.; Srinivasan, G.

    2016-12-01

    We report on the observation of nonlinear magnetoelectric effects at room temperature due to a dc current in the ferrimagnetic M -type strontium hexaferrite platelets. Utilizing microwave measurement techniques and data on the shift in magnetic mode frequencies, it was found that a dc current along the hexagonal c axis resulted in a significant decrease in the saturation magnetization and an increase in the uniaxial magnetocrystalline anisotropy field. These changes in the magnetic order parameters were directly proportional to the square of applied electric field and were found to be much higher than variations due to Joule heating. A phenomenological theory that takes into account the current-induced magnetobielectric (MBE) effects is proposed. Expressions for coupling coefficients for MBE effects have been obtained and have been calculated from the variations in magnetic order parameters. The electric field E (or current) tuning of the magnetic modes in Sr M reported here is orders of magnitude stronger than strain mediated E tuning of magnetic resonance in hexaferrite-ferroelectric composites. The nonlinear magnetoelectric effects in hexaferrite, therefore, open up an avenue for the realization of E -tunable broadband microwave and millimeter wave ferrite signal processing devices such as resonators and filters.

  17. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates

    NASA Astrophysics Data System (ADS)

    Lasheras, A.; Gutiérrez, J.; Barandiarán, J. M.

    2016-05-01

    Metallic glass/polyvinylidene fluoride three-layered magnetoelectric laminated composites have been studied. Size effects in the magnetoelectric response arisen both from the reduction of the length of the laminate and from the increase of the operating frequency have been quantified for the lengths ranging from 3 cm down to 0.5 cm. It has been concluded that the decrease in this magnetoelectric response arises mainly from the demagnetizing effects, with reductions of 86% for the longest laminate that increase up to 99% for the shortest one. From these values, an intrinsic magnetoelectric coefficient of 325 V/cm Oe has been obtained.

  18. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol; Dzik, Jolanta; Guzdek, Piotr; Czekaj, Dionizy

    2016-04-01

    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi5Ti3FeO15 compound ( α ME ~ 10 mVcm-1 Oe-1). In the case of (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm-1 Oe-1, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2-3 times.

  19. Magnetoelectric ‘spin’ on stimulating the brain

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Hong, J; Rodzinski, Alexandra; Hadjikhani, Ali; Horstmyer, Jeffrey; Levister, Ernest; Khizroev, Sakhrat

    2015-01-01

    Aim: The in vivo study on imprinting control region mice aims to show that magnetoelectric nanoparticles may directly couple the intrinsic neural activity-induced electric fields with external magnetic fields. Methods: Approximately 10 µg of CoFe2O4–BaTiO3 30-nm nanoparticles have been intravenously administrated through a tail vein and forced to cross the blood–brain barrier via a d.c. field gradient of 3000 Oe/cm. A surgically attached two-channel electroencephalography headmount has directly measured the modulation of intrinsic electric waveforms by an external a.c. 100-Oe magnetic field in a frequency range of 0–20 Hz. Results: The modulated signal has reached the strength comparable to that due the regular neural activity. Conclusion: The study opens a pathway to use multifunctional nanoparticles to control intrinsic fields deep in the brain. PMID:25953069

  20. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-01

    Magnetoelectric M-type hexaferrite thin films (SrCo2Ti2Fe8O19) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10-9 s m-1 in SrCo2Ti2Fe8O19 thin films.

  1. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.

    PubMed

    Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris

    2015-11-01

    Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions.

  2. Magnetoelectric Coupling Characteristics of the La0.67Sr0.33MnO3/PbZr0.2Ti0.8O3(001) Interface

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Karpov, Dmitry; Fohtung, Edwin; Vasiliev, Igor

    Multiferroic heterostructures composed of thin layers of ferromagnetic and ferroelectric perovskites have attracted considerable attention in recent years. We apply ab initio computational methods based on density functional theory to study the characteristics of the magnetoelectric coupling at the (001) interface between La0.67Sr0.33MnO3 (LSMO) and PbZr0.2Ti0.8O3(PZT). The calculations are carried out using the Quantum ESPRESSO electronic structure code combined with Vanderbilt ultrasoft pseudopotentials. Our study shows that the interfacial interaction between LSMO and PZT and the polarization of PZT have a strong influence on the distribution of magnetization within the LSMO layer. A significant change in the magnetization of the LSMO layer adjacent to PZT is observed after reversal of the direction of polarization of PZT. Supported by NMSU GREG award. EF is funded by the DoD-AFOSR under Award No FA9550-14-1-0363.

  3. Frequency response enhancement in integrated coupled-cavity DBR lasers.

    SciTech Connect

    Wendt, Joel Robert; Vawter, Gregory Allen; Tauke-Pedretti, Anna; Alford, Charles Fred; Skogen, Erik J.; Chow, Weng Wah; Cajas, Florante G.; Overberg, Mark E.; Torres, David L.; Yang, Zhenshan; Peake, Gregory Merwin

    2010-11-01

    We present a photonic integrated circuit (PIC) composed of two strongly coupled lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz.

  4. Induced ferromagnetism and magnetoelectric coupling in ion-beam synthesized BiFeO3-CoFe2O4 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Modarresi, H.; Lazenka, V.; Menéndez, E.; Lorenz, M.; Bisht, M.; Volodin, A.; Van Haesendonck, C.; Grundmann, M.; Van Bael, M. J.; Temst, K.; Vantomme, A.

    2016-08-01

    Ferrimagnetic CoFe2O4 (cobalt ferrite) is formed within an epitaxial BiFeO3 (bismuth ferrite) thin film matrix by Co channeled ion implantation and subsequent annealing. The presence of nanoscale CoFe2O4 crystals in the matrix is confirmed by x-ray diffraction using synchrotron radiation. The significantly increased magnetic moment and the low-temperature coercive field of the composite system evidence the formation of ferrimagnetic cobalt ferrite and its nanoscale character, respectively. The results demonstrate that ion beam synthesis is an appropriate method to controllably transform a planar system into a granular one, increasing the interface area between cobalt ferrite and bismuth ferrite. The ferroelectric nature of the BiFeO3-CoFe2O4 composite is confirmed by several scanning probe microscopy techniques. At room temperature, the composite exhibits a magnetoelectric voltage coefficient of α ME  =  17.5 V (cm · Oe)-1, while a single-phase BiFeO3 thin film shows a α ME value of 4.2 V (cm · Oe)-1. The high magnetoelectric voltage coefficient is interpreted to be the result of the interfacial interaction between the ferrimagnetic CoFe2O4 nanocrystallites and the multiferroic BiFeO3 matrix.

  5. Multifunctional magnetoelectric materials for device applications

    NASA Astrophysics Data System (ADS)

    Ortega, N.; Kumar, Ashok; Scott, J. F.; Katiyar, Ram S.

    2015-12-01

    Over the past decade magnetoelectric (ME) mutiferroic (MF) materials and their devices are one of the highest priority research topics that has been investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferrotoroidicity. Based on the type of ordering and coupling, they have drawn increasing interest for a variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarises the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which the signal to noise ratio is good for device fabrication. We describe the possible applications of these materials.

  6. High-frequency generation in two coupled semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Matharu, Satpal; Kusmartsev, Feodor V.; Balanov, Alexander G.

    2013-10-01

    We theoretically show that two semiconductor superlattices arranged on the same substrate and coupled with the same resistive load can be used for a generation of high-frequency periodic and quasiperiodic signals. Each superlattice involved is capable to generate current oscillations associated with drift of domains of high charge concentration. However, the coupling with the common load can eventually lead to synchronization of the current oscillations in the interacting superlattices. We reveal how synchronization depends on detuning between devices and the resistance of the common load, and discuss the effects of coupling and detuning on the high-frequency power output from the system.

  7. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    SciTech Connect

    Sreenivasulu, G.; Piskulich, E.; Srinivasan, G.; Qu, P.; Qu, Hongwei; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.

    2014-07-21

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  8. Novel microwave magnetic and magnetoelectric composite materials and devices

    NASA Astrophysics Data System (ADS)

    Pettiford, Carl I.

    Bulk microwave magnetic materials and devices have been widely used in different RF/microwave devices such as inductors, filters, circulars, isolators, and phase shifters. With the even increasing level of integration of RFIC and MMIC, there is an urgent need for new microwave magnetic thin film materials and new integrated RF/microwave magnetic devices. In this thesis, we have addressed these needs in three different areas: (1) exchange biased ferromagnetic/anti-ferromagnetic multilayer thin films with enhanced anisotropy fields, (2) magneto-electric heterostructures and devices, and (3) metamaterial multilayers for FMR enhancement, tunability, and plane wave absorption. Metallic soft magnetic thin films have been demonstrated to have high saturation magnetization, large permeability and relatively high self-biased ferromagnetic resonance (FMR) frequencies, showing great promise for applications in integrated RF and microwave magnetic devices. One problem for these metallic magnetic films is however their relatively low anisotropy fields that are typically in the range of 10˜30 Oe, which severely limit their application frequency range. In this work, we investigated the exchange coupled ferromagnetic/anti-ferromagnetic/ferromagnetic CoFe/PtMn/CoFe multilayer films. These CoFe/PtMn/CoFe multilayer films showed a significantly enhanced anisotropy field of 160 Oe, which was 5˜10 times of that of the FeCo films. In addition, a narrow FMR linewidth of 45 Oe at X-band was achieved in the CoFe/PtMn/CoFe trilayer. The exchange coupling in the ferromagnetic/anti-ferromagnetic/ferromagnetic trilayers leads to a significantly enhanced anisotropy field that is crucial for the application of metallic magnetic films in integrated magnetic RF/microwave devices. The magnetoelectric coupling of novel YIG/PZT, FeCoB/PZT and FeGaB/PZT multiferroic heterostructures were investigated at DC and at microwave frequencies. An electrostatically tunable band-reject filter device was

  9. Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qiu-Shi; Zhu, Feng-Jie; Zhou, Hao-Miao

    2015-10-01

    A lumped-equivalent circuit model of a novel magnetoelectric tunable bandpass filter, which is realized in the form of multi-stage cascading between a plurality of magnetoelectric laminates, is established in this paper for convenient analysis. The multi-stage cascaded filter is degraded to the coupling microstrip filter with only one magnetoelectric laminate and then compared with the existing experiment results. The comparison reveals that the insertion loss curves predicted by the degraded circuit model are in good agreement with the experiment results and the predicted results of the electromagnetic field simulation, thus the validity of the model is verified. The model is then degraded to the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates. It is revealed that if the applied external bias magnetic or electric fields on the two magnetoelectric laminates are identical, then the passband of the filter will drift under the changed external field; that is to say, the filter has the characteristics of external magnetic field tunability and electric field tunability. If the applied external bias magnetic or electric fields on two magnetoelectric laminates are different, then the passband will disappear so that the switching characteristic is achieved. When the same magnetic fields are applied to the laminates, the passband bandwidth of the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates becomes nearly doubled in comparison with the passband filter which contains only one magnetoelectric laminate. The bandpass effect is also improved obviously. This research will provide a theoretical basis for the design, preparation, and application of a new high performance magnetoelectric tunable microwave device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).

  10. Broadband/Wideband Magnetoelectric Response

    DOE PAGES

    Park, Chee-Sung; Priya, Shashank

    2012-01-01

    A broadband/wideband magnetoelectric (ME) composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T) mode. In this paper, we provide information on (i) how to design broadband/wideband ME sensors and (ii) how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models andmore » validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.« less

  11. The natural frequencies of coupled in-line towers

    NASA Astrophysics Data System (ADS)

    Nie, Q.; Nieh, C. D.; Cai, J.; Zhang, M.

    1989-10-01

    There are many tall, slender fractionating towers and distilling towers in oil refineries and chemical plants. Frequently, several towers are arranged in a line; they may also be coupled structurally by platforms at various levels. The designer must take steps to assure that damage due to wind loads, seismic loads, or wind-induced vibration cannot occur. The natural frequencies of the coupled towers, especially the lowest frequency, are the most important parameters for dynamic analyses. This is the problem addressed here. The results obtained from a newly developed analytical procedure are compared with measurements in the field, and are in good agreement.

  12. Dynamics of phase oscillators with generalized frequency-weighted coupling

    NASA Astrophysics Data System (ADS)

    Xu, Can; Gao, Jian; Xiang, Hairong; Jia, Wenjing; Guan, Shuguang; Zheng, Zhigang

    2016-12-01

    Heterogeneous coupling patterns among interacting elements are ubiquitous in real systems ranging from physics, chemistry to biology communities, which have attracted much attention during recent years. In this paper, we extend the Kuramoto model by considering a particular heterogeneous coupling scheme in an ensemble of phase oscillators, where each oscillator pair interacts with different coupling strength that is weighted by a general function of the natural frequency. The Kuramoto theory for the transition to synchronization can be explicitly generalized, such as the expression for the critical coupling strength. Also, a self-consistency approach is developed to predict the stationary states in the thermodynamic limit. Moreover, Landau damping effects are further revealed by means of linear stability analysis and resonance poles theory below the critical threshold, which turns to be far more generic. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.

  13. Equivalent magnetic noise reduction at high frequency range due to polarized direction optimization in Terfenol-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 magnetoelectric laminate sensors

    NASA Astrophysics Data System (ADS)

    Fang, Cong; Ma, Jiashuai; Yao, Meng; Di, Wenning; Lin, Di; Xu, Haiqing; Wang, Wei; Luo, Haosu

    2017-02-01

    In this paper, we investigate the responsivities and output voltage noise power spectral densities of magnetoelectric (ME) laminate sensors, consisting of length magnetized Terfenol-D alloys and transverse/width poled Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystals (i.e. L-T mode and L-W mode respectively), which are directly integrated with custom-build low noise charge amplifier circuits. Both the theoretical analyses and experimental results prove that the L-W mode sensor with the optimized polarized direction of the PMNT plate possesses lower magnetic detection limit at the interested high frequency range of 10 kHz≤f≤50 kHz. The equivalent magnetic noise (EMN) of the L-W mode sensor is 0.78 pT/Hz1/2 at 30 kHz, which is about 1.7 times lower than the 1.35 pT/Hz1/2 for conventional L-T mode sensor. Furthermore, an effective method of using operational amplifiers with low equivalent input noise voltage and employing ME laminate composites with high voltage coefficient to reduce the EMNs of the ME laminate sensors at high frequency range has been established.

  14. Controlled self-assembly of multiferroic core-shell nanoparticles exhibiting strong magneto-electric effects

    SciTech Connect

    Sreenivasulu, Gollapudi; Hamilton, Sean L.; Lehto, Piper R.; Srinivasan, Gopalan; Popov, Maksym; Chavez, Ferman A.

    2014-02-03

    Ferromagnetic-ferroelectric composites show strain mediated coupling between the magnetic and electric sub-systems due to magnetostriction and piezoelectric effects associated with the ferroic phases. We have synthesized core-shell multiferroic nano-composites by functionalizing 10–100 nm barium titanate and nickel ferrite nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst. The core-shell structure was confirmed by electron microscopy and magnetic force microscopy. Evidence for strong strain mediated magneto-electric coupling was obtained by static magnetic field induced variations in the permittivity over 16–18 GHz and polarization and by electric field induced by low-frequency ac magnetic fields.

  15. Nonlinear frequency coupling in dual radio-frequency driven atmospheric pressure plasmas

    SciTech Connect

    Waskoenig, J.; Gans, T.

    2010-05-03

    Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

  16. Characterizing a Superconducting Resonator with Frequency-Compensated Tunable Coupling

    NASA Astrophysics Data System (ADS)

    Wenner, James; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; White, T. C.; Barends, R.; Chen, Y.; Fowler, A. G.; Jeffrey, E.; Mutus, J. Y.; Roushan, P.; Sank, D.; Martinis, John M.

    2015-03-01

    Deterministic quantum state transfer between devices on different chips requires the ability to transfer quantum states between traveling qubits and fixed logic qubits. Reflections must be minimized to avoid energy loss and phase interference; this requires tunable coupling to an inter-chip line while the two devices are at equal frequencies. To achieve this, we present a 6GHz superconducting coplanar resonator with tunable coupling to a 50 Ohm transmission line. We compensate for the resulting shift in resonator frequency by simultaneously tuning a second SQUID. We further demonstrate the device coherence and the ability both to release a single-frequency shaped pulse into the transmission line and to efficiently capture a shaped pulse, prerequisites for efficient inter-chip deterministic quantum state transfer.

  17. Understanding the dynamic magnetization process for the magnetoelectric effect in multiferroic composites

    NASA Astrophysics Data System (ADS)

    Gualdi, A. J.; Zabotto, F. L.; Garcia, D.; Bhalla, A.; Guo, R.; de Camargo, P. C.; de Oliveira, A. J. A.

    2016-03-01

    Based on a magnetic relaxation model, an approach that includes the spin dynamics is proposed and applied to describe the magnetoelectric (ME) effect frequency dependence for a 0-3 type composite at low temperatures. Our results show that the ME coefficient, in low temperatures, for PMN-PT/CFO ( (1 -x )P b (M g1 /3N b2 /3)-x P b T i O3/C o F e2O4 ) composite has a step-like behavior on the hysteresis loop for frequency of 1 kHz, contrasting with the results at low frequencies (10 Hz). This approach assumes that the ferromagnetic and ferroelectric phases are coupled through the interactions of the spins of the ferromagnetic phase with the composite phonons by spin/lattice relaxation.

  18. Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers

    SciTech Connect

    Ustinov, Alexey B.; Srinivasan, G.

    2008-10-06

    A frequency-agile hexaferrite-piezoelectric composite for potential device applications at subterahertz frequencies is studied. The bilayer is composed of aluminum substituted barium hexagonal ferrite (BaAl{sub 2}Fe{sub 10}O{sub 19}) and lead zirconate titanate (PZT). A dc electric field applied to PZT results in mechanical deformation of the ferrite, leading to a frequency shift in ferromagnetic resonance. The bilayer demonstrates magnetoelectric interaction coefficient of about 0.37 Oe cm/kV.

  19. Asymmetric backscattering from the hybrid magneto-electric meta particle

    NASA Astrophysics Data System (ADS)

    Kozlov, Vitali; Filonov, Dmitry; Shalin, Alexander S.; Steinberg, Ben Z.; Ginzburg, Pavel

    2016-11-01

    The optical theorem relates the total scattering cross-section of a given structure with its forward scattering, but does not impose any restrictions on other directions. Strong backward-forward asymmetry in scattering could be achieved by exploring retarded coupling between particles, exhibiting both electric and magnetic resonances. Here, a hybrid magneto-electric particle (HMEP), consisting of a split ring resonator acting as a magnetic dipole and a wire antenna acting as an electric dipole, is shown to possess asymmetric scattering properties. When illuminated from opposite directions with the same polarization of the electric field, the structure has exactly the same forward scattering, whereas the backward scattering is drastically different. The scattering cross section is shown to be as low as zero at a narrow frequency range when illuminated from one side, while being maximal at the same frequency range when illuminated from the other side. Theoretical predictions of the phenomena are supported with both numerical and experimental conformations, obtained at the GHz frequency range, and all are in a good agreement with each other. HMEP meta-particles could be used as building blocks for various metamaterials assembling solar cells, invisibility cloaks, holographic masks, etc.

  20. Nonvolatile transtance change random access memory based on magnetoelectric P(VDF-TrFE)/Metglas heterostructures

    NASA Astrophysics Data System (ADS)

    Lu, Peipei; Shang, Dashan; Shen, Jianxin; Chai, Yisheng; Yang, Chuansen; Zhai, Kun; Cong, Junzhuang; Shen, Shipeng; Sun, Young

    2016-12-01

    Transtance change random access memory (TCRAM) is a type of nonvolatile memory based on the nonlinear magnetoelectric coupling effects of multiferroics. In this work, ferroelectric P(VDF-TrFE) thin films were prepared on Metglas foil substrates by the sol-gel technique to form multiferroic heterostructures. The magnetoelectric voltage coefficient of the heterostructure can be switched reproducibly to different levels between positive and negative values by applying selective electric-field pulses. Compared with bulk multiferroic heterostructures, the polarization switching voltage was reduced to 7 V. Our facile technological approach enables this organic magnetoelectric heterostructure as a promising candidate for the applications in multilevel TCRAM devices.

  1. Self-biased large magnetoelectric coupling in co-sintered Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based piezoelectric and CoFe{sub 2}O{sub 4} based magnetostrictive bilayered composite

    SciTech Connect

    Kumari, Mukesh; Singh, Amrita; Chatterjee, Ratnamala E-mail: ratnamalac@gmail.com; Gupta, Arti; Prakash, Chandra

    2014-12-28

    In this work, magnetoelectric properties of a co-sintered bilayered composite of non-lead based piezoelectric 0.97(Bi{sub 0.5}Na{sub 0.5}TiO{sub 3})–0.03(K{sub 0.47}Na{sub 0.47}Li{sub 0.06}Nb{sub 0.74}Sb{sub 0.06}Ta{sub 0.2}O{sub 3}) and magnetostrictive Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} are presented. Similar optimal sintering conditions of the individual components lead to a very clean interface as evidenced in the scanning electron microscopy, angle dispersive X-ray diffraction, and energy-dispersive X-ray (EDX) results. Clean interface results in strong intimate mechanical coupling between both components and causes a maximum transfer of induced strain, leading to a large magnetoelectric coupling ∼142 mV/cm·Oe measured in longitudinally magnetized-transversely polarized configuration (L-T mode). Remnant polarization ∼32 μC/cm{sup 2}, remnant magnetization ∼0.50 emu/g, and sufficiently high self biased magnetoelectricity ∼135 mV/cm Oe (L-T mode) were observed for this composite.

  2. Coupling effects in inductive discharges with radio frequency substrate biasing

    SciTech Connect

    Schulze, J.; Schuengel, E.; Czarnetzki, U.

    2012-01-09

    Low pressure inductively coupled plasmas (ICP) operated in neon at 27.12 MHz with capacitive substrate biasing (CCP) at 13.56 MHz are investigated by phase resolved optical emission spectroscopy, voltage, and current measurements. Three coupling mechanisms are found potentially limiting the separate control of ion energy and flux: (i) Sheath heating due to the substrate biasing affects the electron dynamics even at high ratios of ICP to CCP power. At fixed CCP power, (ii) the substrate sheath voltage and (iii) the amplitude as well as frequency of plasma series resonance oscillations of the RF current are affected by the ICP power.

  3. Adiabatic frequency conversion with a sign flip in the coupling

    NASA Astrophysics Data System (ADS)

    Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.

    2016-09-01

    Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.

  4. Frequency shifts in a rubidium frequency standard due to coupling to another standard

    NASA Technical Reports Server (NTRS)

    Jaduszliwer, Bernardo; Cook, R. A.; Frueholz, R. P.

    1990-01-01

    Highly reliable timing system, such as used on board satellites, may incorporate a hot standby atomic clock besides the active one. RF couplings between them may affect the performance of the active clock. The effect of such couplings between two rubidium atomic clocks was investigated, and it was found that they will add an oscillatory term to the Allan Variance of the active clock, degrading its frequency stability, and that under certain circumstances they may also shift the active clock's operating frequency. These two effects are discussed in detail, and the level of isolation required to render them negligible is established.

  5. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    SciTech Connect

    Arzamastseva, G. V.; Balbashov, A. M.; Lisovskii, F. V. Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P.

    2015-04-15

    The properties of epitaxial magnetic (LuBi){sub 3}(FeGa){sub 5}O{sub 12} iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  6. Synchronization of phase oscillators with frequency-weighted coupling

    PubMed Central

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-01-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings. PMID:26903110

  7. Synchronization of phase oscillators with frequency-weighted coupling

    NASA Astrophysics Data System (ADS)

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-02-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.

  8. Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Berakdar, J.

    2016-02-01

    Thermomechanical cycles with a ferroelectric working substance convert heat to electrical energy. As shown here, magnetoelectrically coupled ferroelectric/ferromagnetic composites (also called multiferroics) allow for an efficient thermal energy harvesting at room temperature by exploiting the pyroelectric effect. By virtue of the magnetoelectric coupling, external electric and magnetic fields can steer the operation of these heat engines. Our theoretical predictions are based on a combination of Landau-Khalatnikov-Tani approach (with a Ginzburg-Landau-Devonshire potential) to simulate the ferroelectric dynamics coupled to the magnetic dynamics. The latter is treated via the electric-polarization-dependent Landau-Lifshitz-Gilbert equation. By performing an adapted Olsen cycle we show that a multiferroic working substance is potentially much more superior to the sole ferroelectrics, as far as the thermal energy harvesting using pyroelectric effect is concerned. Our proposal holds promise not only for low-energy consuming devices but also for cooling technology.

  9. Magnetoelectric and magnetoelastic properties of rare-earth ferroborates

    NASA Astrophysics Data System (ADS)

    Kadomtseva, A. M.; Popov, Yu. F.; Vorob'ev, G. P.; Pyatakov, A. P.; Krotov, S. S.; Kamilov, K. I.; Ivanov, V. Yu.; Mukhin, A. A.; Zvezdin, A. K.; Kuz'menko, A. M.; Bezmaternykh, L. N.; Gudim, I. A.; Temerov, V. L.

    2010-06-01

    The magnetic, electric, magnetoelectric, and magnetoelastic properties of rare-earth ferroborates RFe3(BO3)4 (R =Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) as well as yttrium ferroborate YFe3(BO3)4 have been studied comprehensively. A strong dependence not only of the magnetic but also magnetoelectric properties on the type of rare-earth ion, specifically, on its anisotropy, which determines the magnetic structure and the large contribution to the electric polarization, has been found. This is manifested in the strong temperature dependence of the polarization below the Néel point TN and its specific field dependence, which is determined by the competition between the external and exchange f-d fields. A close correlation has been found between the magnetoelastic properties of ferroborates and the magnetoelastic and magnetic anomalies at magnetic-field induced phase transitions. It is found that in easy-plane ferroborates, together with magnetic-field induced electric polarization spontaneous polarization also arises below the Néel point. The ferroelectric ordering in ferroborates is of extrinsic character, giving rise to strong magnetoelectric coupling below TN. Aside from the antiferromagnetic phase transition, the particulars of the structural phase transition accompanied by anomalies of the dielectric and magnetoelectric properties are examined for the first time. The character of the dielectric anomalies at a structural transition is analyzed for the first time on the basis of Landau's approach.

  10. Effects of driving frequency on properties of inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Kolobov, Vladimir

    2016-10-01

    Inductively coupled plasma (ICP) can be maintained over a wide range of driving frequencies from 50 Hz up to GHz. In this paper, we analyze how the properties of ICP depend on driving frequency ω. With respect to the time of ion transport to the walls, τd and the electron energy relaxation time τɛ three operating regimes are distinguished. The quasi-static regime, ωτd << 1 , the high-frequency regime, ωτɛ >> 1 and the intermediate dynamic regime, 1 /τd < ω <1 /τɛ. In the quasi-static regime, plasma density oscillates significantly over the field period. In the high-frequency regime, the plasma density and the electron energy distribution function (EEDF) are constant. In the dynamic regime, the plasma density is constant, while the EEDF varies over the field period. Depending on ICP configuration, the induced by the coil magnetic fields inside ICP, Bc can be zero or not. For example, in ICP maintained by a long helical coil with the plasma current flowing outside the coil, Bc = 0 , while when the plasma current flows inside the coil, Bc ≠ 0 . We show that in the latter case, in the quasi-static regimes, electrons become magnetized over a significant part of the period that may strongly affect the plasma properties. Examples of ICP simulations in different frequency regimes will be demonstrated in this paper.

  11. Enhancement of magnetoelectric operating temperature in compressed Cr2O3 under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kota, Yohei; Yoshimori, Yusuke; Imamura, Hiroshi; Kimura, Tsuyoshi

    2017-01-01

    The effect of hydrostatic pressure on structure and magnetism was investigated by a combined theoretical and experimental study for Cr2O3 showing the linear magnetoelectric effect below the Néel temperature TN ≈ 307 K. Based on first-principles calculations and Monte-Carlo simulations, we predicted that TN linearly increases with increasing applied pressure P with the slope of (1/TN)(dTN/dP) = +1.9 × 10-2 GPa-1. This theoretical prediction was qualitatively verified by our experimental observation about the pressure dependence of TN, which was detected by measurements of dielectric constant through the magnetoelectric coupling [(1/TN)(dTN/dP) = +1.6 × 10-2 GPa-1]. These results provide an effective way to enhance magnetoelectric operating temperature in the rare room-temperature magnetoelectric, Cr2O3.

  12. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  13. Scattering by quasi-gratings and space-frequency coupling

    SciTech Connect

    Saillard, M.; Maystre, D. )

    1993-03-01

    The phenomenon of scattering by rough surfaces is interpreted and analyzed as an interaction process between the incident wave and the Fourier spectrum of the surface. Perturbative and rigorous numerical results are given for the simplest nonperiodic surface, the quasi-grating, which has only two components in its Fourier spectrum. Three different kinds of coupling between the space frequencies of the surface are distinguished. Finally, the rigorous computation of the intensity scattered by a grating having harmonics given by the first three terms of a Fibonacci series is reported. It shows that enhancement or reduction of the scattered intensity in a given direction may occur when many combinations of space frequencies of the surface can generate this direction. 5 refs., 8 figs.

  14. Electromagnetic coupling in frequency domain induced polarisation data

    NASA Astrophysics Data System (ADS)

    Routh, Partha Sarathi

    2000-11-01

    Frequency domain induced polarization (IP) surveys are commonly carried out to provide information about the chargeability structure of the earth. The goals might be as diverse as trying to delineate a mineralized and/or alteration zone for mineral exploration, or to find a region of contaminants for an environmental problem. Unfortunately, the measured responses can have contributions from inductive and galvanic effects of the ground. The inductive components are called EM coupling effects. They are considered to be ``noise'' and much of this thesis is devoted towards either removing these effects, or reformulating the inverse problem so that inductive effects are part of the ``signal''. If the forward modeling is based on galvanic responses only, then the inductive responses must first be removed from the data. The motivation for attacking the problem in this manner is that it is easier to solve D.C. resistivity equation than the full Maxwell's equation. The separation of the inductive response from the total response is derived by expressing the total electric field as a product of an IP response function, and an electric field which depends on EM coupling response. This enables me to generate formulae to obtain IP amplitude (PFE) and phase response from the raw data. The data can then be inverted, using a galvanic forward modeling. I illustrate this with 1D and 3D synthetic examples. To handle field data sets, I have developed an approximate method for estimating the EM coupling effects based upon the assumption that the earth is locally 1D. The 1D conductivity is obtained from a 2D inversion of the low frequency DC resistivity data. Application of this method to a field data set has shown encouraging results. I also examine the EM coupling problem in terms of complex conductivity. I show that if the forward modeling is carried out with full Maxwell's equation, then there is no need to remove EM coupling. I illustrate this with 1D synthetic example. In summary

  15. Influence of doping and doping level on magnetoelectric coupling in layered composites Tb1-xDyxFe2-y/Ba-Ti1-zMzO3+δ (M = Fe, Cr, Mn, Co)

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Fan, J. F.; Cao, H. X.; Wei, J. J.

    2010-06-01

    Perovskites BaTi1-zMzO3+δ (M = Fe, Cr, Mn, Co) has been sol-gel synthesized. Their transformation point of ferroelectric to paraelectric and the latent heat of the transformation were found a little lower than those for pure BaTiO3 (BTO), respectively. Layered composites Tb1-xDyxFe2-y-BaTi1-zMzO3+δ have been fabricated. Their magnetoelectric (ME) effect has been investigated. All the bilayers containing the doped BTO displayed a stronger ME effects than that containing pure BTO does. The bilayer Tb1-xDyxFe2-y-BaTi0.99Cr0.01O3+δ was observed to show a larger ME coupling in the composites containing other doped BTO. While Tb1-xDyxFe2-y-BaTi0.985Fe0.015O3+δ showed the largest ME effects in the bilayers Tb1-xDyxFe2-y-BaTi1-zFezO3+δ (0 ≤ z ≤ 0.02). Additionally, the ME voltage coefficient for the trilayers Tb1-xDyxFe2-y-BaTi0.99M0.01O3+δ-Tb1-xDyxFe2-y was observed to be two or three times larger than that observed in the bilayers composed by the same substances. Theoretical analyses have been given for these observations. All the results suggest that the doped BTO can be a new choice of piezoelectrics in fabricating layered ME composites.

  16. Cross-Frequency Coupling of Plasma Waves in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.

    2014-12-01

    Wave-particle and wave-wave interactions are crucial elements of magnetosphere and ionosphere plasma dynamics. Such interactions provide a channel of energy redistribution between different plasma populations, and lead to connections between physical processes developing on different spatial and temporal scales. The lower hybrid waves (LHWs) are particularly interesting for plasma dynamics, because they couple well with both electrons and ions. The excitation of LHWs is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven and/or EMIC waves, in particular those associated with lower frequency (LF) turbulence, may generate LHWs in the auroral zone and ring current region and in some cases this serves as the Alfven and/or EMIC waves saturation mechanism. We believe that this described scenario, as well as some other cross-frequency coupling of plasma waves processes that will be discussed in this presentation, can play a vital role in various parts of the magnetospheric plasma, especially in the places under investigation by the NASA THEMIS and Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) missions.

