Analysis of OFDMA receiver with carrier frequency offset and common carrier frequency offset (CCFO)
NASA Astrophysics Data System (ADS)
Gauni, Sabitha; Kumar, R.
2013-01-01
The technique of Orthogonal frequency multiplexing (OFDM) is used to mitigate the multipath effects and to achieve better data rate. When these systems are extended to enable multiple access wireless multimedia communications they are more beneficial. The performance of the OFDM systems degrades with frequency offset and phase offset. The OFDM multiple access (OFDMA) technology allots groups of the OFDM subcarriers allocated to different users for transmission. In this paper we study the interference effects of the individual subcarriers with the neighbouring subcarriers which also plays a role in the system degradation is termed as Multiuser Interference (MUI). The effect of Carrier frequency offset (CFO) on these systems is also taken in account. There are conventional CFO compensation methods for OFDMA systems the CFOs are usually compensated by directly eliminating the intercarrier interference (ICI) caused by the residual CFOs for individual users.
CFO compensation method using optical feedback path for coherent optical OFDM system
NASA Astrophysics Data System (ADS)
Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki
2017-07-01
We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
NASA Astrophysics Data System (ADS)
Fusco, Tilde; Petrella, Angelo; Tanda, Mario
2009-12-01
The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation
NASA Astrophysics Data System (ADS)
Chitra, S.; Kumaratharan, N.
2018-02-01
Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.
FBMC receiver for multi-user asynchronous transmission on fragmented spectrum
NASA Astrophysics Data System (ADS)
Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri
2014-12-01
Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.
2018-03-01
offset designs . Particularly, the proposed CA-CFO is compared with uniform linear array and uniform frequency offset (ULA-UFO). Uniform linear array...and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing (Grant No. N00014-13-1-0061) Submitted to...Contents 1. Executive Summary …………………………………………………………………………. 1 1.1. Generalized Co-Prime Array Design ………………………………………………… 1 1.2. Wideband
MAI-free performance of PMU-OFDM transceiver in time-variant environment
NASA Astrophysics Data System (ADS)
Tadjpour, Layla; Tsai, Shang-Ho; Kuo, C.-C. J.
2005-06-01
An approximately multi-user OFDM transceiver was introduced to reduce the multi-access interference (MAI ) due to the carrier frequency offset (CFO) to a negligible amount via precoding by Tsai, Lin and Kuo. In this work, we investigate the performance of this precoded multi-user (PMU) OFDM system in a time-variant channel environment. We analyze and compare the MAI effect caused by time-variant channels in the PMU-OFDM and the OFDMA systems. Generally speaking, the MAI effect consists of two parts. The first part is due to the loss of orthogonality among subchannels for all users while the second part is due to the CFO effect caused by the Doppler shift. Simulation results show that, although OFDMA outperforms the PMU-OFDM transceiver in a fast time-variant environment without CFO, PMU-OFDM outperforms OFDMA in a slow time-variant channel via the use of M/2 symmetric or anti-symmetric codewords of M Hadamard-Walsh codes.
A time and frequency synchronization method for CO-OFDM based on CMA equalizers
NASA Astrophysics Data System (ADS)
Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum
2018-06-01
In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.
Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool
NASA Astrophysics Data System (ADS)
Cai, Yu; Sha, Shuang
2016-09-01
This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.
Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation
NASA Astrophysics Data System (ADS)
Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.
2016-05-01
Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.
Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa
2017-01-01
In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin−1(x)≈x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector. PMID:29278404
Zhang, Gaoyuan; Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa
2017-12-26
In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin - 1 ( x ) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector.
Lattice strain induced multiferroicity in PZT-CFO particulate composite
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Rajnish; Kar, Manoranjan
2018-02-01
Lead Zirconate Titanate [Pb(Zr0.52Ti0.48)O3/PZT] and Cobalt Ferrite [CoFe2O4/CFO] based multiferroic composites [(1-x)PZT-(x)CFO] with (x = 0.10-0.40) have been prepared to study its magnetoelectric (ME) and multiferroic properties. X-ray diffraction method along with the Rietveld refinement technique reveals that the crystal symmetries corresponding to PZT and CFO exist independently in the composites. The effect of interfacial strain on lattice distortion in PZT has been observed. It is well correlated with the magnetoelectric coupling of the composites. Dispersion behavior of dielectric constant with frequency can be explained by the modified Debye model. Different relaxation phenomena have been observed in PZT-CFO particulate composites. The ferroelectric properties of composites decrease with the increase in percentage of CFO in the composite. Both saturation (Ms) and remanent (Mr) magnetization increase with the increase in CFO content in the composite. The maximum ME coupling was found to be 1.339 pC/cm2 Oe for the composition (0.80) PZT-(0.20) CFO at the application of maximum magnetic field of 50 Oe. The multiferroic properties in CFO-PZT can be explained by the lattice strain at the CFO-PZT interfaces.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Bankruptcy. 309.24 Section 309.24 Foreign Relations PEACE CORPS DEBT COLLECTION Salary Offset § 309.24 Bankruptcy. Peace Corps generally terminates... bankruptcy law. The CFO will seek legal advice by the General Counsel's office if there is the belief that...
Magnetic anomalies in self-assembled SrRuO3 -CoFe2O4 nanostructures studied by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Yi-Chun; Huang, Yen-Chin; Chien, Chia-Hsien; Liu, Heng-Jui; Chu, Ying-Hao
2015-03-01
Self-assembled nanostructures with high interface-to-volume ratio usually possess interesting physical properties through the coupling between neighboring materials. In complex-oxide nanocomposites, the interplay of spin, charge, orbital, and lattice degrees of freedom especially provides various functionalities. Our recent study had shown photo-induced magnetization switching in a self-assembled system, CoFe2O4 (CFO)- SrRuO3(SRO), where the CFO nanopillars were embedded in the SRO matrix. Moreover, this system also has significant magnetoresistance behaviors. In this study, we used Raman spectroscopy to investigate the magnetic coupling mechanisms in CFO-SRO nanostructures. Compared to the pure CFO films, the CFO nano-pillars under out-of-plane compressive strain show a slightly increase of A1g(Co)/A1g(Fe) intensity ratio, which corresponds to a migration of Co ions from O-site (oxygen octahedron) to T-site (oxygen tetrahedron). This behavior can be further tuned by external stimulus, such as magnetic fields and temperatures. A strong increase of A1g(Co)/A1g(Fe) ratio together with a discontinuous A1g frequency shift occur at the SRO magnetic transition temperature. This result indicated that the spin-orbital interaction in CFO can be modulated by the SRO magnetic orderings.
NASA Astrophysics Data System (ADS)
Shang, Tao; Lu, Qingshan; Chao, Luomeng; Qin, Yanli; Yun, Yuehou; Yun, Guohong
2018-03-01
Low-density ordered mesoporous CoFe2O4 (Osbnd CFO) and CoLa0.12Fe1.88O4 (Osbnd CLFO) are prepared by nanocasting method using mesoporous silica SBA-15 as a hard-template. The crystal structure, surface chemical state, magnetic properties and electromagnetic parameters are characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurement, X-ray photoelectron spectroscopy, physical property measurement system and vector network analyzer. The results show that all the samples formed a single phase with cubic spinel structure. Meanwhile Osbnd CFO and Osbnd CLFO possess a highly ordered mesostructure. Comparing with particle CoFe2O4 (P-CFO), Osbnd CFO with high specific surface area exhibits lower magnetic saturation (Ms), higher imaginary part of complex permittivity (ε‧‧) and imaginary part of the complex permeability (μ‧‧). The minimum reflection loss (RL) of Osbnd CFO reaches -27.36 dB with a matching thickness of 3.0 mm. The enhancement of the microwave absorbing performances of Osbnd CFO can be mainly attributed to the good impedance matching, high electromagnetic wave attenuation and multiple reflections of electromagnetic wave originated from the ordered mesoporous structure. The Ms of Osbnd CLFO decreases after La3+ doping, while the specific surface area, coercivity value, ε‧‧ and μ‧‧ of Osbnd CLFO increase. The minimum RL of Osbnd CLFO reaches -46.47 dB with a thickness of 3.0 mm, and the effective absorption frequency bandwidth reaches 4.9 GHz.
NASA Astrophysics Data System (ADS)
Zhang, X. D.; Dho, Joonghoe; Park, Sungmin; Kwon, Hyosang; Hwang, Jihwan; Park, Gwangseo; Kwon, Daeyoung; Kim, Bongju; Jin, Yeryeong; Kim, Bog. G.; Karpinsky, D.; Kholkin, A. L.
2011-09-01
In this work, we investigated structural, electrical, and magnetic properties of ferroelectric PbZr0.2Ti0.8O3 (PZT) and ferrimagnetic/ferroelectric [CoFe2O4(CFO)/PZT] bilayers grown on (100)LaAlO3 (LAO) substrates supplied with bottom 50 nm thick LaNiO3 electrodes. Interestingly, structural and electrical properties of the PZT layer exhibited remarkable changes after the top-layer CFO deposition. X-ray diffraction data suggested that both the c- and a-domains exist in the PZT layer and the tetragonality of the PZT decreases upon the top-layer deposition. A variation in the electrical properties of the PZT layer upon the CFO deposition was investigated by polarization versus voltage (P-V), capacitance versus voltage (C-V), and capacitance versus frequency (C-f) measurements. The CFO deposition induced a slight decrease of the remnant polarization and more symmetric behavior of P-V loops as well as led to the improvement of fatigue behavior. The tentative origin of enhanced fatigue endurance is discussed based on the measurement results. These results were corroborated by local piezoelectric measurements. Ferrimagnetic property of the CFO/PZT bilayer was confirmed by magnetic measurement at room temperature.
Galmiche, J M; Pezennec, S; Zhao, R; Girault, G; Baeuerlein, E
1994-01-31
The ATP synthase from chloroplasts, CFo.F1, was reconstituted into liposomes, from which most of CF1 was removed by a short treatment with guanidinium chloride. ATP-dependent proton uptake was restored with these CFo-liposomes even better by the addition of the bacterial TF1-than of the related CF1-part. This proton uptake was prevented by tentoxin, a specific inhibitor of the CF1-ATPase, in these CFo.F1-liposomes, but not in the hybrid CFo.TF1-liposomes. Venturicidin, a specific inhibitor of proton flow through CFo, was able to block it in both the hybrid CFo.TF1-liposomes and reconstituted CFo.F1-liposomes. These results indicate that the bacterial TF1-part binds to the eukaryotic CFo-part of four subunits forming a functional CFo.TF1-ATPase.
Dynamic Magnetostriction of CoFe2 O4 and Its Role in Magnetoelectric Composites
NASA Astrophysics Data System (ADS)
Aubert, A.; Loyau, V.; Pascal, Y.; Mazaleyrat, F.; LoBue, M.
2018-04-01
Applications of magnetostrictive materials commonly involve the use of the dynamic deformation, i.e., the piezomagnetic effect. Usually, this effect is described by the strain derivative ∂λ /∂H , which is deduced from the quasistatic magnetostrictive curve. However, the strain derivative might not be accurate to describe dynamic deformation in semihard materials as cobalt ferrite (CFO). To highlight this issue, dynamic magnetostriction measurements of cobalt ferrite are performed and compared with the strain derivative. The experiment shows that measured piezomagnetic coefficients are much lower than the strain derivative. To point out the direct application of this effect, low-frequency magnetoelectric (ME) measurements are also conducted on bilayers CFO /Pb (Zr ,Ti )O3 . The experimental data are compared with calculated magnetoelectric coefficients which include a measured dynamic coefficient and result in very low relative error (<5 %), highlighting the relevance of using a piezomagnetic coefficient derived from dynamic magnetostriction instead of a strain derivative coefficient to model ME composites. The magnetoelectric effect is then measured for several amplitudes of the alternating field Hac, and a nonlinear response is revealed. Based on these results, a trilayer CFO/Pb (Zr ,Ti )O3 /CFO is made exhibiting a high magnetoelectric coefficient of 578 mV /A (approximately 460 mV /cm Oe ) in an ac field of 38.2 kA /m (about 48 mT) at low frequency, which is 3 times higher than the measured value at 0.8 kA /m (approximately 1 mT). We discuss the viability of using semihard materials like cobalt ferrite for dynamic magnetostrictive applications such as the magnetoelectric effect.
Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in
We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, D.; Devkota, J.; Ruiz, A.
2014-09-28
A systematic study of the effect of depositing CoFe₂O₄ (CFO) films of various thicknesses (d = 0–600 nm) on the giant magneto-impedance (GMI) response of a soft ferromagnetic amorphous ribbon Co₆₅Fe₄Ni₂Si₁₅B₁₄ has been performed. The CFO films were grown on the amorphous ribbons by the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy revealed a structural variation of the CFO film from amorphous to polycrystalline as the thickness of the CFO film exceeded a critical value of 300 nm. Atomic force microscopy evidenced the increase in surface roughness of the CFO film as the thickness of the CFOmore » film was increased. These changes in the crystallinity and morphology of the CFO film were found to have a distinct impact on the GMI response of the ribbon. Relative to the bare ribbon, coating of amorphous CFO films significantly enhanced the GMI response of the ribbon, while polycrystalline CFO films decreased it considerably. The maximum GMI response was achieved near the onset of the structural transition of the CFO film. These findings are of practical importance in developing high-sensitivity magnetic sensors.« less
Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)
NASA Astrophysics Data System (ADS)
Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro
2018-01-01
Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.
Engineering Nano-Structured Multiferroic Thin Films
NASA Astrophysics Data System (ADS)
Cheung, Pui Lam
Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for ALD CFO growth. The increased filling of CFO decreased the mechanical flexibility of the composite for electric field induced strain, hence the converse ME coupling was mitigated. The highest converse ME coefficient of 1.2 10-5 Oe-cm/mV was achieved with a 33% pore filling of CFO, in compare to 1 x 10-5 Oe-cm/mV from mesoporous CFO filled with 3 nm of PZT in literature (Chien 2016). Highly directional 1D-1D PZT-core CFO-shell composite in AAO demonstrated the magnetic shape anisotropy could be modulated. The CFO shell thickness allowed the tuning of magnetic easy axis and saturation magnetizations; whereas the PZT volume allowed the optimization of electric field induced strain of the composite. Enhanced converse ME coupling of 1.3 x 10-4 Oe-cm/mV was realized by 5 nm CFO shell on 30 nm of PZT core. In summary, the work has demonstrated nanostructuring of multiferroic composite is an effective pathway to engineer converse ME coupling through optimizations of magnetic shape anisotropy and interfacial strain transfer.
NASA Astrophysics Data System (ADS)
Negi, N. S.; Kumar, Rakesh; Sharma, Hakikat; Shah, J.; Kotnala, R. K.
2018-06-01
High performance lead-free multiferroic composites with strong magnetoelectric coupling effect are desired to replace lead-based ceramics in multifunctional device applications due to increasing environmental issues. We report crystal structure, ferroelectric, magnetic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 (BCTZ-CFO) lead-free composites with x = 0.1, 0.3, 0.5, 0.7 and 0.9 synthesized by chemical solution method. BCTZ power was synthesized by sol-gel method while CFO was prepared by metallo-organic decomposition (MOD) method. The XRD results confirm successful formation of the BCTZ-CFO composites without presence of any impurity phase. At room temperature, the BCTZ-CFO composites show multiferroic behavior characterized by ferroelectric and ferromagnetic hysteresis curves. The composite having 10 wt% of CFO exhibited maximum polarization, remnant polarization and coercive field of Ps ∼ 5.1 μC/cm2, Pr ∼ 1.4 μC/cm2 and Ec ∼ 11.6 kV/cm respectively. The BCTZ-CFO composite with 90 wt% of CFO incorporation exhibits improved ferromagnetic properties with Ms ∼ 32 emu/g, Mr ∼ 11.7 emu/g and Hc ∼ 504 Oe. Mӧssbauer spectra analysis show two sets of six-line hyperfine patterns for BCTZ-CFO composites, indicating the presence of Fe3+ ions in both A and B sites. Increasing BCTZ content was found to decrease the hyperfine field strength at both sites and is consistent with the decreasing magnetic moment observed for the samples. The maximum dielectric constant value ε‧ ∼ 678 is obtained at 1 MHz for composite with 10 wt% of CFO phase. The results indicate that the BCTZ-CFO composites are potential lead-free room temperature multiferroic systems.
Financing the future of independent community hospitals.
Richman, Alan P
2011-11-01
Effingham Hospital, a critical access hospital, undertook a modernization initiative to expand the limited scope of its inpatient services to improve financial performance and ability to build liquidity reserves. FHA Section 242 mortgage insurance was the only means for Effingham to credit enhance its debt and obtain a low-interest rate loan. Effingham needed to convince residents and county commissioners to pledge 27 years of additional tax support to offset its annual uncompensated care. The hospital won support from the community and the commissioners, in part because of the educational outreach of the CEO, CFO, and board in articulating the imperative for maintaining local hospital care and the present and future economic benefits for Effingham County.
7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Establishing Conservation Farm Option (CFO) pilot...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION FARM OPTION General Provisions § 1468.4 Establishing Conservation Farm Option (CFO) pilot project areas...
The Large Public University. CFO Perspectives
ERIC Educational Resources Information Center
Jessell, Kenneth A.
2013-01-01
"CFO Perspectives" is a series of white papers that examines at role of the CFO within different institutional or operational settings. Each white paper, available free from the National Association of College and University Business Officers (NACUBO) and released periodically during 2012, NACUBO's 50th anniversary year, focuses on the…
NASA Astrophysics Data System (ADS)
Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan
2018-04-01
In this study, the tartaric acid modified sol-gel method was used to synthesize (1-x)Bi0.85La0.15FeO3-(x)CoFe2O4 (BLFO-CFO) composites where x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.50. The X-ray diffraction (XRD) patterns indicated the formation of composites with both BLFO and CFO crystal symmetry, i.e., perovskite and spinel structures, respectively. Rietveld refinement of the XRD patterns was performed for all of the samples in order to analyze the crystal phases and obtain the structural parameters. There were decreases in the lattice parameters of the perovskite phase as the CFO spinel phase increased in the composites, which may be explained by the strain at the interface of the BLFO and CFO phases. Electrical polarization and dielectric constant enhancements were observed in the BLFO-CFO composites compared with BLFO. The saturation magnetization increased as the CFO phase increased in the composites. The theoretical saturation magnetization (calculated using Vegard's law) was less than the experimentally observed value, possibly due to the spin interaction at the interface of BLFO and CFO.
How Future Economic Trends Will Affect the 21st Century CFO.
ERIC Educational Resources Information Center
Malone, John
1998-01-01
The CFO (chief financial officer) performs the budgeting, accounting, and financial functions for a local education agency (LEA). The CFO of 1998 works in a very different environment from 25 years ago, due to changes in school funding sources (from local to state systems), information technology, and school district organization and…
75 FR 79787 - Unified Agenda of Federal Regulatory and Deregulatory Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... pursuant to the requirements of the Chief Financial Officers Act of 1990 (CFO Act), 31 U.S.C. 901-03. The CFO Act requires each agency's chief financial officer (CFO) to ``review, on a biennial basis, the... abandoned and help prevent future marine pollution. This rulemaking supports the Coast Guard's broad role...
NASA Astrophysics Data System (ADS)
Das, Avisek; Gorige, Venkataiah
2018-04-01
In this work CoFe2O4 (CFO)-BaTiO3 (BTO) composite and core-shell CFO-BTO have been prepared to investigate the effect of microstructure on the magnetic properties. Detailed microstructure analysis has been carried out using X-ray diffraction, field emission scanning electron microscope and transmission electron microscope. Although uniform distribution of CFO is found in BTO matrix for the composite sample, magnetization and coercivity values are more enhanced in core-shell CFO-BTO.
75 FR 21805 - Unified Agenda of Federal Regulatory and Deregulatory Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... FR Cite NPRM 08/00/10 NPRM Comment Period End 10/00/10 Regulatory Flexibility Analysis Required: Yes... pursuant to the requirements of the Chief Financial Officers Act of 1990 (CFO Act), 31 U.S.C. 901-03. The CFO Act requires each agency's chief financial officer (CFO) to ``review, on a biennial basis, the...
Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J
2000-09-01
The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol compared to the stanol diet. The CFO, sterol, and stanol diets excreted significantly more fecal cholesterol compared to the coconut oil and CO diets. In summary, CFO reduces plasma and hepatic cholesterol concentrations and increases fecal cholesterol excretion greater than CO through some other mechanism(s) in addition to increase dietary sterols and stanols-possibly oryzanols.
Discounting medical malpractice claim reserves for self-insured hospitals.
Frese, Richard; Kitchen, Patrick
2011-01-01
The hospital CFO often works with the hospital's actuary and external auditor to calculate the reserves recorded in financial statements. Hospital management, usually the CFO, needs to decide the discount rate that is most appropriate. A formal policy addressing the rationale for discounting and the rationale for selecting the discount rate can be helpful to the CFO, actuary, and external auditor.
NASA Astrophysics Data System (ADS)
Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.
2017-02-01
Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.
Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films
NASA Astrophysics Data System (ADS)
Niizeki, Tomohiko; Kikkawa, Takashi; Uchida, Ken-ichi; Oka, Mineto; Suzuki, Kazuya Z.; Yanagihara, Hideto; Kita, Eiji; Saitoh, Eiji
2015-05-01
The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H) dependence of the LSSE voltage (VLSSE) in the Pt/CFO(110) sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H ∥ [ 1 1 ¯ 0 ] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of VLSSE has a linear relationship with the temperature difference (ΔT), giving the relatively large VLSSE /ΔT of about 3 μV/K for CFO(110) which was kept even at zero external field.
Diligence in front-end processes is critical: an interview with Cheryl A. Harmon.
Harmon, Cheryl A
2002-12-01
Cheryl Harmon's position reflects her organization's emphasis on an expanded role for the CFO. Harmon was hired recently to serve as CFO of Provena Covenant Medical Center, (PCMC) in Urbana, Illinois. Her mission as CFO is to help develop strategies to ensure that Provena Covenant maintains its financial stability. Harmon appreciates Povena Covenant's creative approaches to challenges faced by many healthcare organizations, such as workforce shortages.
He, Yongzhen; Dai, Chaomeng; Zhou, Xuefei
2017-01-01
A magnetic spinel cobalt ferrite nanoparticle composite (CFO) was prepared via an ultrasonication-assisted co-precipitation method. The morphological structure and surface composition of CFO before and after reaction were investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy, indicating the consumption of iron oxide during photodegradation. X-ray photoelectron spectroscopy and vibrating sample magnetometry confirm the preparation of the ferrite nanoparticle composite and its magnetic properties. The prepared CFO was then used for the photocatalytic degradation of carbamazepine (CBZ) as an example of pharmaceuticals and personal care products (PPCPs) from aqueous solution. The effects of the nanocomposite dosage, contact time, and solution pH on the photodegradation process were investigated. More than 96% of the CBZ was degraded within 100 min at 0.2 g·L -1 CFO in the presence of UV light. The reactive species for CBZ degradation in the CFO/UV system was identified as hydroxyl radicals by the methanol scavenging method. Combined with the detection of leached iron ions during the process, the CBZ degradation mechanism can be presumed to be heterogeneous and homogeneous photocatalytic degradation in the CFO/UV system. Furthermore, iminostilbene and acridine were detected as intermediate products by GC-MS.
NASA Astrophysics Data System (ADS)
Ortega Achury, Nora Patricia
Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic, electric, and ferroelastic ordering, have drawn increasing interest due to their multi-functionality for a variety of device applications. Since, very rare single phase materials exist in nature this kind of properties, an intensive research activity is being pursued towards the development of new engineered materials with strong magneto-electric (ME) coupling. In the present investigation, we have fabricated polycrystalline and highly oriented PbZr0.53,Ti0.47O3--CoFe 2O4 (PZT/CFO) artificially multilayers (MLs) engineered nanostructures thin films which were grown on Pt/TiO2/SiO2/Si and La 0.5Sr0.5CoO3 (LSCO) coated (001) MgO substrates respectively, using the pulsed laser deposition technique. The effect of various PZT/CFO sandwich configurations having 3, 5, and 9 layers, while maintaining similar total PZT and CFO thickness, has been systematically investigated. The first part of this thesis is devoted to the analysis of structural and microstructure properties of the PZT/CFO MLs. X-ray diffraction (XRD) and micro Raman analysis revealed that PZT and CFO were in the perovskite and spinel phases respectively in the all layered nanostructure, without any intermediate phase. The TEM and STEM line scan of the ML thin films showed that the layered structure was maintained with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase, however better interface was observed in highly oriented films. Second part of this dissertation was dedicated to study of the dielectric, impedance, modulus, and conductivity spectroscopies. These measurements were carried out over a wide range of temperatures (100 K to 600 K) and frequencies (100 Hz to 1 MHz) to investigate the grain and grain boundary effects on electrical properties of MLs. The temperature dependent dielectric and loss tangent illustrated step-like behavior and relaxation peaks near the step-up characteristic respectively. The Cole-Cole plots indicate that the most of the dielectric response came from the bulk (grains) MLs below 300 K, whereas grain boundaries and electrode-MLs effects prominent at elevated temperature. The dielectric loss relaxation peaks shifted to higher frequency side with increase in temperature, finally above 300 K, it went out experimental frequency window. Our Cole-Cole fitting of dielectric loss spectra indicated marked deviation from the ideal Debye type of relaxation which is more prominent at elevated temperature. Master modulus spectra support the observation from impedance spectra, it also indicate that the difference between C g and Cgb are higher compared to polycrystalline MLs indicating less effects of grain boundary in highly oriented MLs. We have explained these electrical properties of MLs by Maxwell-Wagner type contributions arising from the interfacial charge at the interface of the MLs structure. Three different types of frequency dependent conduction process were observed at elevated temperature (>300 K), which well fitted with the double power law, sigma(o) = sigma(0) + A 1on1 + A 2on2, it indicates conduction at: Low frequency (<1 kHz) may be due to long range ordering (frequency independent), mid frequency (<10 kHz) may be due to short range hopping, and high frequency (<1 MHz) due to the localized relaxation hopping mechanism. The last part of the thesis is devoted to the study of the multiferroic and magnetoelectric properties of the ML thin films. Both polycrystalline and highly oriented films showed well saturated ferroelectric and ferromagnetic hysteresis loops at room temperature. Temperature dependence of ferroelectric properties showed that polarization slowly decreases from 300 K to 200 K, with complete collapse of polarization at ˜ 100 K, but there was complete recovery of the polarization during heating, which was repeatable over many different experiments. At the same time, in the same temperature interval the remanent magnetization of the MLs showed slow enhancement in the magnitude till 200 K with three fold increase at 100 K compared to room temperature. This enhancement in remanent magnetization and decrease in remanent ferroelectric polarization on lowering the temperature indicate temperature dependent dynamic switching of ferroelectric polarization. Frequencies and temperatures dependence of the ferroelectric hysteresis loop showed weak frequency dependence for highly oriented MLs, while significant dependence was observed for polycrystalline MLs. The fatigue test showed almost 0-20% deterioration in polarization. The fatigue and strong temperature and frequency dependent magneto-electric coupling suggest the utility of MLs for Dynamic Magneto-Electric Random Access Memory (DMERAM) and magnetic field sensor devices.
Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho
2004-01-01
Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.
NASA Astrophysics Data System (ADS)
Farhadi, Saeed; Siadatnasab, Firouzeh
2016-11-01
Cadmium sulfide-cobalt ferrite (CdS/CFO) nanocomposite was easily synthesized by one-step hydrothermal decomposition of cadmium diethyldithiocarbamate complex on the CoFe2O4 nanoparticles at 200 °C. Spectroscopic techniques of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and magnetic measurements were applied for characterizing the structure and morphology of the product. The results of FT-IR, XRD and EDX indicated that the CdS/CFO was highly pure. SEM and TEM results revealed that the CdS/CFO nanocomposite was formed from nearly uniform and sphere-like nanoparticles with the size of approximately 20 nm. The UV-vis absorption spectrum of the CdS/CFO nanocomposite showed the band gap of 2.21 eV, which made it suitable for sono-/photo catalytic purposes. By using the obtained CdS/CFO nanocomposite, an ultrasound-assisted advanced oxidation process (AOP) has been developed for catalytic degradation of methylene blue (MB), Rhodamine B (RhB), and methyl orange (MO)) in the presence of H2O2 as a green oxidant. CdS/CFO nanocomposite exhibited excellent sonocatalytic activity, so that, dyes were completely degraded in less than 10 min. The influences of crucial factors such as the H2O2 amount and catalyst dosage on the degradation efficiency were evaluated. The as-prepared CdS/CFO nanocomposite exhibited higher catalytic activity than pure CdS nanoparticles. Moreover, the magnetic property of CoFe2O4 made the nanocomposite recyclable.
NASA Astrophysics Data System (ADS)
Huang, Shun-Yu; Chong, Cheong-Wei; Chen, Pin-Hui; Li, Hong-Lin; Li, Min-Kai; Huang, J. C. Andrew
2017-11-01
In this work, Cobalt-Ferrite (CFO) films were grown on silicon substrates with 300 nm amorphous silicon dioxide by Pulsed Laser Deposition (PLD) with different annealing conditions. The results of structural analysis prove that the CFO films have high crystalline quality with (1 1 1) preferred orientation. The Raman spectra and X-ray absorption spectra (XAS) indicate that the Co ions can transfer from tetrahedral sites to octahedral sites with increasing the annealing pressure. The site exchange of Co and Fe ions leads to the change of saturation magnetization in the CFO films. Our experiments provide not only a way to control the magnetism of CFO films, but also a suitable magnetic layer to develop silicon and semiconductor based spintronic devices.
Evaluation of SiO{sub 2}@CoFe{sub 2}O{sub 4} nano-hollow spheres through THz pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, Rupali, E-mail: rupali12@bose.res.in; Pal, Monalisa; Chaudhuri, Arka
2016-05-06
We have synthesized cobalt ferrite (CFO) nanoparticles (NPs) of diameter 100 nm and nano-hollow spheres (NHSs) of diameter 100, 160, 250, and 350 nm by a facile one step template free solvothermal technique and carried out SiO{sub 2} coating on their surface following Stöber method. The phase and morphology of the nanostructures were confirmed by X-ray diffraction and transmission electron microscope. The magnetic measurements were carried out by vibrating sample magnetometer in order to study the influence of SiO{sub 2} coating on the magnetic properties of bare CFO nanostructures. Furthermore, we have applied THz time domain spectroscopy to investigate the THz absorptionmore » property of these nanostructures in the frequency range 1.0–2.5 THz. Detailed morphology and size dependent THz absorption study unfolds that the absorption property of these nanostructures sensitively carries the unique signature of its dielectric property.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitralekha, C. S.; Rasi, Mohammed; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
A modified sol-gel method was introduced by employing a cost effective novel template to synthesize coaxial one dimensional (1-D) composite nanostructures based on CoFe{sub 2}O{sub 4} (CFO) - K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) and magnetic nanostructures based on CoFe{sub 2}O{sub 4} (CFO). The studies with scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the composite material is characterized by the 1-D tubular structure. The absorption edge is blue shifted for both KNN and CFO nanotubes due to the lattice strain effect.
Flexible Heteroepitaxy of CoFe 2 O 4 /Muscovite Bimorph with Large Magnetostriction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Heng-Jui; Wang, Chih-Kuo; Su, Dong
Van der Waals epitaxy was used to fabricate a bimorph composed of ferrimagnetic cobalt ferrite (CoFe 2O 4, CFO) and flexible muscovite. The combination of X-ray diffraction and transmission electron microscopy was conducted to reveal the heteroepitaxy of the CFO/muscovite system. The robust magnetic behaviors against mechanical bending were characterized by hysteresis measurements and magnetic force microscopy, which maintain a saturation magnetization (Ms) of ~120–150 emu/cm 3 under different bending states. The large magnetostrictive response of the CFO film was then determined by digital holographic microscopy, where the difference of magnetostrction coefficient (Δλ) is -104 ppm. We attribute the superiormore » performance of this bimorph to the nature of weak interaction between film and substrate. Such a flexible CFO/muscovite bimorph provides a new platform to develop next-generation flexible magnetic devices.« less
Flexible Heteroepitaxy of CoFe 2 O 4 /Muscovite Bimorph with Large Magnetostriction
Liu, Heng-Jui; Wang, Chih-Kuo; Su, Dong; ...
2017-02-03
Van der Waals epitaxy was used to fabricate a bimorph composed of ferrimagnetic cobalt ferrite (CoFe 2O 4, CFO) and flexible muscovite. The combination of X-ray diffraction and transmission electron microscopy was conducted to reveal the heteroepitaxy of the CFO/muscovite system. The robust magnetic behaviors against mechanical bending were characterized by hysteresis measurements and magnetic force microscopy, which maintain a saturation magnetization (Ms) of ~120–150 emu/cm 3 under different bending states. The large magnetostrictive response of the CFO film was then determined by digital holographic microscopy, where the difference of magnetostrction coefficient (Δλ) is -104 ppm. We attribute the superiormore » performance of this bimorph to the nature of weak interaction between film and substrate. Such a flexible CFO/muscovite bimorph provides a new platform to develop next-generation flexible magnetic devices.« less
Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials
NASA Astrophysics Data System (ADS)
Singamaneni, S. R.; Martinez, L. M.; Swadipta, R.; Ramana, C. V.
2018-05-01
We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.
Multiferroic Applications of Nanoarchitectured, Solution-Processed Materials
NASA Astrophysics Data System (ADS)
Buditama, Abraham Nataniel
This dissertation compiles work on sol-gel syntheses of multiferroic materials and applications thereof. Multiferroics, or materials that simultaneously exhibit multiple order parameters such as ferromagnetism, ferroelectricity, or ferroelasticity, may be fabricated by solution processing techniques. Specifically, these techniques may be used to control both the atomic and the nanoscale structures of piezoelectric lead zirconate titanate (PbZrxTi 1-xO3 or PZT) and magnetostrictive cobalt ferrite (CoFe 2O4 or CFO). The first part of this work focuses on strain-coupling PZT and CFO into a magnetoelectric composite. A mesoporous CFO framework was synthesized using block copolymer templating, which was subsequently conformally filled by PZT by atomic layer deposition (ALD). The final porosity of the film is controlled by the ALD PZT layer, and we show that this porosity influences the magnetoelectric coupling of the composite. An ex situ external electric field is applied to the composite, and samples with the greatest porosity, and thus greatest mechanical flexibility, were able to accommodate strain transfer to the CFO, resulting in a greater reduction of the sample saturation magnetization. The second part of this work focuses on using solution processing to control domain-level contributions to the material's ferroic properties. An iterative spin coating process can be used to create PZT films of arbitrary thickness. Electric domains are generally pinned in nanoscale PZT thin films, but models of PZT films on the mesoscale must consider domain reorientation. As for CFO, solution processing may be used to control the CFO grain size, which in turn limits the size of its magnetic domains, and subsequently its static magnetic properties.
The Chief Financial Officer and Government Relations.
ERIC Educational Resources Information Center
Lasher, William F.; Grigsby, Gwen; Sullivan, Charlotte
1999-01-01
Examines the work of the college or university chief financial officer (CFO) in government relations, focusing on the CFO's responsibilities, methods of working with state legislatures, pitfalls in legislative relations, and special problems faced by institutions in capital cities. (Author/MSE)
A CFO's Perspective on the Quality Revolution.
ERIC Educational Resources Information Center
Norton, Alan J.
1994-01-01
The chief financial officer (CFO) of St. John Fisher College (New York) analyzes the costs associated with the implementation of quality management at St. John Fisher and outlines one way to determine whether the investment is yielding an acceptable internal rate of return. (DB)
Review, reaction, and projection: the role of the CFO in planning.
Nauert, R C
1985-08-01
In recent years, CFOs have become an integral part of the healthcare organization's strategic planning process. Although not the leader in the process, CFOs should assume a role of review, reaction, and projection. Furthermore, they should oppose any venture that would weaken the financial strength of the institution--whether or not they support the venture on social grounds. The CFO's responsibility in planning is to improve the financial strength of the organization, using support documentation, thorough preparation, and logic. The CEO's concern for community needs and desire to pursue a new business should be tempered by the CFO's financial and economic judgment.
76 FR 44330 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Logistics (NVO & OFF), 249 W. Fernfield Drive, Monterey Park, CA 91754, Officer: Tony Chen, President/VP..., Cypress, CA 90630, Officers: Cindy J. Lee, Secretary/CFO, (Qualifying Individual), Kathlyn Park, CEO.... Nguyen, Secretary/CFO, Application Type: New NVO & OFF License. Atlas Logistics LLC (NVO & OFF), 2801 NW...
Switchable 3-0 magnetoelectric nanocomposite thin film with high coupling.
McDannald, Austin; Ye, Linghan; Cantoni, Claudia; Gollapudi, Sreenivasulu; Srinivasan, Gopalan; Huey, Bryan D; Jain, Menka
2017-03-02
A mixed precursor solution method was used to deposit 3-0 nanocomposite thin films of PbZr 0.52 Ti 0.48 O 3 (PZT) and CoFe 2 O 4 (CFO). The piezoelectric behavior of PZT and magnetostrictive behavior of CFO allow for magnetoelectric (ME) coupling through strain transfer between the respective phases. High ME coupling is desired for many applications including memory devices, magnetic field sensors, and energy harvesters. The spontaneous phase separation in the 3-0 nanocomposite film was observed, with 25 nm CFO particle or nanophases distributed in discrete layers through the thickness of the PZT matrix. Magnetic-force microscopy images of the nanocomposite thin film under opposite magnetic poling conditions revealed in-plane pancake-like regions of higher concentration of the CFO nanoparticles. The constraints on the size and distribution of the CFO nanoparticles created a unique distribution in a PZT matrix and achieved values of ME coupling of 3.07 V cm -1 Oe -1 at a DC bias of 250 Oe and 1 kHz, increasing up to 25.0 V cm -1 Oe -1 at 90 kHz. Piezo-force microscopy was used to investigate the ferroelectric domain structure before and after opposite magnetic poling directions. It was found that in this nanocomposite, the polarization of the ferroelectric domains switched direction as a result of switching the direction of the magnetization by magnetic fields.
NASA Astrophysics Data System (ADS)
Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu
2015-06-01
Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.
49 CFR 1.33 - Assistant Secretary for Budget and Programs and Chief Financial Officer.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Programs and CFO, in consultation with the Chief Information Officer, may designate any information technology system as a financial management system under the CFO's policy and oversight area of... oversight and policy guidance for all budget, financial management, program performance, and internal...
49 CFR 1.33 - Assistant Secretary for Budget and Programs and Chief Financial Officer.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Programs and CFO, in consultation with the Chief Information Officer, may designate any information technology system as a financial management system under the CFO's policy and oversight area of... oversight and policy guidance for all budget, financial management, program performance, and internal...
49 CFR 1.33 - Assistant Secretary for Budget and Programs and Chief Financial Officer.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Programs and CFO, in consultation with the Chief Information Officer, may designate any information technology system as a financial management system under the CFO's policy and oversight area of... oversight and policy guidance for all budget, financial management, program performance, and internal...
What You Need To Know About Enrollment Management.
ERIC Educational Resources Information Center
Lapovsky, Lucie
1999-01-01
Provides basic information that a college or university chief financial officer (CFO) must know about enrollment management in order to understand how to work effectively with admissions and financial aid professionals to maximize tuition revenue and enroll the optimal class. Specific suggestions for CFO involvement are outlined. (Author/MSE)
The New Education CFO: From Scorekeeper to Strategic Leader
ERIC Educational Resources Information Center
Hovey, Don; Boser, Ulrich
2014-01-01
Traditionally, district and corporate leaders regarded chief financial officers, or CFOs, as chief accountants. They were the individuals tasked with ensuring financial compliance, settling the books, creating reports, and cutting costs. The CFO was inherently risk averse and internally focused; he or she was there to backstop the ambitious plans…
7 CFR 1468.5 - General provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with part 1412 of this chapter, on the farm enrolling in CFO and who are eligible for either CRP (7 CFR... payment under CRP, EQIP, or cost-share agreements under WRP are eligible for CFO payment. The provisions... those specified for the eligible conservation practices under CRP, EQIP, or cost-share agreements under...
NASA Astrophysics Data System (ADS)
Kwon, Ki-Won; Cho, Yongsoo
This letter presents a simple joint estimation method for residual frequency offset (RFO) and sampling frequency offset (STO) in OFDM-based digital video broadcasting (DVB) systems. The proposed method selects a continual pilot (CP) subset from an unsymmetrically and non-uniformly distributed CP set to obtain an unbiased estimator. Simulation results show that the proposed method using a properly selected CP subset is unbiased and performs robustly.
Shirsath, Sagar E.; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu
2016-01-01
Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate. PMID:27435010
Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption
NASA Astrophysics Data System (ADS)
Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan
2015-11-01
Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.
Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli
2015-01-01
We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.
NASA Technical Reports Server (NTRS)
Dragonette, Richard A.; Suter, Joseph J.
1992-01-01
An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
NASA Astrophysics Data System (ADS)
Ma, Qian; Liu, Yu; Xiang, Yuanjiang
2018-07-01
Due to its merits of flexible bandwidth allocation and robustness towards fiber transmission impairments, coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology draws a lot of attention for passive optical networks (PON). However, a CO-OFDM system is vulnerable to frequency offsets between modulated optical signals and optical local oscillators (OLO). This is particularly serious for low cost PONs where low cost lasers are used. Thus, it is of great interest to develop efficient algorithms for frequency synchronization in CO-OFDM systems. Usually frequency synchronization proposed in CO-OFDM systems are done by detecting the phase shift in time domain. In such a way, there is a trade-off between estimation accuracy and range. Considering that the integer frequency offset (IFO) contributes to the major frequency offset, a more efficient method to estimate IFO is of demand. By detecting IFO induced circular channel rotation (CCR), the frequency offset can be directly estimated after fast Fourier transforming (FFT). In this paper, circular acquisition offset frequency and timing synchronization (CAO-FTS) scheme is proposed. A specially-designed frequency domain pseudo noise (PN) sequence is used for CCR detection and timing synchronization. Full-range frequency offset compensation and non-plateau timing synchronization are experimentally demonstrated in presence of fiber dispersion. Based on CAO-FTS, 16.9 Gb/s CO-OFDM signal is successfully delivered over a span of 80-km single mode fiber.
ERIC Educational Resources Information Center
Hannah, Charles Russell
2013-01-01
The role of the chief financial officer (CFO) is critical to the effective leadership of U.S. four-year public colleges and universities. Self-awareness and the capacity to view situations simultaneously in multiple ways and from different perspectives are essential elements of CFO effectiveness and success in the higher education environment. The…
NASA Astrophysics Data System (ADS)
Kumari, Mukesh; Bhatnagar, Mukesh Chander
2018-05-01
Cobalt ferrite (CFO) has been synthesized in the form of nanoparticles (NPs) through sol-gel auto-combustion method. The prepared NPs of CFO were sintered for four hours at various temperatures from 300°C to 900°C. The physical properties of the sintered samples have been optimized using X-ray diffraction (XRD), Raman spectroscopy and physical properties measurement system (PPMS). The XRD and Raman studies have confirmed the cubic spinel phase formation of CFO NPs. XRD results showed that as we increase the sintering temperature the crystallite size of particles increases. Whereas the magnetic studies revealed that the saturation magnetization (MS) increases while the coercivity (HC) of nanoparticles decreases with increase of sintering temperature.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Meng, Zhixin; Feng, Yanying
2017-10-01
We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.
Heinecke, Dirk C; Bartels, Albrecht; Diddams, Scott A
2011-09-12
This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves from the photodetected pulse train.
The value-adding CFO: an interview with Disney's Gary Wilson. Interview by Geraldine E. Willigan.
Wilson, G
1990-01-01
Financing a company is more complex than ever-and more important to its economic success. The demands on a CFO are tremendous. Optimizing capital costs requires an unprecedented level of technical sophistication. Yet the best CFOs today are not mere technicians. They are also strategists and innovators. Gary Wilson exemplifies the new CFO. In his 5 years as executive vice president and CFO of the Walt Disney Company and his 12 years at Marriott Corporation, he has shown how the finance function can add value-not just account for it. How does a CFO create value for shareholders? "Just like all the great marketing and operating executives," Wilson says, "by being creative." To Wilson, being creative means rethinking assumptions and finding clever ways to achieve financial and strategic goals. Some of Wilson's innovative deal making-like the off-balance-sheet financing he used at Marriott-is well known. At Marriott, he discovered the power of separating the ownership of an asset from its control. Marriott's strength was in operations, yet the company had a great deal of money tied up in real estate. Growth would require even more investment in real estate. Wilson's solution was to sell the hotels-in effect, removing them and the debt used to finance them from the balance sheet-and contract to operate them. In this interview, Wilson gives his view of the role of finance in today's corporation and explains the thinking behind some of the successful deals he has engineered-including Disney's Silver Screen movie-making partnerships and Euro Disneyland.
Braking and Entering: A New CFO's Transition into A K-12 Urban School District
ERIC Educational Resources Information Center
Trautenberg, David Herbert
2016-01-01
In this autoethnography, I examine the challenges I faced as a private-to-public-sector novice CFO entering a resource-constrained 41-thousand-student K-12 urban school district in Colorado. This study chronicles how I deliberately slowed down my interactions within a complex adaptive system (CAS) through ethnographic interviewing to identify the…
Acting Administrator Welcomes New CFO
2018-04-03
Acting NASA Administrator Robert Lightfoot, left, and newly appointed NASA Chief Financial Officer Jeff DeWit, meet on DeWit's first day in office, Tuesday, April 3, 2018 at NASA Headquarters in Washington. As NASA CFO, DeWit ensures the financial health of the agency, which includes effectively employing agency resources toward the achievement of NASA's strategic plan. Photo Credit: (NASA/Bill Ingalls)
Modification of structure and magnetic anisotropy of epitaxial CoFe₂O₄ films by hydrogen reduction
Chen, Aiping; Poudyal, Narayan; Xiong, Jie; ...
2015-03-16
Heteroepitaxial CoFe₂O₄ (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] =-188 × 10⁻⁶. Metallic CoFe₂ films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H₂ 7%) at 450 °C. XRD shows that CoFe₂more » films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe₂ and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe₂ films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.« less
Spectrophone stabilized laser with line center offset frequency control
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T. (Inventor)
1984-01-01
Continuous offset tuning of a frequency stabilized CW gas laser is achieved by using a spectrophone filled with the same gas as the laser for sensing a dither modulation, detecting a first or second derivative of the spectrophone output with a lock-in amplifier, the detected output of which is integrated, and applying the integrator output as a correction signal through a circuit which adds to the dither signal from an oscillator a dc offset that is adjusted with a potentiometer to a frequency offset from the absorption line center of the gas, but within the spectral linewidth of the gas. Tuning about that offset frequency is achieved by adding a dc value to the detected output of the dither modulation before integration using a potentiometer.
Wang, Lei; Bock, David C.; Li, Jing; ...
2018-02-20
Here, a series of one-dimensional CuFe 2O 4 nano/sub-micron wires possessing different diameters, crystal phases, and crystal sizes have been successfully generated using a facile template-assisted co precipitation reaction at room temperature, followed by a short post-annealing process. The diameter and the crystal structure of the resulting CuFe 2O4 (CFO) wires were judiciously tuned by varying the pore size of the template and the post-annealing temperature, respectively. Carbon nanotubes (CNTs) were incorporated to generate CFO-CNT binder-free anodes, and multiple characterization techniques were employed with the goal of delineating the relationships between electrochemical behavior and the properties of both the CFOmore » wires (crystal phase, wire diameter, crystal size) and the electrode architecture (binder-free vs. conventionally prepared approaches). The study reveals several notable findings. First, the crystal phase (cubic or tetragonal) did not influence the electrochemical behavior in this CFO system. Second, regarding crystallite size and wire diameter, CFO wires with larger crystallite sizes exhibit improved cycling stability, while wires possessing smaller diameters exhibiting higher capacities. Finally, the electrochemical behavior is strongly influenced by the electrode architecture, with CFO-CNT binder-free electrodes demonstrating significantly higher capacities and cycling stability compared to conventionally prepared coatings. The mechanism(s) associated with the high capacities under low current density but limited electrochemical reversibility of CFO electrodes under high current density were probed via x-ray absorption spectroscopy (XAS) mapping with sub-micron spatial resolution for the first time. Results suggest that the capacity of the binder-free electrodes under high rate is limited by the irreversible formation of Cu 0, as well as limited reduction of Fe 3+, to Fe 2+ not Fe 0. The results (1) shed fundamental insight into the reversibility of CuFe 2O 4 materials cycled at high current density and (2) demonstrate that a synergistic effort to control both active material morphology and electrode architecture is an effective strategy for optimizing electrochemical behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Bock, David C.; Li, Jing
Here, a series of one-dimensional CuFe 2O 4 nano/sub-micron wires possessing different diameters, crystal phases, and crystal sizes have been successfully generated using a facile template-assisted co precipitation reaction at room temperature, followed by a short post-annealing process. The diameter and the crystal structure of the resulting CuFe 2O4 (CFO) wires were judiciously tuned by varying the pore size of the template and the post-annealing temperature, respectively. Carbon nanotubes (CNTs) were incorporated to generate CFO-CNT binder-free anodes, and multiple characterization techniques were employed with the goal of delineating the relationships between electrochemical behavior and the properties of both the CFOmore » wires (crystal phase, wire diameter, crystal size) and the electrode architecture (binder-free vs. conventionally prepared approaches). The study reveals several notable findings. First, the crystal phase (cubic or tetragonal) did not influence the electrochemical behavior in this CFO system. Second, regarding crystallite size and wire diameter, CFO wires with larger crystallite sizes exhibit improved cycling stability, while wires possessing smaller diameters exhibiting higher capacities. Finally, the electrochemical behavior is strongly influenced by the electrode architecture, with CFO-CNT binder-free electrodes demonstrating significantly higher capacities and cycling stability compared to conventionally prepared coatings. The mechanism(s) associated with the high capacities under low current density but limited electrochemical reversibility of CFO electrodes under high current density were probed via x-ray absorption spectroscopy (XAS) mapping with sub-micron spatial resolution for the first time. Results suggest that the capacity of the binder-free electrodes under high rate is limited by the irreversible formation of Cu 0, as well as limited reduction of Fe 3+, to Fe 2+ not Fe 0. The results (1) shed fundamental insight into the reversibility of CuFe 2O 4 materials cycled at high current density and (2) demonstrate that a synergistic effort to control both active material morphology and electrode architecture is an effective strategy for optimizing electrochemical behavior.« less
Enhancement cavities for zero-offset-frequency pulse trains.