  17. Multivariate cross-frequency coupling via generalized eigendecomposition

    PubMed Central

    Cohen, Michael X

    2017-01-01

    This paper presents a new framework for analyzing cross-frequency coupling in multichannel electrophysiological recordings. The generalized eigendecomposition-based cross-frequency coupling framework (gedCFC) is inspired by source-separation algorithms combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by factors that confound traditional CFC methods—such as non-stationarities, non-sinusoidality, and non-uniform phase angle distributions—attractive properties considering that brain activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new opportunities for conceptualizing CFC as network interactions with diverse spatial/topographical distributions. Five specific methods within the gedCFC framework are detailed, these are validated in simulated data and applied in several empirical datasets. gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise that causes traditional CFC methods to perform poorly. The paper also demonstrates that spike-field coherence in multichannel local field potential data can be analyzed using the gedCFC framework, which provides significant advantages over traditional spike-field coherence analyses. Null-hypothesis testing is also discussed. DOI: http://dx.doi.org/10.7554/eLife.21792.001 PMID:28117662

  18. Coupled vibro-acoustic model updating using frequency response functions

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  19. Cross-frequency coupling in real and virtual brain networks

    PubMed Central

    Jirsa, Viktor; Müller, Viktor

    2013-01-01

    Information processing in the brain is thought to rely on the convergence and divergence of oscillatory behaviors of widely distributed brain areas. This information flow is captured in its simplest form via the concepts of synchronization and desynchronization and related metrics. More complex forms of information flow are transient synchronizations and multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is supposed that CFC plays a crucial role in the organization of large-scale networks and functional integration across large distances. In this study, we describe different CFC measures and test their applicability in simulated and real electroencephalographic (EEG) data obtained during resting state. For these purposes, we derive generic oscillator equations from full brain network models. We systematically model and simulate the various scenarios of CFC under the influence of noise to obtain biologically realistic oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC) correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a prominent delta-alpha CFC as identified by specific CFC measures and the more classic BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of measures provide a powerful toolbox to reveal the nature of couplings from experimental data and as such allow inference on the brain state dependent information processing. Methodological advantages of using CFC measures and theoretical significance of delta and alpha interactions during resting and other brain states are discussed. PMID:23840188

  20. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  1. Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity.

    PubMed

    Wang, Liang; Saalmann, Yuri B; Pinsk, Mark A; Arcaro, Michael J; Kastner, Sabine

    2012-12-06

    Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma-band (30-100 Hz) neural activity contributes to local BOLD signals, the neural basis of interareal BOLD correlations is unclear. We first defined a visual network in monkeys based on converging evidence from interareal BOLD correlations during a fixation task, task-free state, and anesthesia, and then simultaneously recorded local field potentials (LFPs) from the same four network areas in the task-free state. Low-frequency oscillations (<20 Hz), and not gamma activity, predominantly contributed to interareal BOLD correlations. The low-frequency oscillations also influenced local processing by modulating gamma activity within individual areas. We suggest that such cross-frequency coupling links local BOLD signals to BOLD correlations across distributed networks.

  2. Electrophysiological low-frequency coherence and cross-frequency coupling contributes to BOLD connectivity

    PubMed Central

    Wang, Liang; Saalmann, Yuri B.; Pinsk, Mark A.; Arcaro, Michael J.; Kastner, Sabine

    2012-01-01

    SUMMARY Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma band (30–100 Hz) neural activity contributes to local BOLD signals, the neural basis of inter-areal BOLD correlations is unclear. We first defined a visual network in monkeys based on converging evidence from inter-areal BOLD correlations during a fixation task, task-free state and anesthesia, and then simultaneously recorded local field potentials (LFPs) from the same four network areas in the task-free state. Low frequency oscillations (< 20 Hz), and not gamma activity, predominantly contributed to inter-areal BOLD correlations. The low frequency oscillations also influenced local processing by modulating gamma activity within individual areas. We suggest that such cross-frequency coupling links local BOLD signals to BOLD correlations across distributed networks. PMID:23217748

  3. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    SciTech Connect

    Shashank, Priya

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  4. Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3-CoFe2O4 core-shell nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, Ajith S.; Lekha, C. S. Chitra; Vivek, S.; Saravanan, Venkata; Nandakumar, K.; Nair, Swapna S.

    2016-11-01

    Lead-free magnetoelectric (ME) composites with remarkable ME coupling are required for the realization of eco-friendly multifunctional devices. This work demonstrates the ME properties of Ba0.85Ca0.15Zr0.1Ti0.9O3-CoFe2O4 (BCZT-CFO) core-shell composites synthesized via co-sol-gel technique. Room temperature ferroelectric and ferromagnetic characterization have shown that the samples are magnetic and ferroelectric along with an adequate magnetoelectric coupling of 12.15 mV/(cm Oe). The strong dependence of electric parameters on applied magnetic DC bias fields demonstrated in ferroelectric and magnetoelectric measurements provide a framework for the development of potential magnetoelectric devices. Also, the high sensitivity of magnetoelectric coupling towards the applied AC magnetic field can be used for its application in magnetoelectric sensors.

  5. Note: self-biased magnetic field sensor using end-bonding magnetoelectric heterostructure.

    PubMed

    Zhao, Yaoxia; Lu, Caijiang

    2015-03-01

    A high sensitivity magnetic field sensor based on magnetoelectric (ME) coupling is presented. The ME sensor FeCuNbSiB/Nickel-PZT-FeCuNbSiB/Nickel is made by bonding magnetization-graded magnetostrictive materials FeCuNbSiB/Nickel at the free ends of the piezoelectric Pb(Zr1-x,Tix)O3 (PZT) plate. Experiments indicate that the proposed sensor has a zero-bias field sensitivity of 14.7 V/Oe at resonance, which is ∼41.6 times larger than that of previous FeCuNbSiB-PZT-FeCuNbSiB. Furthermore, without external biased field, it can detect dc magnetic field changes as small as ∼9 nT near the resonant frequency. This proposed ME sensor provides new pathways to reducing or even eliminating the need of bias fields for ME sensors.

  6. Magnetoelectric sensor excitations in hexaferrite films

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Rabinowitz, Jake; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-05-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite thin films in the frequency range of 1 kHz to 10 MHz. The technique incorporating solenoid coils and multi-capacitors bank was developed to probe the physics and properties of ME hexaferrite film and explore ME effects for sensor detections and tunable device applications. For H-field sensing, we obtained sensitivity of 4 × 10-4 V/Gm and for E-field sensing the sensitivity was 10-3 Gm/V. Tunability of up to 6% was achieved for tunable inductor applications. The proposed fabrication designs lend themselves to significant (˜106) improvements in sensitivity and tunability.

  7. Fluid Modeling of a Very High Frequency Capacitively Coupled Reactor

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rochan; Raja, Laxminarayan; Ventzek, Peter; Iwao, Toshihiko; Ishibashi, Kiyotaka; Esgee Technologies Inc. Collaboration; University of Texas at Austin Collaboration; Tokyo Electron Ltd. Collaboration

    2016-09-01

    Very High Frequency Capacitively Coupled Plasma (VHF-CCP) discharges have been studied extensively for semiconductor manufacturing applications for well over a decade. Modeling of these discharges however poses significant challenges owing to complexity associated with simulation of multiple coupled phenomena (electro-static/magnetic fields and plasma physics) over different scales and the representation of these phenomena in a computational framework. We present 2D simulations of a self-consistent plasma with the electromagnetic field represented using vector and scalar potentials. For a range of operating conditions, the ratio of capacitive and inductive power, calculated using empirical correlations available in the literature, are matched by adjusting both the electrostatic and electromagnetic fields in a decoupled manner. We present results using this model that demonstrate most of the important VHF-CCP discharge phenomena reported in the literature, such as electromagnetic wave versus electrostatic heating and its impact on plasma non-uniformity, wave resonances, etc. while realizing a practically feasible computational model.

  8. Enhancing magnetoelectric effect via the curvature of composite cylinder

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Pan, E.; Chen, W. Q.

    2010-05-01

    We solved analytically the magnetoelectric (ME) effect in a bilayered piezoelectric/piezomagnetic cylinder under harmonic excitation. We revealed that at a fixed thickness ratio of the layers, the static or low-frequency ME effect can be substantially enhanced by increasing the curvature of the cylinder. In the megahertz frequency domain, on the other hand, we observed that the peak ME effect can be considerably increased by decreasing the curvature. We further showed that at a fixed curvature, the ME effect can be tuned to be around the resonant frequency for giant output by varying the boundary condition and thickness ratio.

  9. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  10. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    SciTech Connect

    Zuo, Z. J.; Pan, D. A. Zhang, S. G.; Qiao, L. J.; Jia, Y. M.

    2013-12-15

    Magnetoelectric (ME) coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,Ti)O{sub 3} composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (H{sub DC}), showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the H{sub DC} shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the H{sub DC} patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  11. Magnetoelectric Andreev Effect due to Proximity-Induced Nonunitary Triplet Superconductivity in Helical Metals

    NASA Astrophysics Data System (ADS)

    Tkachov, G.

    2017-01-01

    Noncentrosymmetric superconductors exhibit the magnetoelectric effect, which manifests itself in the appearance of the magnetic spin polarization in response to a dissipationless electric current (supercurrent). While much attention has been dedicated to the thermodynamic version of this phenomenon (Edelstein effect), nonequilibrium transport magnetoelectric effects have not been explored yet. We propose the magnetoelectric Andreev effect (MAE), which consists in the generation of spin-polarized triplet Andreev conductance by an electric supercurrent. The MAE stems from the spin polarization of the Cooper-pair condensate due to a supercurrent-induced nonunitary triplet pairing. We propose the realization of such a nonunitary pairing and MAE in superconducting proximity structures based on two-dimensional helical metals—strongly spin-orbit-coupled electronic systems with the Dirac spectrum such as the topological surface states. Our results uncover an unexplored route towards electrically controlled superconducting spintronics and are a smoking gun for induced unconventional superconductivity in spin-orbit-coupled materials.

  12. Magnetoelectric Effect and Magnetodielectric Effect in Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Hyungsuk

    Nano-sized magnetic particles represent considerable interests in modern science because their properties are advantageous to applications such as data storage and medical science. In particular, superparamagnetism is a magnetic property which is found in nano-sized (approximately less than 20 nm) ferromagnetic or ferrimagnetic particles. Studies have shown that superparamagnetic material shows ferromagnetic magnetization only with an external magnetic field; without an external magnetic field, it loses magnetic properties even at ambient temperature overcoming its intrinsic anisotropy energy. From a magnetic memory standpoint, as bit size decreases, superparamagnetism is a major obstacle to thermal stability due to this volatility, resulting in a loss of information. If it is possible to modulate the superparamagnetic properties of magnetic nanoparticles, this might provide a solution to this critical issue. In this dissertation, we studied the modulation of superparamagnetic properties by applying an electric field on a magnetoelectric composite composed of magnetic nanoparticles and a piezoelectric substrate. The magnetoelectric effect might present an additional solution to memory device in terms of reducing writing energy by using an electric field rather than an electric current. Additionally, for systems lacking a significant magnetoelectric coupling (for instance, magnetic nanoparticles incased in polymer resin), the relationship between the dielectric constant, which is intrinsically related to ferroelectric order, and magnetic anisotropy energy was investigated.

  13. Concurrent operational modes and enhanced current sensitivity in heterostructure of magnetoelectric ring and piezoelectric transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Shengyao; Ming Leung, Chung; Kuang, Wei; Wing Or, Siu; Ho, S. L.

    2013-05-01

    A heterostructure possessing two concurrent operational modes: current sensing (CS) mode and current transduction (CT) mode and an enhanced current sensitivity associated with the CT mode is proposed by combining a magnetoelectric ring (MER) with a piezoelectric transformer (PET). The MER is a ring-shaped magnetoelectric laminate having an axially polarized Pb(Zr, Ti)O3 (PZT) piezoelectric ceramic ring sandwiched between two circumferentially magnetized, inter-magnetically biased Tb0.3Dy0.7Fe1.92 (Terfenol-D) short-fiber/NdFeB magnet/epoxy three-phase magnetostrictive composite rings, while the PET is a Rosen-type PZT piezoelectric ceramic transformer. The current sensitivity (SI) and magnetoelectric voltage coefficient (αV) of the heterostructure in the two operational modes are evaluated theoretically and experimentally. The CS mode provides a large SI of ˜10 mV/A over a flat frequency range of 10 Hz-40 kHz with a high resonance SI of 157 mV/A at 62 kHz. The CT mode gives a 6.4-times enhancement in resonance SI, reaching 1000 mV/A at 62 kHz, as a result of the amplified vortex magnetoelectric effect caused by the vortex magnetoelectric effect in the MER, the matching of the resonance frequencies between the MER and the PET, and the resonance voltage step-up effect in the PET.

  14. Magnetoelectric Energy Harvesting

    DTIC Science & Technology

    2014-11-20

    magnetic fields therethrough. A piezoelectric material capable of a phase transition and a magnetostrictive material capable of a structural change...when subjected to a magnetic field are mechanically coupled to each other in the housing. An adjustable pre-stress means is positioned between the...magnet is mounted on the moving structure. The housing is mounted in sufficient proximity to the magnet for the magnetic field of the magnet to induce the

  15. Local probing of magnetoelectric properties of PVDF/Fe3O4 electrospun nanofibers by piezoresponse force microscopy.

    PubMed

    Zheng, Tian; Yue, Zhilian; Wallace, Gordon G; Du, Yi; Martins, Pedro; Lanceros-Mendez, Senentxu; Higgins, Michael J

    2017-02-10

    The coupling of magnetic and electric properties in polymer-based magnetoelectric composites offers new opportunities to develop contactless electrodes, effectively without electrical connections, for less-invasive integration into devices such as energy harvesters, sensors, wearable and implantable electrodes. Understanding the macroscale-to-nanoscale conversion of the properties is important, as nanostructured and nanoscale magnetoelectric structures are increasingly fabricated. However, whilst the magnetoelectric effect at the macroscale is well established both theoretically and experimentally, it remains unclear how this effect translates to the nanoscale, or vice versa. Here, PVDF/Fe3O4 polymer-based composite nanofibers are fabricated using electrospinning to investigate their piezoelectric and magnetoelectric properties at the single nanofiber level.

  16. Local probing of magnetoelectric properties of PVDF/Fe3O4 electrospun nanofibers by piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Tian; Yue, Zhilian; Wallace, Gordon G.; Du, Yi; Martins, Pedro; Lanceros-Mendez, Senentxu; Higgins, Michael J.

    2017-02-01

    The coupling of magnetic and electric properties in polymer-based magnetoelectric composites offers new opportunities to develop contactless electrodes, effectively without electrical connections, for less-invasive integration into devices such as energy harvesters, sensors, wearable and implantable electrodes. Understanding the macroscale-to-nanoscale conversion of the properties is important, as nanostructured and nanoscale magnetoelectric structures are increasingly fabricated. However, whilst the magnetoelectric effect at the macroscale is well established both theoretically and experimentally, it remains unclear how this effect translates to the nanoscale, or vice versa. Here, PVDF/Fe3O4 polymer-based composite nanofibers are fabricated using electrospinning to investigate their piezoelectric and magnetoelectric properties at the single nanofiber level.

  17. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator.

    PubMed

    Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  18. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  19. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    NASA Astrophysics Data System (ADS)

    Gerken, Martina

    2013-06-01

    Multiferroic composite magnetoelectric (ME) sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite) cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM) simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line shape and a zero

  20. Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature

    NASA Astrophysics Data System (ADS)

    Wei, X. K.; Zou, T.; Wang, F.; Zhang, Q. H.; Sun, Y.; Gu, L.; Hirata, A.; Chen, M. W.; Yao, Y.; Jin, C. Q.; Yu, R. C.

    2012-04-01

    In dilute magnetic oxide hexagonal Ba(Ti0.9Fe0.1)O2.81 bulk ceramic, we report on combined ferromagnetism and improper ferroelectricity as well as cross-controlled magnetoelectric effects at room temperature. The annular-bright-field (ABF) imaging technique in scanning transmission electron microscopy (STEM) demonstrates an oxygen vacancy ordering in the hexagonal closest-packed Ba1-O1 layers and severe distortion of the octahedra and pyramids. Strong dependencies of the susceptibility on temperature and magnetic field as well as the frequency dependence of magnetization under an ac electric field reveal that the intrinsic ferromagnetism of the highly insulating system dynamically evolves from a paramagnetic ground state, and dynamic exchanges of trapped electrons in the ordered polarons are attributed to the ferromagnetic interaction. Accordingly, aided by the motion of oxygen vacancies, responses of the trapped electrons to the ac magnetic field result in the reversal of magnetically induced voltages between high and low states. Our results not only expand our understanding on the magnetoelectric coupling mechanism, but also provide a grand opportunity toward designing novel multiferroic materials through introducing ordered point defects into a centrosymmetric matrix.

  1. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.

  2. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  3. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, X. Z.; Xiang, H. J.

    2014-09-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the "asymmetric multiferroic." In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  4. An introduction to the use of representation analysis for studying magnetoelectrics and multiferroics

    NASA Astrophysics Data System (ADS)

    Chapon, L. C.

    2012-03-01

    This lecture is an introduction to the theory of representations applied to the study of magnetoelectric and multiferroic materials. It is intended for students or newcomers in the field and explains the key concepts required to understand phenomenologically the coupling between magnetic phase transitions in crystals and dielectric properties. Symmetry properties of some prototypal magnetoelectrics and multiferroics are analysed, including the treatment of incommensurate spin-driven ferroelectrics. It is deliberately written with a minimal use of mathematical formulation or a strict group theoretical approach.

  5. Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Zhou, Hao-Miao; Zhang, Qiu-shi; Hu, Wen-Wen

    2016-11-01

    This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave band-pass filter. The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites, includes the electrical tunable equivalent factor of the piezoelectric layer, and is established by the introduced lumped elements, such as radiation capacitance, radiation inductance, and coupling inductance, according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab. The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources. Finally, the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed. When the deviation angles of the ferrite slab are respectively 0° and 45°, the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device. The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results. When the deviation angle is between 0° and 45°, the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result. The comparison results of the paper show that the lumped equivalent circuit model is valid. Further, the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model. The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285, 11472259, and 11302217) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).

  6. Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles

    SciTech Connect

    Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

    2010-12-07

    The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component

  7. On the effect of polarization direction on the converse magnetoelectric response of multiferroic composite rings

    NASA Astrophysics Data System (ADS)

    Youssef, George; Lopez, Mario; Newacheck, Scott

    2017-03-01

    The application domain of composite multiferroic materials with magnetoelectric coupling has been widening on the nano-, micro- and macro-scales. Generally, a composite multiferroic material consists of two, or more, layers of a piezoelectric material and a magnetostrictive material. In turn, the proliferation of multiferroics in more applications is accompanied by a keen focus on understanding the effect of material phases, geometry, bonding interface and arrangement of phases by performing theoretical, numerical and experimental studies to fundamentally elucidate the response. In this experimental study, a focus is given to exploit the effect of the polarization direction of the piezoelectric phase on the overall converse magnetoelectric (CME) response of a composite concentric PZT/Terfenol-D structure. Specifically, radially and axially polarized PZT rings were concentrically bonded to the outer surface of two Terfenol-D rings, respectively. It was found that the maximum, near resonance, CME coefficient of the axially-poled configuration is 443 mG V‑1 when tested at 34 kHz, 80 kV m‑1 electric field and 784 Oe bias magnetic field. On the other hand, the near resonance CME value for the radially-poled configuration remained nearly constant at 281.9 ± 5.3 mG V‑1 between bias magnetic fields of 532 Oe and 1524 Oe at AC electric field of 80 kV m‑1 with a frequency of 36 kHz. Interestingly, the CME coefficient of radially-poled composite structure exhibits a saturation behavior, while the CME coefficient for axially-poled structure is distinguished by a single peak. The difference in the response is attributed to the amount strain transduction due to the polarization direction.

  8. Microwave magnetoelectric particles: an experimental study of oscillating spectrums.

    PubMed

    Saha, A K; Kamenetskii, E O; Awai, I

    2001-11-01

    One of the ways to uncover the nature of the microwave magnetoelectric (ME) effect, recently observed in small ferrite resonators with special-form surface metallizations, is a comparative analysis of oscillating spectrums excited by different type rf external fields. Experimental results of the ME coupling in different types of ferrite resonators and different types of surface electrodes are reported and some important conclusions are drawn observing the oscillating spectrums of those particles. A special interest in spectral properties of point ME particles should be found in the field of microwave artificial composite materials-bianisotropic materials.

  9. Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young

    2016-08-01

    The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.

  10. Large magnetoelectric effect in mechanically mediated structure of TbFe{sub 2}, Pb(Zr,Ti)O{sub 3}, and nonmagnetic flakes

    SciTech Connect

    Bi, K.; Wang, Y. G.; Wu, W.; Pan, D. A.

    2011-03-28

    Magnetoelectric (ME) effect has been studied in a structure of a magnetostrictive TbFe{sub 2} alloy, two piezoelectric Pb(Zr,Ti)O{sub 3} (PZT) ceramics, and two nonmagnetic flakes. The ME coupling originates from the magnetic-mechanical-electric transform of the magnetostrictive effect in TbFe{sub 2} and the piezoelectric effect in PZT by end bonding, instead of interface bonding. Large ME coefficients of 10.5 and 9.9 V cm{sup -1} Oe{sup -1} were obtained at the first planar acoustic and third bending resonance frequencies, which are larger than that of conventional layered TbFe{sub 2}/PZT composites. The results show that the large ME coupling can be achieved without interface coupling.

  11. Misidentifications of specific forms of cross-frequency coupling: three warnings

    PubMed Central

    Hyafil, Alexandre

    2015-01-01

    Cross-frequency coupling (CFC) between neural oscillations has received increased attention over the last decade, as it is believed to underlie a number of cognitive operations in different brain systems. Coupling can take different forms as it associates the phase, frequency, and/or amplitude of coupled oscillations. These specific forms of coupling are a signature for the underlying network physiology and probably relate to distinct cognitive functions. Here I discuss three caveats in data analysis that can lead to mistake one specific form of CFC for another: (1) bicoherence assesses the level of phase-amplitude and not of phase-phase coupling (PPC) as commonly accepted; (2) a test for phase-amplitude coupling (PAC) can indeed signal phase-frequency coupling (PFC) when the higher frequency signal is extracted using a too narrow band; (3) an oscillation whose frequency fluctuates may induce spurious amplitude anticorrelations between neighboring frequency bands. I indicate practical rules to avoid such misidentifications and correctly identify the specific nature of cross-frequency coupled signals. PMID:26500488

  12. The direct magnetoelectric effect in ferroelectric-ferromagnetic epitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Fina, I.; Dix, N.; Rebled, J. M.; Gemeiner, P.; Martí, X.; Peiró, F.; Dkhil, B.; Sánchez, F.; Fàbrega, L.; Fontcuberta, J.

    2013-08-01

    Ferroelectric (FE) and ferromagnetic (FM) materials engineered in horizontal heterostructures allow interface-mediated magnetoelectric coupling. The so-called converse magnetoelectric effect (CME) has been already demonstrated by electric-field poling of the ferroelectric layers and subsequent modification of the magnetic state of adjacent ferromagnetic layers by strain effects and/or free-carrier density tuning. Here we focus on the direct magnetoelectric effect (DME) where the dielectric state of a ferroelectric thin film is modified by a magnetic field. Ferroelectric BaTiO3 (BTO) and ferromagnetic CoFe2O4 (CFO) oxide thin films have been used to create epitaxial FE/FM and FM/FE heterostructures on SrTiO3(001) substrates buffered with metallic SrRuO3. It will be shown that large ferroelectric polarization and DME can be obtained by appropriate selection of the stacking order of the FE and FM films and their relative thicknesses. The dielectric permittivity, at the structural transitions of BTO, is strongly modified (up to 36%) when measurements are performed under a magnetic field. Due to the insulating nature of the ferromagnetic layer and the concomitant absence of the electric-field effect, the observed DME effect solely results from the magnetostrictive response of CFO elastically coupled to the BTO layer. These findings show that appropriate architecture and materials selection allow overcoming substrate-induced clamping in multiferroic multi-layered films.Ferroelectric (FE) and ferromagnetic (FM) materials engineered in horizontal heterostructures allow interface-mediated magnetoelectric coupling. The so-called converse magnetoelectric effect (CME) has been already demonstrated by electric-field poling of the ferroelectric layers and subsequent modification of the magnetic state of adjacent ferromagnetic layers by strain effects and/or free-carrier density tuning. Here we focus on the direct magnetoelectric effect (DME) where the dielectric state of a

  13. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10-4 G/Vm-1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant ( 106) improvements in sensitivity and tunability.

  14. A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates

    NASA Astrophysics Data System (ADS)

    Zhang, Shunzu; Yao, Hong; Gao, Yuanwen

    2017-04-01

    A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via ; ΔE effect;, can enhance ME coefficient about 100 times than that at low frequency.

  15. A Magneto-Electric Microwave Filter

    NASA Astrophysics Data System (ADS)

    Tatarenko, A. S.; Srinivasan, G.; Bichurin, M. I.

    2006-03-01

    A new class of electric field-tunable ferrite-ferroelectric microwave band-pass filter is discussed. The electric field tunability is possible through magnetoelectric (ME) interactions. The mechanical deformation due to piezoelectric effect in an electric field manifests as a magnetic field shift in the ferromagnetic resonance (FMR) for the ferrite. The filter was fabricated with an ME resonator consisting of bilayers of 30-110 micron thick (111) yttrium iron garnet (YIG) films and lead zirconate titanate (PZT). The bilayer was positioned between input and output antenna in a microstripline structure. The device insertion loss was measured as a function of frequency f, bias magnetic field H (applied parallel to bilayer plane) and the electrical field E applied across PZT. The minimum insertion loss was 4-5 dB at 5-10 GHz. The off-resonance losses were about 20 dB. The E-field tunability was 120 MHz for E = 3 kV/cm for bilayers with 110 micron thick YIG. The ME microwave filters discussed here are miniature in size, would facilitate high-speed operation, and are compatibility with integrated circuit technology. -- The work was supported by grants from ARO, ONR and NSF.

  16. Metal-ceramic laminate composite magnetoelectric gradiometer.

    PubMed

    Bedekar, V; Bichurin, M I; Ivanov, S N; Pukinski, Y J; Priya, S

    2010-03-01

    Gradiometer resembles in functionality a magnetic field sensor where it measures the magnetic field gradient and its sensitivity is determined by the ability to quantify differential voltage change with respect to a reference value. Magnetoelectric (ME) gradiometer designed in this study is based upon the nickel (Ni)-Pb(Zr,Ti)O(3) (PZT) composites and utilizes the ring-dot piezoelectric transformer structure working near the resonance as the basis. The samples had the ring-dot electrode pattern printed on the top surface of PZT, where ring acts as the input while dot acts as the output. There is an insulation gap between the input and output section of 1.2 mm. The generated magnetic field due to converse ME effect interacts with the external applied magnetic field producing flux gradient, which is detected through the frequency shift and output voltage change in gradiometer structure. The measurements of output voltage dependence on applied magnetic field clearly illustrate that the proposed design can provide high sensitivity and bandwidth.

  17. Two pulse-coupled non-identical, frequency-different BZ oscillators with time delay.

    PubMed

    Lavrova, Anastasia I; Vanag, Vladimir K

    2014-04-14

    Two non-identical, frequency-different pulse-coupled oscillators with time delay have been systematically studied using four-variable model of the Belousov-Zhabotinsky (BZ) reaction at mutual inhibitory, mutual excitatory, and mixed excitatory-inhibitory types of coupling. Different resonances like 1 : 2, 2 : 3, 1 : 3, etc., as well as complex rhythms and abrupt changes between them occur depending on the coupling strengths, time delay, and frequency ratio. Analogously to in-phase and anti-phase oscillations for 1 : 1 resonance, a similar phase locking exists for 1 : 2 resonance in the case of inhibitory coupling. For excitatory coupling, a bursting regime is found. The number of spikes in a single burst can be tuned by both the frequency ratio and time delay. For excitatory-inhibitory coupling, a region where one oscillator is suppressed (OS zone) has been found. Boundary of the OS zone depends on the frequency ratio. For weakly coupled oscillators, Farey sequence has been found for excitatory-inhibitory and mutual excitatory coupling.

  18. Finite-size effects on the magnetoelectric response of field-driven ferroelectric/ferromagnetic chains

    NASA Astrophysics Data System (ADS)

    Jia, Chenglong; Sukhov, Alexander; Horley, Paul P.; Berakdar, Jamal

    2011-07-01

    We study theoretically the coupled multiferroic dynamics of a finite one-dimensional ferroelectric/ferromagnet chain driven by harmonic magnetic and electric fields as a function of the chain length. We consider the case of a linear magnetoelectric coupling that results from the spin-polarized screening charge at the interface. We performed Monte-Carlo simulations and calculations based on the coupled Landau-Lifshitz-Gilbert and Landau-Khalatnikov equations showing that the net magnetization and the total polarization of thin heterostructures, i.e. with up to ten ferroelectric and ferromagnetic sites counted from the interface, can be completely reversed by external electric and magnetic fields, respectively. However, for larger systems merely a limited magnetoelectrical control is achievable.

  19. Effect of dual frequency rf power in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Ho; Lee, Ho-Won; Kim, Tae Woo; Chung, Chin-Wook

    2016-09-01

    Dual frequency inductively coupled plasma discharge is investigated. Dual RF power is applied independently to each antenna (inner and outer coil), and the electron energy distribution functions (EEDFs) are measured using a RF compensated Langmuir probe. As the ratio of low frequency power (Plow) and high frequency power (Phigh) is changed, the variation of EEDF is observed. When Plow is higher than Phigh, the low energy electrons effectively heated compared to the case when Plow is comparable to Phigh. This difference in the shape of the EEDF can be understood by correlation between the driving frequency and the collision frequency.

  20. Distributed coupling and multi-frequency microwave accelerators

    DOEpatents

    Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp

    2016-07-05

    A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.

  1. High pulse repetition frequency fiber-coupled laser-diode module

    NASA Astrophysics Data System (ADS)

    Shi, Guangyuan; Li, Song; Huang, Ke; Zheng, Guoxing

    2016-12-01

    A practical and simple approach of achieving a high pulse repetition frequency fiber-coupled laser-diode device is demonstrated both by experiment and TRACEPRO software simulation, which is obtained by beam collimating, spatial beam combining, and polarization beam combining based on multiple cycle-emitting pulsed laser-diode emitters. Using this method, fiber-coupled laser-diode module output pulse repetition frequency from the multimode fiber with 200-μm core diameter and 0.22 numerical aperture can reach 300 kHz, and the coupling efficiency is beyond 72%. This technique has superiors of great flexibility, low cost, and high reliability for wide applications.

  2. Marginal chimera state at cross-frequency locking of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Bolotov, M. I.; Osipov, G. V.; Pikovsky, A.

    2016-03-01

    We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength, mean fields generated by these populations can have incommensurate frequencies or become frequency locked. In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with the mean fields, while in another population they have the same frequency as the mean field. These synchronous neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered. We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map.

  3. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    PubMed Central

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-01-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563

  4. Experimental observation of magnetoelectricity in spin ice Dy2Ti2O7

    NASA Astrophysics Data System (ADS)

    Lin, L.; Xie, Y. L.; Wen, J.-J.; Dong, S.; Yan, Z. B.; Liu, J.-M.

    2015-12-01

    The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy2Ti2O7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at Tc1 = 25 K and Tc2 = 13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significant suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our results can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.

  5. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains.

    PubMed

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-02-02

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity.

  6. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains

    PubMed Central

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-01-01

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity. PMID:26829899

  7. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-08-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 ‑ 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 ‑CoFe2O4 bulk composites with similar content of the ferrite phase.

  8. First observation of magnetoelectric effect in M-type hexaferrite thin films

    SciTech Connect

    Mohebbi, Marjan; Ebnabbasi, Khabat; Vittoria, Carmine

    2013-05-07

    The magnetoelectric (ME) effect in M-type hexaferrite thin films is reported. Prior to this work, the ME effect in hexaferrite materials was observed only in bulk polycrystalline materials. Thin films of SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} were grown on sapphire (0001) using pulsed laser deposition. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1250 G, g-factor of 2.66, and coercive field of 20 Oe for these magnetoelectric M-type hexaferrite thin films. The magnetoelectric effect was confirmed by monitoring the change rate in remanence magnetization with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 12.8% with the application of only 1 V (DC voltage). We deduced a magnetoelectric coupling, {alpha}, of 6.07 Multiplication-Sign 10{sup -9} s m{sup -1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  9. The role of coupling-frequency weighting exponent on synchronization of a power network

    NASA Astrophysics Data System (ADS)

    Yang, Li-xin; Jiang, Jun

    2016-12-01

    Second-order Kuramoto-like oscillators with dissimilar natural frequencies are used as a coarse-scale model for an electrical power network that contains generators and consumers. This paper proposes a new power network model with coupling-frequency weighting exponent. Furthermore, the influence of the weighting exponent on synchronization of a power network is investigated through numerical simulations. It is observed that the synchronizability is significantly influenced by the coupling-frequency weighting coefficient with different magnitude categories. Furthermore, the synchronization cost caused by phase differences of power plants on the synchronization of the proposed power network model is studied. Numerical simulation shows that the synchronization cost will get larger with the coupling-frequency weighting exponent increasing further.

  10. Topological magnetoelectric effects in microwave far-field radiation

    NASA Astrophysics Data System (ADS)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R.

    2016-07-01

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  11. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  12. Adaptive Filtering Methods for Identifying Cross-Frequency Couplings in Human EEG

    PubMed Central

    Van Zaen, Jérôme; Murray, Micah M.; Meuli, Reto A.; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations. PMID:23560098

  13. Adaptive filtering methods for identifying cross-frequency couplings in human EEG.

    PubMed

    Van Zaen, Jérôme; Murray, Micah M; Meuli, Reto A; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

  14. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Rockway, J D; Champagne, N J; Sharpe, R M; Fasenfest, B

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-load circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.

  15. Inertial effect on frequency synchronization for the second-order Kuramoto model with local coupling

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Qin, Wen-Xin

    2017-04-01

    In this paper, we study the influence of the inertial effect on frequency synchronization in an ensemble of Kuramoto oscillators with finite inertia and symmetric and connected interactions. We present sufficient conditions in terms of coupling strength, algebraic connectivity, natural frequencies, and the inertial term to guarantee the occurrence of frequency synchronization. We also make a comparison with the existing conditions proposed for the first-order Kuramoto model and conclude that the inertial effect, if appropriately small, has little influence on frequency synchronization as long as the initial phase configurations are distributed in a half circle.

  16. Magnetoelectric Dead Layer and Uncompensated Spins in Magnetic/Ferroelectric Heterostructures

    NASA Astrophysics Data System (ADS)

    Holcomb, Mikel; Huang, Chih-Yeh; Zhou, Jinling; Trappen, Robbyn; Cabrera, Guerau; Chu, Ying-Hao; West Virginia University Team; National Chiao Tung University Team

    Interfacial magnetoelectricity across a multilayer system is known to sometimes result in much larger coupling between electric and magnetism than in single phase systems. We compared the magnetic domains in LaSrMnO3 thin films, ferroelectric domains in PbZrTiO3 and observed uncompensated spin at the interface. Several techniques to quantify image contrast switching between left and right circularly polarized x-ray absorption spectra of magnetic domains and uncompensated spin were developed and gave similar results. Not surprisingly, the magnetic domain switching increased with magnetic film thickness, but the uncompensated spin did as well. This results suggests that there may be an effective magnetoelectric dead layer at the interface between coupled magnetic and ferroelectric layers, which is likely linked to at least the magnetic dead layer in the magnetic film. These measurements were taken by L-edge spectromicroscopy at the PEEM3 beamline of the Advanced Light Source.

  17. Beating frequency and amplitude modulation of the piano tone due to coupling of tones

    NASA Astrophysics Data System (ADS)

    Cartling, Bo

    2005-04-01

    The influence on a piano tone from weak coexcitation of damped adjacent tones due to coupling via the bridge is studied. The frequency and amplitude modulation of the sound resulting from coexcitation of one strong and one or two weak tones is analyzed. One weak tone causes frequency and amplitude modulation of the sound, and two weak tones produce beating frequency and amplitude modulation, where the beatings of the two modulations are of opposite phase. By digital recording of the sound of piano tones, the appearance of these phenomena is verified. The audibility of the observed frequency and amplitude modulation is discussed in terms of previously determined detection thresholds. The beating character of both frequency and amplitude modulations, however, distinguishes the phenomena from those previously studied and prompts further psychoacoustic investigations. It is shown that detuning of unison strings may significantly increase the frequency deviation of the frequency modulation in conjunction with affected amplitude modulation. The modulatory effects of coupling to adjacent tones therefore may possibly be utilized in the tuning process. A coupling of tones analogous to the situation in a piano may arise in other stringed musical instruments transferring string vibrations to a soundboard via a bridge. .

  18. A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER).

    PubMed

    Garbacz, Piotr; Fischer, Peer; Krämer, Steffen

    2016-09-14

    Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the (19)F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.

  19. A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr; Fischer, Peer; Krämer, Steffen

    2016-09-01

    Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the 19F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.

  20. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    PubMed

    Pullar, Robert C

    2012-07-09

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite.

  1. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  2. Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Nishimura, Joel

    2015-01-01

    We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.

  3. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  4. Automated detection of cross-frequency coupling in the electrocorticogram for clinical inspection

    PubMed Central

    Miyakoshi, Makoto; Delorme, Arnaud; Mullen, Tim; Kojima, Katsuaki; Makeig, Scott; Asano, Eishi

    2014-01-01

    We developed a toolbox for detecting high-frequency oscillations and evaluating cross-frequency phase-amplitude coupling in electrocorticographic (ECoG) data with optimal parameters. Here we demonstrate use of the toolbox using simulated and realistic ECoG data. The results confirmed its potential usefulness for clinical research or practice. The tools have been released as a Phase-Amplitude Coupling Toolbox (PACT) plug-in for EEGLAB, an open software environment for electrophysiological data analysis (sccn.ucsd.edu/eeglab). PMID:24110429

  5. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  6. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  7. Solution of the problem of interaction between capacitive coupled radio-frequency discharge and a sample

    NASA Astrophysics Data System (ADS)

    Chebakova, V. Ju; Gaisin, A. F.; Zheltukhin, V. S.

    2016-11-01

    The numerical study of interaction between the capacitive coupled radio frequency (CCRF) discharge and materials is performed. A nonlinear problem, which includes initialboundary value problems for electron, ion, neutral atom, metastable atom, gas temperature and Poisson's equation is solved. A harmonic voltage on the loaded electrodes and Ohm's law for the sample is assumed. A results of calculations of the model problem at pressure p=760 Torr, frequency of generator f=13.76 MHz in local approximation are presented.

  8. Hippocampal strata theta oscillations change their frequency and coupling during spatial learning.

    PubMed

    Hernández-Pérez, J Jesús; Gutiérrez-Guzmán, Blanca E; Olvera-Cortés, María E

    2016-11-19

    The theta rhythm is necessary for hippocampal-dependent spatial learning. It has been proposed that each hippocampal stratum can generate a current theta dipole. Therefore, considering that each hippocampal circuit (CA1, CA3, and Dentate Gyrus (DG)) contributes differently to distinct aspects of a spatial memory, the theta oscillations on each stratum and their couplings may exhibit oscillatory dynamics associated with different stages of learning. To test this hypothesis, the theta oscillations from five hippocampal strata were recorded in the rat during different stages of learning in a Morris maze. The peak power, the relative power (RP) and the coherence between hippocampal strata were analyzed. The early acquisition stage of the Morris task was characterized by the predominance of slow frequency theta activity and high coupling between specific hippocampal strata at slow frequencies. However, on the last training day, the theta oscillations were faster in all hippocampal strata, with tighter coupling at fast frequencies between the CA3 pyramidal stratum and other strata. Our results suggest that modifications to the theta frequency and its coupling can be a means by which the hippocampus differentially operates during acquisition and retrieval states.

  9. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  10. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    PubMed Central

    Zobay, Oliver; Adjamian, Peyman

    2015-01-01

    The thalamocortical dysrhythmia (TCD) model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz). The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz) oscillations (“edge effect”) giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC) was computed within the auditory cortices for frequencies (f1, f2) between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1, f2 < 30 Hz) and high (f1, f2 > 30 Hz) frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL), tinnitus handicap and duration, and HL at tinnitus frequency), we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus. PMID:26665004

  11. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    SciTech Connect

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  12. Frequency combs for cavity cascades: OPO combs and graphene-coupled cavities

    NASA Astrophysics Data System (ADS)

    Lee, Kevin F.; Kowzan, Grzegorz; Lee, C.-C.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Schibli, T. R.; Maslowski, Piotr; Fermann, M. E.

    2017-01-01

    Frequency combs can be used directly, for example as a highly precise spectroscopic light source. They can also be used indirectly, as a bridge between devices whose high precision requirements would normally make them incompatible. Here, we demonstrate two ways that a frequency comb enables new technologies by matching optical cavities. One cavity is the laser oscillator. A second cavity is a low-threshold doubly-resonant optical parametric oscillator (OPO). Extending optical referencing to the doubly-resonant OPO turns the otherwise unstable device into an extremely precise midinfrared frequency comb. Another cavity is an optical enhancement cavity for amplifying spectral absorption in a gas. With the high speed of a graphene-modulated frequency comb, we can couple a frequency comb directly into a high-finesse cavity for trace gas detection.

  13. Effects of gas pressure on 60/13.56 MHz dual-frequency capacitively coupled plasmas

    SciTech Connect

    Yuan, Q. H.; Yin, G. Q.; Xin, Y.; Ning, Z. Y.

    2011-05-15

    The electron energy probability functions (EEPFs) were measured with increasing gas pressure in 60/13.56 MHz dual-frequency capacitively coupled plasma (DF-CCP) using compensated Langmiur electrostatic probe. The transition pressure of heating mode from collisionless to collisional heating in 60/13.56 MHz DF-CCP is found to be significantly lower than that in 13.56 MHz single-frequency CCP. As the pressure increases, the EEPFs change from bi-Maxwellian to Druyvesteyn type which is similar with that in 60 MHz single-frequency CCP. The pressure dependence of electron densities, effective electron temperatures, floating potentials, and plasma potentials in 60/13.56 MHz DF-CCP were measured and were compared with that in 60 MHz single-frequency CCP. The pressure dependence of these plasma parameters in 60/13.56 MHz DF-CCP is similar with that in 60 MHz single-frequency CCP.

  14. Cooperative behavior between oscillatory and excitable units: the peculiar role of positive coupling-frequency correlations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Bernard; Peron, Thomas K. DM.; Rodrigues, Francisco A.; Kurths, Jürgen; Schimansky-Geier, Lutz

    2014-08-01

    We study the collective dynamics of noise-driven excitable elements, so-called active rotators. Crucially here, the natural frequencies and the individual coupling strengths are drawn from some joint probability distribution. Combining a mean-field treatment with a Gaussian approximation allows us to find examples where the infinite-dimensional system is reduced to a few ordinary differential equations. Our focus lies in the cooperative behavior in a population consisting of two parts, where one is composed of excitable elements, while the other one contains only self-oscillatory units. Surprisingly, excitable behavior in the whole system sets in only if the excitable elements have a smaller coupling strength than the self-oscillating units. In this way positive local correlations between natural frequencies and couplings shape the global behavior of mixed populations of excitable and oscillatory elements.

  15. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    PubMed

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

  16. Electromagnetic coupling in frequency-domain induced polarization data: a method for removal

    NASA Astrophysics Data System (ADS)

    Routh, Partha S.; Oldenburg, Douglas W.

    2001-04-01

    Electromagnetic (EM) coupling is generally considered to be noise in induced polarization (IP) data and interpretation is difficult when its contribution is large compared to the IP signal. The effect is exacerbated by conductive environments and large-array survey geometries designed to explore deeper targets. In this paper we present a methodology to remove EM coupling from frequency-domain IP data. We first investigate the effect of EM coupling on the IP data and derive the necessary equations to represent the IP effect for both amplitude and phase responses of the signal. The separation of the inductive response from the total response in the low-frequency regime is derived using the electric field due to a horizontal electric dipole and it is assumed that at low frequencies the interaction of EM effects and IP effects is negligible. The total electric field is then expressed as a product of a scalar function, which is due to IP effects, and an electric field, which depends on the EM coupling response. It is this representation that enables us to obtain the IP response from EM-coupling-contaminated data. To compute the EM coupling response we recognize that conductivity information is necessary. We illustrate this with a synthetic example. The removal method developed in this work for the phase and the per cent frequency effect (PFE) data are applicable to 1-D, 2-D and 3-D structures. The practical utility of the method is illustrated on a 2-D field example that is typical of mineral exploration problems.

  17. Discrete time--frequency coupling between the interplanetary magnetic field and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Lessard, M. R.

    2003-12-01

    Recent work has shown the existence at geosynchronous orbit of wave power at frequencies substantially below that of fundamental field-line resonances. The existence of spectral power below that of fundamental frequencies indicates that the driver must be external to the magnetosphere, i.e, that the source is contained in the solar wind. Other work has shown that frequencies matching field-line resonances can sometimes also be observed in the solar wind. The combined spectrum that includes power at fundamental frequencies and lower overlaps with p-mode helioseismic oscillations and the question has been raised whether these helioseismic modes may stimulate the magnetospheric fluctuations. In this study, we compute coherences between the magnetometers on {ACE} and {GOES-10}, that is in interplanetary space and inside the magnetosphere. These show several frequencies where all nine coherences are significant. Moreover, many of these frequencies are the same as those reported from Ulysses data in Thomson, Maclennan, and Lanzerotti (1995). Using hourly average data from all 1999, a frequency tolerance of 30 nHz, and retaining only peaks in the coherence above the 95% significance level, about 21 agreements would be expected by chance but 34 are observed. The coherences exhibit seasonal dependence, so the coupling has a complicated time--frequency structure exhibiting both frequency and event dependence.

  18. Direct measurement of voltage-controlled reversal of the antiferromagnetic spin structure in magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    The frequency dependence of the electric field induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility and the antiferromagnetic order parameter. The relative strength of these contributions is determined by the frequency of the probing light beam. It allows tuning the Faraday signal between extreme characteristics which follow the temperature dependence of the magnetoelectric susceptibility or solely that of the antiferromagnetic order parameter. The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results lead to a table-top set-up allowing to measure voltage-controlled selection and temperature dependence of the antiferromagnetic order parameter. The Faraday rotation per applied voltage is independent of the sample thickness making the method scalable and versatile for thin film investigations. Scalability, compactness, and simplicity of the data analysis combined with low photon flux requirements make the Faraday approach advantageous for the investigation of the otherwise difficult to access voltage-controlled switching of antiferromagnetic domain states in magnetoelectric thin films. This project is supported by NRI via CNFD through tasks SRC 2398.001 and 2587.001, by C-SPIN, a SRC program, sponsored by MARCO and DARPA, and by NSF through Nebraska MRSEC DMR-1420645.

  19. Voltage-impulse-induced nonvolatile tunable magnetoelectric inductor based on multiferroic bilayer structure

    NASA Astrophysics Data System (ADS)

    Su, Hua; Tang, Xiaoli; Zhang, Huaiwu; Sun, Nian X.

    2016-07-01

    In this study, we developed a voltage-impulse-induced nonvolatile tunable magnetoelectric inductor, which used an amorphous magnetic ribbon/lead zirconate titanate (PZT) multiferroic bilayer structure as a magnetic core. The PZT substrate, which contained defect dipoles through acceptor doping, was used in the bilayer structure to obtain an asymmetric strain-E “butterfly” curve. Different and stable voltage-impulse-induced in-plane residual stain states could be obtained by applying specific voltage impulse excitation modes. These residual strain states induced a nonvolatile inductance variation in the inductor through strain-mediated magnetoelectric coupling. This method provided a promising approach to realize nonvolatile tunable inductors for miniaturized circuits and systems.

  20. Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes.

    PubMed

    Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo

    2009-01-01

    In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O(3)-Pb(Zn(1/3)Nb(2/3))O(3) (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description.

  1. Magnetoelectric effects in the skyrmion host material Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Ruff, E.; Lunkenheimer, P.; Loidl, A.; Berger, H.; Krohns, S.

    2015-10-01

    Insulating helimagnetic Cu2OSeO3 shows sizeable magnetoelectric effects in its skyrmion phase. Using magnetization measurements, magneto-current analysis and dielectric spectroscopy, we provide a thorough investigation of magnetoelectric coupling, polarization and dielectric constants of the ordered magnetic and polar phases of single-crystalline Cu2OSeO3 in external magnetic fields up to 150 mT and at temperatures below 60 K. From these measurements we construct a detailed phase diagram. Especially, the skyrmion phase and the metamagnetic transition of helical to conical spin order are characterized in detail. Finally we address the question if there is any signature of polar order that can be switched by an external electric field, which would imply multiferroic behaviour of Cu2OSeO3.

  2. Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes

    PubMed Central

    Priya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo

    2009-01-01

    In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3 (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description. PMID:22454590

  3. Magnetoelectric effects in the skyrmion host material Cu2OSeO3

    PubMed Central

    Ruff, E.; Lunkenheimer, P.; Loidl, A.; Berger, H.; Krohns, S.

    2015-01-01

    Insulating helimagnetic Cu2OSeO3 shows sizeable magnetoelectric effects in its skyrmion phase. Using magnetization measurements, magneto-current analysis and dielectric spectroscopy, we provide a thorough investigation of magnetoelectric coupling, polarization and dielectric constants of the ordered magnetic and polar phases of single-crystalline Cu2OSeO3 in external magnetic fields up to 150 mT and at temperatures below 60 K. From these measurements we construct a detailed phase diagram. Especially, the skyrmion phase and the metamagnetic transition of helical to conical spin order are characterized in detail. Finally we address the question if there is any signature of polar order that can be switched by an external electric field, which would imply multiferroic behaviour of Cu2OSeO3. PMID:26446514

  4. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    SciTech Connect

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar; Buks, Eyal; Gottlieb, Oded

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.

  5. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    PubMed Central

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-01-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506

  6. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    NASA Astrophysics Data System (ADS)

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-12-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system.

  7. Unidirectional magnetoelectric-field multiresonant tunneling

    NASA Astrophysics Data System (ADS)

    Kamenetskii, E. O.; Hollander, E.; Joffe, R.; Shavit, R.

    2015-02-01

    Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropic-dielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks in the scattering-matrix parameters at the stationary states of the MDM spectrum. The ME near-field excitations are quasimagnetostatic fields \

  8. Light funneling mechanism explained by magnetoelectric interference.

    PubMed

    Pardo, Fabrice; Bouchon, Patrick; Haïdar, Riad; Pelouard, Jean-Luc

    2011-08-26

    We investigate the mechanisms involved in the funneling of optical energy into subwavelength grooves etched on a metallic surface. The key phenomenon is unveiled thanks to the decomposition of the electromagnetic field into its propagative and evanescent parts. We unambiguously show that the funneling is not due to plasmonic waves flowing toward the grooves, but rather to the magnetoelectric interference of the incident wave with the evanescent field, this field being mainly due to the resonant wave escaping from the groove.

  9. Cross-frequency power coupling between hierarchically organized face-selective areas.

    PubMed

    Furl, Nicholas; Coppola, Richard; Averbeck, Bruno B; Weinberger, Daniel R

    2014-09-01

    Neural oscillations are linked to perception and behavior and may reflect mechanisms for long-range communication between brain areas. We developed a causal model of oscillatory dynamics in the face perception network using magnetoencephalographic data from 51 normal volunteers. This model predicted induced responses to faces by estimating oscillatory power coupling between source locations corresponding to bilateral occipital and fusiform face areas (OFA and FFA) and the right superior temporal sulcus (STS). These sources showed increased alpha and theta and decreased beta power as well as selective responses to fearful facial expressions. We then used Bayesian model comparison to compare hypothetical models, which were motivated by previous connectivity data and a well-known theory of temporal lobe function. We confirmed this theory in detail by showing that the OFA bifurcated into 2 independent, hierarchical, feedforward pathways, with fearful expressions modulating power coupling only in the more dorsal (STS) pathway. The power coupling parameters showed a common pattern over connections. Low-frequency bands showed same-frequency power coupling, which, in the dorsal pathway, was modulated by fearful faces. Also, theta power showed a cross-frequency suppression of beta power. This combination of linear and nonlinear mechanisms could reflect computational mechanisms in hierarchical feedforward networks.

  10. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    SciTech Connect

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  11. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus

    DOE PAGES

    Dong, Shan; Zhang, Anmin; Liu, Kai; ...

    2016-02-26

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of themore » thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. Lastly, these findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor.« less

  12. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus

    SciTech Connect

    Dong, Shan; Zhang, Anmin; Liu, Kai; Ji, Jianting; Ye, Y. G.; Luo, X. G.; Chen, X. H.; Ma, Xiaoli; Jie, Yinghao; Chen, Changfeng; Wang, Xiaoqun; Zhang, Qingming

    2016-02-26

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of the thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. Lastly, these findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor.

  13. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  14. Ultralow-Frequency Collective Compression Mode and Strong Interlayer Coupling in Multilayer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Dong, Shan; Zhang, Anmin; Liu, Kai; Ji, Jianting; Ye, Y. G.; Luo, X. G.; Chen, X. H.; Ma, Xiaoli; Jie, Yinghao; Chen, Changfeng; Wang, Xiaoqun; Zhang, Qingming

    2016-02-01

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of the thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. These findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor.

  15. Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies.

    PubMed

    Zhang, Zhong Xiang; Chan, Kam Tai

    2011-01-31

    Dual-layer metallic wire-hole structures were fabricated and their terahertz transmission properties were measured. They exhibit polarization-dependent transmittance with large extinction ratios. Simulation and experimental results on structures with different wire-to-hole orientations provide strong evidence that the resonance peaks are caused by plasmonic coupling between the two metallic layers. A simplified LC-circuit model is proposed to explain the coupling mechanism and to estimate the peak frequencies. Our results suggest that specific electromagnetic response can be achieved by appropriate design of the geometrical patterns on the two metallic layers and a suitable polarization of the incident wave.

  16. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  17. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-09-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.

  18. Low frequency magnetic response in antiferromagnetically coupled Fe/Cr multilayers.

    PubMed

    Aliev, F G; Martinez, J L; Moshchalkov, V V; Bruynseraede, Y; Levanyuk, A P; Villar, R

    2002-05-06

    The magnetic field and temperature dependence of the low frequency magnetic response of antiferromagnetically coupled Fe/Cr(100) multilayers has been studied between +/-500 Oe, from 2 to 300 K. At T = 2 K the losses exhibit an unusually strong frequency dependence which can be described within a single relaxation time scheme. This relaxation time proves to be strongly field dependent. These phenomena are specific for epitaxial multilayers with large magnetoresistance. The behavior of the relaxation time at low temperatures might be related to some quantum tunneling processes.

  19. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ~4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD). ?? The Author Geophysical Journal International ?? 2011 RAS.

  20. Variational approach to low-frequency kinetic-MHD in the current coupling scheme

    NASA Astrophysics Data System (ADS)

    Burby, Joshua W.; Tronci, Cesare

    2017-04-01

    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which obeys a kinetic equation. In this work we apply Hamilton’s variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling schemes, in which energetic particle dynamics are expressed in either guiding center or gyrocenter coordinates. When guiding center theory is used to model the hot particles, we show how energy conservation requires corrections to the standard magnetization term. On the other hand, charge and momentum conservation in gyrokinetic-MHD lead to extra terms in the usual definition of the hot current density as well as modifications to conventional gyrocenter dynamics. All these new features arise naturally from the underlying variational structure of the proposed models.

  1. Lower Bounds on the Frequency Estimation Error in Magnetically Coupled MEMS Resonant Sensors.

    PubMed

    Paden, Brad E

    2016-02-01

    MEMS inductor-capacitor (LC) resonant pressure sensors have revolutionized the treatment of abdominal aortic aneurysms. In contrast to electrostatically driven MEMS resonators, these magnetically coupled devices are wireless so that they can be permanently implanted in the body and can communicate to an external coil via pressure-induced frequency modulation. Motivated by the importance of these sensors in this and other applications, this paper develops relationships among sensor design variables, system noise levels, and overall system performance. Specifically, new models are developed that express the Cramér-Rao lower bound for the variance of resonator frequency estimates in terms of system variables through a system of coupled algebraic equations, which can be used in design and optimization. Further, models are developed for a novel mechanical resonator in addition to the LC-type resonators.

  2. Variational approach to low-frequency kinetic-MHD in the current-coupling scheme

    NASA Astrophysics Data System (ADS)

    Tronci, Cesare; Burby, Joshua

    2016-10-01

    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, unless non-inertial force terms are inserted in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates. Financial support by the Leverhulme Trust Research Project Grant No. 2014-112 is greatly acknowledged.

  3. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  4. Breaking the Symmetry of Forward-Backward Light Emission with Localized and Collective Magnetoelectric Resonances in Arrays of Pyramid-Shaped Aluminum Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodriguez, S. R. K.; Arango, F. Bernal; Steinbusch, T. P.; Verschuuren, M. A.; Koenderink, A. F.; Rivas, J. Gómez

    2014-12-01

    We propose aluminum nanopyramids (ANPs) as magnetoelectric optical antennas to tailor the forward versus backward luminescence spectrum. We present light extinction and emission experiments for an ANP array wherein magnetoelectric localized resonances couple to in-plane diffracted orders. This coupling leads to spectrally sharp collective resonances. Luminescent molecules drive both localized and collective resonances, and we experimentally demonstrate an unconventional forward versus backward luminescence spectrum. Through analytical calculations, we show that the magnetic, magnetoelectric, and quadrupolar moments of ANPs—which lie at the origin of the observed effects—are enhanced by their tapering and height. Full-wave simulations show that localized and delocalized magnetic surface waves, with an excitation strength depending on the plane wave direction, direct the forward versus backward emitted intensity.

  5. On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus

    PubMed Central

    Scheffer-Teixeira, Robson; Tort, Adriano BL

    2016-01-01

    Phase-amplitude coupling between theta and multiple gamma sub-bands is a hallmark of hippocampal activity and believed to take part in information routing. More recently, theta and gamma oscillations were also reported to exhibit phase-phase coupling, or n:m phase-locking, suggesting an important mechanism of neuronal coding that has long received theoretical support. However, by analyzing simulated and actual LFPs, here we question the existence of theta-gamma phase-phase coupling in the rat hippocampus. We show that the quasi-linear phase shifts introduced by filtering lead to spurious coupling levels in both white noise and hippocampal LFPs, which highly depend on epoch length, and that significant coupling may be falsely detected when employing improper surrogate methods. We also show that waveform asymmetry and frequency harmonics may generate artifactual n:m phase-locking. Studies investigating phase-phase coupling should rely on appropriate statistical controls and be aware of confounding factors; otherwise, they could easily fall into analysis pitfalls. DOI: http://dx.doi.org/10.7554/eLife.20515.001 PMID:27925581

  6. Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators.

    PubMed

    Borkowski, L; Perlikowski, P; Kapitaniak, T; Stefanski, A

    2015-06-01

    The subject of the experimental research supported with numerical simulations presented in this paper is an analog electrical circuit representing the ring of unidirectionally coupled single-well Duffing oscillators. The research is concentrated on the existence of the stable three-frequency quasiperiodic attractor in this system. It is shown that such solution can be robustly stable in a wide range of parameters of the system under consideration in spite of a parameter mismatch which is unavoidable during experiment.

  7. Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Borkowski, L.; Perlikowski, P.; Kapitaniak, T.; Stefanski, A.

    2015-06-01

    The subject of the experimental research supported with numerical simulations presented in this paper is an analog electrical circuit representing the ring of unidirectionally coupled single-well Duffing oscillators. The research is concentrated on the existence of the stable three-frequency quasiperiodic attractor in this system. It is shown that such solution can be robustly stable in a wide range of parameters of the system under consideration in spite of a parameter mismatch which is unavoidable during experiment.

  8. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron.

    PubMed

    Kuznetsov, Alexey S; Kopell, Nancy J; Wilson, Charles J

    2006-02-01

    Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.

  9. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  10. Frequency shift, damping, and tunneling current coupling with quartz tuning forks in noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian

    2016-09-01

    A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.

  11. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  12. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide

    PubMed Central

    Huang, Zhilei; Cui, Kaiyu; Bai, Guoren; Feng, Xue; Liu, Fang; Zhang, Wei; Huang, Yidong

    2016-01-01

    Optomechanical crystals have attracted great attention recently for their ability to realize strong photon-phonon interaction in cavity optomechanical systems. By far, the operation of cavity optomechanical systems with high mechanical frequency has to employ tapered fibres or one-sided waveguides with circulators to couple the light into and out of the cavities, which hinders their on-chip applications. Here, we demonstrate larger-centre-hole nanobeam structures with on-chip transmission-coupling waveguide. The measured mechanical frequency is up to 4.47 GHz, with a high mechanical Q-factor of 1.4 × 103 in the ambient environment. The corresponding optomechanical coupling rate is calculated and measured to be 836 kHz and 1.2 MHz, respectively, while the effective mass is estimated to be 136 fg. With the transmission waveguide coupled structure and a small footprint of 3.4 μm2, this simple cavity can be directly used as functional components or integrated with other on-chip devices in future practical applications. PMID:27686419

  13. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  14. Giant strain control of magnetoelectric effect in Ta|Fe|MgO

    PubMed Central

    Odkhuu, Dorj

    2016-01-01

    The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 103 fJV−1m−1. We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d–Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d–O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments. PMID:27597448

  15. Incommensurate crystal supercell and polarization flop observed in the magnetoelectric ilmenite MnTiO3

    DOE PAGES

    Silverstein, Harlyn J.; Skoropata, Elizabeth; Sarte, Paul M.; ...

    2016-02-19

    In the last few years the magnetoelectric behavior of MnTiO3 has been observed even though its been studied for many decades. We use neutron scattering on two separately grown single crystals and two powder samples to show the presence of a supercell that breaks R (3) over bar symmetry. We also present the temperature and field dependence of the dielectric constant and pyroelectric current and show evidence of nonzero off-diagonal magnetoelectric tensor elements (forbidden by R (3) over bar symmetry) followed by a polarization flop accompanying the spin flop transition at mu H-0(SF) = 6.5T. Mossbauer spectroscopy on MnTiO3 gentlymore » doped with Fe-57 was used to help shed light on the impact of the supercell on the observed behavior. Moreover, the full supercell structure could not be solved at this time due to a lack of visible reflections, the full scope of the results presented here suggest that the role of local spin-lattice coupling in the magnetoelectric properties of MnTiO3 is likely more important than previously thought.« less

  16. BiFeO(3): Synchrotron Radiation Structure Refinement And Magnetoelectric Geometry

    SciTech Connect

    Reyes, A.; Vega, C.de la; Fuentes, M.E.; Fuentes, L.

    2009-06-04

    Presently BiFeO{sub 3} focuses attention due to its multiferroic nature. This phase shows a highly distorted perovskite crystal structure, with R3c crystal symmetry. Details of the crystallographic structure are required input for a detailed explanation of its remarkable magnetoelectric properties. Present report contributes a high-resolution synchrotron radiation diffraction analysis of the BiFeO{sub 3} crystal structure. Single-phased sample was obtained by conventional solid-state reaction under bismuth atmosphere. XRD experiment was performed on beamline 2-1, Stanford Synchrotron Radiation Laboratory, with 12 keV X-rays. For data Rietveld processing, Fullprof software package was applied. Obtained cell parameters (in {angstrom}, hexagonal system description) were a = 5.57414(4); c = 13.85882(12). Group-theoretical analysis of BiFeO{sub 3} linear magnetoelectric tensor is presented. Only transverse effect is allowed by symmetry. Axial-symmetry polycrystal ceramics cannot show linear magnetoelectric coupling.

  17. Giant strain control of magnetoelectric effect in Ta|Fe|MgO.

    PubMed

    Odkhuu, Dorj

    2016-09-06

    The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 10(3) fJV(-1)m(-1). We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d-Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d-O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments.

  18. Giant strain control of magnetoelectric effect in Ta|Fe|MgO

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2016-09-01

    The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 103 fJV‑1m‑1. We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d–Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d–O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments.

  19. A time-dependent model of pulse-driven radio frequency capacitively coupled collisional plasma sheath

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.; Hossain, M. Mofazzal

    2017-01-01

    The time-dependent model of ion motion is used to propose an analytical model for dual frequency (DF) capacitively coupled plasma (CCP) sheath driven by a pulsed source and a radio-frequency source. In this model, the sheath is considered to be collisional. In this model, the time dependent terms of ion fluid equations are ignored, but the electric field, ion motion and ion density remain time dependent. Electron profile is assumed to be step-like. Analytical expressions for electron sheath width and sheath potential have been developed. The calculated sheath width and potential are compared with the dual radio frequency driven time dependent models of capacitively coupled plasma sheath. From the temporal evaluation of sheath motion and potential, it has been found that pulse driven sheath has higher sheath potential and sheath width than that of conventional radio frequency driven DF CCP. Moreover, it is also found that ion energy spread can be reduced using pulsed power. From the temporal investigation of sheath motion and potential, it has been found that the duty cycle of the pulse power significantly affects sheath width and sheath potential.