Holzberger, S; Lilienfein, N; Trubetskov, M; Carstens, H; Lücking, F; Pervak, V; Krausz, F; Pupeza, I
2015-05-15
The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers. The combination of pulse duration, power, and zero phase slip constitutes a crucial step toward the generation of attosecond pulses at multi-10-MHz repetition rates. In addition, this control affords the enhancement of pulses generated by difference-frequency mixing, e.g., for mid-infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Feng, Chao; Liu, Xianguo; Or, Siu Wing; Ho, S. L.
2017-05-01
Core/shell-structured, hard/soft spinel-ferrite-based CoFe2O4/NiFe2O4 (CFO/NFO) nanocapsules with an average diameter of 17 nm are synthesized by a facile two-step hydrothermal process using CFO cores of ˜15 nm diameter as the hard magnetic phase and NFO shells of ˜1 nm thickness as the soft magnetic phase. The single-phase-like hysteresis loop with a high remnant-to-saturation magnetization ratio of 0.7, together with a small grain size of ˜16 nm, confirms the existence of exchange-coupling interaction between the CFO cores and the NFO shells. The effect of hard/soft exchange coupling on the microwave absorption properties is studied. Comparing to CFO and NFO nanoparticles, the finite-size NFO shells and the core/shell structure enable a significant reduction in electric resistivity and an enhancement in dipole and interfacial polarizations in the CFO/NFO nanocapsules, resulting in an obvious increase in dielectric permittivity and loss in the whole S-Ku bands of microwaves of 2-18 GHz, respectively. The exchange-coupling interaction empowers a more favorable response of magnetic moment to microwaves, leading to enhanced exchange resonances in magnetic permeability and loss above 10 GHz. As a result, strong absorption, as characterized by a large reflection loss (RL) of -20.1 dB at 9.7 GHz for an absorber thickness of 4.5 mm as well as a broad effective absorption bandwidth (for RL<-10 dB) of 8.4 GHz (7.8-16.2 GHz) at an absorber thickness range of 3.0-4.5 mm, is obtained.
NASA Astrophysics Data System (ADS)
Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.
2018-06-01
We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.
Nelson: management is a team effort.
Nelson, S I
2001-11-01
Sally I. Nelson, CPA, is executive vice president, chief financial officer, and chief information officer for Texas Children's Hospital in Houston, the largest freestanding pediatric hospital in the United States. It is a part of Texas Children's Hospital and Integrated Delivery System (TCH IDS). Before joining the organization in 1986, Nelson served as a senior manager in the computer services consulting practice of KPMG Peat Marwick-Houston. Nelson recently was named a finalist in CFO magazine's national 2001 CFO Excellence Awards, the first CFO of a not-for-profit organization to be named a finalist since not-for-profits became eligible for the awards. She was cited for her accomplishments in managing expectations and relationships with the community and its leaders, government officials, Baylor College of Medicine, physicians, patients' families, hospital personnel, trustees of the hospital, and investors.
Estimation of frequency offset in mobile satellite modems
NASA Technical Reports Server (NTRS)
Cowley, W. G.; Rice, M.; Mclean, A. N.
1993-01-01
In mobilesat applications, frequency offset on the received signal must be estimated and removed prior to further modem processing. A straightforward method of estimating the carrier frequency offset is to raise the received MPSK signal to the M-th power, and then estimate the location of the peak spectral component. An analysis of the lower signal to noise threshold of this method is carried out for BPSK signals. Predicted thresholds are compared to simulation results. It is shown how the method can be extended to pi/M MPSK signals. A real-time implementation of frequency offset estimation for the Australian mobile satellite system is described.
NASA Technical Reports Server (NTRS)
Hamell, Robert L.; Kuhnle, Paul F.; Sydnor, Richard L.
1992-01-01
Measuring the performance of ultra stable frequency standards such as the Superconducting Cavity Maser Oscillator (SCMO) necessitates improvement of some test instrumentation. The frequency stability test equipment used at JPL includes a 1 Hz Offset Generator to generate a beat frequency between a pair of 100 MHz signals that are being compared. The noise floor of the measurement system using the current Offset Generator is adequate to characterize stability of hydrogen masers, but it is not adequate for the SCMO. A new Offset Generator with improved stability was designed and tested at JPL. With this Offset Generator and a new Zero Crossing Detector, recently developed at JPL, the measurement flow was reduced by a factor of 5.5 at 1 second tau, 3.0 at 1000 seconds, and 9.4 at 10,000 seconds, compared against the previous design. In addition to the new circuit designs of the Offset Generator and Zero Crossing Detector, tighter control of the measurement equipment environment was required to achieve this improvement. The design of this new Offset Generator are described, along with details of the environment control methods used.
This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)
ERIC Educational Resources Information Center
Schaffhauser, Dian
2011-01-01
While it would be naive to think that every CIO can achieve a rapport with his CFO, understanding the importance of a solid relationship with the head of finance is critical to success, both for the IT department and the institution as a whole. Never has this been truer than in today's bleak economy, as CFOs become increasingly cautious about…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basnak, D V; Bikmukhametov, K A; Dmitrieva, N I
2010-10-15
A method for measuring the carrier envelope offset (CEO) frequency of the femtosecond frequency comb with a bandwidth of less than one octave by using a Fabry-Perot interferometer is proposed and experimentally demonstrated. (laser components)
NASA Astrophysics Data System (ADS)
Ji, Renlong; Cao, Chuanbao
2014-10-01
Barium titanate (BTO) with different morphology is prepared through hydrothermal method using titania spheres as precursor, then calcined at different temperatures and ultimately coated with cobalt ferrite (BTO/CFO). The dielectric dispersion of the composite containing BTO (75 wt. % ratio in paraffin wax) shows evidence of resonance behaviour in the microwave spectrum, rather than the usually observed relaxation mode. The imaginary part of permittivity (ɛ″) displays a strong peak in the 10-13 GHz frequency region, especially for buckhorn-like BTO (hydrothermally synthesized at 110 °C and calcined at 1100 °C). The dielectric response anomaly of BTO in special morphology is due to the emission of plane acoustic waves caused by electrostrictive and converse piezoelectric effects. An accepted model is adopted to simulate the resonance frequency. The minimum reflection loss of cauliflower-like BTO (hydrothermally synthesized at 110 °C, then calcined at 600 °C for 2 h, 75 wt. % ratio) in paraffin wax reaches -30.831 dB at 10.56 GHz with a matching thickness of 2 mm, lower than all the reported values. When the sintering temperature is changed to 1100 °C (buckhorn-like BTO), the minimum reflection loss value is -24.37 dB at 12.56 GHz under the thickness of 3 mm. After combination with CFO, the value reaches -42.677 dB when the thickness is 5.6 mm. The ginger-like BTO (hydrothermally synthesized at 200 °C and calcined at different temperatures) is inferior in microwave reflection reduction. The electromagnetic interference shielding effectiveness of buckhorn-like BTO composite is calculated to be -12.7 dB (94.6% shielding) at resonance frequency (2 mm, 11.52 GHz). This work clearly shows the potential to tune the dielectric property of ferroelectrics through control of morphology, facilitating new comprehension of the ferroelectrics in microwave regime.
Directed Self-Assembly of Epitaxial CoFe2O4-BiFeO3 Multiferroic Nanocomposites
2012-04-09
has been limited. One method to produce patterned magneto- electric composites is to use a porous anodic aluminum oxide ( AAO ) film as a liftoff mask...control found in the BFO−CFO 1-3 epitaxial nanocomposites.6,8 Additionally, the AAO and membrane masks are not practical for the formation of a square...during deposition, which produces a hexagonal array pattern.12,13 In one approach, a BTO−CFO multilayer is deposited onto the AAO film on a STO substrate
An Upgrade of the Aeroheating Software ''MINIVER''
NASA Technical Reports Server (NTRS)
Louderback, Pierce
2013-01-01
Detailed computational modeling: CFO often used to create and execute computational domains. Increasing complexity when moving from 20 to 30 geometries. Computational time increased as finer grids are used (accuracy). Strong tool, but takes time to set up and run. MINIVER: Uses theoretical and empirical correlations. Orders of magnitude faster to set up and run. Not as accurate as CFO, but gives reasonable estimations. MINIVER's Drawbacks: Rigid command-line interface. Lackluster, unorganized documentation. No central control; multiple versions exist and have diverged.
Career path to CFO: selection, training, and placement.
Sieveking, N; Wood, D L
1994-06-01
Not long ago, chief financial officers (CFOs) in hospitals could focus almost exclusively on financial accounting. Today, however, financial managers must tend diverse tasks of coordination, education, and professional specialization. The authors suggest that those who desire the position of CFO would do well to couple accounting expertise with a capacity to understand ethics and mores, economics, descriptive and predictive statistics, people from diverse socioeconomic and cultural backgrounds, as well as features of disease, its prevention, and course of treatment.
Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.
2012-01-01
We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.
Roy, D; Sirois, S; Vincent, D
2001-04-01
Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dileep, K.; Loukya, B.; Datta, R., E-mail: ranjan@jncasr.ac.in
2014-09-14
Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct frommore » the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.« less
Collagen Fiber Orientation in Primate Long Bones.
Warshaw, Johanna; Bromage, Timothy G; Terranova, Carl J; Enlow, Donald H
2017-07-01
Studies of variation in orientation of collagen fibers within bone have lead to the proposition that these are preferentially aligned to accommodate different kinds of load, with tension best resisted by fibers aligned longitudinally relative to the load, and compression best resisted by transversely aligned fibers. However, previous studies have often neglected to consider the effect of developmental processes, including constraints on collagen fiber orientation (CFO), particularly in primary bone. Here we use circularly polarized light microscopy to examine patterns of CFO in cross-sections from the midshaft femur, humerus, tibia, radius, and ulna in a range of living primate taxa with varied body sizes, phylogenetic relationships and positional behaviors. We find that a preponderance of longitudinally oriented collagen is characteristic of both periosteal primary and intracortically remodeled bone. Where variation does occur among groups, it is not simply understood via interpretations of mechanical loads, although prioritized adaptations to tension and/or shear are considered. While there is some suggestion that CFO may correlate with body size, this relationship is neither consistent nor easily explicable through consideration of size-related changes in mechanical adaptation. The results of our study indicate that there is no clear relationship between CFO and phylogenetic status. One of the principle factors accounting for the range of variation that does exist is primary tissue type, where slower depositing bone is more likely to comprise a larger proportion of oblique to transverse collagen fibers. Anat Rec, 300:1189-1207, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tunable, Highly Stable Lasers for Coherent Lidar
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; EEpagnier, David M.
2006-01-01
Practical space-based coherent laser radar systems envisioned for global winds measurement must be very efficient and must contend with unique problems associated with the large platform velocities that the instruments experience in orbit. To compensate for these large platform-induced Doppler shifts in space-based applications, agile-frequency offset-locking of two single-frequency Doppler reference lasers was thoroughly investigated. Such techniques involve actively locking a frequency-agile master oscillator (MO) source to a comparatively static local oscillator (LO) laser, and effectively producing an offset between MO (the lidar slave oscillator seed source, typically) and heterodyne signal receiver LO that lowers the bandwidth of the receiver data-collection system and permits use of very high-quantum-efficiency, reasonably- low-bandwidth heterodyne photoreceiver detectors and circuits. Recent work on MO/LO offset locking has focused on increasing the offset locking range, improving the graded-InGaAs photoreceiver performance, and advancing the maturity of the offset locking electronics. A figure provides a schematic diagram of the offset-locking system.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong
2016-12-01
Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.
Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser.
Numata, Kenji; Chen, Jeffrey R; Wu, Stewart T
2012-06-18
We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.
Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer
NASA Astrophysics Data System (ADS)
Gambetta, A.; Vicentini, E.; Coluccelli, N.; Wang, Y.; Fernandez, T. T.; Maddaloni, P.; De Natale, P.; Castrillo, A.; Gianfrani, L.; Laporta, P.; Galzerano, G.
2018-04-01
We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL). The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ˜7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.
Remotely manageable system for stabilizing femtosecond lasers
NASA Astrophysics Data System (ADS)
Cizek, Martin; Hucl, Vaclav; Smid, Radek; Mikel, Bretislav; Lazar, Josef; Cip, Ondrej
2014-05-01
In the field of precise measurement of optical frequencies, laser spectroscopy and interferometric distance surveying the optical frequency synthesizers (femtosecond combs) are used as optical frequency references. They generate thousands of narrow-linewidth coherent optical frequencies at the same time. The spacing of generated components equals to the repetition frequency of femtosecond pulses of the laser. The position of the comb spectrum has a frequency offset that is derived from carrier to envelope frequency difference. The repetition frequency and mentioned frequency offset belong to main controlled parameters of the optical frequency comb. If these frequencies are electronically locked an ultrastable frequency standard (i.e. H-maser, Cs- or Rb- clock), its relative stability is transferred to the optical frequency domain. We present a complete digitally controlled signal processing chain for phase-locked loop (PLL) control of the offset frequency. The setup is able to overcome some dropouts caused by the femtosecond laser non-stabilities (temperature drifts, ripple noise and electricity spikes). It is designed as a two-stage control loop, where controlled offset frequency is permanently monitored by digital signal processing. In case of dropouts of PLL, the frequency-locked loop keeps the controlled frequency in the required limits. The presented work gives the possibility of long-time operation of femtosecond combs which is necessary when the optical frequency stability measurement of ultra-stable lasers is required. The detailed description of the modern solution of the PLL with remote management is presented.
Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers
Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.
2010-01-01
A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450
A decade of change: the emerging role of the CFO.
Gauss, J W
1991-05-01
The average senior financial executive today in a hospital or corporate healthcare setting is a 42-year-old male who has a master's degree or at least some postgraduate education and who has been in his position for six years, according to a 1991 national survey of healthcare chief financial officers (CFOs). The individual has the title of CFO, earns $82,100, and last year received incentive compensation amounting to 12.3 percent of base salary. He aspires to a higher position, although not necessarily the job of chief executive officer.
Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.
Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J
2013-06-17
We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.
Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared.
Washburn, Brian R; Diddams, Scott A; Newbury, Nathan R; Nicholson, Jeffrey W; Yan, Man F; Jørgensen, Carsten G
2004-02-01
A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.
Nevsky, A; Alighanbari, S; Chen, Q-F; Ernsting, I; Vasilyev, S; Schiller, S; Barwood, G; Gill, P; Poli, N; Tino, G M
2013-11-15
We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.
Giant room temperature magnetoelectric response in strain controlled nanocomposites
NASA Astrophysics Data System (ADS)
Rafique, Mohsin; Herklotz, Andreas; Dörr, Kathrin; Manzoor, Sadia
2017-05-01
We report giant magnetoelectric coupling at room temperature in a self-assembled nanocomposite of BiFeO3-CoFe2O4 (BFO-CFO) grown on a BaTiO3 (BTO) crystal. The nanocomposite consisting of CFO nanopillars embedded in a BFO matrix exhibits weak perpendicular magnetic anisotropy due to a small out-of-plane compression (˜0.3%) of the magnetostrictive (CFO) phase, enabling magnetization rotation under moderate in-plane compression. Temperature dependent magnetization measurements demonstrate strong magnetoelastic coupling between the BaTiO3 substrate and the nanocomposite film, which has been exploited to produce a large magnetoelectric response in the sample. The reorientation of ferroelectric domains in the BTO crystal upon the application of an electric field (E) alters the strain state of the nanocomposite film, thus enabling control of its magnetic anisotropy. The strain mediated magnetoelectric coupling coefficient α = μ o d M / d E calculated from remnant magnetization at room temperature is 2.6 × 10-7 s m-1 and 1.5 × 10-7 s m-1 for the out-of-plane and in-plane orientations, respectively.
Pilot self-coding applied in optical OFDM systems
NASA Astrophysics Data System (ADS)
Li, Changping; Yi, Ying; Lee, Kyesan
2015-04-01
This paper studies the frequency offset correction technique which can be applied in optical OFDM systems. Through theoretical analysis and computer simulations, we can observe that our proposed scheme named pilot self-coding (PSC) has a distinct influence for rectifying the frequency offset, which could mitigate the OFDM performance deterioration because of inter-carrier interference and common phase error. The main approach is to assign a pilot subcarrier before data subcarriers and copy this subcarrier sequence to the symmetric side. The simulation results verify that our proposed PSC is indeed effective against the high degree of frequency offset.
Improved Tracking of an Atomic-Clock Resonance Transition
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.; Tu, Meirong
2010-01-01
An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.
NASA Technical Reports Server (NTRS)
Xiong, Fuqin; Andro, Monty
2001-01-01
This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.
The Performance of Noncoherent Orthogonal M-FSK in the Presence of Timing and Frequency Errors
NASA Technical Reports Server (NTRS)
Hinedi, Sami; Simon, Marvin K.; Raphaeli, Dan
1993-01-01
Practical M-FSK systems experience a combination of time and frequency offsets (errors). This paper assesses the deleterious effect of these offsets, first individually and then combined, on the average bit error probability performance of the system.
Programmable Gain Amplifiers with DC Suppression and Low Output Offset for Bioelectric Sensors
Carrera, Albano; de la Rosa, Ramón; Alonso, Alonso
2013-01-01
DC-offset and DC-suppression are key parameters in bioelectric amplifiers. However, specific DC analyses are not often explained. Several factors influence the DC-budget: the programmable gain, the programmable cut-off frequencies for high pass filtering and, the low cut-off values and the capacitor blocking issues involved. A new intermediate stage is proposed to address the DC problem entirely. Two implementations were tested. The stage is composed of a programmable gain amplifier (PGA) with DC-rejection and low output offset. Cut-off frequencies are selectable and values from 0.016 to 31.83 Hz were tested, and the capacitor deblocking is embedded in the design. Hence, this PGA delivers most of the required gain with constant low output offset, notwithstanding the gain or cut-off frequency selected. PMID:24084109
Siadatnasab, Firouzeh; Farhadi, Saeed; Khataee, Alireza
2018-06-01
The sonocatalytic activity of the magnetic CuS/CoFe 2 O 4 (CuS/CFO) nanohybrid was studied through the H 2 O 2 -assisted system for degradation of water soluble organic pollutants such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). The CuS/CFO nanohybrid was fabricated at 200 °C by hydrothermal method. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray microanalysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, magnetic measurements, and Brunauere-Emmette-Teller (BET) were employed for the characterizing the structure and morphology of the so-synthesized nanohybrid. Compared with sonolysis/H 2 O 2 , the higher degradation of MB (25 mg/L) was achieved via sonocatalytic process. The degradation efficiency of sonolysis/H 2 O 2 , sonocatalysis using CuS/H 2 O 2 , CFO/H 2 O 2 and CuS/CFO/H 2 O 2 systems was 6%, 62%, 23% and 100% within reaction time of 30 min for MB, respectively. The integration of H 2 O 2 and catalyst dosage intensified the sonocatalytic degradation of MB. On the other hand, adding a hydroxyl radical (OH) scavenger (tert-butyl alcohol) and a hole scavenger (disodium ethylenediaminetetraacetate) decreased the degradation efficiency from 100% to 35% and 72% within 30 min, indicating the OH radicals as prominent oxidizing agent of this process. Furthermore, the magnetic property of the sample helped for easier separation of the nanohybrid, made it recyclable with a negligible decline in the performance even after four consecutive runs. Copyright © 2018 Elsevier B.V. All rights reserved.
Cheng, Wang-Yau; Chen, Ting-Ju; Lin, Chia-Wei; Chen, Bo-Wei; Yang, Ya-Po; Hsu, Hung Yi
2017-02-06
Robust sub-millihertz-level offset locking was achieved with a simple scheme, by which we were able to transfer the laser frequency stability and accuracy from either cesium-stabilized diode laser or comb laser to the other diode lasers who had serious frequency jitter previously. The offset lock developed in this paper played an important role in atomic two-photon spectroscopy with which record resolution and new determination on the hyperfine constants of cesium atom were achieved. A quantum-interference experiment was performed to show the improvement of light coherence as an extended design was implemented.
Spin and Charge Transport in 2D Materials and Magnetic Insulator/Metal Heterostructures
NASA Astrophysics Data System (ADS)
Amamou, Walid
Spintronic devices are very promising for future information storage, logic operations and computation and have the potential to replace current CMOS technology approaching the scaling limit. In particular, the generation and manipulation of spin current enables the integration of storage and logic within the same circuit for more powerful computing architectures. In this thesis, we examine the manipulation of spins in 2D materials such as graphene and metal/magnetic insulator heterostructures. In particular, we investigate the feasibility for achieving magnetization switching of a nanomagnet using graphene as a nonmagnetic channel material for All Spin Logic Device applications. Using in-situ MBE deposition of nanomagnet on graphene spin valve, we demonstrate the presence of an interfacial spin dephasing at the interface between the graphene and the nanomagnet. By introducing a Cu spacer between the nanomagnet and graphene, we demonstrate that this interfacial effect is related to an exchange interaction between the spin current and the disordered magnetic moment of the nanomagnet in the first monolayer. In addition to the newly discovered interfacial spin relaxation effect, the extracted contact resistance area product of the nanomagnet/graphene interface is relatively high on the order of 1Omicrom2. In practice, reducing the contact resistance will be as important as eliminating the interfacial relaxation in order to achieve magnetization switching. Furthermore, we examine spin manipulation in a nonmagnetic Pt using an internal magnetic exchange field produced by the adjacent magnetic insulator CoFe2O4 grown by MBE. Here, we report the observation of a strong magnetic proximity effect of Pt deposited on top of a perpendicular magnetic anisotropy (PMA) inverse spinel material Cobalt Ferrite (CFO, CoFe 2O4). The CFO was grown by MBE and its magnetization was characterized by Vibrating Sample Magnetometry (VSM) demonstrating the strong out of plane magnetic anisotropy of this material. The anomalous Hall measurement on a Pt/CFO Hall bar exhibits a strong non-linear background around the saturation of the out of plane CFO magnetization. After subtraction of the Ordinary Hall Effect (OHE), we extract a strongly hysteretic anomalous Hall voltage that indicates that Pt acquired the magnetization properties of the CFO and has become ferromagnetic due to the proximity effects.
Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation
NASA Astrophysics Data System (ADS)
Zhai, Wen-Chao; Li, Zan; Si, Jiang-Bo; Bai, Jun
2015-11-01
A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011), and the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038).
van der Wel, C M; Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M
2013-03-01
The sensitivity of an imperfectly balanced impedance bridge is limited by the remaining offset voltage. Here, we present a procedure for offset reduction in impedance measurements using a lock-in amplifier, by applying a complex compensating voltage external to the bridge. This procedure takes into account instrumental damping and phase shifting, which generally occur at the high end of the operational frequency range. Measurements demonstrate that the output of the circuit rapidly converges to the instrumentally limited noise at any frequency.
Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.
Nguyen, Tuan Anh; Vu Phan, Hoang; Au, Thi Kim Loan; Park, Hoon Cheol
2016-06-20
This experimental study investigates the effect of three parameters: wing aspect ratio (AR), wing offset, and flapping frequency, on thrust generation and power consumption of a flapping-wing system based on a rack-pinion mechanism. The new flapping-wing system is simple but robust, and is able to create a large flapping amplitude. The thrust measured by a load cell reveals that for a given power, the flapping-wing system using a higher wing AR produces larger thrust and higher flapping frequency at the wing offset of 0.15[Formula: see text] or 0.20[Formula: see text] ([Formula: see text] is the mean chord) than other wing offsets. Of the three parameters, the flapping frequency plays a more significant role on thrust generation than either the wing AR or the wing offset. Based on the measured thrusts, an empirical equation for thrust prediction is suggested, as a function of wing area, flapping frequency, flapping angle, and wing AR. The difference between the predicted and measured thrusts was less than 7%, which proved that the empirical equation for thrust prediction is reasonable. On average, the measured power consumption to flap the wings shows that 46.5% of the input power is spent to produce aerodynamic forces, 14.0% to overcome inertia force, 9.5% to drive the rack-pinion-based flapping mechanism, and 30.0% is wasted as the power loss of the installed motor. From the power analysis, it is found that the wing with an AR of 2.25 using a wing offset of 0.20[Formula: see text] showed the optimal power loading in the flapping-wing system. In addition, the flapping frequency of 25 Hz is recommended as the optimal frequency of the current flapping-wing system for high efficiency, which was 48.3%, using a wing with an AR of 2.25 and a wing offset of 0.20[Formula: see text] in the proposed design.
16 CFR 1027.4 - Notice requirements before offset.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Notice requirements before offset. 1027.4 Section 1027.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL SALARY OFFSET § 1027.4... debt by deducting from the employee's current disposable pay account; (3) The amount, frequency...
Apolipoprotein B and E genetic polymorphisms in the Cayapa Indians of Ecuador.
Scacchi, R; Corbo, R M; Rickards, O; Mantuano, E; Guevara, A; De Stefano, G F
1997-06-01
Three DNA polymorphisms (XbaI, EcoRI, and Ins/Del) of the apolipoprotein B (APOB) gene and the CfoI polymorphism of the APOE gene were investigated in a sample of 96 Cayapa Indians from Ecuador. The frequencies of the X+ (0.182), R+ (1.000), and Del alleles (0.432) at the three APOB sites were found to be higher than and to differ significantly from those reported for East Asians. No comparisons could be made between the Cayapa and other native Americans because of the lack of data on these sites. We observed in our sample that, like native American populations but unlike East Asians, the APOE allele frequencies were characterized by the absence of the APOE*2 allele and by a high frequency of the APOE*4 allele (0.280). Besides a probable drift effect, the high APOE*4 value was tentatively attributed to an effect of selection. Because this allele enhances the absorption of cholesterol by the intestine, it could confer an advantage to carriers in an unfavorable environment (i.e., diet poor in cholesterol).
Optimization of locations of diffusion spots in indoor optical wireless local area networks
NASA Astrophysics Data System (ADS)
Eltokhey, Mahmoud W.; Mahmoud, K. R.; Ghassemlooy, Zabih; Obayya, Salah S. A.
2018-03-01
In this paper, we present a novel optimization of the locations of the diffusion spots in indoor optical wireless local area networks, based on the central force optimization (CFO) scheme. The users' performance uniformity is addressed by using the CFO algorithm, and adopting different objective function's configurations, while considering maximization and minimization of the signal to noise ratio and the delay spread, respectively. We also investigate the effect of varying the objective function's weights on the system and the users' performance as part of the adaptation process. The results show that the proposed objective function configuration-based optimization procedure offers an improvement of 65% in the standard deviation of individual receivers' performance.
Improved argument-FFT frequency offset estimation for QPSK coherent optical Systems
NASA Astrophysics Data System (ADS)
Han, Jilong; Li, Wei; Yuan, Zhilin; Li, Haitao; Huang, Liyan; Hu, Qianggao
2016-02-01
A frequency offset estimation (FOE) algorithm based on fast Fourier transform (FFT) of the signal's argument is investigated, which does not require removing the modulated data phase. In this paper, we analyze the flaw of the argument-FFT algorithm and propose a combined FOE algorithm, in which the absolute of frequency offset (FO) is accurately calculated by argument-FFT algorithm with a relatively large number of samples and the sign of FO is determined by FFT-based interpolation discrete Fourier transformation (DFT) algorithm with a relatively small number of samples. Compared with the previous algorithms based on argument-FFT, the proposed one has low complexity and can still effectively work with a relatively less number of samples.
Effects of Mechanical Loading on the Dynamics of Hair-Cell Stereociliary Bundles
NASA Astrophysics Data System (ADS)
Fredrickson, Lea
Hearing is remarkably sensitive and still not entirely understood. Hair cells of the inner ear are the mechano-electrical transducers of sound and understanding how they function is essential to the understanding of hearing in general. Spontaneous oscillations exhibited by stereociliary bundles of the bullfrog sacculus provide a useful probe for the study of the hair cells' internal dynamic state. In this work we study the effects of mechanical loading on these hair-cell bundles in order to study their dynamics. When applying stiffness loads, we find that the spontaneous oscillation profile changes from multimode to single mode with light loading, and decreases in amplitude and increases in frequency with stiffer loads. We also find that tuning decreases with increasing load such that at loads comparable to in vivo conditions the tuning is flat. We further explore loading via deflections to hair cell bundles, both in the form of steady-state offsets and slow ramps. We find that steady state offsets lead to significant modulation of the characteristic frequency of response, decreasing the frequency in the channels closed direction (negative) and increasing it in the channels open direction (positive). Attachment to the overlying membrane was found, in vitro, to affect bundle offset position in hair cells of the bullfrog sacculus. Application of similar offsets on free-standing, spontaneously oscillating hair bundles shows modulation of their dynamic state, i.e. oscillation profile, characteristic frequency, and response to stimulus. Large offsets are found to arrest spontaneous oscillations, which recover upon reversal of the stimulus. The dynamical state of the hair bundle is dependent on both the history and direction of the offset stimulus. Oscillation suppression occurs much more readily in the negative direction and the bundle behavior approaching quiescence is distinct from that in the positive direction. With the change in spontaneous oscillation frequency and profile comes a change in the phase-locked response amplitude, dependent on bundle offset, winch extends the range of detection frequencies of the hair cell. We explore the broadband phase-locked response of spontaneously oscillating saccular hair cell bundles subject to time-dependent mechanical deflections. The experimental phase-locked amplitude shows an Arnold Tongue, consistent with theoretically predicted dynamical behavior. An offset that steadily increases in time, imposed on the position of the bundle to explore its dynamics at the zero frequency limit, is observed to progressively suppress spontaneous oscillations in a transition that displays strong frequency modulation, with the frequency vanishing at the critical point. When deflected at a faster rate and when allowed to recover to the oscillatory regime, the bundles also displayed a modulation in the amplitude of oscillation. We propose the dynamics of this transition to be dominated by a multi-critical region such that slight variations of a control parameter can produce either an infinite-period, supercritical Hopf, or Bogdanov-Takens bifurcation.
NASA Technical Reports Server (NTRS)
Kaufmann, D. C.
1976-01-01
The fine frequency setting of a cesium beam frequency standard is accomplished by adjusting the C field control with the appropriate Zeeman frequency applied to the harmonic generator. A novice operator in the field, even when using the correct Zeeman frequency input, may mistakenly set the C field to any one of seven major Beam I peaks (fingers) represented by the Ramsey curve. This can result in frequency offset errors of as much as 2.5 parts in ten to the tenth. The effects of maladjustment are demonstrated and suggestions are discussed on how to avoid the subtle traps associated with C field adjustments.
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Nilsson, Alan C.; Byer, Robert L.
1987-01-01
The frequency stability of laser-diode-pumped, monolithic Nd:YAG solid-state unidirectional nonplanar ring oscillators was studied by heterodyne measurements. CW single-axial- and transverse-mode power of 25 mW at 1064 nm was obtained at a slope efficiency of 19 percent. Two independent oscillators were offset-locked at 17 MHz with frequency fluctuations of less than + or - 40 kHz for periods of 8 min.
Frequency spectral analysis of GPR data over a crude oil spill
Burton, B.L.; Olhoeft, G.R.; Powers, M.H.; ,
2004-01-01
A multi-offset ground penetrating radar (GPR) dataset was acquired by the U.S. Geological Survey (USGS) at a crude oil spill site near Bemidji, Minnesota, USA. The dataset consists of two, parallel profiles, each with 17 transmitter-receiver offsets ranging from 0.60 to 5.15m. One profile was acquired over a known oil pool floating on the water table, and the other profile was acquired over an uncontaminated area. The data appear to be more attenuated, or at least exhibit less reflectivity, in the area over the oil pool. In an attempt to determine the frequency dependence of this apparent attenuation, several attributes of the frequency spectra of the data were analyzed after accounting for the effects on amplitude of the radar system (radiation pattern), changes in antenna-ground coupling, and spherical divergence. The attributes analyzed were amplitude spectra peak frequency, 6 dB down, or half-amplitude, spectrum width, and the low and high frequency slopes between the 3 and 9 dB down points. The most consistent trend was observed for Fourier transformed full traces at offsets 0.81, 1.01, and 1.21m which displayed steeper low frequency slopes over the area corresponding to the oil pool. The Fourier-transformed time-windowed traces, where each window was equal to twice the airwave wavelet length, exhibited weakly consistent attribute trends from offset to offset and from window to window. The fact that strong, consistent oil indicators are not seen in this analysis indicates that another mechanism due to the presence of the oil, such as a gradient in the electromagnetic properties, may simply suppress reflections over the contaminated zone.
Effects of eddy currents on selective spectral editing experiments at 3T.
Oeltzschner, Georg; Snoussi, Karim; Puts, Nicolaas A; Mikkelsen, Mark; Harris, Ashley D; Pradhan, Subechhya; Tsapkini, Kyrana; Schär, Michael; Barker, Peter B; Edden, Richard A E
2018-03-01
To investigate frequency-offset effects in edited magnetic resonance spectroscopy (MRS) experiments arising from B 0 eddy currents. Macromolecule-suppressed (MM-suppressed) γ-aminobutyric acid (GABA)-edited experiments were performed at 3T. Saturation-offset series of MEGA-PRESS experiments were performed in phantoms, in order to investigate different aspects of the relationship between the effective editing frequencies and eddy currents associated with gradient pulses in the sequence. Difference integrals were quantified for each series, and the offset dependence of the integrals was analyzed to quantify the difference in frequency (Δf) between the actual vs. nominal expected saturation frequency. Saturation-offset N-acetyl-aspartate-phantom experiments show that Δf varied with voxel orientation, ranging from 10.4 Hz (unrotated) to 6.4 Hz (45° rotation about the caudal-cranial axis) and 0.4 Hz (45° rotation about left-right axis), indicating that gradient-related B 0 eddy currents vary with crusher-gradient orientation. Fixing the crusher-gradient coordinate-frame substantially reduced the orientation dependence of Δf (to ∼2 Hz). Water-suppression crusher gradients also introduced a frequency offset, with Δf = 0.6 Hz ("excitation" water suppression), compared to 10.2 Hz (no water suppression). In vivo spectra showed a negative edited "GABA" signal, suggesting Δf on the order of 10 Hz; with fixed crusher-gradient coordinate-frame, the expected positive edited "GABA" signal was observed. Eddy currents associated with pulsed field gradients may have a considerable impact on highly frequency-selective spectral-editing experiments, such as MM-suppressed GABA editing at 3T. Careful selection of crusher gradient orientation may ameliorate these effects. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:673-681. © 2017 International Society for Magnetic Resonance in Medicine.
Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system
NASA Astrophysics Data System (ADS)
Wang, Daobin; Yuan, Lihua; Lei, Jingli; wu, Gang; Li, Suoping; Ding, Runqi; Wang, Dongye
2017-12-01
In this paper, we focus on analysis of the preamble-based joint estimation for channel and laser-frequency offset (LFO) in coherent optical filter bank multicarrier systems with offset quadrature amplitude modulation (CO-FBMC/OQAM). In order to reduce the noise impact on the estimation accuracy, we proposed an estimation method based on inter-frame averaging. This method averages the cross-correlation function of real-valued pilots within multiple FBMC frames. The laser-frequency offset is estimated according to the phase of this average. After correcting LFO, the final channel response is also acquired by averaging channel estimation results within multiple frames. The principle of the proposed method is analyzed theoretically, and the preamble structure is thoroughly designed and optimized to suppress the impact of inherent imaginary interference (IMI). The effectiveness of our method is demonstrated numerically using different fiber and LFO values. The obtained results show that the proposed method can improve transmission performance significantly.
NASA Astrophysics Data System (ADS)
Rabbi, Fazle
Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such membranes. The dielectric behavior of a material can be an indicator for MIEC performance and can be incorporated into computational models of MIEC membranes in order to optimize the composition, microstructure, and ultimately predict long term membrane performance. The dielectric behavior of the MIECs can also be an indicator of the transport mechanisms and the parameters they are dependent upon. For this study we chose a dual phase MIEC oxygen separation membrane consisting of an ionic conducting phase: gadolinium doped ceria-Ce0.8 Gd0.2O2 (GDC) and an electronic conductive phase: cobalt ferrite-CoFe2O4 (CFO). The membranes were fabricated from mixtures of Nano-powder of each of the phases for different volume percentages, sintered with various temperatures and sintering time to form systematic micro-structural variations, and characterized by structural analysis (XRD), and micro-structural analysis (SEM-EDS). Performance of the membranes was tested for variable partial pressures of oxygen across the membrane at temperatures from 850°C-1060°C using a Gas Chromatography (GC) system. Permeated oxygen did not directly correlate with change in percent mixture. An intermediate mixture 60%GDC-40%CFO had the highest flux compared to the 50%GDC-50%CFO and 80%GDC-20%CFO mixtures. Material characterization suggests the emergence of a third phase contributing to the behavior. Microstructural studies suggested changes in micro-structure of a given volume fraction for different sintering temperature and sintering time. Flux variation was observed for membranes with the same constituent volume fraction but different micro-structure indicating the effects of the micro-structure on the overall oxygen permeation. To correlate the experimental flux measurement with a standard Wagner's flux equation, different microstructural characteristics were studied to incorporate them into a modified Wagner's flux equation. In-situ broadband dielectric spectroscopy measurements over a temperature range of 850°C-1060°C and frequency range of (0.1Hz-1MHz) of the operating 60%GDC-40%CFO mixture oxygen separation membranes were measured using a NOVOCONTROL dielectric spectroscopy test system. Dielectric response of the operating membrane was studied to identify the charge transfer process in the membrane. A computational model to study the dielectric impedance response of different microstructure was developed using a COMSOL(TM) Multiphysics qasi-static electromagnetic module. This model was validated using model materials with regular geometric shapes. To measure impedance of real micro/nano-structures of the membrane material, domains required for the COMSOL calculation were obtained from actual micro/nano structures by using 3D scans from X-ray nano and micro tomography. Simpleware(TM) software was used to generate 3D domains from image slices obtained from the 3D x-ray scans. Initial voltage distributions on the original microstructure were obtained from the computational model. Similarly, development of a primary model for simulating ionic/electronic species flow inside of an MIEC was also begun. The possibility of using broadband dielectric spectroscopy methods to understand and anticipate the flux capabilities of MIECs to reduce the cost and time of development of such material systems was explored.
Balasubramanian, Paramasivam; Settu, Ramki; Chen, Shen-Ming; Chen, Tse-Wei; Sharmila, Ganapathi
2018-08-15
Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe 2 O 4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM -1 cm -2 . Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application. Copyright © 2018 Elsevier Inc. All rights reserved.
Six Lessons We Learned Applying Six Sigma
NASA Technical Reports Server (NTRS)
Carroll, Napoleon; Casleton, Christa H.
2005-01-01
As Chief Financial Officer of Kennedy Space Center (KSC), I'm not only responsible for financial planning and accounting but also for building strong partnerships with the CFO customers, who include Space Shuttle and International Space Station operations as well all who manage the KSC Spaceport. My never ending goal is to design, manage and continuously improve our core business processes so that they deliver world class products and services to the CFO's customers. I became interested in Six Sigma as Christa Casleton (KSC's first Six Sigma Black belt) applied Six Sigma tools and methods to our Plan and Account for Travel Costs Process. Her analysis was fresh, innovative and thorough but, even more impressive, was her approach to ensure ongoing, continuous process improvement. Encouraged by the results, I launched two more process improvement initiatives aimed at applying Six Sigma principles to CFO processes that not only touch most of my employees but also have direct customer impact. As many of you know, Six Sigma is a measurement scale that compares the output of a process with customer requirements. That's straight forward, but demands that you not only understand your processes but also know your products and the critical customer requirements. The objective is to isolate and eliminate the causes of process variation so that the customer sees consistently high quality.
NASA Astrophysics Data System (ADS)
Liu, Sheng; Yan, Shuoqing; Yao, Lingling; He, Jun; He, Longhui; Hu, Zhaowen; Huang, Shengxiang; Deng, Lianwen
2017-12-01
Particulate magnetoelectric (ME) ceramics constituted by (1-x)(80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)-xCoFe2O4 [(1-x)BNKT-xCFO] (x = 0, 0.1, 0.2, 0.3, 0.4 and 1.0) were synthesized by an powder-in-sol precursor hybrid processing method and their structure, magnetic, ferroelectric, magnetodielectric (MD) and ME properties have been investigated. Results showed that the ceramics consisted of only two chemically separated phases and had homogeneous microstructure. The introduction of CFO into BNKT matrix led to the weakening of ferroelectric and dielectric properties whereas the strengthening magnetic and MD properties. The observation of the MD effect revealed the evidence of the strain-induced ME coupling and the MD value is well scaled with M2. A maximum value of ME output of 25.07 mV/cm·Oe was achieved for the 0.7BNKT-0.3CFO composite. The improved ME response together with the linear MD effect makes the ceramics promise for use in magnetic field controllable devices or magneto-electric transducers.
Farid, Karim A; Mostafa, Yehya A; Kaddah, Mohammed A; El-Sharaby, Fouad Aly
2014-10-01
The aim of this study was to evaluate corticotomy-facilitated orthodontics (CFO) using piezosurgery versus conventional rotary instruments. Ten healthy adult male mongrel dogs of comparable age with a complete set of permanent dentition with average weights between 13-17 kilograms were used. CFO using conventional rotary instruments versus piezosurgery was performed on each dog in a split mouth design. For every dog, mandibular 2nd premolar retraction on each side was attempted after extracting 3rd premolars followed by corticotomy-facilitated orthodontics using conventional rotary surgical burs on the left side and an ultrasonic piezosurgery system on the right side of the same animal. Intraoral measurements of the rate of tooth movement were taken with a sliding caliper. Measurements were performed by the same operator at the time of surgery (appliance delivery) and every month for six months. The dogs were sacrificed after six months from initiation of tooth movement to evaluate the amount of tooth movement for both conventional rotary and piezosurgery corticotomy techniques. A statistically significantly higher mean amount of tooth movement for conventional rotary instrument versus the piezosurgery corticotomy technique was observed at all time intervals. Tooth movement was 1.6 times faster when CFO was done using conventional rotary instruments as compared to a piezosurgery device.
A joint equalization algorithm in high speed communication systems
NASA Astrophysics Data System (ADS)
Hao, Xin; Lin, Changxing; Wang, Zhaohui; Cheng, Binbin; Deng, Xianjin
2018-02-01
This paper presents a joint equalization algorithm in high speed communication systems. This algorithm takes the advantages of traditional equalization algorithms to use pre-equalization and post-equalization. The pre-equalization algorithm takes the advantage of CMA algorithm, which is not sensitive to the frequency offset. Pre-equalization is located before the carrier recovery loop in order to make the carrier recovery loop a better performance and overcome most of the frequency offset. The post-equalization takes the advantage of MMA algorithm in order to overcome the residual frequency offset. This paper analyzes the advantages and disadvantages of several equalization algorithms in the first place, and then simulates the proposed joint equalization algorithm in Matlab platform. The simulation results shows the constellation diagrams and the bit error rate curve, both these results show that the proposed joint equalization algorithm is better than the traditional algorithms. The residual frequency offset is shown directly in the constellation diagrams. When SNR is 14dB, the bit error rate of the simulated system with the proposed joint equalization algorithm is 103 times better than CMA algorithm, 77 times better than MMA equalization, and 9 times better than CMA-MMA equalization.
On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels
2014-03-01
ASM fields; (bottom) the relationship between the indexes of the received samples r(n), the signal samples s(n), the preamble samples p (n) and the short...frequency offset estimators for SOQPSK-TG equipped with the iNET preamble and operating in ISI channels. Four of the five estimators exam - ined here are...sync marker ( ASM ), and data bits (an LDPC codeword). The availability of a preamble introduces the possibility of data-aided synchro- nization in
Laser frequency stabilization and control through offset sideband locking to optical cavities.
Thorpe, J I; Numata, K; Livas, J
2008-09-29
We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. We discuss the expected performance and limitations of these techniques and present a laboratory investigation in which both the sideband techniques and the standard, on-tunable Pound-Drever- Hall technique reached the 100Hz/square root(Hz) level.
Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser
NASA Astrophysics Data System (ADS)
Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas
2018-02-01
We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.
Effect of DC Offset on the T-Wave Residuum Parameter
NASA Technical Reports Server (NTRS)
Scott, N.; Greco, E. C.; Schlegel, Todd T.
2006-01-01
The T-wave residuum (TWR) is a relatively new 12-lead ECG parameter that may reflect cardiac repolarization heterogeneity. TWR shows clinical promise and may become an important diagnostic tool if accurate, consistent, and convenient methods for its calculation can be developed. However, there are discrepancies between the methods that various investigators have used to calculate TWR, as well as some questions about basic methodology and assumptions that require resolution. The presence of a DC offset or very low frequency AC component to the ECG is often observed. Many researchers have attempted to compensate for these by high pass filters and by median beat techniques. These techniques may help minimize the contribution of a low frequency AC component to the TWR, but they will not eliminate a DC offset inherent within the instrumentation. The present study examined the presence of DC offsets in the ECG record, and their effect on TWR. Specifically, in healthy individuals, a DC offset was added to all 8 channels collectively or to each channel selectively. Even with offsets that were relatively small compared to T-wave amplitude, the addition of either collectively or individually applied offsets was observed to produce very significant changes in the TWR, affecting its value by as much as an order of magnitude. These DC offsets may arise from at least two possible sources: a transient artifact from EMG or electrode movement resulting in a transient baseline offset in one or more channels. Since highpass filters have a settling time of several seconds, these artifacts will contribute to a transitory baseline offset lasting 1020 cycles. The machine hardware may also introduce an offset. Regardless of the cause or source of a DC offset, this study demonstrates that offsets have a very significant impact on TWR, and that future studies must not ignore their presence, but rather more appropriately compensate for them.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowska, Monika; Ozimek, Filip; Fita, Piotr
2009-08-15
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
NASA Astrophysics Data System (ADS)
Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław
2009-08-01
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Gianfrani, Livio; Castrillo, Antonio; Fasci, Eugenio; Galzerano, Gianluca; Casa, Giovanni; Laporta, Paolo
2010-10-11
We describe a continuous-wave diode laser spectrometer for water-vapour precision spectroscopy at 1.38 μm. The spectrometer is based upon the use of a simple scheme for offset-frequency locking of a pair of extended-cavity diode lasers that allows to achieve unprecedented accuracy and reproducibility levels in measuring molecular absorption. When locked to the master laser with an offset frequency of 1.5 GHz, the slave laser exhibits residual frequency fluctuations of 1 kHz over a time interval of 25 minutes, for a 1-s integration time. The slave laser could be continuously tuned up to 3 GHz, the scan showing relative deviations from linearity below the 10{-6} level. Simultaneously, a capture range of the order of 1 GHz was obtained. Quantitative spectroscopy was also demonstrated by accurately determining relevant spectroscopic parameters for the 22,1→22,0line of the H2(18)O v1+v3 band at 1384.6008 nm.
NASA Astrophysics Data System (ADS)
Borkar, Hitesh; Choudhary, R. J.; Singh, V. N.; Tomar, M.; Gupta, Vinay; Kumar, Ashok
2015-08-01
Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr0.52Ti0.48)0.60(Fe0.67W0.33).40]O3]0.80-[CoFe2O4]0.20 (PZTFW-CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4-350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (˜0.4-0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (TB). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite.
Fish oil concentrate delays sensitivity to thermal nociception in mice
Veigas, Jyothi M.; Williams, Paul J.; Halade, Ganesh; Rahman, Mizanur M.; Yoneda, Toshiyuki; Fernandes, Gabriel
2011-01-01
Fish oil has been used to alleviate pain associated with inflammatory conditions such as rheumatoid arthritis. The anti-inflammatory property of fish oil is attributed to the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid. Contrarily, vegetable oils such as safflower oil are rich in n-6 fatty acids which are considered to be mediators of inflammation. This study investigates the effect of n-3 and n-6 fatty acids rich oils as dietary supplements on the thermally induced pain sensitivity in healthy mice. C57Bl/6J mice were fed diet containing regular fish oil, concentrated fish oil formulation (CFO) and safflower oil (SO) for 6 months. Pain sensitivity was measured by plantar test and was correlated to the expression of acid sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1) and c-fos in dorsal root ganglion cells. Significant delay in sensitivity to thermal nociception was observed in mice fed CFO compared to mice fed SO (p<0.05). A significant diminution in expression of ion channels such as ASIC1a (64%), ASIC13 (37%) and TRPV1 (56%) coupled with reduced expression of c-fos, a marker of neuronal activation, was observed in the dorsal root ganglion cells of mice fed CFO compared to that fed SO. In conclusion, we describe here the potential of fish oil supplement in reducing sensitivity to thermal nociception in normal mice. PMID:21345372
Automatic NMR field-frequency lock-pulsed phase locked loop approach.
Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J
1978-06-01
A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.
Frequency stability of on-orbit GPS Block-I and Block-II Navstar clocks
NASA Astrophysics Data System (ADS)
McCaskill, Thomas B.; Reid, Wilson G.; Buisson, James A.
On-orbit analysis of the Global Positioning System (GPS) Block-I and Block-II Navstar clocks has been performed by the Naval Research Laboratory using a multi-year database. The Navstar clock phase-offset measurements were computed from pseudorange measurements made by the five GPS monitor sites and from the U.S. Naval Observatory precise-time site using single or dual frequency GPS receivers. Orbital data was obtained from the Navstar broadcast ephemeris and from the best-fit, postprocessed orbital ephemerides supplied by the Naval Surface Weapons Center or by the Defense Mapping Agency. Clock performance in the time domain is characterized using frequency-stability profiles with sample times that vary from 1 to 100 days. Composite plots of Navstar frequency stability and time-prediction uncertainty are included as a summary of clock analysis results. The analysis includes plots of the clock phase offset and frequency offset histories with the eclipse seasons superimposed on selected plots to demonstrate the temperature sensitivity of one of the Block-I Navstar rubidium clocks. The potential impact on navigation and on transferring precise time of the degradation in the long-term frequency stability of the rubidium clocks is discussed.
Valdizón-Rodríguez, Roberto
2017-01-01
Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell’s excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell’s excitatory receptive field. We conclude by discussing possible neural sources of the inhibition. NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell’s best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths. PMID:28100657
Measuring earthquakes from optical satellite images.
Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J
2000-07-10
Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
Intercontinental time and frequency transfer using a global positioning system timing receiver
NASA Technical Reports Server (NTRS)
Clements, P. A.
1983-01-01
The Deep Space Network (DSN) has a requirement to maintain knowledge of the frequency offset between DSN stations within 3 x 10 to the -13th power and time offset within 10 microseconds. It is further anticipated that in the 1987-1990 era the requirement for knowledge of time offset between DSN stations will be less than 10 nanoseconds. The Jet Propulsion Laboratory (JPL) is using the Global Positioning System (GPS) Space Vehicles, as a development project, to transfer time and frequency over intercontinental distances between stations of the DSN and between the DSN and other agencies. JPL has installed GPS timing receivers at its tracking station near Barstow, California and at its tracking station near Madrid, Spain. The details of the experiment and the data are reported. There is a discussion of the ultimate capabilities of these techniques for meeting the functional requirements of the DSN.