  20. Coupled solitons of intense high-frequency and low-frequency waves in Zakharov-type systems.

    PubMed

    Gromov, Evgeny; Malomed, Boris

    2016-12-01

    One-parameter families of exact two-component solitary-wave solutions for interacting high-frequency (HF) and low-frequency (LF) waves are found in the framework of Zakharov-type models, which couple the nonlinear Schrödinger equation for intense HF waves to the Boussinesq (Bq) or Korteweg-de Vries (KdV) equation for the LF component through quadratic terms. The systems apply, in particular, to the interaction of surface (HF) and internal (LF) waves in stratified fluids. These solutions are two-component generalizations of the single-component Bq and KdV solitons. Perturbed dynamics and stability of the solitary waves are studied in detail by means of analytical and numerical methods. Essentially, they are stable against separation of the HF and LF components if the latter one is shaped as a potential well acting on the HF field, and unstable, against splitting of the two components, with a barrier-shaped LF one. Collisions between the solitary waves are studied by means of direct simulations, demonstrating a trend to merger of in-phase solitons, and elastic interactions of out-of-phase ones.

  1. Coupled solitons of intense high-frequency and low-frequency waves in Zakharov-type systems

    NASA Astrophysics Data System (ADS)

    Gromov, Evgeny; Malomed, Boris

    2016-12-01

    One-parameter families of exact two-component solitary-wave solutions for interacting high-frequency (HF) and low-frequency (LF) waves are found in the framework of Zakharov-type models, which couple the nonlinear Schrödinger equation for intense HF waves to the Boussinesq (Bq) or Korteweg-de Vries (KdV) equation for the LF component through quadratic terms. The systems apply, in particular, to the interaction of surface (HF) and internal (LF) waves in stratified fluids. These solutions are two-component generalizations of the single-component Bq and KdV solitons. Perturbed dynamics and stability of the solitary waves are studied in detail by means of analytical and numerical methods. Essentially, they are stable against separation of the HF and LF components if the latter one is shaped as a potential well acting on the HF field, and unstable, against splitting of the two components, with a barrier-shaped LF one. Collisions between the solitary waves are studied by means of direct simulations, demonstrating a trend to merger of in-phase solitons, and elastic interactions of out-of-phase ones.

  2. [Cross Frequency Coupling Characteristic Analysis in Subthalamic Local Field Potentials of Parkinson's Disease].

    PubMed

    Wang, Zongbao; Huang, Yongzhi; Zhang, Xinjing; Geng, Xinyi; Chen, Xiao; Wang, Shouyan

    2015-08-01

    Pathological neural activity in subthalamic nucleus (STN) is closely related to the symptoms of Parkinson' s disease. Local field potentials (LFPs) recordings from subthalamic nucleus show that power spectral peaks exist at tremor, double tremor and tripble tremor frequencies, respectively. The interaction between these components in the multi-frequency tremor may be related to the generation of tremor. To study the linear and nonlinear relationship between those components, we analyzed STN LFPs from 9 Parkinson's disease patients using time frequency, cross correlation, Granger casuality and bi-spectral analysis. Results of the time-frequency analysis and cross-frequency correlation analysis demonstrated that the power density of those components significantly decreased as the alleviation of tremor and cross-correlation (0.18-0.50) exists during tremor period. Granger causality of the time-variant amplitude showed stronger contribution from tremor to double tremor components, and contributions from both tremor and double tremor components to triple tremor component. Quadratic phase couplings among these three components were detected by the bispectral approaches. The linear and nonlinear relationships existed among the multi-components and certainly confirmed that the dependence cross those frequencies and neurological mechanism of tremor involved complicate neural processes.

  3. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  4. Experimental investigations of the plasma radial uniformity in single and dual frequency capacitively coupled argon discharges

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Liu, Yong-Xin; Gao, Fei; Liu, Gang-Hu; Han, Dao-Man; Wang, You-Nian

    2016-12-01

    In the current work, the radial plasma density has been measured by utilizing a floating double probe in single and dual frequency capacitively coupled argon discharges operated in a cylindrical reactor, aiming at a better understanding of electromagnetic effects and exploring a method of improving the radial uniformity. The experimental results indicate that for single-frequency plasma sustained at low pressure, the plasma density radial profile exhibits a parabolic distribution at 90 MHz, whereas at 180 MHz, the profile evolves into a bimodal distribution, and both cases indicate poor uniformities. With increasing the pressure, the plasma radial uniformity becomes better for both driving frequency cases. By contrast, when discharges are excited by two frequencies (i.e., 90 + 180 MHz), the plasma radial profile is simultaneously influenced by both sources. It is found that by adjusting the low-frequency to high-frequency voltage amplitude ratio β, the radial profile of plasma density could be controlled and optimized for a wide pressure range. To gain a better plasma uniformity, it is necessary to consider the balance between the standing wave effect, which leads to a maximum plasma density at the reactor center, and the edge field effect, which is responsible for a maximum density near the radial electrode edge. This balance can be controlled either by selecting a proper gas pressure or by adjusting the ratio β.

  5. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  6. Room temperature multiferroic properties and magnetoelectric coupling in Sm and Ni substituted Bi{sub 4−x}Sm{sub x}Ti{sub 3−x}Ni{sub x}O{sub 12±δ} (x = 0, 0.02, 0.05, 0.07) ceramics

    SciTech Connect

    Paul, Joginder Bhardwaj, Sumit; Sharma, K. K.; Kotnala, R. K.; Kumar, Ravi

    2014-05-28

    Lead free multiferroic Bi{sub 4−x}Sm{sub x}Ti{sub 3−x}Ni{sub x}O{sub 12±δ} (x = 0.02, 0.05, and 0.07) samples have been synthesized by conventional solid state route. X-ray diffraction analysis reveals single phase up to x = 0.07, and a secondary phase appears at x > 0.07. Raman spectroscopy confirms the local distortions in the crystal. Field emission scanning electron microscopy shows plate like grains. Substitution has increased the orthorhombic distortion, grain size, and hence the ferroelectric transition temperature (T{sub c}). A significant reduction in the values of dielectric constant (ε′) and loss tangent (tan δ) has been observed with the increase of Sm and Ni ions. The increase in dc resistivity at room temperature has been found with substitution. Enhancement in the values of remnant polarization (2P{sub r}) and magnetization (2M{sub r}) is observed. Magnetoelectric coupling coefficient (α) values of 0.60 mV/cm/Oe are achieved in Bi{sub 4−x}Sm{sub x}Ti{sub 3−x}Ni{sub x}O{sub 12±δ} ceramic samples. Hence, we have successfully converted the ferroelectric Bi{sub 4}Ti{sub 3}O{sub 12} into a multiferroic, which is a new lead free multiferroic material, can be useful for future electromagnetic devices.

  7. Time-dependent magnetoelectric effect in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure: A ferromagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Zhao, Yue-Lei; Chen, Qian-Ping; Zhao, Yong-Gang; Pan, Liqing; Sun, Young

    2013-08-01

    Ferromagnetic resonance with applied electric fields has been used to investigate the magnetoelectric effect in a Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure. The out-of-plane magnetoelectric effect follows a butterfly behavior in response to electric field, consistent with the linear piezoelectric strain-mediated mechanism. In contrast, the in-plane magnetoelectric effect exhibits a loop-like dependence on electric field. In addition, a relaxation of the in-plane resonant field has been observed after the ferroelectric domains are switched. The loop-like feature and the time-dependent response suggest that the in-plane magnetoelectric coupling involves the 109° switching and relaxation of ferroelectric domains.

  8. Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case

    NASA Astrophysics Data System (ADS)

    Pietras, Bastian; Deschle, Nicolás; Daffertshofer, Andreas

    2016-11-01

    Populations of oscillators can display a variety of synchronization patterns depending on the oscillators' intrinsic coupling and the coupling between them. We consider two coupled symmetric (sub)populations with unimodal frequency distributions. If internal and external coupling strengths are identical, a change of variables transforms the system into a single population of oscillators whose natural frequencies are bimodally distributed. Otherwise an additional bifurcation parameter κ enters the dynamics. By using the Ott-Antonsen ansatz, we rigorously prove that κ does not lead to new bifurcations, but that a symmetric two-coupled-population network and a network with a symmetric bimodal frequency distribution are topologically equivalent. Seeking for generalizations, we further analyze a symmetric trimodal network vis-à-vis three coupled symmetric unimodal populations. Here, however, the equivalence with respect to stability, dynamics, and bifurcations of the two systems no longer holds.

  9. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    NASA Astrophysics Data System (ADS)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  10. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  11. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  12. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  13. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  14. Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control

    PubMed Central

    Nachstedt, Timo; Tetzlaff, Christian; Manoonpong, Poramate

    2017-01-01

    Rhythmic neural signals serve as basis of many brain processes, in particular of locomotion control and generation of rhythmic movements. It has been found that specific neural circuits, named central pattern generators (CPGs), are able to autonomously produce such rhythmic activities. In order to tune, shape and coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external signals. Nonlinear oscillators are a standard model of CPGs and are used in various robotic applications. A special class of nonlinear oscillators are adaptive frequency oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an external periodic signal and to keep this learned frequency once the external signal vanishes. AFOs have been successfully used, for instance, for resonant tuning of robotic locomotion control. However, the choice of parameters for a standard AFO is characterized by a trade-off between the speed of the adaptation and its precision and, additionally, is strongly dependent on the range of frequencies the AFO is confronted with. As a result, AFOs are typically tuned such that they require a comparably long time for their adaptation. To overcome the problem, here, we improve the standard AFO by introducing a novel adaptation mechanism based on dynamical coupling strengths. The dynamical adaptation mechanism enhances both the speed and precision of the frequency adaptation. In contrast to standard AFOs, in this system, the interplay of dynamics on short and long time scales enables fast as well as precise adaptation of the oscillator for a wide range of frequencies. Amongst others, a very natural implementation of this mechanism is in terms of neural networks. The proposed system enables robotic applications which require fast retuning of locomotion control in order to react to environmental changes or conditions. PMID:28377710

  15. Study of xCo0.8Ni0.2Fe2O4+(1-x) Pb0.99625 La0.0025Zr0.55Ti0.45O3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Dipti; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2016-06-01

    We are reporting here, the studies of the structural, dielectric, ferroelectric and magnetic properties of magnetoelectric composites of La modified lead zirconate titanate (PLZT) and Ni modified cobalt ferrite (CNFO) with compositional formula xCo0.8Ni0.2Fe2O4+(1-x) Pb0.99625La0.0025Zr0.55Ti0.45O3 (x=0.00, 0.05, 0.10, 0.15 and 1.00 by weight) prepared by the solid state reaction method. Coexistence of both the phases in composites was confirmed by X-Ray diffraction technique. The microstructure and average grain size were determined from Scanning Electron Micrograph (SEM) in backscattered mode. Both the phases could be observed clearly. The variations of dielectric properties with frequency and temperature were also studied. P-E and M-H hysteresis measurements were carried. Magnetoelectric coupling (ME) coefficient for samples with x=0.05 and 0.10 were measured as a function of DC magnetic field. Maximum value of ME coefficient (1.2 mV/cm Oe) and piezoelectric coefficient (96 pC/N) for x=0.05 were observed.

  16. Nonlinear Connectivity in the Human Stretch Reflex Assessed by Cross-Frequency Phase Coupling.

    PubMed

    Yang, Yuan; Solis-Escalante, Teodoro; Yao, Jun; van der Helm, Frans C T; Dewald, Julius P A; Schouten, Alfred C

    2016-12-01

    Communication between neuronal populations is facilitated by synchronization of their oscillatory activity. Although nonlinearity has been observed in the sensorimotor system, its nonlinear connectivity has not been widely investigated yet. This study investigates nonlinear connectivity during the human stretch reflex based on neuronal synchronization. Healthy participants generated isotonic wrist flexion while receiving a periodic mechanical perturbation to the wrist. Using a novel cross-frequency phase coupling metric, we estimate directional nonlinear connectivity, including time delay, from the perturbation to brain and to muscle, as well as from brain to muscle. Nonlinear phase coupling is significantly stronger from the perturbation to the muscle than to the brain, with a shorter time delay. The time delay from the perturbation to the muscle is 33 ms, similar to the reported latency of the spinal stretch reflex at the wrist. Source localization of nonlinear phase coupling from the brain to the muscle suggests activity originating from the motor cortex, although its effect on the stretch reflex is weak. As such nonlinear phase coupling between the perturbation and muscle activity is dominated by the spinal reflex loop. This study provides new evidence of nonlinear neuronal synchronization in the stretch reflex at the wrist joint with respect to spinal and transcortical loops.

  17. Numerical evaluation of aperture coupling in resonant cavities and frequency perturbation analysis

    NASA Astrophysics Data System (ADS)

    Dash, R.; Nayak, B.; Sharma, A.; Mittal, K. C.

    2014-01-01

    This paper presents a general formulation for numerical evaluation of the coupling between two identical resonant cavities by a small elliptical aperture in a plane common wall of arbitrary thickness. It is organized into two parts. In the first one we discuss the aperture coupling that is expressed in terms of electric and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical integrals. Carlson integrals have been numerically evaluated and under zero thickness approximation, the results match with the complete elliptical integrals of first and second kind. It is found that with zero wall thickness, the results obtained are the same as those of Bethe and Collin for an elliptical and circular aperture of zero thickness. In the second part, Slater's perturbation method is applied to find the frequency changes due to apertures of finite thickness on the cavity wall.

  18. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    PubMed Central

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-01-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices. PMID:28186145

  19. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  20. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    NASA Astrophysics Data System (ADS)

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-02-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices.

  1. Ultra-High Sensitive Magnetoelectric Nanocomposites Current Sensors

    DTIC Science & Technology

    2011-03-30

    H. Kim, M. I. Bichurin, S. N. Ivanov, Y. J. Pukinski and S. Priya, “Magnetoelectric Gradiometer ”, EURO. PHYS. J. B 71, 387-392 (2009). 16. V. Bedekar...2011). 9. V. Bedekar, M. I. Bichurin, S. N. Ivanov, Y. J. Pukinski, H. Kim, R. A. Islam, and S. Priya, “Magnetoelectric Gradiometer ”, MEIPIC6...A. Islam, H. Kim, M. I. Bichurin, S. N. Ivanov, Y. J. Pukinski and S. Priya, “Magnetoelectric Gradiometer ”, EURO. PHYS. J. B 71, 387-392 (2009). 16

  2. Electric polarization of magnetic domain walls in magnetoelectrics.

    PubMed

    Lobzenko, I P; Goncharov, P P; Ter-Oganessian, N V

    2015-06-24

    Two prominent magnetoelectrics MnWO4 and CuO possess low-temperature commensurate paraelectric magnetically ordered phase. Here using Monte Carlo simulations we show that the walls between the domains of this phase are ferroelectric with the same electric polarization direction and value as those in the magnetoelectric phases of these compounds. We also suggest that experimental observation of electric polarization of domain walls in MnWO4 should help to determine the macroscopic interactions responsible for its magnetoelectric properties.

  3. Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.

    2012-02-01

    Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

  4. Ferroelectric ordering and magnetoelectric effect of pristine and Ho-doped orthorhombic DyMnO{sub 3} by dielectric studies

    SciTech Connect

    Magesh, J.; Murugavel, P.; Mangalam, R. V. K.; Singh, K.; Simon, Ch.; Prellier, W.

    2015-08-21

    In this paper, the magnetoelectric coupling and ferroelectric ordering of the orthorhombic Dy{sub 1-x}Ho{sub x}MnO{sub 3} (x = 0 and 0.1) are studied from the magnetodielectric response of the polycrystalline samples. The dielectric study on the DyMnO{sub 3} reveals ferroelectric transition at 18 K along with an addition transition at 12 K. We suggest that the transition at 12 K could have originated from the polarization flop rather than being the rare earth magnetic ordering. The magnetodielectric study reveals a magnetoelectric coupling strength of 10%, which is stronger by two orders of magnitude in comparison to the hexagonal manganites. Surprisingly, the Ho{sup 3+} substitution in DyMnO{sub 3} suppresses the magnetoelectric coupling strength via the suppression of the spiral magnetic ordering. In addition, it also reduces the antiferromagnetic ordering and ferroelectric ordering temperatures. Overall, the studies show that the rare earth plays an important role in the magnetoelectric coupling strength through the modulation of spiral magnetic structure.

  5. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan

    2015-05-20

    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

  6. Spike width and frequency alter stability of phase-locking in electrically coupled neurons.

    PubMed

    Dodla, Ramana; Wilson, Charles J

    2013-06-01

    The stability of phase-locked states of electrically coupled type-1 phase response curve neurons is studied using piecewise linear formulations for their voltage profile and phase response curves. We find that at low frequency and/or small spike width, synchrony is stable, and antisynchrony unstable. At high frequency and/or large spike width, these phase-locked states switch their stability. Increasing the ratio of spike width to spike height causes the antisynchronous state to transition into a stable synchronous state. We compute the interaction function and the boundaries of stability of both these phase-locked states, and present analytical expressions for them. We also study the effect of phase response curve skewness on the boundaries of synchrony and antisynchrony.

  7. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    SciTech Connect

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  8. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    NASA Astrophysics Data System (ADS)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-01

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  9. Spatiotemporal Organization and Cross-Frequency Coupling of Sleep Spindles in Primate Cerebral Cortex

    PubMed Central

    Takeuchi, Saori; Murai, Rie; Shimazu, Hideki; Isomura, Yoshikazu; Mima, Tatsuya; Tsujimoto, Toru

    2016-01-01

    Study Objectives: The sleep spindle has been implicated in thalamic sensory gating, cortical development, and memory consolidation. These multiple functions may depend on specific spatiotemporal emergence and interactions with other spindles and other forms of brain activity. Therefore, we measured sleep spindle cortical distribution, regional heterogeneity, synchronization, and phase relationships with other electroencephalographic components in freely moving primates. Methods: Transcortical field potentials were recorded from Japanese monkeys via telemetry and were analyzed using the Hilbert-Huang transform. Results: Spindle (12–20 Hz) current sources were identified over a wide region of the frontoparietal cortex. Most spindles occurred independently in their own frequency, but some appeared concordant between cortical areas with frequency interdependence, particularly in nearby regions and bilaterally symmetrical regions. Spindles in the dorsolateral prefrontal cortex appeared around the surface-positive and depth-negative phase of transcortically recorded slow oscillations (< 1 Hz), whereas centroparietal spindles emerged around the opposite phase. The slow-oscillation phase reversed between the prefrontal and central regions. Gamma activities increased before spindle onset. Several regional heterogeneities in properties of human spindles were replicated in the monkeys, including frequency, density, and inter-cortical time lags, although their topographic patterns were different from those of humans. The phase-amplitude coupling between spindle and gamma activity was also replicated. Conclusions: Spindles in widespread cortical regions are possibly driven by independent rhythm generators, but are temporally associated to spindles in other regions and to slow and gamma oscillations by corticocortical and thalamocortical pathways. Citation: Takeuchi S, Murai R, Shimazu H, Isomura Y, Mima T, Tsujimoto T. Spatiotemporal organization and cross-frequency coupling

  10. Spectroscopy diagnostic of dual-frequency capacitively coupled CHF{sub 3}/Ar plasma

    SciTech Connect

    Liu, Wen-Yao; Du, Yong-Quan; Liu, Yong-Xin; Liu, Jia; Zhao, Tian-Liang; Wang, You-Nian; Xu, Yong; Li, Xiao-Song; Zhu, Ai-Min

    2013-11-15

    A combined spectroscopic method of absorption, actinometry, and relative optical emission intensity is employed to determine the absolute CF{sub 2} density, the relative F and H densities, H atom excitation temperature and the electron density in dual-frequency (60/2 MHz) capacitively coupled CHF{sub 3}/Ar plasmas. The effects of different control parameters, such as high-frequency (HF) power, low-frequency (LF) power, gas pressure, gap length and content of CHF{sub 3}, on the concentration of radical CF{sub 2}, F, and H and excitation temperature are discussed, respectively. It is found that the concentration of CF{sub 2} is strongly dependent on the HF power, operating pressure and the proportion of CHF{sub 3} in feed gas, while it is almost independent of the LF power and the gap length. A higher concentration ratio of F to CF{sub 2} could be obtained in dual-frequency discharge case. Finally, the generation and decay mechanisms of CF{sub 2} and F were also discussed.

  11. Theory of domain wall motion mediated magnetoelectric effects in a multiferroic composite

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Srinivasan, G.

    2014-10-01

    A model is discussed for magnetoelectric (ME) interactions originating from the motion of magnetic domain walls (DWs) in a multiferroic composite of orthoferrites RFeO3 (RFO) with magnetic stripe domains and a piezoelectric such as lead magnesium niobate-lead titanate (PMN-PT). The DWs in RFO can be set in motion with an ac magnetic field up to a critical speed of 20 km/s, the highest for any magnetic system, leading to the excitation of bulk and shear magnetoacoustic waves. Thus, the ME coupling will arise from flexural deformation associated with DW motion (rather than the Joule magnetostriction mediated coupling under a static or quasistatic condition). A c plane orthoferrite with a single Néel-type DW in the bc plane and an ac magnetic field H along the c axis is assumed. The deflection in the bilayer due to DW motion is obtained when the DW velocity is a linear function H and the resulting induced voltage across PMN-PT is estimated. It is shown that a combination of spatial and time harmonics of the bending deformation leads to (i) a linear ME coefficient defined by αE=E/H and (ii) a quadratic ME coefficient αEQ=E/H2. The model is applied to yttrium orthoferrites (YFO) and a PMN-PT bilayer since YFO has one of the highest DW mobility amongst the orthoferrites. The coefficient αE is dependent on the DW position, and it is maximum when the DW equilibrium position is at the center of the sample. In YFO/PMN-PT the estimated low-frequency αE ˜ 30 mV/cm Oe and resonance value is 1.5 V/(cm Oe). Since orthoferrites (and PMN-PT) are transparent in the visible region and have a large Faraday rotation, the DW dynamics and the ME coupling could be studied simultaneously. The theory discussed here is of interest for studies on ME coupling and for applications such as magnetically controlled electro-optic devices.

  12. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  13. Ultra sensitive magnetic sensors integrating the giant magnetoelectric effect with advanced microelectronics

    NASA Astrophysics Data System (ADS)

    Fang, Zhao

    This dissertation investigates approaches to enhance the performance, especially the sensitivity and signal to noise ratio of magnetoelectric sensors, which exploits the magnetoelectric coupling in magnetostrictive and piezoelectric laminate composites. A magnetic sensor is a system or device that can measure the magnitude of a magnetic field or each of its vector components. Usually the techniques encompass many aspects of physics and electronics. The common technologies used for magnetic field sensing include induction coil sensors, fluxgate, SQUID (superconducting quantum interference device), Hall effect, giant magnetoresistance, magnetostrictive/piezoelectric composites, and MEMS (microelectromechanical systems)-based magnetic sensors. Magnetic sensors have found a broad range of applications for many decades. For example, ultra sensitive magnetic sensors are able to detect tiny magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application. Measuring the brain's magnetic field is extremely challenging because they are so weak, have strengths of 0.1--1 pT and thus requiring magnetic sensors with sub-picotesla sensitivity. In fact, to date, these measurements can only performed with the most sensitive magnetic sensors, i.e., SQUID. However, such detectors need expensive and cumbersome cryogenics to operate. Additionally, the thermal insulation of the sensors prevents them from being placed very closed to the tissues under study, thereby preventing high-resolution measurement capability. All of these severely limit their broad usage and proliferation for biomedical imaging, diagnosis, and research. A novel ultra-sensitive magnetic sensor capable of operating at room temperature is investigated in this thesis. Magnetoelectric effect is a material phenomenon featuring the interchange between the magnetic and electric energies or signals. The large ME effect observed in ME composites, especially the ME laminates

  14. Converse magnetoelectric effect in ferromagnetic shape memory alloy/piezoelectric laminate

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Wang, D. H.; Han, Z. D.; Zhang, C. L.; Du, Y. W.; Huang, Z. G.

    2009-07-01

    In laminates, the converse magnetoelectric (CME) effect is often achieved by an elastic coupling between magnetostrictive and piezoelectric layers. Here the authors report on an alternative mechanism for obtaining CME. In a transition-metals-based ferromagnetic shape memory alloy/piezoelectric ceramic laminated composite, the stress-induced martensitic transformation is utilized to gain the magnetic changes, which gives rise to a giant CME effect consequently. The strong CME is observed at room temperature over a broad bandwidth, under weak magnetic bias and electric field.

  15. Modelling Tropical Cyclones-Ocean interactions: the role of the Atmophere - Ocean coupling frequency

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Fogli, Pier Giuseppe; Gualdi, Silvio; Masina, Simona; Navarra, Antonio

    2016-04-01

    The interaction between Tropical Cyclones (TCs) and ocean is a major mechanism responsible for energy exchange between the atmosphere and the ocean. TCs affect the thermal and dynamical structure of the ocean, but the magnitude of the impact is still uncertain. Very few CMIP5 models demonstrated ability in representing TCs, mainly due to their horizontal resolution. We aim to improve TCs representation in next CMIPs experiments through the new CMCC-CM2VHR General Circulation Model, having a horizontal resolution of 1/4 degree in both atmospheric and ocean components. The model is capable to represent realistically TCs up to Cat-5 Typhoons. A good representation of the TC-Ocean interaction strongly depends on the coupling frequency between the atmospheric and the ocean components. In this work, we found that a better representation of the negative Sea Surface Temperature - TC induced feedback, through a high (hourly) coupling frequency, ensures the reduction of the TC induced Power Dissipation Index (PDI) bias of one order of magnitude. In addition, a cat-5 storm case study is deeply investigated also in terms of TC effects on the deep ocean.

  16. Simulation and Measurement of Medium-Frequency Signals Coupling From a Line to a Loop Antenna

    PubMed Central

    Damiano, Nicholas W.; Li, Jingcheng; Zhou, Chenming; Brocker, Donovan E.; Qin, Yifeng; Werner, Douglas H.; Werner, Pingjuan L.

    2016-01-01

    The underground-mining environment can affect radio-signal propagation in various ways. Understanding these effects is especially critical in evaluating communications systems used during normal mining operations and during mine emergencies. One of these types of communications systems relies on medium-frequency (MF) radio frequencies. This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating MF coupling between a transmission line (TL) and a loop antenna in an underground coal mine. Two different types of measurements were completed: 1) line-current distribution and 2) line-to-antenna coupling. Measurements were taken underground in an experimental coal mine and on a specially designed surface test area. The results of these tests are characterized by current along a TL and voltage induced in the loop from a line. This paper concludes with a discussion of issues for MF TLs. These include electromagnetic fields at the ends of the TL, connection of the ends of the TL, the effect of other conductors underground, and the proximity of coal or earth. These results could help operators by providing examples of these challenges that may be experienced underground and a method by which to measure voltage induced by a line. PMID:27784954

  17. The Double Jones Birefringence in Magneto-electric Medium

    NASA Astrophysics Data System (ADS)

    Mahmood, Waqas; Zhao, Qing

    2015-09-01

    In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are considered as tensors. The polarization is shown lying in the plane of two perpendicular independent vectors, and the relationship for the transverse polarization is given. The propagation of an electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but with magneto-electric medium is given, which is measurable experimentally when the incident angle is . Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping of the wave.

  18. The Double Jones Birefringence in Magneto-electric Medium

    PubMed Central

    Mahmood, Waqas; Zhao, Qing

    2015-01-01

    In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are considered as tensors. The polarization is shown lying in the plane of two perpendicular independent vectors, and the relationship for the transverse polarization is given. The propagation of an electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but with magneto-electric medium is given, which is measurable experimentally when the incident angle is . Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping of the wave. PMID:26354609

  19. Numerical simulation of capacitively-coupled, radio-frequency plasma discharges

    NASA Astrophysics Data System (ADS)

    Hammond, Edward Percy, IV

    This research develops a novel, non-dissipative discretization for the drift-diffusion expression of electron flux in capacitively-coupled, radio-frequency plasma discharges. The new discretization is more robust and accurate than commonly used numerical techniques when applied to the solution of the plasma fluid equations. On a relatively coarse grid, the method provides results within a few percent of the grid-converged solution. Low-order upwinding, a common method for discretization of the electron flux; introduces significant robustness. However, on the same coarse grid, the plasma density can differ from the grid-converged result by nearly a factor of two. Another popular discretization of the electron flux is the Scharfetter-Gummel method. Although it is accurate on coarse grids, it is more expensive computationally due to its non-linear nature, and it introduces an additional approximation. It neglects the electron temperature gradient in the flux expression; this can affect the plasma density as much as 20%. A formal method for accelerating the solution towards the periodic, steady-state solution in one and multiple dimensions is also described. Direct integration of the governing equations in time will lead to the harmonic steady-state, but this may require tens or hundreds of thousands of radio-frequency periods when the plasma discharge contains significant neutral species that develop on a time-scale much longer than a radio-frequency period. In contrast, the acceleration scheme can reach the periodic steady-state in a few hundred to a few thousand radio-frequency periods. Previous efforts that used formal acceleration schemes were limited to one dimension. Finally, a fluid model of an argon plasma is developed and compared to experimental data at conditions relevant to low-pressure, capacitively-coupled plasma discharges. The computed results agree reasonably well with the experiments both quantitatively and qualitatively. This model is then used to

  20. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  1. A close-coupling multi-antenna type radio frequency driven ion source

    SciTech Connect

    Oka, Y.; Shoji, T.

    2012-02-15

    A newly close coupling multi-antenna type radio frequency driven ion source is tested for the purpose of essentially improving plasma coupling on the basis of our old type ion source, which reuses a NNBI (negative ion source for neutral beam injection) ion source used in 1/5th scale of the Large Helical Device NNBI. The ion source and the antenna structure are described, and the efficient plasma production in terms of the positive ion saturation current (the current density) is studied. The source is made of a metal-walled plasma chamber which is desirable from the point of view of the structural toughness for fusion and industrial application, etc. At around 160 kW of rf input power, the ion saturation current density successfully reaches the 5 A/cm{sup 2} level with a gas pressure of 0.6-2 Pa in hydrogen for 10 ms pulse duration. The rf power efficiency of the plasma production with a close coupling configuration of the antenna is improved substantially compared to that with the previous antenna unit in the old type ion source. The power efficiency is assessed as competing with that of other types of sources.

  2. A close-coupling multi-antenna type radio frequency driven ion source.

    PubMed

    Oka, Y; Shoji, T

    2012-02-01

    A newly close coupling multi-antenna type radio frequency driven ion source is tested for the purpose of essentially improving plasma coupling on the basis of our old type ion source, which reuses a NNBI (negative ion source for neutral beam injection) ion source used in 1∕5th scale of the Large Helical Device NNBI. The ion source and the antenna structure are described, and the efficient plasma production in terms of the positive ion saturation current (the current density) is studied. The source is made of a metal-walled plasma chamber which is desirable from the point of view of the structural toughness for fusion and industrial application, etc. At around 160 kW of rf input power, the ion saturation current density successfully reaches the 5 A∕cm(2) level with a gas pressure of 0.6-2 Pa in hydrogen for 10 ms pulse duration. The rf power efficiency of the plasma production with a close coupling configuration of the antenna is improved substantially compared to that with the previous antenna unit in the old type ion source. The power efficiency is assessed as competing with that of other types of sources.

  3. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals.

    PubMed

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-01-06

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer -11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  4. Hybrid simulations of solenoidal radio-frequency inductively coupled hydrogen discharges at low pressures

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian

    2016-12-01

    In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.

  5. Magnetoelectricity of single molecular toroics: The Dy4 ring cluster

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Plokhov, D. I.; Zvezdin, A. K.

    2016-11-01

    Spin-electric interactions and magnetic and magnetoelectric properties of the Dy4 ring molecular nanocluster are investigated. The effective spin-electric Hamiltonian is derived on a base of developed quantum mechanical model of the cluster spin structure. It is shown that the toroidal moment is a source of the quantum magnetoelectric effect. The dynamics of the toroidal moment (macroscopic quantum tunneling) is also discussed.