Frequency offset locking of AlGaAs semiconductor lasers
NASA Astrophysics Data System (ADS)
Kuboki, Katsuhiko; Ohtsu, Motoichi
1987-04-01
Frequency offset locking is proposed as a technique for tracking and sweeping of a semiconductor laser frequency to improve temporal coherence in semiconductor lasers. Experiments were carried out in which a frequency stabilized laser (of residual frequency fluctuation value of 140 Hz at the integration time between 100 ms and 100 s) was used as a master laser, using a digital phase comparator of a large dynamic range (2 pi x 10 to the 11th rad) in the feedback loop to reduce the phase fluctuations of the beat signal between the master laser and the slave laser. As a result, residual frequency fluctuations of the beat signal were as low as 11 Hz at the integration time of 100 s (i.e., the residual frequency fluctuations of the slave laser were almost equal to those of the master laser).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tillman, Karl A.; Thapa, Rajesh; Knabe, Kevin
2009-12-20
The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of {approx}2x10{sup -11} at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3x10{sup -12} for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamicsmore » of the carrier-envelope offset to pump power changes confirm the observed linewidths.« less
7 CFR 1468.20 - Application for CFO program participation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... program payments allowed, offering to apply more conservation practices to the land in order to increase... benefits; (4) Soil productivity; (5) Conservation compliance considerations; (6) Likelihood to remain in...
Kim, Eok Bong; Lee, Jae-hwan; Trung, Luu Tran; Lee, Wong-Kyu; Yu, Dai-Hyuk; Ryu, Han Young; Nam, Chang Hee; Park, Chang Yong
2009-11-09
We developed an optical frequency synthesizer (OFS) with the carrier-envelope-offset frequency locked to 0 Hz achieved using the "direct locking method." This method differs from a conventional phaselock method in that the interference signal from a self-referencing f-2f interferometer is directly fed back to the carrier-envelope-phase control of a femtosecond laser in the time domain. A comparison of the optical frequency of the new OFS to that of a conventional OFS stabilized by a phase-lock method showed that the frequency comb of the new OFS was not different to that of the conventional OFS within an uncertainty of 5.68x10(-16). As a practical application of this OFS, we measured the absolute frequency of an acetylene-stabilized diode laser serving as an optical frequency standard in optical communications.
The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features
NASA Astrophysics Data System (ADS)
Harbert, S.; Duvall, A. R.; Tucker, G. E.
2016-12-01
Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our model and field results, we conclude that vertical relief is important for generating and preserving offset features that are viewed as characteristic of a strike-slip fault. Therefore, the geomorphic expression of a fault may be dependent on characteristics of the surrounding landscape rather than primarily a function of the nature of slip on the fault.
76 FR 67188 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... Liability Company, dba GlobalForwarding.com dba Forwardingservices.com dba Containerquote.com dba Global.../CEO/CFO, Application Type: QI Change. Unicorn Shipping, Inc. (NVO & OFF), 1225 W. 190th Street, Suite...
77 FR 1936 - Ocean Transportation Intermediary License; Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
...), 9333 Elm Vista Drive, 9, Downey, CA 90242, Officer: Cynthia Choi, CEO/CFO/Secretary, (Qualifying.... Steele Logistics, LLC (NVO), 10722 La Cienega Blvd., Inglewood, CA 90304, Officer: Rene N. Steele, Member...
Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech
2016-04-18
We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Kirk, A.; Unglaub, R.
1987-01-01
There are two hydrogen maser clocks located at each signal processing center (SPC) in the DSN. Close coordination of the time and frequency of the SPC clocks is needed to navigate spacecraft to the outer planets. A recent example was the Voyager spacecraft's encounter with Uranus in January 1986. The clocks were adjusted with the goal of minimizing time and frequency offsets between the SPCs at encounter. How time and frequency at each SPC is estimated using data acquired from the Global Positioning System Timing Receivers operating on the NBS-BIH (National Bureau of Standards-Bureau International de l'Heure) tracking schedule is described. These data are combined with other available timing receiver data to calculate the time offset estimates. The adjustment of the clocks is described. It was determined that long range hydrogen maser drift is quite predictable and adjustable within limits. This enables one to minimize time and frequency differences between the three SPCs for many months by matching the drift rates of the three standards. Data acquisition and processing techniques using a Kalman filter to make estimates of time and frequency offsets between the clocks at the SPCs and UTC(NBS) (Coordinated Universal Time realized at NBS) are described.
Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.
Davila-Rodriguez, J; Baynes, F N; Ludlow, A D; Fortier, T M; Leopardi, H; Diddams, S A; Quinlan, F
2017-04-01
We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100 dBc/Hz at 1 Hz offset and <-173 dBc/Hz for all offsets >600 Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.
A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.
Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2016-04-13
A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10(-)⁵ is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed.
7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii... that can be geographically described and has specific environmental sensitivities or significant soil...
Cheng, Sibei; Zhang, Qingjun; Bian, Mingming; Hao, Xinhong
2018-02-08
For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance-for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe-can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations.
Cheng, Sibei; Zhang, Qingjun; Bian, Mingming; Hao, Xinhong
2018-01-01
For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance—for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe—can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations. PMID:29419814
Qualitative analysis of MTEM response using instantaneous attributes
NASA Astrophysics Data System (ADS)
Fayemi, Olalekan; Di, Qingyun
2017-11-01
This paper introduces new technique for qualitative analysis of multi-transient electromagnetic (MTEM) earth impulse response over complex geological structures. Instantaneous phase and frequency attributes were used in place of the conventional common offset section for improved qualitative interpretation of MTEM data by obtaining more detailed information from the earth impulse response. The instantaneous attributes were used to describe the lateral variation in subsurface resistivity and the visible geological structure with respect to given offsets. Instantaneous phase attribute was obtained by converting the impulse response into a complex form using the Hilbert transform. Conversely, the polynomial phase difference (PPD) estimator was favored over the center finite difference (CFD) approximation method in calculating the instantaneous frequency attribute because it is computationally efficient and has the ability to give a smooth variation of the instantaneous frequency over a common offset section. The observed results from the instantaneous attributes were in good agreement with both the subsurface model used and the apparent resistivity section obtained from the MTEM earth impulse response. Hence, this study confirms the capability of both instantaneous phase and frequency attributes as highly effective tools for MTEM qualitative analysis.
Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures
NASA Astrophysics Data System (ADS)
Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan
Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.
Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...
2017-05-22
Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo
Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less
When the Eyes No Longer Lead: Familiarity and Length Effects on Eye-Voice Span
Silva, Susana; Reis, Alexandra; Casaca, Luís; Petersson, Karl M.; Faísca, Luís
2016-01-01
During oral reading, the eyes tend to be ahead of the voice (eye-voice span, EVS). It has been hypothesized that the extent to which this happens depends on the automaticity of reading processes, namely on the speed of print-to-sound conversion. We tested whether EVS is affected by another automaticity component – immunity from interference. To that end, we manipulated word familiarity (high-frequency, low-frequency, and pseudowords, PW) and word length as proxies of immunity from interference, and we used linear mixed effects models to measure the effects of both variables on the time interval at which readers do parallel processing by gazing at word N + 1 while not having articulated word N yet (offset EVS). Parallel processing was enhanced by automaticity, as shown by familiarity × length interactions on offset EVS, and it was impeded by lack of automaticity, as shown by the transformation of offset EVS into voice-eye span (voice ahead of the offset of the eyes) in PWs. The relation between parallel processing and automaticity was strengthened by the fact that offset EVS predicted reading velocity. Our findings contribute to understand how the offset EVS, an index that is obtained in oral reading, may tap into different components of automaticity that underlie reading ability, oral or silent. In addition, we compared the duration of the offset EVS with the average reference duration of stages in word production, and we saw that the offset EVS may accommodate for more than the articulatory programming stage of word N. PMID:27853446
Digital frequency-offset detector
NASA Technical Reports Server (NTRS)
Bogart, R. W.; Juengst, M. J.
1977-01-01
Simple, low-cost device with designer-selectable tolerances provides accurate frequency comparison with minimal circuitry and ease of adjustment. Warning alerts if frequencies being compared fall outside selected tolerance. Device can be applied to any electronic system where accurate timing or frequency control is important.
Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop
NASA Astrophysics Data System (ADS)
Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng
2018-01-01
We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.
Ultrasonic Doppler measurement of renal artery blood flow
NASA Technical Reports Server (NTRS)
Freund, W. R.; Beaver, W. L.; Meindl, J. D.
1976-01-01
Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.
NASA Technical Reports Server (NTRS)
Bennett, R. L.
1975-01-01
The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.
Progress on a Multichannel, Dual-Mixer Stability Analyzer
NASA Technical Reports Server (NTRS)
Kirk, Albert; Cole, Steven; Stevens, Gary; Tucker, Blake; Greenhall, Charles
2005-01-01
Several documents describe aspects of the continuing development of a multichannel, dual-mixer system for simultaneous characterization of the instabilities of multiple precise, low-noise oscillators. One of the oscillators would be deemed to be a reference oscillator, its frequency would be offset by an amount (100 Hz) much greater than the desired data rate, and each of the other oscillators would be compared with the frequency-offset signal by operation of a combination of hardware and software. A high-rate time-tag counter would collect zero-crossing times of the approximately equal 100-Hz beat notes. The system would effect a combination of interpolation and averaging to process the time tags into low-rate phase residuals at the desired grid times. Circuitry that has been developed since the cited prior article includes an eight-channel timer board to replace an obsolete commercial time-tag counter, plus a custom offset generator, cleanup loop, distribution amplifier, zero-crossing detector, and frequency divider.
47 CFR 76.612 - Cable television frequency separation standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... frequency separation standards. All cable television systems which operate in the frequency bands 108-137... kHz bandwidth in any 160 microsecond period must operate at frequencies offset from certain frequencies which may be used by aeronautical radio services operated by Commission licensees or by the United...
A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser
NASA Astrophysics Data System (ADS)
Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai
2018-03-01
An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.
The changing role of the hospital chief financial officer.
Freitag, T R; Freitag, W
1980-01-01
Things are changing. That statement is obviously true of things political, economic and scientific. Not surprisingly, therefore, the statement applies to the activities, responsibilities, qualifications and, ultimately, status of the hospital chief financial officer (CFO).
7 CFR 1468.8 - Land eligibility provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... eligible wetland restoration or protection practice similar to WRP in accordance with § 1468.6(b); or (c) 7... Marketing Transition Act of 1996 and if the land upon which the CFO conservation practice, will be applied...
7 CFR 1468.8 - Land eligibility provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... eligible wetland restoration or protection practice similar to WRP in accordance with § 1468.6(b); or (c) 7... Marketing Transition Act of 1996 and if the land upon which the CFO conservation practice, will be applied...
7 CFR 1468.8 - Land eligibility provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... eligible wetland restoration or protection practice similar to WRP in accordance with § 1468.6(b); or (c) 7... Marketing Transition Act of 1996 and if the land upon which the CFO conservation practice, will be applied...
7 CFR 1468.8 - Land eligibility provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... eligible wetland restoration or protection practice similar to WRP in accordance with § 1468.6(b); or (c) 7... Marketing Transition Act of 1996 and if the land upon which the CFO conservation practice, will be applied...
76 FR 78265 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... Officers (CFO) Act of 1990, as amended by the Government Management Reform Act (GMRA) of 1994, requires... Medicaid payable and receivable accounting data from the States. Form Number: CMS-R-199 (OMB : 0938-0697...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION FARM OPTION General Provisions § 1468.1 Purpose. (a) Through the Conservation Farm Option (CFO), the Commodity Credit Corporation (CCC) provides... concerns, water quality protection or improvement; wetland restoration and protection; wildlife habitat...
Measurements and Predictions of the Noise from Three-Stream Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.
2015-01-01
An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum flux.
Measurements and Predictions of the Noise from Three-Stream Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.
2015-01-01
An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary- to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum- flux.
Thermal generation of spin current in epitaxial CoFe{sub 2}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Er-Jia, E-mail: ejguophysics@gmail.com, E-mail: klaeui@uni-mainz.de; Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Herklotz, Andreas
2016-01-11
The longitudinal spin Seebeck effect (LSSE) has been investigated in high-quality epitaxial CoFe{sub 2}O{sub 4} (CFO) thin films. The thermally excited spin currents in the CFO films are electrically detected in adjacent Pt layers due to the inverse spin Hall effect. The LSSE signal exhibits a linear increase with increasing temperature gradient, yielding a LSSE coefficient of ∼100 nV/K at room temperature. The temperature dependence of the LSSE is investigated from room temperature down to 30 K, showing a significant reduction at low temperatures, revealing that the total amount of thermally generated magnons decreases. Furthermore, we demonstrate that the spin Seebeck effectmore » is an effective tool to study the magnetic anisotropy induced by epitaxial strain, especially in ultrathin films with low magnetic moments.« less
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess Brooks (Inventor)
1999-01-01
The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.
Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J
2006-10-01
Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.
Open-loop frequency acquisition for suppressed-carrier biphase signals using one-pole arm filters
NASA Technical Reports Server (NTRS)
Shah, B.; Holmes, J. K.
1991-01-01
Open loop frequency acquisition performance is discussed for suppressed carrier binary phase shift keyed signals in terms of the probability of detecting the carrier frequency offset when the arms of the Costas loop detector have one pole filters. The approach, which does not require symbol timing, uses fast Fourier transforms (FFTs) to detect the carrier frequency offset. The detection probability, which depends on both the 3 dB arm filter bandwidth and the received symbol signal to noise ratio, is derived and is shown to be independent of symbol timing. It is shown that the performance of this technique is slightly better that other open loop acquisition techniques which use integrators in the arms and whose detection performance varies with symbol timing.
International time and frequency comparison using very long baseline interferometer
NASA Astrophysics Data System (ADS)
Hama, Shinichi; Yoshino, Taizoh; Kiuchi, Hitoshi; Morikawa, Takao; Sato, Tokuo
VLBI time comparison experiments using the Kashima station of the Radio Research Laboratory and the Richmond and Maryland Point stations of the U.S. Naval Observatory have been performed since April 1985. A precision of 0.2 ns for the clock offset and 0.2 ps/s for the clock rate have been achieved, and good agreement has been found with GPS results for clock offset. Much higher precision has been found for VLBI time and frequency comparison than that possible with conventional portable clock or Loran-C methods.
NASA Technical Reports Server (NTRS)
Katow, M. S.
1990-01-01
The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.
A low noise synthesizer for autotuning and performance testing of hydrogen masers
NASA Technical Reports Server (NTRS)
Cloeren, J. M.; Ingold, J. S.
1984-01-01
A low noise synthesizer has been developed for use in hydrogen maser autotuning and performance evaluation. This synthesizer replaces the frequency offset maser normally used for this purpose and allows the user to maintain all masers in the ensemble at the same frequency. The synthesizer design utilizes a quartz oscillator with a BVA resonator. The oscillator has a frequency offset of 5 X 10 to the minus 8 power. The BVA oscillator is phase-locked to a hydrogen maser by means of a high gain, high stability phase-locked loop, employing low noise multipliers as phase error amplifiers. A functional block diagram of the synthesizer and performance data will be presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... at (202) 523-5843 or by e-mail at [email protected] . A & D International Logistics, Corp. (NVO), 248 NW... & General Manager (Qualifying Individual), Application Type: QI Change. American Royal International, Inc.../ General Manager (Qualifying Individual), Beverly Franklin, CFO/ Secretary (Qualifying Individual...
Senate Confirmation Hearing CFO
2009-10-14
Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA, answers questions during her confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Photo Credit: (NASA/Paul E. Alers)
Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P
2014-02-01
Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.
A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC
NASA Astrophysics Data System (ADS)
Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang
2014-08-01
A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.
75 FR 57798 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... FEDERAL MARITIME COMMISSION Ocean Transportation Intermediary License Applicants Notice is hereby... license as a Non-Vessel-Operating Common Carrier (NVO) and/or Ocean Freight Forwarder (OFF)--Ocean.../ Treasurer/CFO, (Qualifying Individual). Application Type: New NVO License. World Class Solutions LLC (NVO...
48 CFR 532.7002 - Solicitation requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Use of the Credit Card for Purchases (CFO 4200.1)). (d) Consider requesting offerors to designate... GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Authorizing Payment by Government Charge Card 532.7002..., request offerors to indicate if they will accept payment by Governmentwide commercial purchase card...
Heterodyne laser spectroscopy system
Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas
1990-01-01
A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.
Gebs, R; Dekorsy, T; Diddams, S A; Bartels, A
2008-04-14
We report an optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) that is synchronously pumped by a femtosecond Ti:sapphire laser at 1 GHz repetition rate. The signal output has a center wavelength of 1558 nm and its spectral bandwidth amounts to 40 nm. The OPO operates in a regime where the signal- and idler frequency combs exhibit a partial overlap around 1600 nm. In this near-degeneracy region, a beat at the offset between the signal and idler frequency combs is detected. Phase-locking this beat to an external reference stabilizes the spectral envelopes of the signal- and idler output. At the same time, the underlying frequency combs are stabilized relative to each other with an instability of 1.5x10(-17) at 1 s gate time.
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Gigahertz frequency comb from a diode-pumped solid-state laser.
Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula
2014-12-15
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
Karlen, Lauriane; Buchs, Gilles; Portuondo-Campa, Erwin; Lecomte, Steve
2016-01-15
A novel scheme for intracavity control of the carrier-envelope offset (CEO) frequency of a 100 MHz mode-locked Er:Yb:glass diode-pumped solid-state laser (DPSSL) based on the modulation of the laser gain via stimulated emission of the excited Er(3+) ions is demonstrated. This method allows us to bypass the ytterbium system few-kHz low-pass filter in the f(CEO) stabilization loop and thus to push the phase lock bandwidth up to a limit close to the relaxation oscillations frequency of the erbium system. A phase lock bandwidth above 70 kHz has been achieved with the fully stabilized laser, leading to an integrated phase noise [1 Hz-1 MHz] of 120 mrad.
7 CFR 1468.20 - Application for CFO program participation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... take into consideration the following factors: (1) Soil erosion; (2) Water quality; (3) Wildlife... water quality priority areas; (8) The environmental benefits per dollar expended; and (9) The degree to... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION FARM OPTION...
Ultrastable laser array at 633 nm for real-time dimensional metrology
NASA Astrophysics Data System (ADS)
Lawall, John; Pedulla, J. Marc; Le Coq, Yann
2001-07-01
We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321
Heterodyne laser spectroscopy system
Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas
1989-01-01
A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.
7 CFR 1468.7 - Participant eligibility provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION FARM OPTION General... farm enrolling in CFO. (b) Agree to forgo earning future payments under the Conservation Reserve... compliance with the highly erodible land and wetland conservation provisions found at part 12 of this title...
Self-adaptive method for high frequency multi-channel analysis of surface wave method
USDA-ARS?s Scientific Manuscript database
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Self-adaptive method for high-frequency dispersion curve determination
USDA-ARS?s Scientific Manuscript database
When high-frequency (from 50 to 500 Hz) MASW is conducted to explore soil profile in the vadose zone, existing rules for selecting near offset and receiver spread length cannot satisfy the requirements of planar and dominant Rayleigh waves for all frequencies and will inevitably introduce near and f...
2004-03-01
Data Communication , http://www.iec.org/, last accessed December 2003. 13. Klaus Witrisal, “Orthogonal Frequency Division Multiplexing (OFDM) for...http://ieeexplore.ieee.org, last accessed 26 February 2003. 12. The International Engineering Consortium, Web Forum Tutorials, OFDM for Mobile
Phonetically Governed Voicing Onset and Offset in Preschool Children Who Stutter
ERIC Educational Resources Information Center
Arenas, Richard M.; Zebrowski, Patricia M.; Moon, Jerald B.
2012-01-01
Phonetically governed changes in the fundamental frequency (F[subscript 0]) of vowels that immediately precede and follow voiceless stop plosives have been found to follow consistent patterns in adults and children as young as four years of age. In the present study, F[subscript 0] onset and offset patterns in 14 children who stutter (CWS) and 14…
Use of Adult Day Care Centers: Do They Offset Utilization of Health Care Services?
ERIC Educational Resources Information Center
Iecovich, Esther; Biderman, Aya
2013-01-01
Purpose: Based on the medical offset effect, the goal of the study was to examine the extent to which users and nonusers of adult day care centers (ADCC) differ in frequency of use of out-patient health services (visits to specialists) and in-patient health services (number of hospital admissions, length of hospitalizations, and visits to…
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Wei, Ying; Zeng, Xiangye; Lu, Jia; Zhang, Shuangxi; Wang, Mengjun
2018-03-01
A joint timing and frequency synchronization method has been proposed for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system in this paper. The timing offset (TO), integer frequency offset (FO) and the fractional FO can be realized by only one training symbol, which consists of two linear frequency modulation (LFM) signals with opposite chirp rates. By detecting the peak of LFM signals after Radon-Wigner transform (RWT), the TO and the integer FO can be estimated at the same time, moreover, the fractional FO can be acquired correspondingly through the self-correlation characteristic of the same training symbol. Simulation results show that the proposed method can give a more accurate TO estimation than the existing methods, especially at poor OSNR conditions; for the FO estimation, both the fractional and the integer FO can be estimated through the proposed training symbol with no extra overhead, a more accurate estimation and a large FO estimation range of [ - 5 GHz, 5GHz] can be acquired.
NASA Astrophysics Data System (ADS)
Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar
2012-12-01
Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.
Method of recertifying a loaded bearing member
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor)
1992-01-01
A method is described of recertifying a loaded bearing member using ultrasound testing to compensate for different equipment configurations and temperature conditions. The standard frequency F1 of a reference block is determined via an ultrasonic tone burst generated by a first pulsed phased locked loop (P2L2) equipment configuration. Once a lock point number S is determined for F1, the reference frequency F1a of the reference block is determined at this lock point number via a second P2L2 equipment configuration to permit an equipment offset compensation factor Fo1=((F1-F1a)/F1)(1000000) to be determined. Next, a reference frequency F2 of the unloaded bearing member is determined using a second P2L2 equipment configuration and is then compensated for equipment offset errors via the relationship F2+F2(Fo1)/1000000. A lock point number b is also determined for F2. A resonant frequency F3 is determined for the reference block using a third P2L2 equipment configuration to determine a second offset compensation factor F02=((F1-F3)/F1) 1000000. Next the resonant frequency F4 of the loaded bearing member is measured at lock point number b via the third P2L2 equipment configuration and the bolt load determined by the relationship (-1000000)CI(((F2-F4)/F2)-Fo2), wherein CI is a factor correlating measured frequency shift to the applied load. Temperature compensation is also performed at each point in the process.
32 CFR 183.5 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE CIVIL DEFENSE DEFENSE SUPPORT OF SPECIAL... special events with the General Counsel of the Department of Defense (GC, DoD) and the Under Secretary of Defense (Comptroller)/Chief Financial Officer, Department of Defense (USD(C)/CFO). (8) Coordinate with the...
32 CFR 183.5 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE CIVIL DEFENSE DEFENSE SUPPORT OF SPECIAL... special events with the General Counsel of the Department of Defense (GC, DoD) and the Under Secretary of Defense (Comptroller)/Chief Financial Officer, Department of Defense (USD(C)/CFO). (8) Coordinate with the...
77 FR 50545 - Members of Senior Executive Service Performance Review Boards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... Strategy (SB/SE) Gregory E. Kane, Deputy Chief Financial Officer, Chief Financial Office (CFO) Sheldon M.... Krieg, IRS Human Capital Officer, Human Capital Office (HCO) Pamela J. LaRue, Chief Financial Officer...) Lauren Buschor, Associate Chief Information Officer (CIO), Enterprise Operations, Information Technology...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Departmental Chief Financial Officer (CFO), Chief Acquisition Officer (CAO) and Performance Improvement Officer... their policy role in resource allocation and decisions affecting financial, grants and procurement... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Office of Financial Resources...
22 CFR 213.17 - Liquidation of collateral.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Liquidation of collateral. Where the CFO holds a security instrument with a power of sale or has physical possession of collateral, he may liquidate the security or collateral and apply the proceeds to the overdue... circumstances require judicial foreclosure. However, collection from other businesses, including liquidation of...
32 CFR 183.5 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE CIVIL DEFENSE DEFENSE SUPPORT OF SPECIAL... special events with the General Counsel of the Department of Defense (GC, DoD) and the Under Secretary of Defense (Comptroller)/Chief Financial Officer, Department of Defense (USD(C)/CFO). (8) Coordinate with the...
76 FR 19097 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
...: New NVO. Landstar Global Logistics, Inc. (NVO & OFF), 13410 Sutton Park Drive South, Jacksonville, FL... at (202) 523-5843 or by e-mail at [email protected] . Agility Logistics Corp. (OFF), 240 Commerce, Irvine... Sachs, Partner/Logistics Manager (Qualifying Individual), Ali Ismailzada, Partner/CFO, Application Type...
77 FR 37044 - Ocean Transportation Intermediary License; Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... Logistics (NVO & OFF), 10550 Deerwood Park Blvd., 509, Jacksonville, FL 32256, Officers: Ronald M. Doyle... (Qualifying Individual), Margaret Kong, CFO/Secretary, Application Type: New NVO & OFF License. FSG Logistics (USA), Inc. dba FSG Logistics, Inc. (NVO & OFF), 27013 Pacific Highway South, PMB386, Des Moines, WA...
NASA Astrophysics Data System (ADS)
Jiang, Wen; Yang, Yanfu; Zhang, Qun; Sun, Yunxu; Zhong, Kangping; Zhou, Xian; Yao, Yong
2016-09-01
The frequency offset estimation (FOE) schemes based on Kalman filter are proposed and investigated in detail via numerical simulation and experiment. The schemes consist of a modulation phase removing stage and Kalman filter estimation stage. In the second stage, the Kalman filters are employed for tracking either differential angles or differential data between two successive symbols. Several implementations of the proposed FOE scheme are compared by employing different modulation removing methods and two Kalman algorithms. The optimal FOE implementation is suggested for different operating conditions including optical signal-to-noise ratio and the number of the available data symbols.
A new chaotic oscillator with free control
NASA Astrophysics Data System (ADS)
Li, Chunbiao; Sprott, Julien Clinton; Akgul, Akif; Iu, Herbert H. C.; Zhao, Yibo
2017-08-01
A novel chaotic system is explored in which all terms are quadratic except for a linear function. The slope of the linear function rescales the amplitude and frequency of the variables linearly while its zero intercept allows offset boosting for one of the variables. Therefore, a free-controlled chaotic oscillation can be obtained with any desired amplitude, frequency, and offset by an easy modification of the linear function. When implemented as an electronic circuit, the corresponding chaotic signal can be controlled by two independent potentiometers, which is convenient for constructing a chaos-based application system. To the best of our knowledge, this class of chaotic oscillators has never been reported.
106 17 Telemetry Standards Chapter 2
2017-07-31
high frequency STC space -time code SOQPSK shaped offset quadrature phase shift keying UHF ultra- high frequency US&P United States...and Possessions VCO voltage-controlled oscillator VHF very- high frequency WCS Wireless Communication Service Telemetry Standards, RCC Standard...get interference. a. Telemetry Bands Air and space -to-ground telemetering is allocated in the ultra- high frequency (UHF) bands 1435 to 1535, 2200
Interior micro-CT with an offset detector
Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua
2014-01-01
Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three extended reconstruction methods by suppressing artifacts and maintaining pixel values. PMID:24877826
Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.
2011-01-01
Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379
75 FR 61757 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... Cargo Corp. (NVO & OFF), 8430 N.W. 66th Street, Miami, FL 33166. Officers: Karime Zawady, Vice President...), Jinho Um, CFO. Application Type: New NVO & OFF License. Junction Int'l Logistics, Inc. (NVO), 17870 Castleton Street, Suite 107, City of Industry, CA 91748. Officers: Charles Kuo, Secretary (Qualifying...
76 FR 53487 - Agency Information Collection Activities: Proposed Collection, Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... paperwork requirements in the regulations under the Chief Financial Officers Act of 1990 (CFO). DATES... appropriately paid. Companies submit financial information monthly to ONRR on Form ONRR-2014, Report of Sales... Inspector General, or its agent (agent), audits the Department's financial statements. The Department's goal...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... paperwork requirements in the regulations under the Chief Financial Officers Act of 1990 (CFO). This notice... Regulatory Affairs, OMB, Attention: Desk Officer for the Department of the Interior (OMB Control Number 1012... accurately value production and appropriately pay royalties. Companies submit financial information monthly...
75 FR 1001 - U.S. Chief Financial Officer Council; Grants Policy Committee (GPC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
... NATIONAL SCIENCE FOUNDATION U.S. Chief Financial Officer Council; Grants Policy Committee (GPC... committee of the U.S. Chief Financial Officers (CFO) Council. The Office of Management and Budget (OMB... Government. The GPC is charged with improving the management of federal financial assistance government-wide...
7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii) Wetland restoration and protection, and (iv) Wildlife habitat development and protection, (v) Or other... production flexibility contract, which is authorized by the Agricultural Marketing and Transition Act of 1996...
7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii) Wetland restoration and protection, and (iv) Wildlife habitat development and protection, (v) Or other... production flexibility contract, which is authorized by the Agricultural Marketing and Transition Act of 1996...
7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii) Wetland restoration and protection, and (iv) Wildlife habitat development and protection, (v) Or other... production flexibility contract, which is authorized by the Agricultural Marketing and Transition Act of 1996...
78 FR 55698 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
...), Karla Costilla, Member/Manager, Application Type: New NVO & OFF License. ICAT Logistics, Inc. (OFF..., Washington, DC 20573, by telephone at (202) 523-5843 or by email at [email protected] . Abaco Logistics Corporation..., CFO, Application Type: QI Change & Add OFF Service. American General Logistics, Inc. (NVO), 626 N...
7 CFR 1468.8 - Land eligibility provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION FARM OPTION General Provisions... Marketing Transition Act of 1996 and if the land upon which the CFO conservation practice, will be applied... eligible wetland restoration or protection practice similar to WRP in accordance with § 1468.6(b); or (c) 7...
Balancing risk and performance.
Cocozza, Thomas
2008-10-01
IBM, together with the Wharton School and the Economist Intelligence Unit, recently completed its third Global CFO study, surveying more than 1,200 CFOs and senior-level finance professionals in five major sectors, 79 countries, and organizations of varying size. Among the CFOs surveyed were 42 healthcare CFOs, whose insights help to inform this article.
77 FR 61752 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
..., Application Type: New OFF License. Korchina Logistics USA, Inc. (NVO & OFF), 18120 S. Broadway Street, Unit A, Gardena, CA 90248, Officers: Jong (A.K.A. Jake) K. Park, CFO (QI), Eric Sun, President, Application Type... License. Ocean Line Logistics Inc. (NVO & OFF), 630 W. Duarte Road, 205, Arcadia, CA 91007, Officer...
76 FR 76411 - Ocean Transportation Intermediary License; Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... at (202) 523-5843 or by email at [email protected] . Bluesea Logistics Corporation (NVO), 327 Elizabeth Avenue, Apt. A, Monterey Park, CA 91755-2044, Officers: Li Lin, General Manager/Sec/CFO, (Qualifying..., Application Type: Name Change. Didi Logistics Inc (NVO & OFF), 2380 SW 80th Court, Miami, FL 33155, Officers...
78 FR 5441 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... Trade Name Blu Logistics. Brutos International Corp. (NVO & OFF), 428 S. Atlantic Blvd., Suite 203, Monterey Park, CA 91754, Officers: Janet Li, Secretary (QI), Jesse Wu, CEO/CFO, Application Type: New NVO..., President (QI), Olen D. Woods, Director, Application Type: New NVO License. Global Logistics New Jersey, LLC...
ERIC Educational Resources Information Center
Schaffhauser, Dian
2011-01-01
Understanding the importance of a solid relationship with the head of finance is critical to success, both for the IT department and the institution as a whole. Never has this been truer than in today's bleak economy, as CFOs become increasingly cautious about initiatives that involve significant expense, yet information technology can help…
Senate Confirmation Hearing CFO
2009-10-14
U.S. Sen. Jay Rockefeller, D-W.Va., Chairman of the of the Senate Committee on Commerce, Science and Transportation, makes a point during the nomination hearing for Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Photo Credit: (NASA/Paul E. Alers)
Senate Confirmation Hearing CFO
2009-10-14
U.S. Sen. Maria Cantwell, D-Wash., left, talks about Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA, right, prior to her confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Photo Credit: (NASA/Paul E. Alers)
Measurement of high-degree solar oscillation frequencies
NASA Technical Reports Server (NTRS)
Bachmann, K. T.; Duvall, T. L., Jr.; Harvey, J. W.; Hill, F.
1995-01-01
We present m-averaged solar p- and f-mode oscillation frequencies over the frequency range nu greater than 1.8 and less than 5.0 mHz and the spherical harmonic degree range l greater than or equal to 100 and less than or equal to 1200 from full-disk, 1000 x 1024 pixel, Ca II intensity images collected 1993 June 22-25 with a temporal cadence of 60 s. We itemize the sources and magnitudes of statistical and systematic uncertainties and of small frequency corrections, and we show that our frequencies represent an improvement in accuracy and coverage over previous measurements. Our frequencies agree at the 2 micro Hz level with Mount Wilson frequencies determined for l less than or equal to 600 from full-disk images, and we find systematic offsets of 10-20 micro Hz with respect to frequencies measured from Big Bear and La Palma observations. We give evidence that these latter offsets are indicative of spatial scaling uncertainties associated with the analysis of partial-disk images. In comparison with theory, our p-mode frequencies agree within 10 micro Hz of frequencies predicted by the Los Alamos model but are as much as 100 micro Hz smaller than frequencies predicted by the Denmark and Yale models at degrees near 1000. We also find systematic differences between our n = 0 frequencies and the frequencies closely agreed upon by all three models.
Lu, Jianing; Li, Xiang; Fu, Songnian; Luo, Ming; Xiang, Meng; Zhou, Huibin; Tang, Ming; Liu, Deming
2017-03-06
We present dual-polarization complex-weighted, decision-aided, maximum-likelihood algorithm with superscalar parallelization (SSP-DP-CW-DA-ML) for joint carrier phase and frequency-offset estimation (FOE) in coherent optical receivers. By pre-compensation of the phase offset between signals in dual polarizations, the performance can be substantially improved. Meanwhile, with the help of modified SSP-based parallel implementation, the acquisition time of FO and the required number of training symbols are reduced by transferring the complex weights of the filters between adjacent buffers, where differential coding/decoding is not required. Simulation results show that the laser linewidth tolerance of our proposed algorithm is comparable to traditional blind phase search (BPS), while a complete FOE range of ± symbol rate/2 can be achieved. Finally, performance of our proposed algorithm is experimentally verified under the scenario of back-to-back (B2B) transmission using 10 Gbaud DP-16/32-QAM formats.
Hannemann, S; van Duijn, E-J; Ubachs, W
2007-10-01
A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion. Special focus is on the quantitative assessment of the frequency characteristics of the oscillator-amplifier system on a pulse-to-pulse basis. Frequency offsets between continuous-wave seed light and the pulsed output are measured as well as linear chirps attributed mainly to mode pulling effects in the oscillator cavity. Operational conditions of the laser are found in which these offset and chirp effects are minimal. Absolute frequency calibration at the megahertz level of accuracy is demonstrated on various atomic and molecular resonance lines.
NASA Astrophysics Data System (ADS)
Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.
2014-08-01
Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.
Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X
2013-02-25
Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses.
2012-07-01
developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong
2018-02-01
A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.
Generalized migration in frequency-wavenumber domain (MGF-K) in anisotropic media
NASA Astrophysics Data System (ADS)
Kostecki, Andrzej; Półchłopek, Anna
2013-06-01
In this paper, the background of MGF-K migration in dual domain (wavenumber-frequency K-F and space-time) in anisotropic media is presented. Algorithms for poststack (zero-offset) and prestack migration are based on downward extrapolation of acoustic wavefield by shift-phase with correction filter for lateral variability of medium's parameters. In anisotropic media, the vertical wavenumber was determined from full elastic wavefield equations for two dimensional (2D) tilted transverse isotropy (TTI) model. The method was tested on a synthetic wavefield for TTI anticlinal model (zero-offset section) and on strongly inhomogeneous vertical transverse isotropy (VTI) Marmousi model. In both cases, the proper imaging of assumed media was obtained.
Mechanically scanned deployable antenna study
NASA Technical Reports Server (NTRS)
1983-01-01
The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Pickett, Herbert M.; Chen, Pin; Matsuura, Shuji; Blake, Geoffry A.
1999-01-01
A three laser system based on 852nm DBR lasers has been constructed and used to generate radiation in the 750 GHz to 1600 GHz frequency region. The system works by locking two of the three lasers to modes of an ultra low expansion Fabry-Perot cavity. The third laser is offset locked to one of the cavity locked lasers with conventional microwave techniques. The signal from the offset laser and the other cavity locked laser are injected into a Master Oscillator Power Amplifier (MOPA), amplified and focused on a low temperature grown GaAs photomixer, which radiates the difference frequency. The system has been calibrated with molecular lines to better than one part in 10(exp 7). In this paper we present the application of this system to the v(sub 2) in inversion band of Ammonia and the ground and v(sub 2) states of water. A discussion of the system design, the calibration and the new spectral measurements will be presented.
Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms
NASA Astrophysics Data System (ADS)
Legaie, Remy; Picken, Craig J.; Pritchard, Jonathan D.
2018-04-01
Quantum information processing using atomic qubits requires narrow linewidth lasers with long-term stability for high fidelity coherent manipulation of Rydberg states. In this paper, we report on the construction and characterization of three continuous-wave (CW) narrow linewidth lasers stabilized simultaneously to an ultra-high finesse Fabry-Perot cavity made of ultra-low expansion (ULE) glass, with a tunable offset-lock frequency. One laser operates at 852~nm while the two locked lasers at 1018~nm are frequency doubled to 509~nm for excitation of $^{133}$Cs atoms to Rydberg states. The optical beatnote at 509~nm is measured to be 260(5)~Hz. We present measurements of the offset between the atomic and cavity resonant frequencies using electromagnetically induced transparency (EIT) for high-resolution spectroscopy on a cold atom cloud. The long-term stability is determined from repeated spectra over a period of 20 days yielding a linear frequency drift of $\\sim1$~Hz/s.
NASA Technical Reports Server (NTRS)
Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.
1984-01-01
An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.
NASA Astrophysics Data System (ADS)
Nan, Qi; Fan, Chen; Lingwei, Zhang; Xiaoman, Wang; Baoyong, Chi
2013-09-01
A reconfigurable multi-mode direct-conversion transmitter (TX) with integrated frequency synthesizer (FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620-920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a + 10.2 dBm peak output power with a +9.5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.
76 FR 53935 - Delegation Authority for the Office of the Chief Financial Officer
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... Office of the Chief Financial Officer AGENCY: Office of the Secretary, HUD. ACTION: Notice of delegation of authority. SUMMARY: In this notice, the Secretary of HUD, pursuant to the Chief Financial Officers Act of 1990 (CFO Act), which established the position of the Chief Financial Officer within HUD, is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... reporting requirements, third party disclosure requirements, and recordkeeping requirement. Obligation To... reporting, recordkeeping and/or third party disclosure requirements. The Commission is reducing its previous... a quarterly report and must also submit an attestation by the chief financial officer (CFO) that the...
7 CFR 1468.21 - Contract requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... provisions of § 1468.24 of this part; (iv) Agree to forego participation in CRP, EQIP, and the cost-share... those practices transferred from terminated CRP and EQIP contracts and WRP cost-share agreements. For persons wishing to transfer from CRP, EQIP, or WRP to CFO, practices included in CRP or EQIP contracts or...
7 CFR 1468.22 - Conservation practice operation and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operation and maintenance is occurring. (b) For those persons who are signatories to existing CRP or EQIP contracts, or WRP cost-share agreements, practices will be transferred from EQIP and CRP contracts or WRP... rights and obligations under CRP, EQIP, or WRP will be incorporated into the new CFO contract. Practices...
7 CFR 1468.23 - Annual payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... practice which would have qualified for payment under CRP in accordance with § 1468.6(a); (2) Part 1467 of... accordance with CRP payment limitation provisions set forth in part 1410 of this chapter. (2) The payment... the cost of the practice. (e) A landowner or producer that enrolls in CFO and terminates a CRP or EQIP...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... Assistant Administrator for Management and CFO/CAO, Ocean Services and Coastal Zone Management. [FR Doc...-01] RIN 0648-ZC21 Extension of Award Period for FY 2007 Coastal and Estuarine Land Conservation....gov . SUPPLEMENTARY INFORMATION: The Coastal and Estuarine Land Conservation Program was established...
2018-04-23
Jeff DeWit, left, is seen during a ceremonial swearing in as the NASA Chief Financial Officer by Vice President Mike Pence as DeWit's wive Marina holds the bible and their children, Delaney, left, Katie, and Jamie look on, Monday, April 23, 2018 at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
22 CFR 213.19 - Installment payments.
Code of Federal Regulations, 2013 CFR
2013-04-01
... single payment. However, where the CFO determines that a debtor is financially unable to pay the... establishing that it is financially unable to pay the debt in a single payment or that an alternative payment... payments will bear a reasonable relation to the size of the debt and the debtor's ability to pay. The...
22 CFR 213.19 - Installment payments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... single payment. However, where the CFO determines that a debtor is financially unable to pay the... establishing that it is financially unable to pay the debt in a single payment or that an alternative payment... payments will bear a reasonable relation to the size of the debt and the debtor's ability to pay. The...
22 CFR 213.19 - Installment payments.
Code of Federal Regulations, 2012 CFR
2012-04-01
... single payment. However, where the CFO determines that a debtor is financially unable to pay the... establishing that it is financially unable to pay the debt in a single payment or that an alternative payment... payments will bear a reasonable relation to the size of the debt and the debtor's ability to pay. The...
22 CFR 213.19 - Installment payments.
Code of Federal Regulations, 2014 CFR
2014-04-01
... single payment. However, where the CFO determines that a debtor is financially unable to pay the... establishing that it is financially unable to pay the debt in a single payment or that an alternative payment... payments will bear a reasonable relation to the size of the debt and the debtor's ability to pay. The...
Business Education and Gender Bias at the "C-Level"
ERIC Educational Resources Information Center
Miller, Gina L.; Sisk, Faye A.
2012-01-01
Women in business are perceived to have been successful; however, the numbers of women in "C-level" positions (e.g., CEO, CFO, CIO, etc.) provide evidence to the contrary. This paper examines obstacles to women rising to "C-level" positions and how business education contributes to, but may ultimately help resolve these…
NASA Astrophysics Data System (ADS)
Panda, J.; Maji, Nilay; Nath, T. K.
2017-05-01
The room temperature spin injection and detection in non magnetic p-Si semiconductor have been studied in details in our CoFe2O4 (CFO)/MgO/p-Si heterojunction. The 3-terminal tunnel contacts have been made on the device for transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The spin accumulation in non magnetic p-Si semiconductor has been observed at different bias current under the applied magnetic field parallel to the film plane in the temperature range of 40-300 K. We have observed a giant spin accumulation in p-Si semiconductor using MgO/CFO tunnel contact. The Hanley effect is used to control the reduction of spin accumulation by applying magnetic field perpendicular to the carrier spin in the p-Si. The accumulated spin signal decays as a function of applied magnetic field for fixed bias current. These results will enable utilization of the spin degree of freedom in complementary Si devices and its further development.
Foundry fabricated photonic integrated circuit optical phase lock loop.
Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C
2017-07-24
This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.
Maintenance of Time and Frequency in the DSN Using the Global Positioning System
NASA Technical Reports Server (NTRS)
Clements, P. A.; Kirk, A.; Borutzki, S. E.
1985-01-01
The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.
Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design.
Wu, Tsung-Han; Kieu, K; Peyghambarian, N; Jones, R J
2011-03-14
We report on a low noise all-fiber erbium fs frequency comb based on a simple and robust tapered-fiber carbon nanotube (tf-CNT) design. We mitigate dominant noise sources to show that the free-running linewidth of the carrier-envelope offset frequency (fceo) can be comparable to the best reported performance to date for fiber-based frequency combs. A free-running fceo linewidth of ~20 kHz is demonstrated, corresponding to an improvement of ~30 times over previous work based on a CNT mode-locked fiber laser [Opt. Express 18, 1667 (2010)]. We also demonstrate the use of an acousto-optic modulator external to the laser cavity to stabilize fceo, enabling a 300 kHz feedback control bandwidth. The offset frequency is phase-locked with an in-loop integrated phase noise of ~0.8 rad from 10Hz to 400kHz. We show a resolution-limited linewidth of ~1 Hz, demonstrating over 90% of the carrier power within the coherent fceo signal. The results demonstrate that the relatively simple tf-CNT fiber laser design can provide a compact, robust and high-performance fs frequency comb.
Djordjevic, S P; Eamens, G J; Ha, H; Walker, M J; Chin, J C
1998-08-01
Capsular types A and D of Pasteurella multocida cause economic losses in swine because of their association with progressive atrophic rhinitis (PAR) and enzootic pneumonia. There have been no studies comparing whole-cell DNA profiles of isolates associated with these two porcine respiratory diseases. Twenty-two isolates of P. multocida from diseased pigs in different geographic localities within Australia were characterised genotypically by restriction endonuclease analysis (REA) with the enzyme CfoI. Seven of 12 P. multocida isolates from nasal swabs from pigs in herds where PAR was either present or suspected displayed a capsular type D phenotype. These were shown to possess the toxA gene by polymerase chain reaction (PCR) and Southern hybridisation, and further substantiated by production of cytotoxin in vitro. The CfoI profile of one of these seven isolates, which was from the initial outbreak of PAR in Australia (in Western Australia, WA), was identical with profiles of all six other toxigenic isolates from sporadic episodes in New South Wales (NSW). The evidence suggests that the strain involved in the initial outbreak was responsible for the spread of PAR to the eastern states of Australia. Another 10 isolates, representing both capsular types A and D, were isolated exclusively from porcine lung lesions after sporadic outbreaks of enzootic pneumonia in NSW and WA. CfoI restriction endonuclease profiles of these isolates revealed considerable genomic heterogeneity. Furthermore, none of these possessed the toxA gene. This suggests that P. multocida strains with the toxA gene do not have a competitive survival advantage in the lower respiratory tract or that toxin production does not play a role in the pathology of pneumonic lesions, or both. REA with polyacrylamide gel electrophoresis and silver staining was found to be a practical and discriminatory tool for epidemiological tracing of P. multocida outbreaks associated with PAR or pneumonia in pigs.
Radar echo processing with partitioned de-ramp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubbert, Dale F.; Tise, Bertice L.
2013-03-19
The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.
NASA Astrophysics Data System (ADS)
De Coster, Albéric; Phuong Tran, Anh; Lambot, Sébastien
2014-05-01
Water lost through leaks can represent high percentages of the total production in water supply systems and constitutes an important issue. Leak detection can be tackled with various techniques such as the ground-penetrating radar (GPR). Based on this technology, various procedures have been elaborated to characterize a leak and its evolution. In this study, we focus on a new full-wave radar modelling approach for near-field conditions, which takes into account the antenna effects as well as the interactions between the antenna(s) and the medium through frequency-dependent global transmission and reflection coefficients. This approach is applied to layered media for which 3-D Green's functions can be calculated. The model allows for a quantitative estimation of the properties of multilayered media by using full-wave inversion. This method, however, proves to be limited to provide users with an on-demand assessment as it is generally computationally demanding and time consuming, depending on the medium configuration as well as the number of unknown parameters to retrieve. In that respect, we propose two leads in order to enhance the parameter retrieval step. The first one consists in analyzing the impact of the reduction of the number of frequencies on the information content. For both numerical and laboratory experiments, this operation has been achieved by investigating the response surface topography of objective functions arising from the comparison between measured and modelled data. The second one involves the numerical implementation of multistatic antenna configurations with constant and variable offsets in the model. These two kinds of analyses are then combined in numerical experiments to observe the conjugated effect of the number of frequencies and the offset configuration. To perform the numerical analyses, synthetic Green's functions were simulated for different multilayered medium configurations. The results show that an antenna offset increase leads to an improvement in the response surface topography, which is more or less marked according to the initial information content. It also highlights the theoretical possibility of significantly reducing the number of frequencies without degrading the information content. This last statement is confirmed with the laboratory experiment which incorporates measurements done with a Vivaldi antenna above a medium composed of one or more sand layers characterized by different water contents. As a conclusion, the offset and frequency analyses highlight the great potential of the model for improving the soil parameter retrieval while reducing the computation time for a given antenna(s) - medium configuration. Acknowledgments: This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" and was supported by the Walloon Region through the "SENSPORT" project (Convention n°1217720) undertook in the framework of the WBGreen research program.
Characterization of Errors Inherent in System EMP Vulnerability Assessment Programs,
1980-10-01
Patriot system. * B-i aircraft. * E-3A airborne warning and control system aircraft. * PRC-77 radio. * Lance missile system. * Safeguard ABM system...carefully or the offset will create large frequency domain error. Frequency-tying, too, can improve f-domain data. Of the various recording sytems studied
Optimization of an Offset Receiver Optics for Radio Telescopes
NASA Astrophysics Data System (ADS)
Yeap, Kim Ho; Tham, Choy Yoong
2018-01-01
The latest generation of Cassegrain radio astronomy antennas is designed for multiple frequency bands with receivers for individual bands offset from the antenna axis. The offset feed arrangement typically has two focusing elements in the form of ellipsoidal mirrors in the optical path between the feed horn and the antenna focus. This arrangement aligns the beam from the offset feed horn to illuminate the subreflector. The additional focusing elements increase the number of design variables, namely the distances between the horn aperture and the first mirror and that between the two mirrors, and their focal lengths. There are a huge number of possible combinations of these four variables in which the optics system can take on. The design aim is to seek the combination that will give the optimum antenna efficiency, not only at the centre frequency of the particular band but also across its bandwidth. To pick the optimum combination of the variables, it requires working through, by computational mean, a continuum range of variable values at different frequencies which will fit the optics system within the allocated physical space. Physical optics (PO) is a common technique used in optics design. However, due to the repeated iteration of the huge number of computation involved, the use of PO is not feasible. We present a procedure based on using multimode Gaussian optics to pick the optimum design and using PO for final verification of the system performance. The best antenna efficiency is achieved when the beam illuminating the subreflector is truncated with the optimum edge taper. The optimization procedure uses the beam's edge taper at the subreflector as the iteration target. The band 6 receiver optics design for the Atacama Large Millimetre Array (ALMA) antenna is used to illustrate the optimization procedure.
NASA Astrophysics Data System (ADS)
Monnier, S.; Lumley, D. E.; Kamei, R.; Goncharov, A.; Shragge, J. C.