  6. Analysis and modeling of time-variant amplitude-frequency couplings of and between oscillations of EEG bursts.

    PubMed

    Witte, Herbert; Putsche, Peter; Hemmelmann, Claudia; Schelenz, Christoph; Leistritz, Lutz

    2008-08-01

    Low-frequency (0.5-2.5 Hz) and individually defined high-frequency (7-11 or 8-12 Hz; 11-15 or 14-18 Hz) oscillatory components of the electroencephalogram (EEG) burst activity derived from thiopental-induced burst-suppression patterns (BSP) were investigated in seven sedated patients (17-26 years old) with severe head injury. The predominant high-frequency burst oscillations (>7 Hz) were detected for each patient by means of time-variant amplitude spectrum analysis. Thereafter, the instantaneous envelope (IE) and the instantaneous frequency (IF) were computed for these low- and high-frequency bands to quantify amplitude-frequency dependencies (envelope-envelope, envelope-frequency, and frequency-frequency correlations). Time-variant phase-locking, phase synchronization, and quadratic phase couplings are associated with the observed amplitude-frequency characteristics. Additionally, these time-variant analyses were carried out for modeled burst patterns. Coupled Duffing oscillators were adapted to each EEG burst and by means of these models data-based burst simulations were generated. Results are: (1) strong envelope-envelope correlations (IE courses) can be demonstrated; (2) it can be shown that a rise of the IE is associated with an increase of the IF (only for the frequency bands 0.5-2.5 and 7-11 or 8-12 Hz); (3) the rise characteristics of all individually averaged envelope-frequency courses (IE-IF) are strongly correlated; (4) for the 7-11 or 8-12 Hz oscillation these associations are weaker and the variation between the time courses of the patients is higher; (5) for both frequency ranges a quantitative amplitude-frequency dependency can be shown because higher IE peak maxima are accompanied by stronger IF changes; (6) the time range of significant phase-locking within the 7-11 or 8-12 Hz frequency bands and of the strongest quadratic phase couplings (between 0.5-2.5 and 7-11 or 8-12 Hz) is between 0 and 1,000 ms; (7) all phase coupling characteristics of the

  7. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Yeom, Geun Young

    2016-09-01

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P2MHz) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P13.56MHz) has been used in continuous mode. The substrate has been biased with a separate bias power at (P12.56MHz) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as `initial overshoot', pulse `on-phase' and pulse `off-phase'. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse `on-phase' and `off-phase'. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  8. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-02-01

    We theoretically propose how to observe topological effects in a generic classical system of coupled harmonic oscillators, such as classical pendula or lumped-element electric circuits, whose oscillation frequency is modulated fast in time. Making use of Floquet theory in the high-frequency limit, we identify a regime in which the system is accurately described by a Harper-Hofstadter model where the synthetic magnetic field can be externally tuned via the phase of the frequency modulation of the different oscillators. We illustrate how the topologically protected chiral edge states, as well as the Hofstadter butterfly of bulk bands, can be observed in the driven-dissipative steady state under a monochromatic drive. In analogy with the integer quantum Hall effect, we show how the topological Chern numbers of the bands can be extracted from the mean transverse shift of the steady-state oscillation amplitude distribution. Finally, we discuss the regime where the analogy with the Harper-Hofstadter model breaks down.

  9. Size effects on magnetoelectric response of multiferroic composite with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.

    2015-12-01

    This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.

  10. Dynamics of a driven two-level atom coupled to a frequency-tunable cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1998-08-01

    A cavity-modified master equation is derived for a coherently driven two-level atom coupled to a single-mode cavity in the bad cavity limit, in which the cavity frequency is tuned to either the center or one of the sidebands of the Mollow triplet. The atomic populations in both the bare- and dressed-state representations are analyzed in terms of the cavity-modified transition rates. In the bare-state basis, the role of the cavity may be interpreted as enhancing the stimulated absorption of the atom while suppressing the stimulated emission. The bare-state population may thus be inverted under appropriate conditions. The dressed-state inversion, however, originates from the enhancement of the atom-cavity interaction when the cavity is resonant with the atomic dressed-state transition. We show that two-phase quadratures of the atomic polarization decay at different rates. The decay of the in-phase (or out-of-phase) quadrature may be greatly inhibited as the driving intensity increases, depending on the cavity resonant frequency. The spectrum of the atomic fluorescence emitted out the side of the cavity is also studied. The spectral profiles are sensitive to the cavity frequency. When the cavity frequency is tuned to the center of the Mollow resonances, the fluorescence spectrum is symmetrical with three peaks whose linewidths and heights are intensity dependent. When the cavity frequency is tuned to one of the Mollow sidebands, however, it is asymmetric, and the central peak and the sideband on resonance with the cavity can be significantly suppressed for strong driving fields. All three spectral lines can be narrowed by increasing the Rabi frequency. The physics of these striking spectral features is explored in the dressed-state basis. We also investigate the probe absorption spectrum. When the cavity frequency is tuned to the center of the Mollow fluorescence triplet, the central component exhibits a Lorentzian line shape, while the side bands show the Rayleigh

  11. A model of magneto-electric multipoles.

    PubMed

    Lovesey, S W; Balcar, E

    2015-03-18

    A long-known Hamiltonian of electrons with entangled spin and orbital degrees of freedom is re-examined as a model of magneto-electric multipoles (MEs). In the model, a magnetic charge and simple quantum rotator are tightly locked in action, some might say they are enslaved entities. It is shown that MEs almost perfectly accord with those inferred from an analysis of magnetic neutron diffraction data on a ceramic superconductor (YBCO) in the pseudo-gap phase. Nigh on perfection between Stone's model and inferred MEs is achieved by addition to the original model of a crystal-field potential appropriate for the magnetic space group used in the published data analysis. An impression of thermal properties of multipoles is sought from a molecular-field model.

  12. Time Circular Birefringence in Time-Dependent Magnetoelectric Media

    PubMed Central

    Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin

    2015-01-01

    Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928

  13. Neutron powder diffraction study of nuclear and magnetic structures of multiferroic (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3: Evidence for isostructural phase transition and magnetoelastic and magnetoelectric couplings

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Senyshyn, Anatoliy; Fuess, Hartmut; Chatterji, Tapan; Pandey, Dhananjai

    2011-02-01

    We report here the results of a high-resolution neutron powder diffraction study on the multiferroic solid solution system (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3 in the temperature range 4 to 700 K. Using irreducible representation theory to analyze the magnetic structure by Rietveld refinement, we show that the magnetic structure is collinear G-type antiferromagnetic. Further, we confirm the occurrence of an isostructural phase transition (IPT) accompanying the magnetic ordering around ˜625 K in (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3. It is shown that as a result of the IPT, the positions of all the atoms change significantly in the magnetically ordered phase, leading to an excess polarization which scales linearly with the sublattice magnetization obtained by Rietveld refinement of the magnetic structure. Structural evidence for magnetoelastic coupling for the magnetic transitions below room temperature is also presented.

  14. High-Temperature Annealing by Subatmospheric-Pressure Radio-Frequency Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Miyake, Masatoshi; Yokogawa, Ken'etsu

    2012-08-01

    High-temperature annealing was performed by a novel annealing system using subatmospheric-pressure radio-frequency capacitively coupled plasma (SAP-CCP). The heating characteristics and stability of discharge were studied. An electrode temperature of 1900 °C was obtained with a stable and uniform glow-like discharge. Also, the characteristics of annealing were investigated using silicon wafers implanted with boron ions accelerated by 5 kV at doses of 2.0×1015 cm-2. The sheet resistance decreased with increasing annealing temperature in the same manner as in conventional rapid thermal annealing. As a result, a sheet resistance of 86 Ω/sq was successfully achieved at an electrode temperature of 1080 °C without any surface roughness.

  15. Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Juergen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Esslinger, Christine; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Richardson-Klavehn, Alan

    2014-12-23

    The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.

  16. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  17. Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation

    PubMed Central

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Juergen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Esslinger, Christine; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Richardson-Klavehn, Alan

    2014-01-01

    The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding. DOI: http://dx.doi.org/10.7554/eLife.05352.001 PMID:25535839

  18. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.

    PubMed

    Balram, Krishna C; Davanço, Marcelo I; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

  19. Parametric investigations of striations in electronegative capacitively coupled radio-frequency plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Xin; Schungel, Edmund; Korolov, Ihor; Donko, Zoltan; Schulze, Julian; Wang, You-Nian

    2016-09-01

    Striated structures in light emission have been observed by Phase Resolved Optical Emission Spectroscopy (PROES) and analyzed based on particle-based kinetic simulations in capacitively coupled rf CF4 plasmas. On this basis, we conduct a systematic study on the effects of external parameters on the striated structure by PROES and particle-based kinetic simulations. Our results exhibit that at 100 Pa pressure and 300 V voltage amplitude striations generally occur within a certain driving frequency range, i.e., between 2 MHz and 18 MHz, and the distance between the ion density maxima decreases with rising driving frequency. A mode discharge transition from the ``drift-ambipolar'' into ``striation'' mode could be observed by increasing the pressure or rf voltage. The reasons for these observations are further understood by the analytical solution of a simply model of the ion-ion plasma. This work has been supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11335004 and 11405018).

  20. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  1. Phase-amplitude cross-frequency coupling in EEG-derived cortical time series upon an auditory perception task.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2015-01-01

    Recent evidence suggests that cross-frequency coupling (CFC) plays an essential role in multi-scale communication across the brain. The amplitude of the high frequency oscillations, responsible for local activity, is modulated by the phase of the lower frequency activity, in a task and region-relevant way. In this paper, we examine this phase-amplitude coupling in a two-tone oddball paradigm for the low frequency bands (delta, theta, alpha, and beta) and determine the most prominent CFCs. Data consisted of cortical time series, extracted by applying three-dimensional vector field tomography (3D-VFT) to high density (256 channels) electroencephalography (HD-EEG), and CFC analysis was based on the phase-amplitude coupling metric, namely PAC. Our findings suggest CFC spanning across all brain regions and low frequencies. Stronger coupling was observed in the delta band, that is closely linked to sensory processing. However, theta coupling was reinforced in the target tone response, revealing a task-dependent CFC and its role in brain networks communication.

  2. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    SciTech Connect

    Breger, M.; Montgomery, M. H.

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  3. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption.

    PubMed

    Jia, Jingguo; Liu, Chuyang; Ma, Ning; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2013-08-01

    Ti-doped barium ferrite powders BaFe12-x Ti x O19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol-gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe(3+) ions and the exchange coupling effect between Fe(3+) and Fe(2+) ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around -45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties.

  4. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption

    PubMed Central

    Jia, Jingguo; Liu, Chuyang; Ma, Ning; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2013-01-01

    Ti-doped barium ferrite powders BaFe12−xTixO19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol–gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe3+ ions and the exchange coupling effect between Fe3+ and Fe2+ ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around −45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties. PMID:27877595

  5. Single-photon frequency conversion via interaction with a three-level atom coupled to a microdisk

    NASA Astrophysics Data System (ADS)

    Akbari, M.; Andrianov, S. N.; Kalachev, A. A.

    2017-02-01

    The frequency conversion of light has proved to be an important instrument for communication, spectroscopy, imaging and information processing. We theoretically study the frequency conversion of a single photon via its interaction with a Λ -type atom coupled to a microdisk. We show that the frequency conversion efficiency approaches unity even in the case of an interaction between clockwise and counterclockwise modes in the microdisk due to surface imperfections. By the use of the Schrieffer-Wolff transformation, we get an effective Hamiltonian that allows us to investigate the dynamics of the system and obtain time and probability of frequency conversion in different conditions.

  6. Reversible strain control of magnetic anisotropy in magnetoelectric heterostructures at room temperature

    PubMed Central

    Staruch, Margo; Gopman, Daniel B.; Iunin, Yury L.; Shull, Robert D.; Cheng, Shu Fan; Bussmann, Konrad; Finkel, Peter

    2016-01-01

    The ability to tune both magnetic and electric properties in magnetoelectric (ME) composite heterostructures is crucial for multiple transduction applications including energy harvesting or magnetic field sensing, or other transduction devices. While large ME coupling achieved through interfacial strain-induced rotation of magnetic anisotropy in magnetostrictive/piezoelectric multiferroic heterostructures has been demonstrated, there are presently certain restrictions for achieving a full control of magnetism in an extensive operational dynamic range, limiting practical realization of this effect. Here, we demonstrate the possibility of generating substantial reversible anisotropy changes through induced interfacial strains driven by applied electric fields in magnetostrictive thin films deposited on (0 1 1)-oriented domain-engineered ternary relaxor ferroelectric single crystals with extended temperature and voltage ranges as compared to binary relaxors. We show, through a combination of angular magnetization and magneto-optical domain imaging measurements, that a 90° in-plane rotation of the magnetic anisotropy and propagation of magnetic domains with low applied electric fields under zero electric field bias are realized. To our knowledge, the present value attained for converse magnetoelectric coupling coefficient is the highest achieved in the linear piezoelectric regime and expected to be stable for a wide temperature range, thus representing a step towards practical ME transduction devices. PMID:27869152

  7. Reversible strain control of magnetic anisotropy in magnetoelectric heterostructures at room temperature.

    PubMed

    Staruch, Margo; Gopman, Daniel B; Iunin, Yury L; Shull, Robert D; Cheng, Shu Fan; Bussmann, Konrad; Finkel, Peter

    2016-11-21

    The ability to tune both magnetic and electric properties in magnetoelectric (ME) composite heterostructures is crucial for multiple transduction applications including energy harvesting or magnetic field sensing, or other transduction devices. While large ME coupling achieved through interfacial strain-induced rotation of magnetic anisotropy in magnetostrictive/piezoelectric multiferroic heterostructures has been demonstrated, there are presently certain restrictions for achieving a full control of magnetism in an extensive operational dynamic range, limiting practical realization of this effect. Here, we demonstrate the possibility of generating substantial reversible anisotropy changes through induced interfacial strains driven by applied electric fields in magnetostrictive thin films deposited on (0 1 1)-oriented domain-engineered ternary relaxor ferroelectric single crystals with extended temperature and voltage ranges as compared to binary relaxors. We show, through a combination of angular magnetization and magneto-optical domain imaging measurements, that a 90° in-plane rotation of the magnetic anisotropy and propagation of magnetic domains with low applied electric fields under zero electric field bias are realized. To our knowledge, the present value attained for converse magnetoelectric coupling coefficient is the highest achieved in the linear piezoelectric regime and expected to be stable for a wide temperature range, thus representing a step towards practical ME transduction devices.

  8. Converse magnetoelectric effect via strain-driven magnetization reorientations in ultrathin ferromagnetic films on ferroelectric substrates

    NASA Astrophysics Data System (ADS)

    Pertsev, N. A.

    2015-07-01

    A phenomenological theory is developed for the strain-driven magnetization reorientations occurring in ultrathin ferromagnetic films coupled to ferroelectric substrates experiencing electric-field-induced piezoelectric deformations. The theory takes into account the surface/interface magnetic anisotropy playing an important role in the energetics of such films and first describes the thickness-driven spin reorientation transitions emerging in the presence of substrate-induced lattice strains. Then the threshold and critical intensities of the electric field created in a ferroelectric substrate are calculated, at which different magnetic states acquire the same energy or become unstable in a strained ferromagnetic overlayer. To demonstrate stability ranges of various possible magnetization orientations, we introduce magnetoelectric orientational diagrams, where the electric-field intensity and film thickness are employed as two variables. Such diagrams are constructed for ultrathin Ni, Fe, and F e60C o40 films coupled to single crystals of classical and relaxor ferroelectrics. The inspection of these diagrams shows that the use of multiferroic hybrids comprising ultrathin ferromagnetic films significantly enlarges the range of ferroic materials suitable for experimental observations of the strain-mediated converse magnetoelectric effect.

  9. Reversible strain control of magnetic anisotropy in magnetoelectric heterostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Staruch, Margo; Gopman, Daniel B.; Iunin, Yury L.; Shull, Robert D.; Cheng, Shu Fan; Bussmann, Konrad; Finkel, Peter

    2016-11-01

    The ability to tune both magnetic and electric properties in magnetoelectric (ME) composite heterostructures is crucial for multiple transduction applications including energy harvesting or magnetic field sensing, or other transduction devices. While large ME coupling achieved through interfacial strain-induced rotation of magnetic anisotropy in magnetostrictive/piezoelectric multiferroic heterostructures has been demonstrated, there are presently certain restrictions for achieving a full control of magnetism in an extensive operational dynamic range, limiting practical realization of this effect. Here, we demonstrate the possibility of generating substantial reversible anisotropy changes through induced interfacial strains driven by applied electric fields in magnetostrictive thin films deposited on (0 1 1)-oriented domain-engineered ternary relaxor ferroelectric single crystals with extended temperature and voltage ranges as compared to binary relaxors. We show, through a combination of angular magnetization and magneto-optical domain imaging measurements, that a 90° in-plane rotation of the magnetic anisotropy and propagation of magnetic domains with low applied electric fields under zero electric field bias are realized. To our knowledge, the present value attained for converse magnetoelectric coupling coefficient is the highest achieved in the linear piezoelectric regime and expected to be stable for a wide temperature range, thus representing a step towards practical ME transduction devices.

  10. Enhanced Sensitivity of Magnetoelectric Sensors by Tuning the Resonant Frequency

    DTIC Science & Technology

    2011-01-01

    free end of the cantilever. The length of the wire was varied from 4 to 20 cm long. The larg- est weight employed was 4 N. A set of Helmholtz coils ...rights_and_permissions Results on changing fr by varying the length l of the wire with a constant 1 N force are shown in Fig. 3. One sees that decreasing l also

  11. Mitigating Oscillator Pulling Due To Magnetic Coupling in Monolithic Mixed-Signal Radio-Frequency Integrated Circuits

    SciTech Connect

    Sobering, Ian David

    2014-01-01

    An analysis of frequency pulling in a varactor-tuned LC VCO under coupling from an on-chip PA is presented. The large-signal behavior of the VCO's inversion-mode MOS varactors is outlined, and the susceptibility of the VCO to frequency pulling from PA aggressor signals with various modulation schemes is discussed. We show that if the aggressor signal is aperiodic, band-limited, or amplitude-modulated, the varactor-tuned LC VCO will experience frequency pulling due to time-modulation of the varactor capacitance. However, if the aggressor signal has constant-envelope phase modulation, VCO pulling can be eliminated, even in the presence of coupling, through careful choice of VCO frequency and divider ratio. Additional mitigation strategies, including new inductor topologies and system-level architectural choices, are also examined.

  12. Spatial profiles of interelectrode electron density in direct current superposed dual-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Ohya, Yoshinobu; Ishikawa, Kenji; Komuro, Tatsuya; Yamaguchi, Tsuyoshi; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2017-04-01

    We present experimentally determined spatial profiles of the interelectrode electron density (n e) in dual-frequency capacitively coupled plasmas in which the negative direct current (dc) bias voltage (V dc) is superposed; in the experiment, 13 MHz (P low) was applied to the lower electrode and 60 MHz (P high) to the upper electrode. The bulk n e increased substantially with increases in the external power, P high, P low, and with increases in V dc. When P low was insufficient, the bulk n e decreased as the V dc bias increased. The bulk n e increased due to its dependence on V dc, especially for |V dc|  >  500 V. This may correspond to the sheath voltages (V s) of the lower electrode. The n e values in front of the upper electrode were coupled with the V dc: the V dc dependence first decreased and then increased. The dc currents (I dc) of the upper electrode were collected when a large P low was applied. The value of I dc at the threshold value of V dc  ≈  V s (e.g.  ‑500 V) increased with an increase in n e. When |V dc| exceeded the threshold, the spatial n e profile and the I dc dependence were changed relative to the electrical characteristics of the dc superposition; this led to a change in the location of the maximum n e, the width of the area of n e depletion in front of the electrodes, and a transition in the electron heating modes.

  13. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    SciTech Connect

    Ziętek, Sławomir Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  14. Heating mode transition in a hybrid direct current/dual-frequency capacitively coupled CF{sub 4} discharge

    SciTech Connect

    Zhang, Quan-Zhi; Wang, You-Nian; Bogaerts, Annemie

    2014-06-14

    Computer simulations based on the particle-in-cell/Monte Carlo collision method are performed to study the plasma characteristics and especially the transition in electron heating mechanisms in a hybrid direct current (dc)/dual-frequency (DF) capacitively coupled CF{sub 4} discharge. When applying a superposed dc voltage, the plasma density first increases, then decreases, and finally increases again, which is in good agreement with experiments. This trend can be explained by the transition between the four main heating modes, i.e., DF coupling, dc and DF coupling, dc source dominant heating, and secondary electron dominant heating.

  15. Apparent critical behaviour of sputter-deposited magnetoelectric antiferromagnetic Cr2O3 films near Néel temperature

    NASA Astrophysics Data System (ADS)

    Al-Mahdawi, M.; Shiokawa, Y.; Pati, S. P.; Ye, S.; Nozaki, T.; Sahashi, M.

    2017-04-01

    Chromium(III) oxide is a collinear antiferromagnet with a linear magnetoelectric effect. We are presenting the measurements of the magnetoelectric susceptibility α of a sputter-deposited 500 nm film and a bulk single-crystal substrate of Cr2O3. We investigated the magnetic phase-transition and the critical exponent β of the sublattice magnetization near Néel temperature. For the film, an exponent of 0.49(1) was found below 293 K, and changed to 1.06(4) near the Néel temperature of 298 K. For the bulk substrate, the exponent was constant at 0.324(4). We investigated the reversal probability of antiferromagnetic domains during magnetoelectric field cooling. For the sputtered films, reversal probability was zero above 298 K and stabilized only below 293 K. We attribute this behaviour to formation of grains during film growth, which gives different intergrain and intragrain exchange-coupling energies. The reversal probability dependence on the magnitude of cooling magnetic field could be explained by a phenomenological model. For the bulk substrate, reversal probability was stabilized immediately at the Néel temperature of 307.6 K.

  16. Contribution to the Theory of Magnetoelectric Effect in Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Kuivalainen, P.; Sinkkonen, J.; Stubb, T.

    1980-01-01

    A generation of a d.c. electric field at ferromagnetic resonance or the magnetoelectric effect in magnetic semiconductors is studied theoretically in the whole magnon wave vector space. The magnetoelectric effect in the classical regime kl < 1 and contributions of different electron-magnon interactions to the magnon drag effect in the quantum regime kl > 1 are calculated. All the calculated static electric fields are compared with experimental results. At low-microwave power levels the non-linear electrodynamic interaction due to a mixing of the oscillating magnetization (k = 0) and the induced electric field seems to dominate the magnetoelectric effect. In some cases the classical drag effect may also be significant. At sufficiently high power levels the quantum mechanical magnon drag can make the largest contribution. It is shown that in the magnon drag effect the induced static electric field is proportional to the damping coefficient of magnons.

  17. Magnetoelectric Behavior from S =1 /2 Asymmetric Square Cupolas

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Kimura, Kenta; Miyake, Atsushi; Tokunaga, Masashi; Matsuo, Akira; Kindo, Koichi; Akaki, Mitsuru; Hagiwara, Masayuki; Sera, Masakazu; Kimura, Tsuyoshi; Motome, Yukitoshi

    2017-03-01

    Magnetoelectric properties are studied by a combined experimental and theoretical study of a quasi-two-dimensional material composed of square cupolas, Ba(TiO )Cu4(PO4 ) 4 . The magnetization is measured up to the field above the saturation, and several anomalies are observed depending on the field directions. We propose a S =1 /2 spin model with Dzyaloshinskii-Moriya interactions, which reproduces the full magnetization curves well. Elaborating the phase diagram of the model, we show that the anomalies are explained by magnetoelectric phase transitions. Our theory also accounts for the scaling of the dielectric anomaly observed in the experiments. The results elucidate the crucial role of the in-plane component of Dzyaloshinskii-Moriya interactions, which is induced by the noncoplanar buckling of a square cupola. We also predict a "hidden" phase and another magnetoelectric response, both of which appear in a nonzero magnetic field.

  18. High frequency electromagnetism, heat transfer and fluid flow coupling in ANSYS multiphysics.

    PubMed

    Sabliov, Cristina M; Salvi, Deepti A; Boldor, Dorin

    2007-01-01

    The goal of this study was to numerically predict the temperature of a liquid product heated in a continuous-flow focused microwave system by coupling high frequency electromagnetism, heat transfer, and fluid flow in ANSYS Multiphysics. The developed model was used to determine the temperature change in water processed in a 915 MHz microwave unit, under steady-state conditions. The influence of the flow rates on the temperature distribution in the liquid was assessed. Results showed that the average temperature of water increased from 25 degrees C to 34 degrees C at 2 l/min, and to 42 degrees C at 1 l/min. The highest temperature regions were found in the liquid near the center of the tube, followed by progressively lower temperature regions as the radial distance from the center increased, and finally followed by a slightly higher temperature region near the tube's wall corresponding to the energy distribution given by the Mathieu function. The energy distribution resulted in a similar temperature pattern, with the highest temperatures close to the center of the tube and lower at the walls. The presented ANSYS Multiphysics model can be easily improved to account for complex boundary conditions, phase change, temperature dependent properties, and non-Newtonian flows, which makes for an objective of future studies.

  19. Mode transition and hysteresis in inductively coupled radio frequency argon discharge

    NASA Astrophysics Data System (ADS)

    Wegner, Th.; Küllig, C.; Meichsner, J.

    2016-02-01

    This contribution presents experimental results about the mode transition of an inductively coupled radio frequency (RF) (13.56 MHz) argon discharge at different total gas pressures. In particular, the positive ion saturation current and the line integrated electron density are measured by Langmuir probe and 160 GHz microwave interferometer, respectively. The mode transition strongly depends on the total gas pressure and can appear stepwise or continuously. The space resolved positive ion saturation current is separately shown for the E- and H-mode at different total gas pressures. Therewith, the pressure dependency of the RF sheath thickness indicates a collisional sheath. The hysteresis phenomenon during the E-H and the inverse H-E transition is discussed within the framework of the matching situation for different total gas pressures. The hysteresis width is analyzed using the absorbed power as well as the coil voltage and current. As a result, the width strongly increases with pressure regarding the power and the coil voltage in the E-mode and remains constant in the H-mode. In addition, the phase shift between the coil voltage and current shows a hysteresis effect, too.

  20. On the location of frequencies of maximum acoustic-to-seismic coupling

    SciTech Connect

    Sabatier, J.M.; Bass, H.E.; Elliott, G.R.

    1986-10-01

    Measurements of the acoustic-to-seismic transfer function (ratio of the normal soil particle velocity at a depth d to the acoustic pressure at the surface) for outdoor ground surfaces quite typically reveal a series of maxima and minima. In a publication (Sabatier et al., J. Acoust. Soc. Am. 80, 646--649 (1986)), the location and magnitude of these maxima are measured and predicted for several outdoor ground surfaces using a layered poroelastic model of the ground surface. In this paper, the seismic transfer function for a desert site is compared to the seismic transfer function for holes dug in the desert floor which were filled with pumice (volcanic rock). The hole geometry was rectangular and the hole depths varied from 0.25--2.0 m. The p- and s-wave speeds, densities, porosities, and flow resistivities for the desert floor and pumice were all measured. By varying the hole depth and the fill material, the maxima in the seismic transfer function can be shifted in frequency and the locations of the maxima compare reasonably with that of a hard-backed layer calculation. The area or extent of the acoustic-to-seismic coupling for pumice was determined to be less than 1 m/sup 2/.

  1. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  2. High mass positive ions and molecules in capacitively-coupled radio-frequency CF4 plasmas

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, W.; Cunge, G.; Booth, J. P.

    1999-06-01

    The positive ions and neutral radicals arriving at the earthed walls of a capacitively-coupled radio-frequency pure CF4 plasma were analyzed using a quadrupole mass spectrometer adapted for high masses. Experiments were performed at 50 and 200 mTorr, in an empty reactor and with Si and SiO2-coated Si substrates on the powered electrode. High mass ions and neutrals were detected, up to 500 and 300 amu, respectively. The abundance of high-mass species was greatest in the presence of silicon wafers and at higher pressure. The observed ion masses can be separated into distinct series, originating from different initial bases to which successive CF2 units have been added. We, therefore, propose that these high-mass species are the result of a gas phase polymerization process consisting of CF2 addition reactions, in agreement with a model proposed recently by our group. The influence of a silicon substrate derives primarily from the strong decrease that it induces in the concentration of F atoms, which otherwise limit the concentration of CF2 and of chain initiating species.

  3. A magnetoelectric composite based microwave phase shifter

    NASA Astrophysics Data System (ADS)

    Bichurin, M. I.; Petrov, V. M.; Srinivasan, G.

    2008-03-01

    Magnetoelectric (ME) properties of ferrite-ferroelectric composites arise from their response to elastic and electromagnetic force fields. The unique combination of magnetic, electrical, and ME interactions opens up the possibility of electric field tunable ferromagnetic resonance (FMR) based devices [1]. Here we discuss an ME phase shifter operating in the FMR region at 9.3 GHz. A slot line on a yttrium iron garnet film bonded to lead zirconate titanate (PZT) provides a basis for the phase shifter. The circularly polarized microwave magnetic field of the slot line interacts with the ferrite and causes variation of phase velocity with the controlling magnetic and electric fields. Electrical tuning is realized with the application of a control voltage due to PZT. The estimated phase shift per unit length and unit voltage is to 20 deg/cm kV for a PZT thickness of 0.5 mm. 1 S. Shastry and G. Srinivasan, M.I. Bichurin, V.M. Petrov, A.S. Tatarenko. Phys. Rev. B, 70 064416 (2004). - supported by grants from the Office of Naval Research and the Russian Foundation for Basic Research.

  4. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application

    NASA Astrophysics Data System (ADS)

    Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay

    2017-03-01

    Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm‑1 Oe‑1–130.5 V cm‑1 Oe‑1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.

  5. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    SciTech Connect

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.

  6. Excitation of low-frequency waves via coupling between slow Alfven waves in the GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Hirata, M.; Sakamoto, M.; Iwamoto, Y.; Sumida, S.; Jang, S.; Itagaki, J.; Onodera, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.; Nakashima, Y.

    2015-11-01

    In normal discharges of the GAMMA 10 tandem mirror, confined energy is saturated against heating power and unstable slow Alfven wave named as Alfven-Ion-Cyclotron (AIC) wave is observed in the saturated phase. This saturation may be partly related to (1) the decay of ICRF heating power, which is the main power source in GAMMA 10, due to the coupling with the AIC waves to produce difference-frequency waves and (2) the enhancement of axial transport of high-energy ions owing to nonlinearly excited low-frequency waves. To investigate these phenomena precisely, reflectometry is applied, which can provide assessment of nonlinear process at the location where the nonlinear process are taking place without any disturbance. Bispectral analysis applied to the density fluctuations measured at a wide radial region clearly shows the occurrence of various wave-wave couplings among the heating ICRF wave and the AIC waves. Generation of low-frequency waves via the coupling between coexisting AIC waves is found to be significant only near the core region. Details of measured nonlinear couplings are presented along with the observation showing the clear relation of generated low-frequency waves with the axial transport of high-energy ions. This work is partly supported by JSPS, Japan (25400531, 15K17797) and by NIFS, Japan (NIFS15KUGM101).

  7. Persistent multiferroicity without magnetoelectric effects in CuO

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Zou, Tao; Liu, Yi; Yan, Li-Qin; Sun, Young

    2011-09-01

    Multiferroicity and magnetoelectric effects in CuO have been investigated by measurements of magnetization, dielectric constant, and electric polarization with and without magnetic fields. Dielectric anomalies which indicate ferroelectric transitions were observed at two magnetic transition temperatures. Ferroelectric polarization was well detected in the incommensurate spiral phase. However, both dielectric constant and polarization have little changes in a 7 T magnetic field. Our study suggests that although with a high multiferroic temperature, the spiral spin structure in CuO is very stable and the induced ferroelectricity sustains even in a high magnetic field, which results in little magnetoelectric effects.

  8. MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic

    PubMed Central

    Jaiswal, Akhilesh; Roy, Kaushik

    2017-01-01

    In the quest for novel, scalable and energy-efficient computing technologies, many non-charge based logic devices are being explored. Recent advances in multi-ferroic materials have paved the way for electric field induced low energy and fast switching of nano-magnets using the magneto-electric (ME) effect. In this paper, we propose a voltage driven logic-device based on the ME induced switching of nano-magnets. We further demonstrate that the proposed logic-device, which exhibits decoupled read and write paths, can be used to construct a complete logic family including XNOR, NAND and NOR gates. The proposed logic family shows good scalability with a quadratic dependence of switching energy with respect to the switching voltage. Further, the proposed logic-device has better robustness against the effect of thermal noise as compared to the conventional current driven switching of nano-magnets. A device-to-circuit level coupled simulation framework, including magnetization dynamics and electron transport model, has been developed for analyzing the present proposal. Using our simulation framework, we present energy and delay results for the proposed Magneto-Electric Spin Logic (MESL) gates. PMID:28045074

  9. An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties.

    PubMed

    Lin, Lizhi; Wan, Yongping; Li, Faxin

    2012-07-01

    In this work, we propose an analytical nonlinear model for laminate multiferroic composites in which the magnetic-field-induced strain in magnetostrictive phase is described by a standard square law taking the stress effect into account, whereas the ferroelectric phase retains a linear piezoelectric response. Furthermore, differing from previous models which assume uniform deformation, we take into account the stress attenuation and adopt non-uniform deformation along the layer thickness in both piezoelectric and magnetostrictive phases. Analysis of this model on L-T and L-L modes of sandwiched Terfenol-D/lead zirconate titanate/Terfenol-D composites can well reproduce the observed dc magnetic field (H(dc)) dependent magnetoelectric coefficients, which reach their maximum with the H(dc) all at about 500 Oe. The model also suggests that stress attenuation along the layer thickness in practical composites should be taken into account. Furthermore, the model also indicates that a high volume fraction of magnetostrictive phase is required to get giant magnetoelectric coupling, coinciding with existing models.

  10. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  11. MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic

    NASA Astrophysics Data System (ADS)

    Jaiswal, Akhilesh; Roy, Kaushik

    2017-01-01

    In the quest for novel, scalable and energy-efficient computing technologies, many non-charge based logic devices are being explored. Recent advances in multi-ferroic materials have paved the way for electric field induced low energy and fast switching of nano-magnets using the magneto-electric (ME) effect. In this paper, we propose a voltage driven logic-device based on the ME induced switching of nano-magnets. We further demonstrate that the proposed logic-device, which exhibits decoupled read and write paths, can be used to construct a complete logic family including XNOR, NAND and NOR gates. The proposed logic family shows good scalability with a quadratic dependence of switching energy with respect to the switching voltage. Further, the proposed logic-device has better robustness against the effect of thermal noise as compared to the conventional current driven switching of nano-magnets. A device-to-circuit level coupled simulation framework, including magnetization dynamics and electron transport model, has been developed for analyzing the present proposal. Using our simulation framework, we present energy and delay results for the proposed Magneto-Electric Spin Logic (MESL) gates.

  12. Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunil; Kumar, Manoj; Chhoker, Sandeep; Katyal, S. C.; Singh, Hemant; Jewariya, Mukesh; Yadav, K. L.

    2012-03-01

    Mn doped BiFeO3 (5, 10 and 15 mol%) nanoparticles were synthesized using sol-gel technique. The influence of Mn doping on structural, dielectric, magnetic, magnetoelectric and optical properties of BiFeO3 was studied. Rietveld refinement of XRD patterns showed rhombohedral to orthorhombic phase transition for 15 mol% Mn doped BiFeO3 sample. Magnetic measurements revealed the enhancement of ferromagnetic property with increasing Mn doping in BiFeO3. The characteristic dielectric anomaly, expected in the vicinity of antiferromagnetic transition temperature TN (Neel temperature) was found in all Mn doped BiFeO3 samples. The magnetoelectric coupling was evidenced by the change in capacitance with the change in the applied magnetic field. On increasing Mn concentration from 5 to 15 mol% in BiFeO3, a change in magnetocapacitance from 1.46% to 2.6% showed the improvement of multiferroic properties. In order to explore the optical properties of Mn doped BiFeO3 nanoparticles, their photoluminescent properties were also investigated.

  13. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2016-01-01

    Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.

  14. Vibrational Coupling at the Topmost Surface of Water Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy.

    PubMed

    Suzuki, Yudai; Nojima, Yuki; Yamaguchi, Shoichi

    2017-03-15

    Unraveling vibrational coupling is the key to consistently interpret vibrational spectra of complex molecular systems. The vibrational spectrum of the water surface heavily suffers from vibrational coupling, which hinders complete understanding of the molecular structure and dynamics of the water surface. Here we apply heterodyne-detected sum frequency generation spectroscopy to the water surface and accomplish the assignment of a weak vibrational band located at the lower energy side of the free OH stretch. We find that this band is due to a combination mode of the hydrogen-bonded OH stretch and a low-frequency intermolecular vibration, and this combination band appears in the surface vibrational spectrum through anharmonic vibrational coupling that takes place exclusively at the topmost surface.

  15. Magnetic, magnetoelectric and dielectric behavior of CoFe2O4-Pb(Fe1/2Nb1/2)O3 particulate and layered composites

    NASA Astrophysics Data System (ADS)

    Kulawik, J.; Szwagierczak, D.; Guzdek, P.

    2012-09-01

    Magnetic, magnetoelectric and dielectric properties of multiferroic CoFe2O4-Pb(Fe1/2Nb1/2)O3 composites prepared as bulk ceramics were compared with those of tape cast and cofired laminates consisting of alternate ferrite and relaxor layers. X-ray diffraction analysis and Scanning Electron Microscope observations of ceramic samples revealed two-phase composition and fine grained microstructure with uniformly distributed ferrite and relaxor phases. High and broad maxima of dielectric permittivity attributed to dielectric relaxation were found for ceramic samples measured in a temperature range from -55 to 500 °C at frequencies 10 Hz-2 MHz. Magnetic hysteresis, zero-field cooled (ZFC) and field cooled (FC) curves, and dependencies of magnetization on temperature for both magnetoelectric composites were measured with a vibrating sample magnetometer in an applied magnetic field up to 80 kOe at 4-400 K. The hysteresis loops obtained for composites are typical of a mixture of the hard magnetic material with a significant amount of the paramagnet. The bifurcation of ZFC-FC magnetizations observed for both composites implies spin-glass behavior. Magnetoelectric properties at room temperature were investigated as a function of dc magnetic field (0.3-7.2 kOe) and frequency (10 Hz-10 kHz) of ac magnetic field. Both types of composites exhibit a distinct magnetoelectric effect. Maximum values of magnetoelectric coefficient attained for the layered composites exceed 200 mV/(cm Oe) and are almost three times higher than those for particulate composites.

  16. Multi-cavity coupling acoustic metamaterials with low-frequency broad band gaps based on negative mass density

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhui; Wu, Jiu Hui; Cao, Songhua; Jing, Li

    2016-08-01

    This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0-1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.

  17. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic.

    PubMed

    Mundy, Julia A; Brooks, Charles M; Holtz, Megan E; Moyer, Jarrett A; Das, Hena; Rébola, Alejandro F; Heron, John T; Clarkson, James D; Disseler, Steven M; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A; Ratcliff, William D; Ramesh, Ramamoorthy; Fennie, Craig J; Schiffer, Peter; Muller, David A; Schlom, Darrell G

    2016-09-22

    Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3-the geometric ferroelectric with the greatest known planar rumpling-we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially-from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

  18. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

    NASA Astrophysics Data System (ADS)

    Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.

    2016-09-01

    Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

  19. Digital computer program DF1758 fully coupled natural frequencies and mode shapes of a helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.

    1975-01-01

    The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.

  20. Using a Superconducting Resonator with Frequency-Compensated Tunable Coupling to Transfer a Quantum State Deterministically and Directly

    NASA Astrophysics Data System (ADS)

    Wenner, James; Neill, C.; Quintana, C.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; O'Malley, P.; Vainsencher, A.; White, T.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Roushan, P.; Sank, D.; Martinis, John M.

    Deterministic direct quantum state transfer between devices on different chips requires the ability to transfer quantum states between traveling qubits and fixed logic qubits. Reflections must be minimized to avoid energy loss and phase interference; this requires tunable coupling to an inter-chip line while the two devices are at equal frequencies. To achieve this, we use a 6GHz superconducting coplanar resonator with tunable coupling to a 50 Ohm transmission line. We compensate for the resulting shift in resonator frequency by simultaneously tuning a second SQUID. We measure the device coherence and demonstrate the ability to release a single-frequency shaped pulse into the transmission line, efficiently capture a shaped pulse, and deterministically and directly transfer a quantum state.

  1. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  2. Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column.

    PubMed

    Sotero, Roberto C

    2016-11-01

    Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important indicator of information transmission in the brain. However, the neurobiological mechanisms underlying its generation remain undetermined. A realistic, yet tractable computational model of the phenomenon is thus needed. Here we analyze a neural mass model of a cortical column, comprising fourteen neuronal populations distributed across four layers (L2/3, L4, L5 and L6). A control analysis showed that the conditional transfer entropy (cTE) measure is able to correctly estimate the flow of information between neuronal populations. Then, we computed cTE from the phases to the amplitudes of the oscillations generated in the cortical column. This approach provides information regarding directionality by distinguishing PAC from APC (amplitude-phase coupling), i.e. the information transfer from amplitudes to phases, and can be used to estimate other types of CFC such as amplitude-amplitude coupling (AAC) and phase-phase coupling (PPC). While experiments often only focus on one or two PAC combinations (e.g., theta-gamma or alpha-gamma), we found that a cortical column can simultaneously generate almost all possible PAC combinations, depending on connectivity parameters, time constants, and external inputs. PAC interactions with and without an anatomical equivalent (direct and indirect interactions, respectively) were analyzed. We found that the strength of PAC between two populations was strongly correlated with the strength of the effective connections between the populations and, on average, did not depend on whether the PAC connection was direct or indirect. When considering a cortical column circuit as a complex network, we found that neuronal populations making indirect PAC connections had, on average, higher local clustering coefficient, efficiency, and betweenness centrality than

  3. Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column

    PubMed Central

    2016-01-01

    Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important indicator of information transmission in the brain. However, the neurobiological mechanisms underlying its generation remain undetermined. A realistic, yet tractable computational model of the phenomenon is thus needed. Here we analyze a neural mass model of a cortical column, comprising fourteen neuronal populations distributed across four layers (L2/3, L4, L5 and L6). A control analysis showed that the conditional transfer entropy (cTE) measure is able to correctly estimate the flow of information between neuronal populations. Then, we computed cTE from the phases to the amplitudes of the oscillations generated in the cortical column. This approach provides information regarding directionality by distinguishing PAC from APC (amplitude-phase coupling), i.e. the information transfer from amplitudes to phases, and can be used to estimate other types of CFC such as amplitude-amplitude coupling (AAC) and phase-phase coupling (PPC). While experiments often only focus on one or two PAC combinations (e.g., theta-gamma or alpha-gamma), we found that a cortical column can simultaneously generate almost all possible PAC combinations, depending on connectivity parameters, time constants, and external inputs. PAC interactions with and without an anatomical equivalent (direct and indirect interactions, respectively) were analyzed. We found that the strength of PAC between two populations was strongly correlated with the strength of the effective connections between the populations and, on average, did not depend on whether the PAC connection was direct or indirect. When considering a cortical column circuit as a complex network, we found that neuronal populations making indirect PAC connections had, on average, higher local clustering coefficient, efficiency, and betweenness centrality than

  4. Van Allen Probes observations of cross-scale coupling between electromagnetic ion cyclotron waves and higher-frequency wave modes

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.; Engebretson, M.; Broughton, M.; Tian, S.; Wygant, J.; Breneman, A.; Thaller, S.

    2016-11-01

    We present observations of higher-frequency ( 50-2500 Hz, 0.1-0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5-2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument's burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves drops to the instrument noise level once every EMIC wave cycle. Such modulation could significantly impact wave-particle interactions such as acceleration and pitch angle scattering, which are crucial in the formation and depletion of the radiation belts. We present one case study with broadband, high-frequency waves observed to be modulated by EMIC waves repeatedly over a 2 h time span on both spacecraft. Finally, we show two additional case studies where other high-frequency wave modes exhibit similar modulation.

  5. Defining regions of interest using cross-frequency coupling in extratemporal lobe epilepsy patients

    NASA Astrophysics Data System (ADS)

    Guirgis, Mirna; Chinvarun, Yotin; del Campo, Martin; Carlen, Peter L.; Bardakjian, Berj L.

    2015-04-01

    Objective. Clinicians identify seizure onset zones (SOZs) for resection in an attempt to localize the epileptogenic zone (EZ), which is the cortical tissue that is indispensible for seizure generation. An automated system is proposed to objectively localize this EZ by identifying regions of interest (ROIs). Methods. Intracranial electroencephalogram recordings were obtained from seven patients presenting with extratemporal lobe epilepsy and the interaction between neuronal rhythms in the form of phase-amplitude coupling was investigated. Modulation of the amplitude of high frequency oscillations (HFOs) by the phase of low frequency oscillations was measured by computing the modulation index (MI). Delta- (0.5-4 Hz) and theta- (4-8 Hz) modulation of HFOs (30-450 Hz) were examined across the channels of a 64-electrode subdural grid. Surrogate analysis was performed and false discovery rates were computed to determine the significance of the modulation observed. Mean MI values were subjected to eigenvalue decomposition (EVD) and channels defining the ROIs were selected based on the components of the eigenvector corresponding to the largest eigenvalue. ROIs were compared to the SOZs identified by two independent neurologists. Global coherence values were also computed. Main results. MI was found to capture the seizure in time for six of seven patients and identified ROIs in all seven. Patients were found to have a poorer post-surgical outcome when the number of EVD-selected channels that were not resected increased. Moreover, in patients who experienced a seizure-free outcome (i.e., Engel Class I) all EVD-selected channels were found to be within the resected tissue or immediately adjacent to it. In these Engel Class I patients, delta-modulated HFOs were found to identify more of the channels in the resected tissue compared to theta-modulated HFOs. However, for the Engel Class IV patient, the delta-modulated HFOs did not identify any of the channels in the resected

  6. Equivalent circuit method for resonant magnetoelectric effect in disk-shaped laminated composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Wu, Gaojian; Zhang, Ning

    2015-01-01

    A theoretical model based on equivalent circuit analytical method has been presented for the magnetoelectric (ME) effect in disk-shaped laminated composites. The derived expressions for the ME voltage coefficient can be used to describe the frequency response of ME effect under both open circuit and finite electrical resistance load conditions. It was shown that the resonance frequency and resonant ME voltage coefficient increase with the increase in electrical resistance load in disk-shaped ME laminated composite, which is consistent with the observations for plate-shaped one. The theoretical results show good agreement with the experimental results in Tb0.3Dy0.7Fe1.92 (Terfenol-D)/Pb(Zr,Ti)O3 (PZT)/Terfenol-D disk-shaped sandwich laminated composite. This work is significant for designing ME devices and their signal-processing and electronic circuits.

  7. Trench and hole patterning with EUV resists using dual frequency capacitively coupled plasma (CCP)

    NASA Astrophysics Data System (ADS)

    Feurprier, Yannick; Lutker-Lee, Katie; Rastogi, Vinayak; Matsumoto, Hiroie; Chiba, Yuki; Metz, Andrew; Kumar, Kaushik; Beique, Genevieve; Labonte, Andre; Labelle, Cathy; Mignot, Yann; Hamieh, Bassem; Arnold, John

    2015-03-01

    Patterning at 10 nm and sub-10 nm technology nodes is one of the key challenges for the semiconductor industry. Several patterning techniques are under investigation to enable the aggressive pitch requirements demanded by the logic technologies. EUV based patterning is being considered as a serious candidate for the sub-10nm nodes. As has been widely published, a new technology like EUV has its share of challenges. One of the main concerns with EUV resists is that it tends to have a lower etch selectivity and worse LER/LWR than traditional 193nm resists. Consequently the characteristics of the dry etching process play an increasingly important role in defining the outcome of the patterning process. In this paper, we will demonstrate the role of the dual-frequency Capacitively Coupled Plasma (CCP) in the EUV patterning process with regards to improving LER/LWR, resist selectivity and CD tunability for holes and line patterns. One of the key knobs utilized here to improve LER and LWR, involves superimposing a negative DC voltage in RF plasma at one of the electrodes. The emission of ballistic electrons, in concert with the plasma chemistry, has shown to improve LER and LWR. Results from this study along with traditional plasma curing methods will be presented. In addition to this challenge, it is important to understand the parameters needed to influence CD tunability and improve resist selectivity. Data will be presented from a systematic study that shows the role of various plasma etch parameters that influence the key patterning metrics of CD, resist selectivity and LER/LWR. This work was performed by the Research Alliance Teams at various IBM Research and Development Facilities.

  8. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: theoretical and experimental studies.

    PubMed

    Dai, J; Belomestnykh, S; Ben-Zvi, I; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 10(4) to 10(9) provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  9. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  10. Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions

    SciTech Connect

    Srinivasan, G. Sreenivasulu, G.; Benoit, Crystal; Petrov, V. M.; Chavez, F.

    2015-05-07

    Composites of ferromagnetic and ferroelectric are of interest for studies on mechanical strain mediated magneto-electric (ME) interactions and for useful technologies. Here, we report on magnetic-field-assisted-assembly of barium titanate (BTO)-nickel ferrite (NFO) core-shell particles into linear chains and 2D/3D arrays and measurements of ME effects in such assemblies. First, we synthesized the core-shell nano-particles with 50–600 nm BTO and 10–200 nm NFO by chemical self-assembly by coating the ferroic particles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst via the “click” reaction. The core-shell structure was confirmed with electron microscopy and scanning probe microscopy. We obtained superstructure of the core-shell particles by subjecting them to a magnetic field gradient that exerts an attractive force on the particles and align them toward the regions of high field strengths. At low particle concentration, linear chains were formed and they evolved into 2D and 3D arrays at high particle concentrations. Magnetoelectric characterization on unassembled films and assembled arrays has been performed through measurements of low-frequency ME voltage coefficient (MEVC) by subjecting the sample to a bias magnetic field and an ac magnetic field. The MEVC is higher for field-assembled samples than for unassembled films and is found to be sensitive to field orientation with a higher MEVC for magnetic fields parallel to the array direction than for magnetic fields perpendicular to the array. A maximum MEVC of 20 mV/cm Oe, one of the highest reported for any bulk nanocomposite, is measured across the array thickness. A model is provided for ME coupling in the superstructures of BTO-NFO particulate composites. First, we estimated the MEVC for a free-standing BTO-NFO core-shell particle and then extended the model to include an array of linear chains of the particles. The theoretical estimates are in

  11. Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Sreenivasulu, G.; Benoit, Crystal; Petrov, V. M.; Chavez, F.

    2015-05-01

    Composites of ferromagnetic and ferroelectric are of interest for studies on mechanical strain mediated magneto-electric (ME) interactions and for useful technologies. Here, we report on magnetic-field-assisted-assembly of barium titanate (BTO)-nickel ferrite (NFO) core-shell particles into linear chains and 2D/3D arrays and measurements of ME effects in such assemblies. First, we synthesized the core-shell nano-particles with 50-600 nm BTO and 10-200 nm NFO by chemical self-assembly by coating the ferroic particles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst via the "click" reaction. The core-shell structure was confirmed with electron microscopy and scanning probe microscopy. We obtained superstructure of the core-shell particles by subjecting them to a magnetic field gradient that exerts an attractive force on the particles and align them toward the regions of high field strengths. At low particle concentration, linear chains were formed and they evolved into 2D and 3D arrays at high particle concentrations. Magnetoelectric characterization on unassembled films and assembled arrays has been performed through measurements of low-frequency ME voltage coefficient (MEVC) by subjecting the sample to a bias magnetic field and an ac magnetic field. The MEVC is higher for field-assembled samples than for unassembled films and is found to be sensitive to field orientation with a higher MEVC for magnetic fields parallel to the array direction than for magnetic fields perpendicular to the array. A maximum MEVC of 20 mV/cm Oe, one of the highest reported for any bulk nanocomposite, is measured across the array thickness. A model is provided for ME coupling in the superstructures of BTO-NFO particulate composites. First, we estimated the MEVC for a free-standing BTO-NFO core-shell particle and then extended the model to include an array of linear chains of the particles. The theoretical estimates are in qualitative

  12. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  13. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    NASA Astrophysics Data System (ADS)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency (< 50 cm‑1) modes, such as shear and layer-breathing modes have been well-established. Here, we review the layer-number dependent high-frequency (> 50 cm‑1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  14. Determination of the magnetostrictive response of nanoparticles via magnetoelectric measurements.

    PubMed

    Martins, P; Silva, M; Lanceros-Mendez, S

    2015-06-07

    It is successfully demonstrated that nanoparticle's magnetostriction can be accurately determined based on the magnetoelectric effect measured on polymeric composite materials. This represents a novel, simple and versatile method for the determination of particle's magnetostriction at the nano scale and in their dispersed state, which has been, up to now, a difficult and imprecise task.

  15. Spectrum of the cavity-QED microlaser: strong coupling effects in the frequency pulling at off resonance.

    PubMed

    Hong, H-G; Seo, W; Song, Y; Lee, M; Jeong, H; Shin, Y; Choi, W; Dasari, R R; An, K

    2012-12-14

    We report the first experimental observation of the cavity-QED microlaser spectrum, specifically the unconventional frequency pulling brought by a strong atom-cavity coupling at off resonance. The pulling is enhanced quadratically by the atom-cavity coupling to result in a sensitive response to the number of pumping atoms (2.1 kHz per atom maximally). Periodic variation of the pulling due to the coherent Rabi oscillation is also observed as the number of pumping atoms is increased across multiple thresholds.

  16. Artworks characterization at THz frequencies: preliminary results via the Fiber-Coupled Terahertz Time Domain System

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2015-04-01

    In the research field of art and archaeology, scientific observation and analysis are hugely demanded to gather as more information as possible on the materials and techniques used to create artworks as well as in previous restoration actions. In this frame, diagnostic tools exploiting electromagnetic waves deserve massive interest tanks to their ability to provide non-invasive and possibly contactless characterization of the investigated objects. Among the electromagnetic diagnostic technologies, those working at frequencies belonging to the 0.1-10 THz range are currently deserving an increased attention since THz waves are capable of penetrating into optically opaque materials (up to the preparation layers), without direct contact and by involving sufficiently low energy to be considered as perfectly non-invasive in practice [1,2]. Moreover, being THz non-ionizing radiations, a moderate exposure to them implies minor long term risks to the molecular stability of the historical artifact and humans. Finally, recent developments of THz technology have allowed the commercialization of compact, flexible and portable systems. One of them is the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega, acquired by the Institute of Electromagnetic Sensing of the Environment (IREA) in 2013. This system works in the range from 60GHz to 3THz with a waveform acquisition speed up to 500Hz, it is equipped with fiber optic coupled transmitting and receiving probes and, few months ago, has been potentiated by means of an automatic positioning system enabling to scan a 150mm x 150mm area. In the frame of the IREA research activities regarding cultural heritage, the FICO system is currently adopted to perform both spectroscopy and imaging, which are the two kind of analysis wherein THz technology can be profitably explored [3]. In particular, THz spectroscopy is used to distinguish different artists materials by exploiting their peculiar fingerprint in the absorption

  17. Specific features of the inverse magnetoelectric effect in two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 composites

    NASA Astrophysics Data System (ADS)

    Kalgin, A. V.; Gridnev, S. A.; Gribe, Z. H.

    2014-07-01

    The two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 magnetoelectric composites have been prepared by the deposition of ferromagnetic layers of different thicknesses from a thoroughly mixed Tb0.12Dy0.2Fe0.68 ferromagnetic powder and an epoxy glue on preliminarily polarized PbZr0.53Ti0.47O3 piezoelectric layers. The dependences of the inverse magnetoelectric effect on the frequency and strength of an electric field, the strength of a constant magnetic field, the thickness of a ferromagnetic layer, the average size of Tb0.12Dy0.2Fe0.68 grains in the ferromagnetic layer, and the temperature have been determined. Conditions for the maximum magnetoelectric response have been established.

  18. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Plönjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-06-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N2 mixture containing trace amounts of NO or O2 at pressures of P=0.4-1.2 atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N2 gas mixture considerably reduce the electron-ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3-7. Finally, spontaneous Raman spectra of N2 show that with the rf voltage the vibrational temperature

  19. Negative resistance phenomenon in dual-frequency capacitively coupled plasma-enhanced chemical vapor deposition system for photovoltaic manufacturing process

    NASA Astrophysics Data System (ADS)

    Kwon, H. C.; Aman-ur-Rehman, Won, I. H.; Park, W. T.; Lee, J. K.

    2012-01-01

    The validity of effective frequency concept is investigated for dual-frequency (DF) capacitively coupled plasma (CCP) discharges by using particle-in-cell/Monte Carlo collision simulations. This concept helps in analyzing DF CCP discharges in a fashion similar to single-frequency (SF) CCP discharges with effective parameters. Unlike the driving frequency of SF CCP discharges, the effective frequency in DF CCP is dependent on the ratio of the two driving currents (or voltages) and this characteristic makes it possible to control the ion flux and the ion bombardment energy independently. This separate control principally allows to increase the ion flux and plasma density for high deposition rates, while keeping the ion mean energy constant at low values to prevent the bombardment of highly energetic ions at the substrate surface to avoid unwanted damage in the solar cell manufacturing. The abrupt transition of the effective frequency leads to the phenomenon of negative resistance which is one of the several physical phenomena associated uniquely with DF CCP discharges. Using effective frequency concept, the plasma characteristics have been investigated in the negative resistance regime for solar cell manufacturing.

  20. Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3 MHz frequency at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Punjabi, Sangeeta B.; Sahasrabudhe, S. N.; Joshi, N. K.; Mangalvedekar, H. A.; Das, A. K.; Kothari, D. C.

    2014-01-01

    This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variation in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.

  1. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature

    PubMed Central

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2011-01-01

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm3 at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO3 (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (−E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10−12 sm−1. PMID:21901050

  2. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature.

    PubMed

    Kumar, Ashok; Scott, J F; Katiyar, R S

    2011-08-08

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10(-12) sm(-1).

  3. Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Mathurin, Théo; Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2016-02-01

    The motion of a ferromagnetic domain wall in nanodevices is usually induced by means of external magnetic fields or polarized currents. Here, we demonstrate the possibility to reversibly control the position of a Néel domain wall in a ferromagnetic nanostripe through a uniform mechanical stress. The latter is generated by an electro-active substrate combined with the nanostripe in a multiferroic heterostructure. We develop a model describing the magnetization distribution in the ferromagnetic material, properly taking into account the magnetoelectric coupling. Through its numerical implementation, we obtain the relationship between the electric field applied to the piezoelectric substrate and the position of the magnetic domain wall in the nanostripe. As an example, we analyze a structure composed of a PMN-PT substrate and a TbCo2/FeCo composite nanostripe.

  4. A generalized energy model for the behavior of single-crystal magneto-electric composites

    NASA Astrophysics Data System (ADS)

    Atulasimha, Jayasimha; Akhras, George; Flatau, Alison B.

    2007-04-01

    This paper explores a unified energy-based approach to model the non-linear behavior of both magnetostrictive and piezoelectric materials. While the energy-approach developed by Armstrong has been shown to capture the magnetostrictive behavior of materials such as Terfenol-D1 and Iron-Gallium2 along different crystallographic directions, extending this approach to piezoelectric materials presents a considerable challenge. Some piezo-electric materials such as PMN-PT and BaTiO 3 may undergo phase changes under applied electric fields and stress in addition to polarization switching. A modeling approach is developed in this paper to capture these effects. Finally, it is shown that the constitutive behavior for the piezo-electric/magnetostrictive layers, coupled by a simple blocked-force approach, is likely to model the behavior of magneto-electric composites.

  5. Magnetoelectric effects in the spiral magnets CuCl2 and CuBr2

    NASA Astrophysics Data System (ADS)

    Tolédano, P.; Ayala, A. P.; Furtado Filho, A. F. G.; do Nascimento, J. P. C.; Silva, M. A. S.; Sombra, A. S. B.

    2017-01-01

    The nature and symmetry of transition mechanisms in the spin-spiral copper halides CuCl2 and CuBr2 are analyzed theoretically. The magnetoelectric effects observed in the two multiferroic compounds are described and their phase diagram at zero and applied magnetic fields are worked out. The emergence of the electric polarization at zero field below the paramagnetic phase is shown to result from the coupling of two distinct spin-density waves and to be only partly related to the Dzialoshinskii-Moriya interactions. Applying a magnetic field along the two-fold monoclinic axis of CuCl2 yields a decoupling of the spin-density waves modifying the symmetry of the phase and the spin-spiral orientation. The remarkable periodic dependences of the magnetic susceptibility and polarization, on rotating the field in the monoclinic plane, are described theoretically.

  6. Antiferromagnetically Spin Polarized Oxygen Observed in Magneto-electric TbMn2O5

    SciTech Connect

    Wilkins, S.B.; Beale, T.A.W.; Johnson, R.D.; Bland, S.R.; Joly, Y.; Forrest, T.R.; McMorrow, D.F.; Yakhou, F.; Prabhakaran, D.; Boothroyd, A.T.; Hatton, P.D.

    2010-08-18

    We report the direct measurement of antiferromagnetic spin polarization at the oxygen sites in the multiferroic TbMn{sub 2}O{sub 5}, through resonant soft x-ray magnetic scattering. This supports recent theoretical models suggesting that the oxygen spin polarization is key to the magnetoelectric coupling mechanism. The spin polarization is observed through a resonantly enhanced diffraction signal at the oxygen K edge at the commensurate antiferromagnetic wave vector. Using the fdmnes code we have accurately reproduced the experimental data. We have established that the resonance arises through the spin polarization on the oxygen sites hybridized with the square based pyramid Mn{sup 3+} ions. Furthermore we have discovered that the position of the Mn{sup 3+} ion directly influences the oxygen spin polarization.

  7. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K.; Gans, T.; O'Connell, D.

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  8. Multisensory representation of frequency across audition and touch: High density electrical mapping reveals early sensory-perceptual coupling

    PubMed Central

    Butler, John S.; Foxe, John J.; Fiebelkorn, Ian C.; Mercier, Manuel; Molholm, Sophie

    2013-01-01

    The frequency of environmental vibrations is sampled by two of the major sensory systems, audition and touch, notwithstanding that these signals are transduced through very different physical media and entirely separate sensory epithelia. Psychophysical studies have shown that manipulating frequency in audition or touch can have a significant cross-sensory impact on perceived frequency in the other sensory system, pointing to intimate links between these senses during computation of frequency. In this regard, the frequency of a vibratory event can be thought of as a multisensory perceptual construct. In turn, electrophysiological studies point to temporally early multisensory interactions that occur in hierarchically early sensory regions where convergent inputs from the auditory and somatosensory systems are to be found. A key question pertains to the level of processing at which the multisensory integration of featural information such as frequency occurs. Do the sensory systems calculate frequency independently before this information is combined, or is this feature calculated in an integrated fashion during pre-attentive sensory processing? The well-characterized mismatch negativity, an electrophysiological response that indexes pre-attentive detection of a change within the context of a regular pattern of stimulation, served as our dependent measure. High-density electrophysiological recordings were made in humans while they were presented with separate blocks of somatosensory, auditory, and audio-somatosensory “standards” and “deviants”, where the deviant differed in frequency. Multisensory effects were identified beginning at ~200ms, with the multisensory MMN significantly different from the sum of the unisensory MMNs. This provides compelling evidence for preattentive coupling between the somatosensory and auditory channels in the cortical representation of frequency. PMID:23115172

  9. Comparison of air-launched and ground-coupled configurations of SFCW GPR in time, frequency and wavelet domain

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; De Pue, Jan; Cornelis, Wim; Van Meirvenne, Marc

    2015-04-01

    A stepped frequency continuous wave (SFCW) ground penetrating radar (GPR) system produces waveforms consisting of a sequence of sine waves with linearly increasing frequency. By adopting a wide frequency bandwidth, SFCW GPR systems offer an optimal resolution at each achievable measurement depth. Furthermore, these systems anticipate an improved penetration depth and signal-to-noise ratio (SNR) as compared to time-domain impulse GPRs, because energy is focused in one single frequency at a time and the phase and amplitude of the reflected signal is recorded for each discrete frequency step. However, the search for the optimal practical implementation of SFCW GPR technology to fulfil these theoretical advantages is still ongoing. In this study we compare the performance of a SFCW GPR system for air-launched and ground-coupled antenna configurations. The first is represented by a 3d-Radar Geoscope GS3F system operated with a V1213 antenna array. This array contains 7 transmitting and 7 receiving antennae resulting in 13 measurement channels at a spacing of 0.075 m and providing a total scan width of 0.975 m. The ground-coupled configuration is represented by 3d-Radar's latest-generation SFCW system, GeoScope Mk IV, operated with a DXG1212 antenna array. With 6 transmitting and 5 receiving antennae this array provides 12 measurement channels and an effective scan width of 0.9 m. Both systems were tested on several sites representative of various application environments, including a test site with different road specimens (Belgian Road Research Centre) and two test areas in different agricultural fields in Flanders, Belgium. For each test, data acquisition was performed using the full available frequency bandwidth of the systems (50 to 3000 MHz). Other acquisition parameters such as the frequency step and dwell time were varied in different tests. Analyzing the data of the different tests in time, frequency and wavelet domain allows to evaluate different performance

  10. Coupled analysis of high and low frequency resonant ultrasound spectroscopy: Application to the detection of defects in ceramic balls

    SciTech Connect

    Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi; Jenot, Frederic; Ourak, Mohamed; Desvaux, Sebastien

    2009-05-15

    A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. This kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.

  11. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency.

    PubMed

    Das, Sudeb; Kundu, Malay Kumar

    2012-10-01

    In this article, a novel multimodal medical image fusion (MIF) method based on non-subsampled contourlet transform (NSCT) and pulse-coupled neural network (PCNN) is presented. The proposed MIF scheme exploits the advantages of both the NSCT and the PCNN to obtain better fusion results. The source medical images are first decomposed by NSCT. The low-frequency subbands (LFSs) are fused using the 'max selection' rule. For fusing the high-frequency subbands (HFSs), a PCNN model is utilized. Modified spatial frequency in NSCT domain is input to motivate the PCNN, and coefficients in NSCT domain with large firing times are selected as coefficients of the fused image. Finally, inverse NSCT (INSCT) is applied to get the fused image. Subjective as well as objective analysis of the results and comparisons with state-of-the-art MIF techniques show the effectiveness of the proposed scheme in fusing multimodal medical images.