2016-12-01
Ocean Bottom Seismic datasets have become increasingly used in recent years to develop high-resolution, wavelength-scale P-wave velocity models of the lithosphere from waveform inversion, due to their recording of long-offset transmitted phases. New OBS surveys evolve towards novel acquisition geometries involving longer offsets (several hundreds of km), broader frequency content (1-100 Hz), while receiver sampling often remains sparse (several km). Therefore, it is critical to assess the effects of such geometries on the eventual success and resolution of waveform inversion velocity models. In this study, we investigate the feasibility of waveform inversion on the Bart 2D OBS profile acquired offshore Western Australia, to investigate regional crustal and Moho structures. The dataset features 14 broadband seismometers (0.01-100 Hz) from AuScope's national OBS fleet, offsets in excess of 280 km, and a sparse receiver sampling (18 km). We perform our analysis in four stages: (1) field data analysis, (2) 2D P-wave velocity model building, synthetic data (3) modelling, and (4) waveform inversion. Data exploration shows high-quality active-source signal down to 2Hz, and usable first arrivals to offsets greater than 100 km. The background velocity model is constructed by combining crustal and Moho information in continental reference models (e.g., AuSREM, AusMoho). These low-resolution studies suggest a crustal thickness of 20-25 km along our seismic line and constitute a starting point for synthetic modelling and inversion. We perform synthetic 2D time-domain modelling to: (1) evaluate the misfit between synthetic and field data within the usable frequency band (2-10 Hz); (2) validate our velocity model; and (3) observe the effects of sparse OBS interval on data quality. Finally, we apply 2D acoustic frequency-domain waveform inversion to the synthetic data to generate velocity model updates. The inverted model is compared to the reference model to investigate the improved crustal resolution and Moho boundary delineation that could be realized using waveform inversion, and to evaluate the effects of the acquisition parameters. The inversion strategies developed through the synthetic tests will help the subsequent inversion of sparse, long-offset OBS field data.
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... DEPARTMENT OF STATE [Delegation of Authority No. 345] Delegation by the Chief Financial Officer to... the Chief Financial Officer Act, 31 U.S.C. 901 et seq., and by the designation from the President... time. Notwithstanding this delegation of authority, the Chief Financial Officer may at any time...
Leadership Styles of Chief Financial Officers in Higher Education in the Mid-Atlantic Region
ERIC Educational Resources Information Center
Benson, Patricia
2017-01-01
The purpose of this research was to explore the factors that contribute to a chief financial officer's (CFO) success and demise within a higher education setting. Relatively little attention has been given to the study of leadership in educational institutions (Vroom, 1983). Leadership defines what the future should look like, aligns people with…
ERIC Educational Resources Information Center
Smith, Carla Breedlove
2013-01-01
The purpose of this qualitative study was to gain an understanding of how human resource development (HRD) can align more closely with the healthcare system's strategic priorities from the perspective of chief financial officers (CFOs). Five common themes emerged: (a) training is well aligned to the strategic priority to optimize clinical…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... functions. The revisions are being adopted in order to establish an Office of the Chief Financial Officer... Chief Financial Officer (``CFO''), who will jointly report to the General Counsel and the Chairman of..., the Chief Information Officer and the Chief Financial Officer. Authority: Sections 3, 4, 6, and 10 of...
Wheeler, J R; Smith, D G
2001-01-01
To understand better the financial management practices and strategies of modern health care organizations, we conducted interviews with chief financial officers (CFOs) of several leading health care systems. The constraints imposed on health care systems by both capital and product markets has made the role of the CFO a challenge.
Williams, Jeni
2012-08-01
Strategies for positioning yourself for the role of COO or chief administrative officer include the following: Learn more than just the financial aspects of running a hospital or health system. Cultivate deep self awareness of your attributes as a leader. Find ways to accelerate innovation in your organization. Take a fresh look at issues that are continuing challenges for your organization.
Incorporating Sarbanes-Oxley into a College Accounting Curriculum: Lessons Learned
ERIC Educational Resources Information Center
Ragan, Joseph M.; Rizman, Brian J.; Gregory, Jonathan T.
2007-01-01
This paper attempts to identify the ways and give examples of how Sarbanes-Oxley compliance can be taught in real time using the SAP R/3 system and the many lessons derived from the experience. The Sarbanes-Oxley Act significantly impacts CEO's, CFO's and public accountants. It also applies to all levels of management. Organizations and their…
Code of Federal Regulations, 2012 CFR
2012-10-01
... (ESC) regarding all financial management activities conducted by ESC and financial systems operated by... day-to-day operating management responsibility over the Office of Budget and Program Performance, the Office of Financial Management, and the Office of the CFO for the Office of the Secretary. (c) Direct and...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (ESC) regarding all financial management activities conducted by ESC and financial systems operated by... day-to-day operating management responsibility over the Office of Budget and Program Performance, the Office of Financial Management, and the Office of the CFO for the Office of the Secretary. (c) Direct and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (ESC) regarding all financial management activities conducted by ESC and financial systems operated by... day-to-day operating management responsibility over the Office of Budget and Program Performance, the Office of Financial Management, and the Office of the CFO for the Office of the Secretary. (c) Direct and...
NASA Astrophysics Data System (ADS)
Thongtan, Thayathip; Tirawanichakul, Pawit; Satirapod, Chalermchon
2017-12-01
Each GNSS constellation operates its own system times; namely, GPS system time (GPST), GLONASS system time (GLONASST), BeiDou system time (BDT) and Galileo system time (GST). They could be traced back to Coordinated Universal Time (UTC) scale and are aligned to GPST. This paper estimates the receiver clock offsets to three timescales: GPST, GLONASST and BDT. The two measurement scenarios use two identical multi-GNSS geodetic receivers connected to the same geodetic antenna through a splitter. One receiver is driven by its internal oscillators and another receiver is connected to the external frequency oscillators, caesium frequency standard, kept as the Thailand standard time scale at the National Institute of Metrology (Thailand) called UTC(NIMT). The three weeks data are observed at 30 seconds sample rate. The receiver clock offsets with respected to the three system time are estimated and analysed through the geodetic technique of static Precise Point Positioning (PPP) using a data processing software developed by Wuhan University - Positioning And Navigation Data Analyst (PANDA) software. The estimated receiver clock offsets are around 32, 33 and 18 nanoseconds from GPST, GLONASST and BDT respectively. This experiment is initially stated that each timescale is inter-operated with GPST and further measurements on receiver internal delay has to be determined for clock comparisons especially the high accuracy clock at timing laboratories.
Localized, gradient-reversed ultrafast z-spectroscopy in vivo at 7T.
Wilson, Neil E; D'Aquilla, Kevin; Debrosse, Catherine; Hariharan, Hari; Reddy, Ravinder
2016-10-01
To collect ultrafast z-spectra in vivo in situations where voxel homogeneity cannot be assured. Saturating in the presence of a gradient encodes the frequency offset spatially across a voxel. This encoding can be resolved by applying a similar gradient during readout. Acquiring additional scans with the gradient polarity reversed effectively mirrors the spatial locations of the frequency offsets so that the same physical location of a positive offset in the original scan will contribute a negative offset in the gradient-reversed scan. Gradient-reversed ultrafast z-spectroscopy (GRUFZS) was implemented and tested in a modified, localized PRESS sequence at 7T. Lysine phantoms were scanned at various concentrations and compared with coventionally-acquired z-spectra. Scans were acquired in vivo in human brain from homogeneous and inhomogeneous voxels with the ultrafast direction cycled between read, phase, and slice. Results were compared to those from a similar conventional z-spectroscopy PRESS-based sequence. Asymmetry spectra from GRUFZS are more consistent and reliable than those without gradient reversal and are comparable to those from conventional z-spectroscopy. GRUFZS offers significant acceleration in data acquisition compared to traditional chemical exchange saturation transfer methods with high spectral resolution and showed higher relative SNR effficiency. GRUFZS offers a method of collecting ultrafast z-spectra in voxels with the inhomogeneity often found in vivo. Magn Reson Med 76:1039-1046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Precision Saturated Absorption Spectroscopy of H3+
NASA Astrophysics Data System (ADS)
Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong
2016-06-01
In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).
Higher-order differential phase shift keyed modulation
NASA Astrophysics Data System (ADS)
Vanalphen, Deborah K.; Lindsey, William C.
1994-02-01
Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.
The Impact of Vocal Hyperfunction on Relative Fundamental Frequency during Voicing Offset and Onset
ERIC Educational Resources Information Center
Stepp, Cara E.; Hillman, Robert E.; Heaton, James T.
2010-01-01
Purpose: This study tested the hypothesis that individuals with vocal hyperfunction would show decreases in relative fundamental frequency (RFF) surrounding a voiceless consonant. Method: This retrospective study of 2 clinical databases used speech samples from 15 control participants and women with hyperfunction-related voice disorders: 82 prior…
Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs
2015-07-09
scheme is that the generation of carrier-envelope offset frequency f0 can be avoided, which reduces the system complexity . However, a high performance RF...Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). 56. C
Sensing Surveillance & Navigation
2012-03-07
Removing Atmospheric Turbulence Goal: to restore a single high quality image from the observed sequence Prof. Peyman...Computer Sciences – Higher wavelet studies , time-scale, time-frequency transformations, Reduced Signature Targets, Low Probability of Intercept...Range Dependent Beam -patterns •Electronic Steering with Frequency Offsets •Inherent Countermeasure Capability Why? W1(t) W2(t) W3
Design and application of an electromagnetic vibrator seismic source
Haines, S.S.
2006-01-01
Vibrational seismic sources frequently provide a higher-frequency seismic wavelet (and therefore better resolution) than other sources, and can provide a superior signal-to-noise ratio in many settings. However, they are often prohibitively expensive for lower-budget shallow surveys. In order to address this problem, I designed and built a simple but effective vibrator source for about one thousand dollars. The "EMvibe" is an inexpensive electromagnetic vibrator that can be built with easy-to-machine parts and off-the-shelf electronics. It can repeatably produce pulse and frequency-sweep signals in the range of 5 to 650 Hz, and provides sufficient energy for recording at offsets up to 20 m. Analysis of frequency spectra show that the EMvibe provides a broader frequency range than the sledgehammer at offsets up to ??? 10 m in data collected at a site with soft sediments in the upper several meters. The EMvibe offers a high-resolution alternative to the sledgehammer for shallow surveys. It is well-suited to teaching applications, and to surveys requiring a precisely-repeatable source signature.
NASA Astrophysics Data System (ADS)
Kim, Hongjip; Che Tai, Wei; Zhou, Shengxi; Zuo, Lei
2017-11-01
Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. In this paper, stochastic resonance is considered to harvest energy from two typical vibrations in rotating shafts: random whirl vibration and periodic stick-slip vibration. Stick-slip vibrations impose a constant offset in centrifugal force and distort the potential function of the harvester, leading to potential function asymmetry. A numerical analysis based on a finite element method was conducted to investigate stochastic resonance with potential function asymmetry. Simulation results revealed that a harvester with symmetric potential function generates seven times higher power than that with asymmetric potential function. Furthermore, a frequency-sweep analysis also showed that stochastic resonance has hysteretic behavior, resulting in frequency difference between up-sweep and down-sweep excitations. An electromagnetic energy harvesting system was constructed to experimentally verify the numerical analysis. In contrast to traditional stochastic resonance harvesters, the proposed harvester uses magnetic force to compensate the offset in the centrifugal force. System identification was performed to obtain the parameters needed in the numerical analysis. With the identified parameters, the numerical simulations showed good agreement with the experiment results with around 10% error, which verified the effect of potential function asymmetry and frequency sweep excitation condition on stochastic resonance. Finally, attributed to compensating the centrifugal force offset, the proposed harvester generated nearly three times more open-circuit output voltage than its traditional counterpart.
Effects of white matter microstructure on phase and susceptibility maps.
Wharton, Samuel; Bowtell, Richard
2015-03-01
To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. © 2014 Wiley Periodicals, Inc.
Effects of White Matter Microstructure on Phase and Susceptibility Maps
Wharton, Samuel; Bowtell, Richard
2015-01-01
Purpose To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). Methods The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. Results The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Conclusion Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. Magn Reson Med 73:1258–1269, 2015. © 2014 Wiley Periodicals, Inc. PMID:24619643
Keitch, B C; Thomas, N R; Lucas, D M
2013-03-15
Two cw single-mode violet (397 nm) diode lasers are locked to a single external-cavity master diode laser by optical injection locking. A double-pass 1.6 GHz acousto-optic modulator is used to provide a 3.2 GHz offset frequency between the two slave lasers. We achieve up to 20 mW usable output in each slave beam, with as little as 25 μW of injection power at room temperature. An optical heterodyne measurement of the beat note between the two slave beams gives a linewidth of ≤10 Hz at 3.2 GHz. We also estimate the free-running linewidth of the master laser to be approximately 3 MHz by optical heterodyning with a similar device.
System and method for non-destructive evaluation of surface characteristics of a magnetic material
Jiles, David C.; Sipahi, Levent B.
1994-05-17
A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.
AVO helps seismic imaging in deepwater environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skidmore, C.; Lindsay, R.O.; Ratcliff, D.
1997-11-03
Amplitude and frequency variations related to offset should be analyzed routinely during interpretation of seismic data acquired in deepwater environments. Amplitude variation with offset (AVO) in three dimensions is the key exploration tool in deep waters of the Gulf of Mexico. But application of the tool requires special care. Three-dimensional AVO helps the interpreter understand stratigraphy and the meaning of amplitude anomalies. Used in conjunction with well log data, it can help the interpreter distinguish amplitudes related to the presence of hydrocarbons from those that result from, for example, rock-property changes within a non-hydrocarbon-bearing layer, such as a shale, ormore » residual gas (fizz water) in high-porosity sands. The paper discusses examples from the Gulf of Mexico, will control application, improving detail, and frequency-dependent analysis.« less
Tangential velocity measurement using interferometric MTI radar
Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.
2006-01-03
Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.
The CFO: a better paid, better prepared executive.
Gauss, J W
1989-07-01
The average senior financial executive in a healthcare organization is a 41-year-old man who has been in his position for 6.1 years. The executive, who usually has the title chief financial officer, earns $62,600 a year and desires to advance to a higher position of responsibility. A new national survey provides a detailed profile of the position.
Strategic financial analysis: the CFO's role in strategic planning.
Litos, D M
1985-03-01
Strategic financial analysis, the financial information support system for the strategic planning process, provides information vital to maintaining a healthy bottom line. This article, the third in HCSM's series on the organizational components of strategic planning, reviews the role of the chief financial officer in determining which programs and services will best meet the future needs of the institution.
ERIC Educational Resources Information Center
June, Audrey Williams
2007-01-01
Chief financial officers at the nation's private colleges have bigger workloads than ever before, and in return, many are taking home much larger paychecks. A "Chronicle" survey of 103 private doctoral institutions shows that between 2003 and 2005, the median compensation package for the top financial position, which includes such titles as vice…
Why information security belongs on the CFO's agenda.
Quinnild, James; Fusile, Jeff; Smith, Cindy
2006-02-01
Healthcare financial executives need to understand the complex and growing role of information security in supporting the business of health care. The biggest security gaps in healthcare organizations occur in strategy and centralization, business executive preparation, and protected health information. CFOs should collaborate with the CIO in engaging a comprehensive framework to develop, implement, communicate, and maintain an enterprisewide information security strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aieta, Niccolo V.; Stanis, Ronald J.; Horan, James L.
Using SAXS data, the microstructure of the ionomer formed by copolymerization of tetrafluoroethylene and CF{sub 2}=CFO(CF{sub 2}){sub 4}SO{sub 3}H films has been approached by two methods: a numerical method (the unified fit approach) utilizing a simple model of spherical scattering objects to determine the radius of gyration of different scattering features of the ionomer films and by a graphical method, the clipped random wave approach (CRW), using the scattering data and a porosity parameter to generate a random wave which is clipped to produce a real-space image of the microstructure. We studied films with EW of 733, 825, 900, andmore » 1082 in both the as-cast and annealed 'dry' and boiled 'wet' states. The results of the two data analysis techniques are in good size agreement with each other. In addition, the CRW model show striking similarities to the structure proposed in a recent dissipative particle dynamic models. This has been the first time to our knowledge that the CRW technique has been applied to a PFSA type ionomer.« less
NASA Astrophysics Data System (ADS)
Munjal, Sandeep; Khare, Neeraj
2018-02-01
Controlled bipolar resistive switching (BRS) has been observed in nanostructured CoFe2O4 (CFO) films using an Al (aluminum)/CoFe2O4/FTO (fluorine-doped tin oxide) device. The fabricated device shows electroforming-free uniform BRS with two clearly distinguished and stable resistance states without any application of compliance current, with a resistance ratio of the high resistance state (HRS) and the low resistance state (LRS) of >102. Small switching voltage (<1 volt) and lower current in both the resistance states confirm the fabrication of a low power consumption device. In the LRS, the conduction mechanism was found to be Ohmic in nature, while the high-resistance state (HRS/OFF state) was governed by the space charge-limited conduction mechanism, which indicates the presence of an interfacial layer with an imperfect microstructure near the top Al/CFO interface. The device shows nonvolatile behavior with good endurance properties, an acceptable resistance ratio, uniform resistive switching due to stable, less random filament formation/rupture, and a control over the resistive switching properties by choosing different stop voltages, which makes the device suitable for its application in future nonvolatile resistive random access memory.
Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning
NASA Astrophysics Data System (ADS)
Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping
2015-07-01
Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.
NASA Astrophysics Data System (ADS)
Pan, Dan-Feng; Chen, Guang-Yi; Bi, Gui-Feng; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-05-01
The 0-3 type CoFe2O4-Pb(Zr,Ti)O3 (CFO-PZT) multiferroic composite films have been prepared by a sol-gel process and spin-coating technique. A confirmable photovoltaic effect is observed under ultraviolet light irradiation. Moreover, this photovoltaic effect can be tuned by external magnetic fields. The maximum magnetic modulation ratios of short-circuit current density and open-circuit voltage can reach as high as 13.7% and 12.8% upon the application of 6 kOe DC magnetic field. Through remnant polarization measurements under various magnetic fields and detailed analysis of the energy band structures, we elucidate the mechanism of tuning photovoltaic effect by magnetic fields and attribute it to the combination of two factors. One is the decreased ferroelectric-polarization-induced depolarization electric field and another is the band structure reconstruction at CFO-PZT interfaces, both of which are dominated by the magnetoelectric coupling via interfacial stress transferring at nanoscale. This work makes some attempts of coupling photo-induced effects with magnetoelectric effect in multiferroic materials and will widen the practical ranges of multiferroic-based applications.
Kusano, Shuhei; Ishiyama, Shogo; Lam, Sik Lok; Mashima, Tsukasa; Katahira, Masato; Miyamoto, Kengo; Aida, Misako; Nagatsugi, Fumi
2015-01-01
DNA interstrand crosslinks (ICLs) are the primary mechanism for the cytotoxic activity of many clinical anticancer drugs, and numerous strategies for forming ICLs have been developed. One such method is using crosslink-forming oligonucleotides (CFOs). In this study, we designed a 4-amino-6-oxo-2-vinylpyrimidine (AOVP) derivative with an acyclic spacer to react selectively with guanine. The AOVP CFO exhibited selective crosslinking reactivity with guanine and thymine in DNA, and with guanine in RNA. These crosslinking reactions with guanine were accelerated in the presence of CoCl2, NiCl2, ZnCl2 and MnCl2. In addition, we demonstrated that the AOVP CFO was reactive toward 8-oxoguanine opposite AOVP in the duplex DNA. The structural analysis of each guanine and 8-oxoguanine adduct in the duplex DNA was investigated by high-resolution NMR. The results suggested that AOVP reacts at the N2 amine in guanine and at the N1 or N2 amines in 8-oxoguanine in the duplex DNA. This study demonstrated the first direct determination of the adduct structure in duplex DNA without enzyme digestion. PMID:26245348
NASA Technical Reports Server (NTRS)
Freed, C.; Bielinski, J. W.; Lo, W.
1983-01-01
Quantum phase noise limited Lorentzian power spectral densities were achieved with tunable lead-salt diode lasers. Linewidths as narrow as 22 kHz were observed. A truly programmable infrared synthesizer was produced by frequency-offset-locking the tunable diode lasers to the combination of a stable CO2 (or CO) reference laser and a programmable microwave frequency synthesizer. Absolute frequency accuracy and reproducibility of about + or - 30 kHz (0.000001 kaysers) relative to the primary Cs frequency standard may now be obtained with this technique.
Coherent frequency division with a degenerate synchronously pumped optical parametric oscillator.
Wan, Chenchen; Li, Peng; Ruehl, Axel; Hartl, Ingmar
2018-03-01
Synchronously pumped optical parametric oscillators (OPOs) are important tools for frequency comb (FC) generation in the mid-IR spectral range, where few suitable laser gain materials exist. For degenerate OPOs, self-phase-locking to the pump FC has been demonstrated. Here, we present a phase noise study of the carrier envelope offset frequency, revealing a -6 dB reduction compared to the pump FC over a wide Fourier frequency range. These results demonstrate that a degenerate OPO can be an ideal coherent frequency divider without any excess noise.
Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance
NASA Astrophysics Data System (ADS)
Wassall, Cynthia D.
The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76% increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial function. Stretch or distension activates the AT1 receptor which mediates ROS production; this collectively leads to endothelial dysfunction in coronary arteries.
ERIC Educational Resources Information Center
Stepp, Cara E.; Merchant, Gabrielle R.; Heaton, James T.; Hillman, Robert E.
2011-01-01
Purpose: The purpose of this study was to determine whether the relative fundamental frequency (RFF) surrounding a voiceless consonant in patients with hyperfunctionally related voice disorders would normalize after a successful course of voice therapy. Method: Pre- and posttherapy measurements of RFF were compared in 16 subjects undergoing voice…
Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration
ERIC Educational Resources Information Center
Buss, Emily; Porter, Heather L.; Hall, Joseph W., III; Grose, John H.
2017-01-01
Purpose: The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method: Thresholds were obtained for wideband noise (500-4500…
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Qifeng; Li, Yunpu; Yang, Jiandong; Fu, Xinghu; Bi, Weihong; Li, Yanjun
2016-10-01
A tension sensor of Photonic Crystal Fiber(PCF) is presented based on core-offset splicing and waist-enlarged fiber taper. The tension response characteristics of the sensor are studied experimentally. To analyzing the modal interference, many samples with different PCF lengths between the two splicing areas, different core-offset distances and different waist-enlarged fiber taper diameters are fabricated and tested. When the tension range is 0 to 4000μɛ, the results show that the spectrum is blue shift with the increasing of the axial tension. The sensitivity is-2.1 pm/μɛ. The experimental results show that the tension sensitivity can be not influenced by the PCF lengths, the core-offset distances.The waist-enlarged fiber taper diameters and the tension sensor is very sensitive to axial tension and the relationship between the wavelength shift and tension is linearity. To determine the number of the interfering modes, the transmission spectra of these sensor is transformed by the fast fourier transform (FFT) method. There are several peaks in the spatial frequency spectra at these sensors. Only one cladding mode is dominantly excited, while the other cladding modes are weak. The spatial frequency is proportional to the differential mode group index. Compared with the traditional fiber sensor, this sensor has some advantages including the easily fabricated, simple structure and high sensitivity. It can be used in industrial production, building monitoring, aerospace and other fields.
Compulsory of Malaysia’s Quality Assessment System in Construction (QLASSIC)
NASA Astrophysics Data System (ADS)
Manap, N.; Goh, YK; Syahrom, N.
2017-12-01
Nowadays, the quality in the construction industry has become very important because it contribute to the nation’s economic growth and quality of life of the house occupants. Therefore, CIDB is proposed to enforce the implementation of QLASSIC as the main element of project approval for issuance of Certificate of Fitness (CFO) or Certificate of Compliances (C.C.C) in construction industry of Malaysia. The objectives of this study are to identify the views of contractors toward the compulsory of the QLASSIC and to determine the impacts of the QLASSIC in the construction industry. The methodology used are literature review and the questionnaires. The descriptive statistic like the frequency and percentage were used for describing the respondent background. While the mean distribution analysis was used to analysis the views on the compulsory of QLASSIC and the impacts of the QLASSIC. The result of the study shows that, the views of the respondents toward the compulsory of QLASSIC and the main impacts of the QLASSIC were identified. The significance of this study is it can help contractors to understand the impacts and the important of using QLASSIC.
Lee, Hyung-Min; Ghovanloo, Maysam
2011-01-01
We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666
Effects of energy chirp on bunch length measurement in linear accelerator beams
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems.
Zhao, Jian; Chan, Chun-Kit
2017-09-04
In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.
A clocked high-pass-filter-based offset cancellation technique for high-gain biomedical amplifiers
NASA Astrophysics Data System (ADS)
Pal, Dipankar; Goswami, Manish
2010-05-01
In this article, a simple offset cancellation technique based on a clocked high-pass filter with extremely low output offset is presented. The configuration uses the on-resistance of a complementary metal oxide semiconductor (CMOS) transmission gate (X-gate) and tunes the lower 3-dB cut-off frequency with a matched pair of floating capacitors. The results compare favourably with the more complex auto-zeroing and chopper stabilisation techniques of offset cancellation in terms of power dissipation, component count and bandwidth, while reporting inferior output noise performance. The design is suitable for use in biomedical amplifier systems for applications such as ENG-recording. The system is simulated in Spectre Cadence 5.1.41 using 0.6 μm CMOS technology and the total block gain is ∼83.0 dB while the phase error is <5°. The power consumption is 10.2 mW and the output offset obtained for an input monotone signal of 5 μVpp is 1.28 μV. The input-referred root mean square noise voltage between 1 and 5 kHz is 26.32 nV/√Hz.