  12. A two-dimensional broadband vibration energy harvester using magnetoelectric transducer

    SciTech Connect

    Yang, Jin Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo; Bai, Xiaoling

    2013-12-09

    In this study, a magnetoelectric vibration energy harvester was demonstrated, which aims at addressing the limitations of the existing approaches in single dimensional operation with narrow working bandwidth. A circular cross-section cantilever rod, not a conventional thin cantilever beam, was adopted to extract vibration energy in arbitrary in-plane motion directions. The magnetic interaction not only resulted in a nonlinear motion of the rod with increased frequency bandwidth, but also contributed to a multi-mode motion to exhibit double power peaks. In energy harvesting with in-plane directions, it showed a maximum bandwidth of 4.4 Hz and power of 0.59 mW, with acceleration of 0.6 g (with g = 9.8 m s{sup −2})

  13. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  14. Electrical, magnetic, and direct and converse magnetoelectric properties of (1-x)Pb(Zr0.52Ti0.48)O3-(x)CoFe2O4 (PZT-CFO) magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Peng, Jian-hong; Hojamberdiev, Mirabbos; Li, Hai-qing; Mao, Duo-lu; Zhao, Yuan-juan; Liu, Peng; Zhou, Jian-ping; Zhu, Gang-qiang

    2015-03-01

    In this work, hydrothermal synthesis and ceramic sintering process were applied to fabricate (1-x)Pb(Zr0.52Ti0.48)O3-(x)CoFe2O4 (PZT-CFO) (x=0.20, 0.35, and 0.50) magnetoelectric (ME) composites. The X-ray diffraction (XRD) studies revealed that no chemical reaction occurred between individual PZT and CFO phases and confirmed the manifestation of PZT and CFO phases within the ME composite. Scanning electron microscopy (SEM) was used to investigate the microstructure and connectivity scheme in the ME composites. The dielectric constant (ε) and loss tangent (tan δ) were determined as functions of frequency and temperature for all the composites prepared. The polarization-electric field (P-E) and magnetization-magnetic field (M-H) hysteresis loops obtained indicate that both ferroelectric and ferromagnetic properties coexist in the ME composites prepared. The direct (DME) and converse magnetoelectric effects (CME) were measured only for the PZT-CFO20 (20 mol% CoFe2O4) composite sintered at 1100 °C for 4 h. The maximum values of ME voltage coefficient αME(dE/dH) and ME susceptibility coefficient αme (dH/dE) were 226 mV cm-1 Oe-1 at frequency of 75.1 kHz and 1.15×10-8 s/m at frequency of 66.8 kHz, respectively.

  15. Magnetoelectric coupling in Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 thin films deposited on Pt/TiO2/SiO2/Si substrate

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Zhu, J.; Poullain, G.; Bouregba, R.; More-Chevalier, J.; Pautrat, A.

    2013-01-01

    Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 (Terfenol-D/Pt/PZT) thin films were sputtered on Pt/TiO2/SiO2/Si substrate. PZT and Terfenol-D layers were chosen for their large piezoelectric and magnetostrictive coefficients, respectively. 4%-5% magnetocapacitance has been measured on a Terfenol-D/Pt/PZT stack at room temperature. A magnetoelectric (ME) voltage coefficient of 150 mV/cm Oe was obtained at low dc magnetic field out of mechanical resonance. This work demonstrates the possibility to achieve ME effect in integrated devices involving Terfenol-D and PZT thin films providing that the diffusion, which may occur between both active layers is reduced using an intermediate layer.

  16. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    PubMed

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception.

  17. Effects of relationship duration, cohabitation, and marriage on the frequency of intercourse in couples: Findings from German panel data.

    PubMed

    Schröder, Jette; Schmiedeberg, Claudia

    2015-07-01

    Research into the changes in the frequency of sexual intercourse is (with few exceptions) limited to cross-sectional analyses of marital duration. We investigate the frequency of intercourse while taking into account relationship duration as well as the duration of cohabitation and marriage, effects of parenthood, and relationship quality. For the analysis we apply fixed effects regression models using data from the German Family Panel (pairfam), a nationwide randomly sampled German panel survey. Our findings imply that the drop in sex frequency occurs early in the relationship, whereas neither cohabitation nor marriage affects the frequency of intercourse to a significant extent. Sex frequency is reduced during pregnancy and as long as the couple has small children, but becomes revived later on. Relationship quality is found to play a role as well. These results are contrary to the honeymoon effect found in earlier research, but indicate that in times of postponed marriage an analogous effect may be at work in the initial period of the relationship.

  18. Simulation and analysis of magnetic resonance elastography wave images using coupled harmonic oscillators and Gaussian local frequency estimation.

    PubMed

    Braun, J; Buntkowsky, G; Bernarding, J; Tolxdorff, T; Sack, I

    2001-06-01

    New methods for simulating and analyzing Magnetic Resonance Elastography (MRE) images are introduced. To simulate a two-dimensional shear wave pattern, the wave equation is solved for a field of coupled harmonic oscillators with spatially varying coupling and damping coefficients in the presence of an external force. The spatial distribution of the coupling and the damping constants are derived from an MR image of the investigated object. To validate the simulation as well as to derive the elasticity modules from experimental MRE images, the wave patterns are analyzed using a Local Frequency Estimation (LFE) algorithm based on Gauss filter functions with variable bandwidths. The algorithms are tested using an Agar gel phantom with spatially varying elasticity constants. Simulated wave patterns and LFE results show a high agreement with experimental data. Furthermore, brain images with estimated elasticities for gray and white matter as well as for exemplary tumor tissue are used to simulate experimental MRE data. The calculations show that already small distributions of pathologically changed brain tissue should be detectable by MRE even within the limit of relatively low shear wave excitation frequency around 0.2 kHz.

  19. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    SciTech Connect

    Wang, H.-L.; Liu, B.

    2014-03-21

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.

  20. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE PAGES

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; ...

    2016-01-14

    Unique twisted bilayers of MoSe2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking and couplingmore » across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  1. Flux distraction effect on magnetoelectric laminate sensors and gradiometer

    NASA Astrophysics Data System (ADS)

    Shen, Ying; Gao, Junqi; Wang, Yaojin; Hasanyan, Davresh; Finkel, Peter; Li, Jiefang; Viehland, D.

    2013-10-01

    A magnetic flux distraction effect caused by a nearby metallic material was investigated for Metglas/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminated magnetoelectric (ME) sensors. Using flux distraction, a ME sensor can perform an accurate search for metallic targets of different dimensions at various distances. Detection results and simulations were in good agreement. The findings demonstrate an effective means to employ stationary ME sensors and gradiometers for magnetic search applications.

  2. Magneto-Electric Conversion of Optical Energy to Electricity

    DTIC Science & Technology

    2015-07-06

    rotation of the molecule which contributes some heating to the system . While not significant in the context of magnetization, this finding sets a limit... efficiency estimated from heat generated by rotational excitations to be 999.0 , very close to unity and much higher than the limits of photovoltaic...nonlinearities of interest in this work arise from dynamic symmetry-breaking by the optical magnetic field. 15.  SUBJECT TERMS magneto-electric, efficiency

  3. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  4. Magnetoelectric Effect in Topological Insulator Films Beyond Linear Response Regime

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Baasanjav, Dashdeleg; Nomura, Kentaro

    2014-03-01

    We study the response of topological insulator films to strong magnetic and electric fields beyond the linear response theory. As a model, we use three-dimensional lattice Wilson-Dirac Hamiltonian where we simultaneously introduce both magnetic field as Aharonov Bohm phase and electric field as potential energy depending on lattice coordinate. We compute the energy spectrum by numerically diagonalizing this Hamiltonian for electrons and obtain the quantized magnetoelectric polarizability. In addition, we find that the magnetoelectric effect vanishes as width of the film decreases, due to the hybridization of surface wavefunctions. Furthermore, by applying a gate voltage between the surfaces, we observe multiple quantized plateaus of θ-term. We explain that the multiple quantization rule of θ is mainly determined by the physics of Landau level structures on the top and bottom surfaces of topological insulator, whereas the small deviations from the exact quantization are coming from the asymmetry of the surface wavefunctions in the bulk. We also show that the magnetoelectric effect persists even for strong bulk interactions with magnetic field or magnetic impurities. We acknowledge support by the Grants-in-Aid for Scientific Research (No. 24740211, No. 25800184, and No. 25247056) from the MEXT, Japan.

  5. Collective excitations of strongly coupled bilayer charged Bose liquids in the third-frequency-moment sum rule

    NASA Astrophysics Data System (ADS)

    Tas, Murat; Tanatar, B.

    2008-09-01

    We calculate the collective excitation modes of strongly coupled bilayer charged Bose systems. We employ the dielectric matrix formulation to study the correlation effects within the random-phase approximation (RPA), the self consistent field approximation Singwi, Tosi, Land, and Sjölander (STLS), and the quasilocalized charge approximation (QLCA), which satisfies the third-frequency-moment (⟨ω3⟩) sum rule. We find that the QLCA predicts a long-wavelength correlation-induced energy gap in the out-of-phase plasmon mode, similar to the situation in electronic bilayer systems. The energy gap and the plasmon density of states are studied as a function of interlayer separation and coupling parameter rs . The results should be helpful for experimental investigations.

  6. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    SciTech Connect

    Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A.

    2014-09-21

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

  7. Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films

    PubMed Central

    2013-01-01

    Transition metal ferrites such as CoFe2O4, possessing a large magnetostriction coefficient and high Curie temperature (Tc > 600 K), are excellent candidates for creating magnetic order at the nanoscale and provide a pathway to the fabrication of uniform particle-matrix films with optimized potential for magnetoelectric coupling. Here, a series of 0–3 type nanocomposite thin films composed of ferrimagnetic cobalt ferrite nanocrystals (8 to 18 nm) and a ferroelectric/piezoelectric polymer poly(vinylidene fluoride-co-hexafluoropropene), P(VDF-HFP), were prepared by multiple spin coating and cast coating over a thickness range of 200 nm to 1.6 μm. We describe the synthesis and structural characterization of the nanocrystals and composite films by XRD, TEM, HRTEM, STEM, and SEM, as well as dielectric and magnetic properties, in order to identify evidence of cooperative interactions between the two phases. The CoFe2O4 polymer nanocomposite thin films exhibit composition-dependent effective permittivity, loss tangent, and specific saturation magnetization (Ms). An enhancement of the effective permittivity and saturation magnetization of the CoFe2O4-P(VDF-HFP) films was observed and directly compared with CoFe2O4-polyvinylpyrrolidone, a non-ferroelectric polymer-based nanocomposite prepared by the same method. The comparison provided evidence for the observation of a magnetoelectric effect in the case of CoFe2O4-P(VDF-HFP), attributed to a magnetostrictive/piezoelectric interaction. An enhancement of Ms up to +20.7% was observed at room temperature in the case of the 10 wt.% CoFe2O4-P(VDF-HFP) sample. PMID:24004499

  8. Nonlinear coupling of lower hybrid waves to the kinetic low-frequency plasma response in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.

    A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.

  9. Low repetition rate and broad frequency tuning from a grating-coupled passively mode-locked quantum dot laser

    SciTech Connect

    Cheng, H. C. Wu, Q. Y.; Pan, C. H.; Lee, C. P.; Lin, G.

    2013-11-18

    Passively mode-locked quantum dot lasers with a grating-coupled external cavity arrangement are investigated. A broad repetition-rate tuning range of fundamental mode-locking from 2 GHz to a record-low frequency of 79.3 MHz is achieved with selecting the wavelength at 1.28 μm. A narrow RF linewidth of ∼25 Hz and an intrinsic linewidth as low as 0.15 Hz are also obtained.

  10. The discharge mode transition and O(5p1) production mechanism of pulsed radio frequency capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Shi, J. J.

    2012-07-01

    The discharge mode transition from uniform plasma across the gas gap to the α mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He2* dominate the production of O(5p1) through dissociation and excitation of O2. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  11. Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling

    SciTech Connect

    Kinion, D; Clarke, J

    2008-01-24

    The scattering parameters of an amplifier based on a dc Superconducting QUantum Interference Device (SQUID) are directly measured at 4.2 K. The results can be described using an equivalent circuit model of the fundamental resonance of the microstrip resonator which forms the input of the amplifier. The circuit model is used to determine the series capacitance required for critical coupling of the microstrip to the input circuit.

  12. Reflectometric frequency-modulation continuous-wave distributed fiber-optic stress sensor with forward coupled beams.

    PubMed

    Zheng, G; Campbell, M; Wallace, P

    1996-10-01

    A distributed optical-fiber stress sensor whose principle of operation is based on the frequency-modulation continuous-wave technique is reported. The sensor consists of a length of birefringent fiber with a mirror attached to one end, a diode laser, and a p-i-n photodiode detector. The intensity and the location of an applied stress are determined simultaneously by detecting the amplitude and the frequency of the beat signal, which is produced by two forward-coupled mode beams. The system was found to have a reasonable spatial resolution of 0.85 m (rms error) in a sensing range of 100 m. The advantages and limitations of the sensor are also discussed.

  13. Ih Tunes Theta/Gamma Oscillations and Cross-Frequency Coupling In an In Silico CA3 Model

    PubMed Central

    Neymotin, Samuel A.; Hilscher, Markus M.; Moulin, Thiago C.; Skolnick, Yosef; Lazarewicz, Maciej T.; Lytton, William W.

    2013-01-01

    channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases. PMID:24204609

  14. Influence of Low-frequency Indonesian Throughflow Transport on Temperatures in the Indian Ocean in a Coupled Model

    NASA Astrophysics Data System (ADS)

    Potemra, J. T.; Schneider, N.

    2005-12-01

    Results from a 300-year integration of the NCAR PCM coupled model are used to examine the impact of low-frequency (periods between 36 and 120 months) Indonesian throughflow (ITF) transport on Indian Ocean temperatures. Using correlation and regression analysis, we show that the correlation of anomalies of model Indian Ocean temperature and ITF transport largely reflects concurrent atmospheric forcing, rather than oceanic adjustment to changes of the throughflow. The low-frequency variations in ITF transport are small, 2 Sv, and have a minimal impact on surface temperatures. The impact on thermocline level temperatures is greater, but in this model it is limited to the outflow region between Java and Australia extending westward along a band between 10° and 15°S.

  15. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    PubMed

    Neymotin, Samuel A; Hilscher, Markus M; Moulin, Thiago C; Skolnick, Yosef; Lazarewicz, Maciej T; Lytton, William W

    2013-01-01

    Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  16. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  17. a High-Frequency Three-Dimensional Tyre Model Based on Two Coupled Elastic Layers

    NASA Astrophysics Data System (ADS)

    LARSSON, K.; KROPP, W.

    2002-06-01

    Road traffic noise is today a serious environmental problem in urban areas. The dominating noise source at speeds greater than 50 km/h is car tyres. In order to achieve a reduction of traffic noise tyres have to become quieter. To reduce tyre/road noise a deep understanding of the noise generation mechanisms is of major importance. An existing tyre/road noise simulation model consists of a smooth tyre rolling at a constant speed on a rough road surface. It is composed of three separate modules: a tyre model, a contact model and a radiation model. The major drawback with the contact model is that it only takes the radial component of the contact forces into account. To improve this model, a description of the tangential motion at high frequencies is necessary. Most of the models for the structure-borne sound behaviour of tyres are designed for the low-frequency range (i.e., below 400 Hz). Above this frequency range, the curvature of the tyre is unimportant, while the internal structure (multi-layers of steel and rubber) increases in importance. For the high-frequency range, a double-layer tyre model is proposed, which is based on the general field equations, to take into account the tangential motion and the local deformation of the tread. Both propagating waves and mode shapes have been investigated by the use of this model. Calculations of the response of the tyre to an external excitation show relatively good agreement with measurements on a smooth tyre.

  18. Modulations of the plasma uniformity by low frequency sources in a large-area dual frequency inductively coupled plasma based on fluid simulations

    SciTech Connect

    Sun, Xiao-Yan; Zhang, Yu-Ru; Li, Xue-Chun; Wang, You-Nian

    2015-05-15

    As the wafer size increases, dual frequency (DF) inductively coupled plasma (ICP) sources have been proposed as an effective method to achieve large-area uniform plasma processing. A two-dimensional (2D) self-consistent fluid model, combined with an electromagnetic module, has been employed to investigate the influence of the low frequency (LF) source on the plasma radial uniformity in an argon DF discharge. When the DF antenna current is fixed at 10 A, the bulk plasma density decreases significantly with the LF due to the less efficient heating, and the best radial uniformity is obtained at 3.39 MHz. As the LF decreases to 2.26 MHz, the plasma density is characterized by an edge-high profile, and meanwhile the maximum of the electron temperature appears below the outer two-turn coil. Moreover, the axial ion flux at 3.39 MHz is rather uniform in the center region except at the radial edge of the substrate, where a higher ion flux is observed. When the inner five-turn coil frequency is fixed at 2.26 MHz, the plasma density profiles shift from edge-high over uniform to center-high as the LF coil current increases from 6 A to 18 A, and the best plasma uniformity is obtained at 14 A. In addition, the maximum of the electron temperature becomes lower with a second peak appears at the radial position of r = 9 cm at 18 A.

  19. Dual-frequency ferromagnetic resonance to measure spin current coupling in multilayers

    NASA Astrophysics Data System (ADS)

    Adur, Rohan; Du, Chunhui; Wang, Hailong; Manuilov, Sergei A.; Yang, Fengyuan; Hammel, P. Chris

    2014-08-01

    Spin pumping is a method for injecting a pure spin current into a non-magnetic metal (NM) by inducing precession of a neighboring ferromagnet (FM) at its ferromagnetic resonance frequency. A popular method to detect spin current uses the Inverse Spin Hall Effect (ISHE) to convert the spin current to a detectable charge current and hence a voltage. In order to better understand the role of time independent and high frequency contributions to spin pumping, we sought to detect we attempt to detect spin currents by using a second microwave frequency to detect changes in linewidth of a second ferromagnet due to the spin-torque induced by the spin current from the first ferromagnet. This dual resonance is achieved by pairing a custom broadband coplanar transmission line with the high-Q resonant cavity of a commercial electron paramagnetic resonance spectrometer. This technique is general enough that it should enable the investigation of spin currents in any FM-NM-FM system, for any orientation of external field, and is not sensitive to voltage artifacts often found in ISHE measurements. We find that the condition for simultaneous resonance generates a dc spin current that is too small to produce a measurable change in linewidth of the second ferromagnet, confirming the dominance of ac spin currents in linewidth enhancement measurements.

  20. Recent Development on O(+) - O Collision Frequency and Ionosphere-Thermosphere Coupling

    NASA Technical Reports Server (NTRS)

    Omidvar, K.; Menard, R.

    1999-01-01

    The collision frequency between an oxygen atom and its singly charged ion controls the momentum transfer between the ionosphere and the thermosphere. There has been a long standing discrepancy, extending over a decade, between the theoretical and empirical determination of this frequency: the empirical value of this frequency exceeded the theoretical value by a factor of 1.7. Recent improvements in theory were obtained by using accurate oxygen ion-oxygen atom potential energy curves, and partial wave quantum mechanical calculations. We now have applied three independent statistical methods to the observational data, obtained at the MIT/Millstone Hill Observatory, consisting of two sets A and B. These methods give results consistent with each other, and together with the recent theoretical improvements, bring the ratio close to unity, as it should be. The three statistical methods lead to an average for the ratio of the empirical to the theoretical values equal to 0.98, with an uncertainty of +/-8%, resolving the old discrepancy between theory and observation. The Hines statistics, and the lognormal distribution statistics, both give lower and upper bounds for the Set A equal to 0.89 and 1.02, respectively. The related bounds for the Set B are 1.06 and 1.17. The average values of these bounds thus bracket the ideal value of the ratio which should be equal to unity. The main source of uncertainties are errors in the profile of the oxygen atom density, which is of the order of 11%. An alternative method to find the oxygen atom density is being suggested.

  1. Generating topological optical flux lattices for ultracold atoms by modulated Raman and radio-frequency couplings

    NASA Astrophysics Data System (ADS)

    Yu, Jinlong; Xu, Zhi-Fang; You, Li

    2017-01-01

    We propose a scheme to dynamically generate optical flux lattices with nontrivial band topology using amplitude-modulated Raman lasers and radio-frequency (rf) magnetic fields. By tuning the strength of Raman and rf fields, three distinct phases are realized at unit filling for a unit cell. Respectively, these three phases correspond to normal insulator, topological Chern insulator, and semimetal. Nearly nondispersive bands are found to appear in the topological phase, which promises opportunities for investigating strongly correlated quantum states within a simple cold-atom setup. The validity of our proposal is confirmed by comparing the Floquet quasienergies from the evolution operator with the spectrum of the effective Hamiltonian.

  2. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy

    PubMed Central

    Klocke, Michael

    2016-01-01

    Summary A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively. PMID:27335760

  3. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.

    PubMed

    Klocke, Michael; Wolf, Dietrich E

    2016-01-01

    A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively.

  4. A critical note on the definition of phase-amplitude cross-frequency coupling.

    PubMed

    Özkurt, Tolga Esat; Schnitzler, Alfons

    2011-10-15

    Recent studies have observed the ubiquity of phase-amplitude coupling (PAC) phenomenon in human and animal brain recordings. While various methods were performed to quantify it, a rigorous analytical definition of PAC is lacking. This paper yields an analytical definition and accordingly offers theoretical insights into some of the current methods. A direct PAC estimator based on the given definition is presented and shown theoretically to be superior to some of the previous methods such as general linear model (GLM) estimator. It is also shown that the proposed PAC estimator is equivalent to GLM estimator when a constant term is removed from its formulation. The validity of the derivations is demonstrated with simulated data of varying noise levels and local field potentials recorded from the subthalamic nucleus of a Parkinson's disease patient.

  5. Experimental research on a 12.1 K gas-coupled two-stage high frequency pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Xiaoshuang, Zhu; Yuan, Zhou; Wenxiu, Zhu; Wei, Dai; Junjie, Wang

    2017-02-01

    High frequency pulse tube cryocoolers (HFPTC) have been widely used in many fields like physics experimental research and aerospace, for no moving part in cold region, low vibration and long life. A gas-coupled two-stage high frequency pulse tube cryocooler with single compressor is introduced in this paper. In the first stage of the cryocooler, double-inlet and multi-bypass has been adopted as phase shifters. To get a better performance in phase shifting the reservoir and the inertance tube of the second stage has been located on the cold head of the first stage. With SS mesh screen as the regenerator of both stage, no-load temperature of 13.5K has been achieved. To improve the heat capacity of the regenerator of the second stage magnetic material Er3Ni has been employed in the second stage as regenerator matrix. With the charge pressure of 1.8MPa, input power of 260W and operating frequency of 23.5 Hz, the no-load temperature of 12.1K has been achieved.

  6. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  7. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  8. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    SciTech Connect

    Bora, B.

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  9. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co3TeO6

    NASA Astrophysics Data System (ADS)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sharma, G.; Saha, J.; Patnaik, S.

    2016-01-01

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co3TeO6, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ˜17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable to single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.

  10. Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Li, Jun; Liu, Jun; Awais, Qasim; Yang, Jin

    2016-12-01

    Vibration, widely existing in an ambient environment with a variety of forms and wide-range of scales, recently becomes an attractive target for energy harvesting. However, its time-varying directions and frequencies render a lack of effective energy technology to scavenge it. Here, we report a rationally designed nonlinear magnetoelectric generator for broadband and multi-directional vibration energy harvesting. By using a stabilized three-dimensional (3D) magnetic interaction and spring force, the device working bandwidth was largely broadened, which was demonstrated both experimentally and theoretically. The multidirectional vibration energy harvesting was enabled by three identical suspended springs with equal intersection angles, which are all connected to a cylindrical magnet. Numerical simulations and experimental results show that the nonlinear harvester can sustain large-amplitude oscillations over a wide frequency range, and it can generate power efficiently in an arbitrary direction. Moreover, the experimental data suggest that the proposed nonlinear energy harvester has the potential to scavenge vibrational energy over a broad range of ambient frequencies in 3D space.

  11. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE PAGES

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; ...

    2011-12-01

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr₀.₅₃Ti₀.₄₇O₃) (1-x)- (PbFe₀.₅Ta₀.₅O₃)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 μC/cm², which actually increases (to 40 μC/cm²) in the high-T tetragonal phase, representingmore » an exciting new room temperature oxide multiferroic to compete with BiFeO₃. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less

  12. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni3TeO6

    DOE PAGES

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok; ...

    2015-09-24

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni3TeO6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 Tmore » transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  13. Measurements of relative BCl density in BCl3-containing inductively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Fleddermann, C. B.; Hebner, G. A.

    1998-04-01

    The relative density of BCl radicals in inductively coupled plasmas has been studied using laser-induced fluorescence (LIF), and the BCl excited state has been studied using plasma-induced emission (PIE). Measurements were made as a function of input power, pressure, position, and as a function of gas ratio for industry-relevant metal-etch gas mixtures containing BCl3, Cl2, Ar, and N2. LIF was used to measure the ground state BCl population, whereas PIE monitored the BCl A1Π excited state; the LIF and PIE intensities varied differently as the plasma parameters were changed. Between 150 and 400 W input power at 20 mTorr pressure, there was no variation in BCl density, indicating that the dissociation fraction for BCl3 to BCl was constant with power. No significant interactions between BCl3 and Cl2 or Ar were evident in the LIF measurements. However, the BCl density was suppressed by addition of nitrogen to the plasma. The BCl density was radially uniform for all gas mixtures, but axial measurements showed a slight decrease in BCl density near the upper electrode. After running the reactor with a BCl3/N2 mixture, BCl was observed for up to an hour after the discharge was switched to Cl2: this is attributed to buildup of BN films on reactor surfaces and subsequent etching of the film by Cl.

  14. Modeling the coupled return-spread high frequency dynamics of large tick assets

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Lillo, Fabrizio

    2015-01-01

    Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.

  15. Drug use and sexual arrangements among gay couples: frequency, interdependence, and associations with sexual risk.

    PubMed

    Parsons, Jeffrey T; Starks, Tyrel J

    2014-01-01

    Rates of drug use among gay men are higher than their heterosexual counterparts and drug use is a prominent risk factor for HIV transmission. Studies using heterosexual samples have found that being partnered reduces the risk of drug use and individuals in a relationship tend to have similar use patterns. Studies among gay men suggest that sexual agreements may be an important predictor of drug use. Data from 322 partnered gay men were collected and the 161 matched couples were categorized as monogamous (52.8 %), monogamish (14.9 %), open (13.0 %), and discrepant (19.3 %). Patterns of significance and significant trends suggested that monogamous men reported lower rates of marijuana and other drug use compared to open and monogamish men. Men in discrepant relationships did not differ from any other group. Partners' marijuana and other drug use was significantly interdependent in the overall sample; however, substantial variation in the magnitude and significance of interdependence was observed across sexual arrangement categories. Sexual arrangement and the use of drugs during sex both contributed to the prediction of UAI with casual partners among non-monogamous men. Implications for substance use treatment and HIV prevention are discussed.

  16. Utrophin suppresses low frequency oscillations and coupled gating of mechanosensitive ion channels in dystrophic skeletal muscle.

    PubMed

    Lansman, Jeffry B

    2015-01-01

    An absence of utrophin in muscle from mdx mice prolongs the open time of single mechanosensitive channels. On a time scale much longer than the duration of individual channel activations, genetic depletion of utrophin produces low frequency oscillations of channel open probability. Oscillatory channel opening occurred in the dystrophin/utrophin mutants, but was absent in wild-type and mdx fibers. By contrast, small conductance channels showed random gating behavior when present in the same patch. Applying a negative pressure to a patch on a DKO fiber produced a burst of mode II activity, but channels subsequently closed and remained silent for tens of seconds during the maintained pressure stimulus. In addition, simultaneous opening of multiple MS channels could be frequently observed in recordings from patches on DKO fibers, but only rarely in wild-type and mdx muscle. A model which accounts for the single-channel data is proposed in which utrophin acts as gating spring which maintains the mechanical stability a caveolar-like compartment. The state of this compartment is suggested to be dynamic; its continuity with the extracellular surface varying over seconds to minutes. Loss of the mechanical stability of this compartment contributes to pathogenic Ca(2+) entry through MS channels in Duchenne dystrophy.

  17. A coupled performance and thermal model for radio-frequency gridded ion thrusters*

    NASA Astrophysics Data System (ADS)

    Dobkevicius, Mantas; Feili, Davar

    2016-10-01

    Recently proposed space missions such as Darwin, eLISA and NGGM have encouraged the development of electric propulsion thrusters capable of operating in the micro-Newton (μN) thrust range. To meet these requirements, radio frequency (RF) gridded-ion thrusters need to be scaled down to a few centimeters in size. Due to the small size of these thrusters, it is important to accurately determine the thermal and performance parameters. To achieve this, a multi-physics performance model has been developed, composed of plasma discharge, 2D axisymmetric ion extraction, 3D electromagnetic and RF circuit models. The plasma discharge model itself is represented using 0D global, 2D axisymmetric and 3D molecular neutral gas, and Boltzmann electron transport sub-models. A 3D thermal model is introduced to determine the temperature distribution for various throttle points, using as inputs the plasma and electromagnetic field heating values obtained from the performance model. This also allows the validation of the performance model itself. Additionally, we analyze the effect the thruster's temperatures play on the plasma properties/performance and vice versa. The model is based on the RIT 3.5 thruster developed for the NGGM mission geometry and predicts the RIT 3.5 experimental data within approximately 10%. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  18. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  19. Effect of gamma radiation on the structural, dielectric and magnetoelectric properties of nanostructured hexagonal YMnO3

    NASA Astrophysics Data System (ADS)

    Raneesh, B.; Saha, A.; Kalarikkal, Nandakumar

    2013-08-01

    Nanocrystalline YMnO3 ceramic powders have been synthesized by using the standard sol-gel method. The samples were irradiated with 60Co γ-radiation at a dose rate of 4.7 kGy/h for different time intervals. The effects of irradiation on surface morphology viz. grain size, porosity and also the existence of a few impurity phases have been studied by scanning electron microscopy, X-ray diffraction and far-infrared reflectivity spectroscopy. Irradiation in air produced changes in the dielectric spectrum in the frequency range between 100 Hz and 2 MHz. Subjection of γ-radiation brings about key change on the properties as a consequence of structural transformations. The attained data shows that the electrical conductivity and dielectric constant is actually so much dependent on radiation dose. A quantitative magnetoelectric coefficient measurement in YMnO3 nanosystem was performed by using the dynamic lock-in amplifier technique. The response of the magneto-electric coefficient shows perfect anisotropy in the irradiated samples.

  20. Ultrafast direct modulation of transverse-mode coupled-cavity VCSELs far beyond the relaxation oscillation frequency

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Koyama, Fumio

    2014-02-01

    A novel approach for bandwidth augmentation for direct modulation of VCSELs using transverse-coupled-cavity (TCC) scheme is raised, which enables us to tailor the modulation-transfer function. The base structure is similar to that of 3QW VCSELs with 980 nm wavelength operation. While the bandwidth of conventional VCSELs was limited by 9-10 GHz, the 3-dB bandwidth of TCC VCSEL with aperture diameters of 8.5×8.5μm2 and 3×3μm2 are increased by a factor of 3 far beyond the relaxation-oscillation frequency. Our current bandwidth achievement on the larger aperture size is 29 GHz which is limited by the used photo-detector. To the best of our knowledge this is the fastest 980 nm VCSEL.

  1. Extracted ion current density in close-coupling multi-antenna type radio frequency driven ion source: CC-MATIS

    SciTech Connect

    Oka, Y. E-mail: oka@LHD.nifs.ac.jp; Shoji, T.

    2014-02-15

    Positive ions are extracted by using a small extractor from the Close-Coupling Multi-Antenna Type radio frequency driven Ion Source. Two types of RF antenna are used. The maximum extracted ion current density reaches 0.106 A/cm{sup 2}. The RF net power efficiency of the extracted ion current density under standard condition is 11.6 mA/cm{sup 2}/kW. The efficiency corresponds to the level of previous beam experiments on elementary designs of multi-antenna sources, and also to the efficiency level of a plasma driven by a filament in the same chamber. The multi-antenna type RF plasma source is promising for all metal high density ion sources in a large volume chamber.

  2. Extracted ion current density in close-coupling multi-antenna type radio frequency driven ion source: CC-MATIS.

    PubMed

    Oka, Y; Shoji, T

    2014-02-01

    Positive ions are extracted by using a small extractor from the Close-Coupling Multi-Antenna Type radio frequency driven Ion Source. Two types of RF antenna are used. The maximum extracted ion current density reaches 0.106 A/cm(2). The RF net power efficiency of the extracted ion current density under standard condition is 11.6 mA/cm(2)/kW. The efficiency corresponds to the level of previous beam experiments on elementary designs of multi-antenna sources, and also to the efficiency level of a plasma driven by a filament in the same chamber. The multi-antenna type RF plasma source is promising for all metal high density ion sources in a large volume chamber.

  3. Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type

    SciTech Connect

    Khalil, E.M.; Abdalla, M. Sebawe . E-mail: m.sebawe@physics.org; Obada, A.S.-F.

    2006-02-15

    A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.

  4. A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses

    PubMed Central

    Dimitriadis, Stavros I.; Laskaris, Nikolaos A.; Bitzidou, Malamati P.; Tarnanas, Ioannis; Tsolaki, Magda N.

    2015-01-01

    The detection of mild cognitive impairment (MCI), the transitional stage between normal cognitive changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI patients are at increased risk of progressing into AD. Electroencephalographic (EEG) alterations in the spectral content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, cognitive event-related potentials (ERPs) have entered into the picture as an easy to perform screening test. Motivated by the recent findings about the role of cross-frequency coupling (CFC) in cognition, we introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. Then, considering the dynamic character of CFC, we identify instances during which the coupling between particular pairs of brainwave frequencies carries sufficient information for discriminating between normal subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition. The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was found reaching very high levels (95%). Our approach compares favorably with the traditional alternative of using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-temporal analysis of single-trial responses. This further indicates that task-related CFC measurements can provide invaluable analytics in AD diagnosis and prognosis. PMID:26539070

  5. Microwave magnetoelectric fields and their role in the matter-field interaction.

    PubMed

    Kamenetskii, E O; Joffe, R; Shavit, R

    2013-02-01

    We show that in a source-free subwavelength region of microwave fields, there can exist field structures with a local coupling between the time-varying electric and magnetic fields differing from the electric-magnetic coupling in regular-propagating free-space electromagnetic waves. To distinguish such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. We study a structure and conservation laws of microwave ME near fields. We show that there exist sources of microwave ME near fields-the ME particles. These particles are represented by small quasi-two-dimensional ferrite disks with magnetic-dipolar-oscillation spectra. The near fields originating from such particles are characterized by topologically distinctive power-flow vortices, nonzero helicity, and a torsion degree of freedom. The paper consists of two main parts. In the first one, we give a theoretical background of properties of the electric and magnetic fields inside and outside of a ferrite particle with magnetic-dipolar-oscillation spectra resulting in the appearance of microwave ME near fields. In the second main part, we represent numerical and experimental studies of the microwave ME near fields and their interactions with matter. Based on the obtained properties of the ME near fields, we discuss possibilities for effective microwave sensing of natural and artificial chiral structures.

  6. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DOE PAGES

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  7. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    PubMed

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper.

  8. Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Xu, Dong-Sheng; Zou, Shuai; Xin, Yu; Su, Xiao-Dong; Wang, Xu-Sheng

    2014-06-01

    Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 × 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.

  9. Multi-Objective Optimization of Vehicle Sound Package in Middle Frequency Using Gray Relational Analysis Coupled with Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shuming; Wang, Dengfeng; Shi, Tianze; Chen, Jing

    2015-12-01

    This research studies optimization design of the thickness of sound packages for a passenger car. The major characteristics indexes for performance determined to evaluate the process are sound pressure level of the interior middle frequency noise and weight of the sound package. Three kinds of materials of sound packages are selected for the optimization process. The corresponding parameters of the sound packages are the thickness of the insulation plate for outer side of the firewall, thickness of the sound absorbing wool for inner side of the firewall, thickness of PU foam for the front floor, and thickness of PU foam for the rear floor, respectively. In this paper, the optimization procedure is a multi-objective optimization. Therefore, gray relational analysis (GRA) is applied to decide the optimal combination of sound package parameters. Furthermore, the principal component analysis (PCA) is used to calculate the weighting values which are corresponding to multiple performance characteristics. Then, the results of the confirmation tests uncover that GRA coupled with principal analysis methods can effectively be applied to find the optimal combination of the thickness of the sound packages at different positions for a passenger car. Thus, the proposed method can be a useful tool to improve the automotive interior middle frequency noise and lower the weight of the sound packages. Additionally, it will also be useful for automotive manufactures and designers in other fields.

  10. Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bichurin, M. I.; Petrov, V. M.; Leontiev, V. S.; Ivanov, S. N.; Sokolov, O. V.

    2017-02-01

    A paper devotes to theoretical and experimental studying the magnetoelectric interaction in layered structures of amorphous ferromagnetic alloy and single- crystal gallium arsenide. The authors investigated the magnetoelectric effect in the (100) plane of gallium arsenide in the electromechanical resonance range of 200-240 kHz and obtained maximal ME voltage coefficient of 120 V/A at bias field equaled 3.6 kA/m for the direction parallel to the [011] axis. Also the magnetoelectric effect in the (110) and (111) planes is discussed. The results can be used for design of new electronic devices based on the magnetostrictive-semiconductor materials.

  11. Thickness dependence of magnetoelectric response for composites of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on CoFe{sub 2}O{sub 4} ceramic substrates

    SciTech Connect

    Wang, Jing Zhu, Kongjun; Wu, Xia; Deng, Chaoyong; Peng, Renci; Wang, Jianjun

    2014-08-15

    Using chemical solution spin-coating we grew Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films of different thicknesses on highly dense CoFe{sub 2}O{sub 4} ceramics. X-ray diffraction revealed no other phases except Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} and CoFe{sub 2}O{sub 4}. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} film was important in obtaining strong magnetoelectric coupling.

  12. Thickness dependence of magnetoelectric response for composites of Pb(Zr0.52Ti0.48)O3 films on CoFe2O4 ceramic substrates

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wu, Xia; Peng, Renci; Wang, Jianjun; Deng, Chaoyong; Zhu, Kongjun

    2014-08-01

    Using chemical solution spin-coating we grew Pb(Zr0.52Ti0.48)O3 films of different thicknesses on highly dense CoFe2O4 ceramics. X-ray diffraction revealed no other phases except Pb(Zr0.52Ti0.48)O3 and CoFe2O4. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr0.52Ti0.48)O3 film was important in obtaining strong magnetoelectric coupling.

  13. Magnetoelectric imaging of multiferroic heterostructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ghidini, Massimo; Lesaine, Arnaud; Zhu, Bonan; Moya, Xavier; Yan, Wenjing; Crossley, Sam; Nair, Bhasi; Mansell, Rhodri; Cowburn, Russell P.; Barnes, Crispin H. W.; Kronast, Florian; Valencia, Sergio; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Mathur, Neil

    2015-09-01

    Electrical control of magnetism has been demonstrated in multiferroic compounds and ferromagnetic semiconductors, but electrical switching of a substantial net magnetization at room temperature has not been demonstrated in these materials. This goal has instead been achieved in heterostructures comprising ferromagnetic films in which electrically driven magnetic changes arise due to strain or exchange bias from ferroic substrates, or due to charge effects induced by a gate. However, previous work focused on electrical switching of an in-plane magnetization or involved the assistance of applied magnetic fields. In heterostructures made of juxtaposed ferroelectric and ferromagnetic layers, we have shown electrical control with no applied magnetic field of the perpendicular magnetization of small features [1] and of magnetic stripe domains patterns [2]. Here we investigate Ni81Fe19 films on ferroelectric substrates with and without buffer layers of Cu, whose presence precludes charge-mediated coupling. Ni81Fe19 has virtually zero magnetostriction, but sufficiently thin films show large magnetostriction, and thus, on increasing film thickness through the threshold for zero magnetostriction, we have seeked the crossover from charge- to strain-mediated coupling. We will then show that strain associated with the motion of 90°- ferroelectric domain walls in a BaTiO3 substrate, can switch the magnetization of an array of overlying single-domain Ni dots. [1] M. Ghidini, R. Pellicelli, J. L. Prieto, X. Moya, J. Soussi, J. Briscoe, S. Dunn and N. D. Mathur, Nature Communications 4 (2013) 1453. [2] M. Ghidini, F.Maccherozzi, X. Moya, L. C. Phillips, W.Yan, J. Soussi, N. Métallier, M.Vickers, , N. -J.Steinke, R. Mansell, C. H. W. Barnes, S. S. Dhesi, and N. D. Mathur, Adv. Mater.doi: 10.1002/adma.201404799 (2015).

  14. Structural, electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics

    NASA Astrophysics Data System (ADS)

    Parida, Kalpana; Dehury, Sujit Kumar; Choudhary, R. N. P.

    2016-12-01

    The polycrystalline sample of double perovskite BiMgFeCeO6 was prepared by a standard ceramics processing technique (high-temperature solid-state reaction). Preliminary structural analysis using X-ray diffraction data has exhibited the formation of the material in orthorhombic system. Detailed studies of electrical properties (permittivity (dielectric constant), tangent loss, electrical modulus, conductivity and impedance) of the material as a function of frequency (1 kHz-1 MHz) at different temperatures (25-500 °C) have provided many interesting results on conduction mechanism, structure-properties relationship, etc. An important role of interface in getting high dielectric material has been realized. The existence of space charge polarization and Maxwell-Wagner relaxation in the material, particularly at low frequencies and high temperatures, has been observed. Nyquist plots discuss the temperature-dependent contributions of grain, grain boundary and electrode effect. The nature and existence of the hysteresis loop confirmed the ferroelectric characteristics of the material at room temperature. Study of dc conductivity of the compound with temperature exhibits presence of negative temperature coefficient of resistance (NTCR) characteristics in it. An optical energy band gap of ∼2.9 eV was determined from the UV-visible absorbance spectrum. A unique data on magneto-electric (ME) coefficient, measured by varying dc bias magnetic field, was obtained.

  15. Eddy currents: A misleading contribution when measuring magnetoelectric voltage coefficients of thin film devices

    NASA Astrophysics Data System (ADS)

    More-Chevalier, J.; Cibert, C.; Bouregba, R.; Poullain, G.

    2015-04-01

    Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 (Terfenol-D/Pt/PZT) magnetoelectric (ME) thin films were deposited on Pt/TiO2/SiO2/Si substrate. The ME voltage coefficient αHME was determined at room temperature using a lock-in amplifier and by applying to the sample an alternating magnetic field of a few mT. Surprisingly, very similar responses were obtained from a simple commercial capacitor set in series with a small loop of wire. This allowed us first to accurately model and reproduce the frequency response of the ferroelectric PZT layer alone. We also observed that, at low frequency, the voltage across the ferroelectric capacitor and the current in the circuit did not decrease significantly when diminishing then removing, the area of the conductive loop. One major conclusion is that eddy currents in the lead wires, rather than the classical electromotive force across conductive loops, contribute significantly to the total voltage response, at least for thin film ME devices. A model taking into account eddy currents was then developed for the extraction of the true αHME. A large αHME of 4.6 V/cm.Oe was thus obtained for the Terfenol-D/Pt/PZT thin film device, without DC magnetic field.

  16. Magnetoelectric Composites for 1.3 GHz Antennas

    NASA Astrophysics Data System (ADS)

    Petrov, R. V.; Tatarenko, A. S.; Srinivasan, G.; Bichurin, M. I.

    2008-03-01

    A microstrip miniaturized antenna based on magnetoelectric composite has been designed and characterized. Theoretical estimates of antenna properties are given. To miniaturize UHF antennas, one needs slow-wave topologies and magneto-electric (ME) materials with equal and high permeability and permittivity. Nickel Zinc Ferrites (Ni1-xZnxFe2O4, x=0-0.5, NZFO) are potential candidates for use as the magnetic phase in the composite since they have high permeability, in the range 4-50, and low magnetic loss tangent. The dielectric phase use is bismuth strontium titanates (Sr1-1.5xBixTiO3, 0.04

  17. Hyperfine interactions in magnetoelectric hexaferrite system

    NASA Astrophysics Data System (ADS)

    Kouřil, Karel; Chlan, Vojtěch; Štěpánková, Helena; Novák, Pavel; Knížek, Karel; Hybler, Jiří; Kimura, Tsuyoshi; Hiraoka, Yuji; Buršík, Josef

    2010-05-01

    Nuclear magnetic resonance (NMR) in Y-hexaferrite system (Ba 1-xSr x) 2Zn 2Fe 12O 22 was measured on both monocrystalline and polycrystalline samples at liquid helium temperature. Corresponding ab-initio calculation of the hyperfine parameters was also performed. The signal from 57Fe was detected in the frequency interval 65-76 MHz, while NMR spectrum of 67Zn nuclei occurs between 15 and 30 MHz. Due to the disorder in two tetrahedral sublattices occupied partly by Zn and partly by Fe, the NMR lines are broad and the spectra are poorly resolved. Comparison between the experimentally observed 67Zn spectra and the spectra modelled using the calculated hyperfine parameters was made. It indicates that the spectra of 67Zn can be used to determine the distribution of Zn and Fe between the two tetrahedral sublattices.

  18. Effects of Anisotropic Parabolic Potential on the Energy Levels and Transition Frequency of Strong-Coupling Polaron in a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Cai, Chun-Yu; Zhao, Cui-Lan; Xiao, Jing-Lin

    2013-07-01

    In the presence of a three-dimensional anisotropic parabolic potential (APP), the energy levels and the transition frequency between relevant levels of the strong-coupling polaron in a quantum dot (QD) are investigated by using the well-known Lee-Low-Pines (LLP) unitary transformation method and the Pekar type variational (PTV) method. The relations of the energy levels and the transition frequency with the electron-phonon (EP) coupling strength and the effective confinement lengths are derived. Numerical calculations show that the energy levels are decreasing functions of the EP coupling strength, whereas the transition frequency is an increasing one of it. And they are all increasing rapidly with decreasing the effective confinement lengths in different directions, which are showing the novel quantum size confining effect of the QD.

  19. Influence of Ga-concentration on the electrical and magnetic properties of magnetoelectric CoGaxFe2–xO4/BaTiO3 composite

    DOE PAGES

    Ni, Yan; Zhang, Zhen; Nlebedim, Cajetan I.; ...

    2015-03-20

    Multiferroic materials exhibit magnetoelectric (ME) coupling and promise new device applications including magnetic sensors, generators, and filters. An effective method for developing ME materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, the electrical and magnetic properties of Ga doped magnetoelectric CoGaxFe2–xO4/BaTiO3 composite are studied systematically. It is found that Ga doping improves the sensitivity of magnetoelastic response and stabilizes the magnetic phase of the composites. More importantly, Ga doping reduces the electrical conductivity of composite, as well as the dielectric loss. An enhancement of the electrostrainmore » with doping Ga is also observed. Quantitative estimation indicates that magnetoelectric coupling is enhanced for Ga-doped CoGaxFe2–xO4/BaTiO3 composites. As a result, the present work is beneficial to the practical application of composite CoFe2O4/BaTiO3-based multiferroic materials.« less

  20. Influence of Ga-concentration on the electrical and magnetic properties of magnetoelectric CoGaxFe2–xO4/BaTiO3 composite

    SciTech Connect

    Ni, Yan; Zhang, Zhen; Nlebedim, Cajetan I.; Jiles, David C.

    2015-03-20

    Multiferroic materials exhibit magnetoelectric (ME) coupling and promise new device applications including magnetic sensors, generators, and filters. An effective method for developing ME materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, the electrical and magnetic properties of Ga doped magnetoelectric CoGaxFe2–xO4/BaTiO3 composite are studied systematically. It is found that Ga doping improves the sensitivity of magnetoelastic response and stabilizes the magnetic phase of the composites. More importantly, Ga doping reduces the electrical conductivity of composite, as well as the dielectric loss. An enhancement of the electrostrain with doping Ga is also observed. Quantitative estimation indicates that magnetoelectric coupling is enhanced for Ga-doped CoGaxFe2–xO4/BaTiO3 composites. As a result, the present work is beneficial to the practical application of composite CoFe2O4/BaTiO3-based multiferroic materials.

  1. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  2. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.

    PubMed

    Cui, Cunxing; Feng, Qibo; Zhang, Bin; Zhao, Yuqiong

    2016-03-21

    A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.

  3. Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Lu, Caijiang; Li, Ping; Wen, Yumei; Yang, Aichao; He, Wei; Zhang, Jitao; Yang, Jin; Wen, Jing; Zhu, Yong; Yu, Miao

    2013-11-01

    In this paper, we investigate the resonance magnetoelectric (ME) effect in the middle supported multilayer composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), Nickel (Ni), and piezoelectric Pb(Zr1- x Ti x )O3 (PZT). The coupling effect between positive magnetostrictive FeCuNbSiB and negative magnetostrictive Ni results in the build-in magnetic bias due to their different magnetic permeability and coercivity. As a result, a giant resonance ME voltage coefficient ( α ME, r ) at zero DC magnetic bias field ( H dc) and multi-peaks of α ME, r for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite are observed. The experimental results show that the giant zero-biased α ME, r strongly depends on the thickness of FeCuNbSiB ribbon. The maximum zero-biased α ME, r is up to 86 V/cm Oe for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB with four-layer FeCuNbSiB ribbons, which is ˜500 times higher than that of the previously reported NKNLS-NZF/Ni/NKNLS-NZF trilayer composite. Compared with the peak α ME, r and the optimum H dc of Ni/PZT/Ni composite, the largest peak α ME, r of FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite with four-layer FeCuNbSiB ribbons increases ˜185 %, and the optimum H dc decreases ˜300 Oe, respectively. Based on the nonlinear magnetostrictive constitutive relation and the magnetoelectric equivalent circuit, a theoretical model of α ME, r versus H dc is built under free boundary conditions. Calculated zero-biased α ME, r and α ME, r versus H dc are in good agreement with the experimental data. This laminate composite shows promising applications for high-sensitivity power-free magnetic field sensors, zero-biased ME transducers and small-size energy harvesters.

  4. Electric field-controlled magnetization in bilayered magnetic films for magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Gang; Morley, Nicola A.; Rainforth, W. Mark

    2015-07-01

    Bilayered magnetic films (Co50Fe50 (CoFe)/Metglas) were RF sputtered on both (001)-oriented and (011)-oriented PMN-PT (lead magnesium niobate-lead titanate) substrates. Electric field-controlled magnetization changes were observed in all these samples: 65 nm CoFe/24 nm Metglas/(001) PMN-PT, 65 nm CoFe/24 nm Metglas/(011) PMN-PT, and 30 nm CoFe/12 nm Metglas/(011) PMN-PT. The maximum magnetic remanence ratio change (ΔMr/Ms) was 46% for CoFe/Metglas/(001) PMN-PT. In this heterostructure, the electric-field created two new non-volatile switchable remanence states and the as-grown remanence state was altered permanently. High-resolution transmission electron microscopy images show a sharp and smooth interface between Metglas and substrate and conversely a rougher interface was observed between Metglas and CoFe films. In the 30 nm CoFe/12 nm Metglas/(011) PMN-PT sample, a large ΔMr/Ms of 80% along the [100] direction was measured, while the ΔMr/Ms along the [01-1] direction was 60% at the applied electric field of 5 kV/cm, corresponding to a giant magnetoelectric coupling constant α = μoΔMr/E = 2.9 × 10-6 s/m.

  5. Non-local magnetoelectric effects via Coulomb interaction in TI-FMI heterostructures

    NASA Astrophysics Data System (ADS)

    Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle

    Magnetic order on the surface of a 3 D topological insulator (TI) has been predicted to evoke a topological magnetoelectric effect (TME) by the breaking of time-reversal invariance. In the TME, an electric field leads to a magnetic polarization in the same direction as the field and vice versa. Here, we consider heterostructures of TI and ferromagnetic insulator (FMI) layers. We show that in the presence of long-range Coulomb interactions the magnetization couples non-locally to the fluctuating electric field (non-local TME) by performing a field-theoretic calculation of the vacuum polarization. In addition, we obtain a Landau-Lifshitz equation for the magnetization dynamics, and find that charged magnetic textures lead to a net magnetization even at a large distance. Such textures can be induced by an external electric field with nonzero in-plane divergence. We apply this effect to a FMI-TI-FMI trilayer heterostructure with two parallel interfaces being well-separated by the bulk TI, where we propose to non-locally control the magnetic texture at one interface by proper gating of the other interface. A preprint can be found at arXiv:1510.04285 Supported by the Norwegian Research Council, Grants 205591/V20 and 216700/F20, and the Collaborative Research Center SFB 1143 ''Correlated Magnetism: From Frustration to Topology''.

  6. Polar Nanodomains and Giant Converse Magnetoelectric Effect in Charge-Ordered Fe2OBO3

    NASA Astrophysics Data System (ADS)

    Yang, Huaixin; Tian, Huanfang; Song, Yuanjun; Qin, Yuanbin; Zhao, Yonggang; Ma, Chao; Li, Jianqi

    2012-02-01

    Charge ordering (CO) is considered to be an important issue that leads to metal-insulator transitions in numerous materials and also shows possible correlations to many notable physical phenomena, such as colossal magnetoresistance, superconductivity and multiferroics. In recent investigations, oxyborate Fe2OBO3 has been found to show certain structural and physical features in connection with a continuous CO transition [1, 2]. By using In-situ TEM technique, we revealed that the charge-ordering transition characterized by an incommensurate modulation could evidently result in remarkable polar nanodomains at low temperatures. This kind of nanodomain could play a critical role in triggering a high dielectric constant and notable dielectric dispersion as observed in Fe2OBO3. Moreover, measurements of the magnetoelectric coupling under electrical field demonstrate the existence of giant electrically induced changes in magnetization around the magnetic transition [1, 2]. 1.Y. J. Song et al., Phys. Rev. B 81, 020101(R) (2010). 2.H. X. Yang et al., Phys. Rev. Lett. 106, (2011) 016406.

  7. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-01

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium-Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo2Ti2Fe8O19/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10-10 s m-1 in SrCo2Ti2Fe8O19 thin films.

  8. Kinetics of electrons and neutral particles in radio-frequency transformer coupled plasma H- ion source at Seoul National University

    NASA Astrophysics Data System (ADS)

    Chung, K. J.; Dang, J. J.; Kim, J. Y.; Cho, W. H.; Hwang, Y. S.

    2016-10-01

    In volume production H- ion sources, control of electron temperature is essential due to its close correlation with the generation of vibrationally-excited hydrogen molecules in the driver region as well as the generation of H- ions by dissociative attachment in the extraction region. In the ion source group at Seoul National University (SNU) in Korea, a lot of research effort has been made to the development of a volume production H- ion source based on radio-frequency (RF) transformer-coupled plasma (TCP) for long lifetime continuous wave (CW) operation. It has a spiral RF antenna located outside the discharge chamber to generate a plasma with high electron temperature in the driver region and employs a magnetic filter field to prevent high energy electrons from being transported to the extraction region. In this paper, we present the recent progress on understanding of the underlying physics of the RF TCP H- ion source at SNU. Special attention is paid to the characterization of electron kinetics regime for controlling electron energy distribution and the influence of relaxation of neutral particles during the transport across the magnetic filter region. Effect of the degree of dissociation on the production of H- ions is also discussed.

  9. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  10. Microwave magnetoelectric effects in bilayer of ferrite and piezoelectric

    NASA Astrophysics Data System (ADS)

    Bichurin, M. I.; Petrov, V. M.; Galkina, T. A.

    2009-03-01

    The present paper focuses on magnetoelectric (ME) interactions under ferromagnetic resonance (FMR) in a bilayer of a ferrite and a piezoelectric. Applying a dc electric field perpendicular to the sample plane induces a uniaxial magnetic anisotropy. The effects of flexural deformation and substrate clamping have been considered in determining the electric field induced FMR line shift. The obtained model is applied to a specific case of yttrium iron garnet/lead magnesium niobate-lead titanate. Our studies indicate that flexural deformation gives rise to a decrease in the strength of ME interaction for a free standing bilayer. The substrate thickness dependence of FMR line shift reveals a maximum for the substrate thickness that is approximately equal to that of the bilayer.

  11. A 100 MHz antenna based on magnetoelectric composite materials

    NASA Astrophysics Data System (ADS)

    Tatarenko, A. S.; Petrov, R.; Srinivasan, G.; Bichurin, M. I.

    2008-03-01

    Results on miniaturization of a 100 MHz-antenna based on magnetoelectric composites are presented. A composite with large and equal permittivity and permeability is sought for the task. In such composites both miniaturization and impedance match to free-space are possible. A sample of nickel zinc ferrite and bismuth strontium titanate prepared by the conventional ceramic processing is used. The dipole antenna operating at 100 MHz consists of a composite substrate 220 mm in diameter and 8.5 mm in width and a Cu-strip 6.5 mm in diameter. Antenna characteristics are measured with a vector network analyzer. Scattering parameter data indicates resonance at 98 MHz and an antenna miniaturization factor of 7-10, in agreement with theoretical estimates.

  12. A review on equivalent magnetic noise of magnetoelectric laminate sensors

    PubMed Central

    Wang, Y. J.; Gao, J. Q.; Li, M. H.; Shen, Y.; Hasanyan, D.; Li, J. F.; Viehland, D.

    2014-01-01

    Since the turn of the millennium, multi-phase magnetoelectric (ME) composites have been subject to attention and development, and giant ME effects have been found in laminate composites of piezoelectric and magnetostrictive layers. From an application perspective, the practical usefulness of a magnetic sensor is determined not only by the output signal of the sensor in response to an incident magnetic field, but also by the equivalent magnetic noise generated in the absence of such an incident field. Here, a short review of developments in equivalent magnetic noise reduction for ME sensors is presented. This review focuses on internal noise, the analysis of the noise contributions and a summary of noise reduction strategies. Furthermore, external vibration noise is also discussed. The review concludes with an outlook on future possibilities and scientific challenges in the field of ME magnetic sensors. PMID:24421380

  13. Magnetic phase diagram of magnetoelectric LiMnPO4

    SciTech Connect

    Toft-Petersen, Rasmus; Andersen, Niels H.; Li, Haifeng; Li, Jiying; Tian, Wei; Budko, Serguei L.; Jensen, Thomas B.S.; Niedermayer, Christof; Laver, Mark; Zaharko, Oksana; Lynn, Jeffrey W.; Vaknin, David

    2012-06-14

    The nature of the spin-flop (SF) transition in the magnetoelectric quasi-2D Heisenberg system LiMnPO4 is studied in fields applied along the a axis. A refinement of the magnetic structure using neutron diffraction data in the SF phase reveals that the spins reorient from being parallel to the a axis to be nearly along the c axis at magnetic fields between 4 and 4.7 T, depending on temperature. The low-field antiferromagnetic phase boundary is shown to join the spin-flop line tangentially at the so-called bicritical point, where there is a suppression of the ordering temperature. At the bicritical field, we observe an increased intensity of the Lorentz broadened elastic scattering at magnetic Bragg peaks above TN as compared to zero field and 10 T, without an increase in peak width. This suggests an increased density of fluctuations at the bicritical field as compared to zero field.

  14. A review on equivalent magnetic noise of magnetoelectric laminate sensors.

    PubMed

    Wang, Y J; Gao, J Q; Li, M H; Shen, Y; Hasanyan, D; Li, J F; Viehland, D

    2014-02-28

    Since the turn of the millennium, multi-phase magnetoelectric (ME) composites have been subject to attention and development, and giant ME effects have been found in laminate composites of piezoelectric and magnetostrictive layers. From an application perspective, the practical usefulness of a magnetic sensor is determined not only by the output signal of the sensor in response to an incident magnetic field, but also by the equivalent magnetic noise generated in the absence of such an incident field. Here, a short review of developments in equivalent magnetic noise reduction for ME sensors is presented. This review focuses on internal noise, the analysis of the noise contributions and a summary of noise reduction strategies. Furthermore, external vibration noise is also discussed. The review concludes with an outlook on future possibilities and scientific challenges in the field of ME magnetic sensors.

  15. Magnetoelectric transport and quantum interference effect in ultrathin manganite films

    SciTech Connect

    Wang, Cong; Jin, Kui-juan Gu, Lin; Lu, Hui-bin; Li, Shan-ming; Zhou, Wen-jia; Zhao, Rui-qiang; Guo, Hai-zhong; He, Meng; Yang, Guo-zhen

    2014-04-21

    The magnetoelectric transport behavior with respect to the thicknesses of ultrathin La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films is investigated in detail. The metal-insulator phase transition, which has never been observed in bulk La{sub 0.9}Sr{sub 0.1}MnO{sub 3}, is found in ultrathin films with thicknesses larger than 6 unit cells. Low-temperature resistivity minima appeared in films with thicknesses less than 10 unit cells. This is attributed to the presence of quantum interference effects. These data suggest that the influence of the weak localization becomes much pronounced as the film thickness decreases from 16 to 8 unit cells.

  16. Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O.

    2015-11-01

    Magnetostrictive (MS) piezoelectric composites provide interesting possibilities to harvest energy from low amplitude and low frequency vibrations with a relative high energy outcome. In this paper a magnetoelectric (ME) vibration energy harvester has been designed, which consists of two ME transducers a magnetic circuit and a magnetic spring. The ME transducers consist of three layered Terfenol-D and Lead Zirconate Titanate (PZT) laminated composites. The outcoming energy is collected directly from the piezo layer to avoid electrical losses. In the system under consideration, the magnetic forces between the ME transducers and the magnetic circuit introduce additional stiffness on the magnetic spring. The one degree of freedom system is analysed analytically and the corresponding governing equation is solved with the Lindstedt-Poincaré method. The effects of the structure parameters, such as the nonlinear magnetic forces and the magnetic field distribution, are analysed based on finite element analysis for optimization of electric output performances. Investigations demonstrate that 1.56 mW output power across 8 MΩ load resistance can be harvested for an excitation amplitude of 1 mm at 21.84 Hz.

  17. Importance of composite parameters in enhanced power conversion efficiency of Terfenol-D/PZT magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Srinivasan, G.; Viehland, D.

    2017-03-01

    A gyrator that is capable of current-to-voltage conversion can be realized with a magnetoelectric (ME) composite of ferromagnetic and ferroelectric phases placed in a coil. Here, we report the dependence of the power conversion efficiency (PE) on the relative thickness of the two ferroic phases in a gyrator of Terfenol-D and PZT. Both experimental and theoretical results on PE as a function of composite parameters, such as thickness ratio of the ferroic layers (n), magnetic field bias (HBias) and several gyrator parameters, such as the resistance load (RL), were discussed. By decreasing the thickness ratio of Terfenol-D to composite (n = 0.28) in coil-ME gyrators, a high power efficiency of 73.9% was found at a fundamental resonance frequency of 72.5 kHz under a HBias of 1000 Oe and RL = 2.6 kΩ in experiments. At the same time, the non-linear mechanical loss was reduced by decreasing the value of n which resulted in a flat response over a wide HBias range. This improved power efficiency promises ME gyrators for power transfer devices.

  18. Control of Coupling Phenomena in Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Yang

    The search for non-volatile, non-dissipative computing devices (memory and logic) beyond current transistor technology has encouraged the scientific community to develop new nanoscale magnetic control mechanisms. In the present work, the control of magnets by magnetoelastic anisotropy is investigated within the context of nanoscale magnetoelectric composite systems. These magnetoelectric composites are artificial multiferroic materials which exhibit both a coexistence and coupling of ferromagnetic and ferroelectric ordering. This device architecture provides a route to control magnetism with electric fields via the application of mechanical stress. In the present work, magnetization behavior under mechanical stress of various magnetically coupled systems is investigated using both advanced computer simulations and experimental work. The application of voltage-controlled strain is shown to influence dipole coupled nanomagnet arrays and antiferromagnetic-ferromagnetic (AFM-FM) spontaneous exchange bias systems, which present pathways to engineered systems. Furthermore, the repeatable nature of these experiments presents unambiguous deterministic voltage control for both dipole-coupled systems and spontaneous exchange bias systems. The experimental results are confirmed by multiple characterization techniques, including superconducting quantum interference device magnetometry (SQUID) and magneto optic Kerr effect magnetometry (MOKE). This work thus provides significant evidence of the viability of magnetoelastic anisotropy as a means to control magnetoelectric heterostructures in future computing devices.

  19. Saturation Ion Current Densities in Inductively Coupled Hydrogen Plasma Produced by Large-Power Radio Frequency Generator

    NASA Astrophysics Data System (ADS)

    Wang, Songbai; Lei, Guangjiu; Bi, Zhenhua; Ghomi, H.; Yang, Size; Liu, Dongping

    2016-09-01

    An experimental investigation of the saturation ion current densities (Jions) in hydrogen inductively coupled plasma (ICP) produced by a large-power (2-32 kW) radio frequency (RF) generator is reported, then some reasonable explanations are given out. With the increase of RF power, the experimental results show three stages: in the first stage (2-14 kW), the electron temperature will rise with the increase of RF power in the ICP, thus, the Jions increases continually as the electron temperature rises in the ICP. In the second stage (14-20 kW), as some H- ions lead to the mutual neutralization (MN), the slope of Jions variation firstly decreases then increases. In the third stage (20-32 kW), both the electronic detachment (ED) and the associative detachment (AD) in the ICP result in the destruction of H- ions, therefore, the increased amplitude of the Jions in the third stage is weaker than the one in the first stage. In addition, with the equivalent transformer model, we successfully explain that the Jions at different radial locations in ICP has the same rule. Finally, it is found that the Jions has nothing to do with the outer/inner puffing gas pressure ratio, which is attributed to the high-speed movement of hydrogen molecules. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB108011 and 2010GB103001), the Major International (Regional) Project Cooperation and Exchanges of China (No. 11320101005) and the Startup Fund from Fuzhou University (No. 510071)

  20. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-01

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W-683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.