NASA Astrophysics Data System (ADS)
Varma, G.; Girard, O. M.; Prevost, V. H.; Grant, A. K.; Duhamel, G.; Alsop, D. C.
2015-11-01
Comparison of off-resonance saturation with single and dual frequency irradiation indicates a contribution of inhomogeneously broadened lines to magnetization transfer in tissues. This inhomogeneous magnetization transfer (ihMT) phenomenon can be exploited to produce images that highlight tissues containing myelin, in vivo. Here, a model for ihMT is described that includes dipolar order effects from magnetization associated with motion-restricted macromolecules. In this model, equal irradiation at positive and negative frequency offsets eliminates dipolar order and achieves greater saturation than irradiation at a single offset frequency using the same power. Fitting of mouse and human volunteer brain data at different irradiation powers and offset frequencies was performed to assess the relevance of the model and approximate tissue parameters. A key parameter in determining ihMT signal was found to be the relaxation time T1D associated with the dipolar order reservoir and the fraction f of the semi-solid, bound magnetization that possessed a nonzero T1D. Indeed, better fits of myelinated tissue were achieved when assuming f ≠ 1. From such fits, estimated T1Ds of mice in the white matter, (34 ± 14)ms, were much longer than in muscle, T1D = (1 ± 1)ms and the average f from white matter volunteer data was 2.2 times greater than that in grey matter. The combination of f and longer T1Ds was primarily responsible for the much higher ihMT in myelinated tissues, and provided explanation for the species variation. This dipolar order ihMT model should help guide future research, pulse sequence optimization, and clinical applications.
Funding innovation: Moving the business forward.
Henry, Gary F
2016-11-01
Gary F. Henry is the Principal Consultant of G F Henry and Associates, a management consulting firm based in Charlottesville, Virginia. Mr. Henry has more than 30 years of distinguished experience, including CEO, CFO and COO roles in both established and start-up companies. Gary was named an Ernst & Young Virginia Entrepreneur of the Year in 2001. Copyright © 2016 Elsevier Inc. All rights reserved.
77 FR 27443 - Quick Path Information Disclosure Statement (QPIDS) Pilot Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... associated with this pilot program must be filed via the USPTO's Electronic Filing System-Web (EFS-Web), and... forth in 37 CFR 1.97(e), with the IDS fee set forth in 37 CFR 1.17(p); (3) a Web-based ePetition to... at http://www.uspto.gov/about/offices/cfo/finance/Dep_Account_Rules_and_Info.jsp . 3. Web-Based e...
Predictive Flow Control to Minimize Convective Time Delays
2013-08-19
simulation. The CFO solver used is Cobalt, an unstructured finite-volume code developed for the solution of the compress- ible Navier-Stokes...cell-centered fin ite volume approach applicable to arbitrary cell topologies (e.g, hexahedra, prisms, tetrahedra). The spatial operator uses a Riemann ... solver , least squares gradient calculations using QR factorizati on to provide second order accuracy in space. A point implicit method using
Djordjevic, Steven P.; Forbes, Wendy A.; Smith, Lisa A.; Hornitzky, Michael A.
2000-01-01
Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they originated. PMID:10698777
Effect of Molybdenum Incorporation on the Structure and Magnetic Properties of Cobalt Ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, C.; Melendez, A.; Manadhar, S.
Here, we report on the effect of molybdenum (Mo) incorporation on the crystal structure, surface morphology, Mo chemical valence state, and magnetic properties of cobalt ferrite (CoFe 2O 4, referred to CFO). Molybdenum incorporated cobalt ferrite (CoFe 2–xMo xO 4, referred to CFMO) ceramics were prepared by the conventional solid-state reaction method by varying the Mo concentration in the range of x = 0.0–0.3. X-ray diffraction studies indicate that the CFMO materials crystallize in inverse spinel cubic phase. Molybdenum incorporation induced lattice parameter increase from 8.322 to 8.343 Å coupled with a significant increase in density from 5.4 to 5.7more » g/cm 3 was evident in structural analyses. Scanning electron microscopy imaging analyses indicate that the Mo incorporation induces agglomeration of particles leading to larger particle size with increasing x(Mo) values. Detailed X-ray photoelectron spectroscopic (XPS) analyses indicate the increasing Mo content with increasing x from 0.0 to 0.3. XPS confirms that the chemistry of Mo is complex in these CFMO compounds; Mo ions exist in the lower oxidation state (Mo 4+) for higher x while in a mixed chemical valence state (Mo 4+, Mo 5+, Mo 6+) for lower x values. From the temperature-dependent magnetization, the samples show ferrimagnetic behavior including the pristine CFO. From the isothermal magnetization measurements, we find almost 2-fold decrease in coercive field ( H c) from 2143 to 1145 Oe with the increase in Mo doping up to 30%. This doping-dependent H c is consistently observed at all the temperatures measured (4, 100, 200, and 300 K). Furthermore, the saturation magnetization estimated at 4 K and at 1.5 T (from M–H loops) goes through a peak at 92 emu/g (at 15% Mo doping) from 81 emu/g (pristine CFO), and starts decreasing to 79 emu/g (at 30% Mo doping). The results demonstrate that the crystal structure, microstructure, and magnetic properties can be tuned by controlling the Mo-content in the CFMO materials.« less
Effect of Molybdenum Incorporation on the Structure and Magnetic Properties of Cobalt Ferrite
Orozco, C.; Melendez, A.; Manadhar, S.; ...
2017-09-26
Here, we report on the effect of molybdenum (Mo) incorporation on the crystal structure, surface morphology, Mo chemical valence state, and magnetic properties of cobalt ferrite (CoFe 2O 4, referred to CFO). Molybdenum incorporated cobalt ferrite (CoFe 2–xMo xO 4, referred to CFMO) ceramics were prepared by the conventional solid-state reaction method by varying the Mo concentration in the range of x = 0.0–0.3. X-ray diffraction studies indicate that the CFMO materials crystallize in inverse spinel cubic phase. Molybdenum incorporation induced lattice parameter increase from 8.322 to 8.343 Å coupled with a significant increase in density from 5.4 to 5.7more » g/cm 3 was evident in structural analyses. Scanning electron microscopy imaging analyses indicate that the Mo incorporation induces agglomeration of particles leading to larger particle size with increasing x(Mo) values. Detailed X-ray photoelectron spectroscopic (XPS) analyses indicate the increasing Mo content with increasing x from 0.0 to 0.3. XPS confirms that the chemistry of Mo is complex in these CFMO compounds; Mo ions exist in the lower oxidation state (Mo 4+) for higher x while in a mixed chemical valence state (Mo 4+, Mo 5+, Mo 6+) for lower x values. From the temperature-dependent magnetization, the samples show ferrimagnetic behavior including the pristine CFO. From the isothermal magnetization measurements, we find almost 2-fold decrease in coercive field ( H c) from 2143 to 1145 Oe with the increase in Mo doping up to 30%. This doping-dependent H c is consistently observed at all the temperatures measured (4, 100, 200, and 300 K). Furthermore, the saturation magnetization estimated at 4 K and at 1.5 T (from M–H loops) goes through a peak at 92 emu/g (at 15% Mo doping) from 81 emu/g (pristine CFO), and starts decreasing to 79 emu/g (at 30% Mo doping). The results demonstrate that the crystal structure, microstructure, and magnetic properties can be tuned by controlling the Mo-content in the CFMO materials.« less
Djordjevic, S P; Forbes, W A; Smith, L A; Hornitzky, M A
2000-03-01
Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1, 555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they originated.
Surface acoustic wave coding for orthogonal frequency coded devices
NASA Technical Reports Server (NTRS)
Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)
2011-01-01
Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.
Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui
2017-08-07
We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.
Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia
NASA Astrophysics Data System (ADS)
Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.
2018-05-01
We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa
2018-08-10
We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.
Frequency downconversion and phase noise in MIT.
Watson, S; Williams, R J; Griffiths, H; Gough, W; Morris, A
2002-02-01
High-frequency (3-30 MHz) operation of MIT systems offers advantages in terms of the larger induced signal amplitudes compared to systems operating in the low- or medium-frequency ranges. Signal distribution at HF, however, presents difficulties, in particular with isolation and phase stability. It is therefore valuable to translate received signals to a lower frequency range through heterodyne downconversion, a process in which relative signal amplitude and phase information is in theory retained. Measurement of signal amplitude and phase is also simplified at lower frequencies. The paper presents details of measurements on a direct phase measurement system utilizing heterodyne downconversion and compares the relative performance of three circuit configurations. The 100-sample average precision of a circuit suitable for use as a receiver within an MIT system was 0.008 degrees for input amplitude -21 dBV. As the input amplitude was reduced from -21 to -72 dBV variation in the measured phase offset was observed, with the offset varying by 1.8 degrees. The precision of the circuit deteriorated with decreasing input amplitude, but was found to provide a 100-sample average precision of <0.022 degrees down to an input amplitude of -60 dBV. The characteristics of phase noise within the system are discussed.
Van Vlack, C; Hughes, S
2007-04-20
Ultrashort pulse light-matter interactions in a semiconductor are investigated within the regime of resonant optical rectification. Using pulse envelope areas of around 1.5-3.5 pi, a single-shot dependence on carrier-envelope-offset phase (CEP) is demonstrated for 5 fs pulse durations. A characteristic phase map is predicted for several different frequency regimes using parameters for thin-film GaAs. We subsequently suggest a possible technique to extract the CEP, in both sign and amplitude, using a solid state detector.
Frequency Agile Tm,Ho:YLF Local Oscillator for a Scanning Doppler wind Lidar in Earth Orbit
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Hemmati, Hamid; Esproles, Carlos
1997-01-01
A compact cw Tm,Ho:YLF laser with single-mode tunability over +/-4 GHz has been developed into a modular unit containing an isolator and photomixer for offset tuning of the LO from a master oscillator which controls the frequency of a Doppler lidar transmitter. This and an alternative diode laser LO will be described.
Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.
Defraigne, Pascale; Sleewaegen, Jean-Marie
2016-07-01
Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise.
Quadrature mixture LO suppression via DSW DAC noise dither
Dubbert, Dale F [Cedar Crest, NM; Dudley, Peter A [Albuquerque, NM
2007-08-21
A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.
Optoelectronic oscillator with improved phase noise and frequency stability
NASA Astrophysics Data System (ADS)
Eliyahu, Danny; Sariri, Kouros; Taylor, Joseph; Maleki, Lute
2003-07-01
In this paper we report on recent improvements in phase noise and frequency stability of a 10 GHz opto-electronic oscillator. In our OEO loop, the high Q elements (the optical fiber and the narrow bandpass microwave filter) are thermally stabilized using resistive heaters and temperature controllers, keeping their temperature above ambient. The thermally stabilized free running OEO demonstrates a short-term frequency stability of 0.02 ppm (over several hours) and frequency vs. temperature slope of -0.1 ppm/°C (compared to -8.3 ppm/°C for non thermally stabilized OEO). We obtained an exceptional spectral purity with phase noise level of -143 dBc/Hz at 10 kHz of offset frequency. We also describe the multi-loop configuration that reduces dramatically the spurious level at offset frequencies related to the loop round trip harmonic frequency. The multi-loop configuration has stronger mode selectivity due to interference between signals having different cavity lengths. A drop of the spurious level below -90 dBc was demonstrated. The effect of the oscillator aging on the frequency stability was studied as well by recording the oscillator frequency (in a chamber) over several weeks. We observed reversal in aging direction with logarithmic behavior of A ln(B t+1)-C ln(D t+1), where t is the time and A, B, C, D are constants. Initially, in the first several days, the positive aging dominates. However, later the negative aging mechanism dominates. We have concluded that the long-term aging behavioral model is consistent with the experimental results.
A model for phase noise generation in amplifiers.
Tomlin, T D; Fynn, K; Cantoni, A
2001-11-01
In this paper, a model is presented for predicting the phase modulation (PM) and amplitude modulation (AM) noise in bipolar junction transistor (BJT) amplifiers. The model correctly predicts the dependence of phase noise on the signal frequency (at a particular carrier offset frequency), explains the noise shaping of the phase noise about the signal frequency, and shows the functional dependence on the transistor parameters and the circuit parameters. Experimental studies on common emitter (CE) amplifiers have been used to validate the PM noise model at carrier frequencies between 10 and 100 MHz.
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
Stem revenue losses with effective CDM management.
Alwell, Michael
2003-09-01
Effective CDM management not only minimizes revenue losses due to denied claims, but also helps eliminate administrative costs associated with correcting coding errors. Accountability for CDM management should be assigned to a single individual, who ideally reports to the CFO or high-level finance director. If your organization is prone to making billing errors due to CDM deficiencies, you should consider purchasing CDM software to help you manage your CDM.
Building a world-class A/P function: how UPMC went paperless.
DeLuca, Michael; Smith, Corey
2010-03-01
UPMC engaged people, processes, and technology to move its A/P function from a highly manual, paper-based operation to a completely automated process. UPMC's CFO hired a chief supply chain officer to develop a strategic plan, and UPMC named a value analysis team to gain clinician buy-in. UPMC automated A/P by enabling receipt of electronic invoices. UPMC streamlined its processes for invoices.
Creating a market strategy for 'brand loyalty'.
Hutter, G M
1991-10-01
A healthcare organization's financial well-being stems from sound strategic planning, which increasingly requires the merger of marketing intelligence and financial management expertise. As a participant in strategic planning, a hospital's chief financial officer (CFO) ensures that plans achieve organizational goals for growth and return on investment. CFOs can apply their analytical and measurement skills to help determine areas of strength and potential growth, then match those services to market segments.
2011-09-30
channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1
Simulation of Downlink Synchronization for a Frequency-Hopped Satellite Communication System
1992-04-01
naflonie SIMULATION OF DOWNLINK SYNCHRONIZATION FOR A FREQUENCY-HOPPED SATELLITE COMMUNICATION SYSTEM (U) by Lyle Waper_Communicadion and Xa elo Elkaoftron...is offset by an increase in complexity while establishing the communication link, termed synchronization . This document describes a downlink... synchronization process that involves the transmission of synchronization hops by the satellite and a two-step ground terminal synchonization procedure. In
Weak-light Phase-locking for LISA
NASA Technical Reports Server (NTRS)
McNamara, Paul W.
2004-01-01
The long armlengths of the LISA interferometer, and the finite aperture of the telescope, leads to an optical power attenuation of approximately equal to 10(exp -10) of the transmitted to received light. Simple reflection at the end of the arm is therefore not an optimum interferometric design. Instead, a local laser is offset phase-locked to the weak incoming beam, transferring the phase information of the incoming to the outgoing light. This paper reports on an experiment to characterize a weak light phase-locking scheme suitable for LISA in which a diode-pumped, Nd:YAG, non-planar ring oscillator (NPRO) is offset phase-locked to a low power (13pW) frequency stabilised master NPRO. Preliminary results of the relative phase noise of the slave laser shows shot noise limited performance above 0.4 Hz. Excess noise is observed at lower frequencies, most probably due to thermal effects in the optical arrangement and phase sensing electronics.
Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R
2011-11-21
Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. © 2011 Optical Society of America
Feed-forward frequency offset estimation for 32-QAM optical coherent detection.
Xiao, Fei; Lu, Jianing; Fu, Songnian; Xie, Chenhui; Tang, Ming; Tian, Jinwen; Liu, Deming
2017-04-17
Due to the non-rectangular distribution of the constellation points, traditional fast Fourier transform based frequency offset estimation (FFT-FOE) is no longer suitable for 32-QAM signal. Here, we report a modified FFT-FOE technique by selecting and digitally amplifying the inner QPSK ring of 32-QAM after the adaptive equalization, which is defined as QPSK-selection assisted FFT-FOE. Simulation results show that no FOE error occurs with a FFT size of only 512 symbols, when the signal-to-noise ratio (SNR) is above 17.5 dB using our proposed FOE technique. However, the error probability of traditional FFT-FOE scheme for 32-QAM is always intolerant. Finally, our proposed FOE scheme functions well for 10 Gbaud dual polarization (DP)-32-QAM signal to reach 20% forward error correction (FEC) threshold of BER=2×10-2, under the scenario of back-to-back (B2B) transmission.
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Stepp, Cara E
2013-03-01
The relative fundamental frequency (RFF) surrounding production of a voiceless consonant has previously been shown to be lower in speakers with hypokinetic dysarthria and Parkinson's disease (PD) relative to age/sex matched controls. Here RFF was calculated in 32 speakers with PD without overt hypokinetic dysarthria and 32 age and sex matched controls to better understand the relationships between RFF and PD progression, medication status, and sex. Results showed that RFF was statistically significantly lower in individuals with PD compared with healthy age-matched controls and was statistically significantly lower in individuals diagnosed at least 5 yrs prior to experimentation relative to individuals recorded less than 5 yrs past diagnosis. Contrary to previous trends, no effect of medication was found. However, a statistically significant effect of sex on offset RFF was shown, with lower values in males relative to females. Future work examining the physiological bases of RFF is warranted.
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Suga, Mikio; Matsuda, Tetsuya; Minato, Kotaro; Oshiro, Osamu; Chihara, Kunihiro; Okamoto, Jun; Takizawa, Osamu; Komori, Masaru; Takahashi, Takashi
2003-07-01
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. Moreover, a propagating shear wave is distorted by reflections from the boundaries of objects. However, the distortions are minimal around the wave front of the propagating shear wave. Therefore, we can avoid the effect of reflection on a region of interest (ROI) by adjusting the duration of mechanical vibrations. Thus, the ROI is often shorter than the propagating shear wavelength. In the MRE sequence, a motion-sensitizing gradient (MSG) is synchronized with mechanical cyclic motion. MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
Heller Murray, Elizabeth S.; Lien, Yu-An S.; Stepp, Cara E.
2016-01-01
Purpose This study examined the relationship between the acoustic measure relative fundamental frequency (RFF) and a kinematic estimate of laryngeal stiffness. Method Twelve healthy adults (mean age = 22.7 years, SD = 4.4; 10 women, 2 men) produced repetitions of /ifi/ while varying their vocal effort during simultaneous acoustic and video nasendoscopic recordings. RFF was determined from the last 10 voicing cycles before the voiceless obstruent (RFF offset) and the first 10 cycles of revoicing (RFF onset). A kinematic stiffness ratio was calculated for the vocal fold adductory gesture during revoicing by normalizing the maximum angular velocity by the maximum glottic angle during the voiceless obstruent. Results A linear mixed effect model indicated that RFF offset and onset were significant predictors of the kinematic stiffness ratios. The model accounted for 52% of the variance in the kinematic data. Individual relationships between RFF and kinematic stiffness ratios varied across participants, with at least moderate negative correlations in 83% of participants for RFF offset but only 40% of participants for RFF onset. Conclusions RFF significantly predicted kinematic estimates of laryngeal stiffness in healthy speakers and has the potential to be a useful clinical indicator of laryngeal tension. Further research is needed in individuals with voice disorders. PMID:27936279
On the power spectral density of quadrature modulated signals. [satellite communication
NASA Technical Reports Server (NTRS)
Yan, T. Y.
1981-01-01
The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.R.; Smith, H.D.; Reiter, R.J.
Experiments with rodents indicate that power-frequency electric field (EF) or magnetic field (MF) exposure can suppress the normal nocturnal increase in melatonin concentration in pineal gland and blood. In a separate set of three experiments conducted with nonhuman primates, the authors did not observe melatonin suppression as a result of 6 weeks of day-time exposure to combined 60 Hz electric and magnetic fields (E/MF) with regularly schedule ``slow`` E/MF onsets/offsets. The study described here used a different exposure paradigm in which two baboons were exposed to E/MF with ``rapid`` E/MF onsets/offsets accompanied by EF transients not found with slowly rampedmore » E/MF onset/offset; profound reductions in nocturnal serum melatonin concentration were observed in this experiment. If replicated in a more extensive experiment, the observation of melatonin suppression only in the presence of E/MF transients would suggest that very specific exposure parameters determine the effects of 60 Hz E/MF on melatonin.« less
Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data
NASA Astrophysics Data System (ADS)
Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.
2013-12-01
Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal velocities instead of inverting for the parameterization as vertical velocity and epsilon fields. We develop a hierarchical approach to invert for vertical velocity first but hold epsilon unchanged and only switch to simultaneous inversion when vertical velocity inversion are approaching convergence. During simultaneous inversion, we observe significant acceleration in the convergence when incorporates second order information and preconditioning into inversion. We demonstrate the success of our strategy for VTI FWI using synthetic and real data examples from the Gulf of Mexico. Our results show that incorporation of VTI FWI improves migration of large offset acquisition data, and produces better focused migration images to be used in exploration, production and development of oil fields.
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
An integrated signal conditioner for high-frequency inductive position sensors
NASA Astrophysics Data System (ADS)
Rahal, Mohamad; Demosthenous, Andreas
2010-01-01
This paper describes the design, implementation and evaluation of a signal conditioner application-specific integrated circuit (ASIC) for high-frequency inductive non-contact position sensors. These sensors employ a radio frequency technology based on an antenna planar arrangement and a resonant target, have a high inherent resolution (0.1% of antenna length) and can measure target position over a wide distance range (<0.1 mm to >10 m). However, due to the relatively high-frequency excitation (1 MHz typically) and to the specific layouts of these sensors, there is unwanted capacitive coupling between the transmitter and receiver coils; this type of distortion reduces linearity and resolution. The ASIC, which is the first generation of its kind for this type of sensor, employs a differential mixer topology which suppresses the capacitive coupling offsets. The system architecture and circuit details are presented. The ASIC was fabricated in a 0.6 µm high-voltage CMOS technology occupying an area of 8 mm2. It dissipates about 30 mA from a 24 V power supply. The ASIC was tested with a high-frequency inductive position sensor (with an antenna length of 10.8 cm). The measured input-referred offset due to transmitter crosstalk is on average about 22 µV over a wide phase difference variation (-99° to +117°) between the transmitter and demodulating signals.
Low-common-mode differential amplifier
NASA Technical Reports Server (NTRS)
Morrison, S.
1980-01-01
Outputs of differential amplifier are excellently matched in phase and amplitude over wide range of frequencies. Common mode feedback loop offsets differences between two signal paths. Possible applications of circuit are in oscilloscopes, integrated circuit logic tester, and other self contained instruments.
Bottom-up multiferroic nanostructures
NASA Astrophysics Data System (ADS)
Ren, Shenqiang
Multiferroic and especially magnetoelectric (ME) nanocomposites have received extensive attention due to their potential applications in spintronics, information storage and logic devices. The extrinsic ME coupling in composites is strain mediated via the interface between the piezoelectric and magnetostrictive components. However, the design and synthesis of controlled nanostructures with engineering enhanced coupling remain a significant challenge. The purpose of this thesis is to create nanostructures with very large interface densities and unique connectivities of the two phases in a controlled manner. Using inorganic solid state phase transformations and organic block copolymer self assembly methodologies, we present novel self assembly "bottom-up" techniques as a general protocol for the nanofabrication of multifunctional devices. First, Lead-Zirconium-Titanate/Nickel-Ferrite (PZT/NFO) vertical multilamellar nanostructures have been produced by crystallizing and decomposing a gel in a magnetic field below the Curie temperature of NFO. The ensuing microstructure is nanoscopically periodic and anisotropic. The wavelength of the PZT/NFO alternation, 25 nm, agrees within a factor of two with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semi-quantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8 V/cm Oe. Second, a magnetoelectric composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite (CFO) nano-cylinders within a matrix of ferroelectric Lead-Zirconium-Titanate (PZT). The initial magnetic permeability of the self-assembled CFO/PZT nanocomposite changes by a factor of 5 through the application of 2.5 V. This work may have significant impact on the development of novel memory or logic devices through self assembly techniques. It also demonstrates a universal two-phase hard template application. Last, solid-state self assembly had been used recently to form pseudoperiodic chessboard-like nanoscale morphologies in a series of chemically homogeneous complex oxide systems. We improved on this approach by synthesizing a spontaneously phase separated nanolamellar BaTiO3-CoFe2O4 bi-crystal. The superlattice is magnetoelectric with a frequency dependent coupling. The BaTiO3 component is a ferroelectric relaxor with a Vogel-Fulcher temperature of 311 K. Since the material can be produced by standard ceramic processing methods, the discovery represents great potential for magnetoelectric devices.
NASA Astrophysics Data System (ADS)
Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.
2013-12-01
Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.
Space Theory and Strategy: War From the High Ground Down
2016-06-01
offset to the American Vietnam experience culminating in the American Apollo 11 moon- landing mission in 1969. The Space Race to the Moon paved a...satellite would indicate a clear escalation in violence based on contextual tensions. A blinding laser or radio frequency jamming attack on a...Down 51 characterize, geolocate, and report radio frequency interference is another version of prepositioning space forces.10 Show of force
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
Access to capital: implications for hospital consolidation.
Grauman, Daniel M; Harris, John M; Martin, Christine
2010-04-01
Recent economic challenges have left many independent hospitals and their boards concerned about long-term viability of their organizations as stand-alone facilities. The CFO's role should be to facilitate a candid, objective assessment of the organization's ability to continue to go it alone. Key indicators that should be considered in such an assessment include patient volume, degree of physician alignment, profitability, current debt burden, cash, available capital versus capital requirements, and credit rating changes.
A highly sensitive CMOS digital Hall sensor for low magnetic field applications.
Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li
2012-01-01
Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.
Design of High Speed and Low Offset Dynamic Latch Comparator in 0.18 µm CMOS Process
Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Ali, Mohammad Alauddin Mohammad; Marufuzzaman, Mohammad
2014-01-01
The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2. PMID:25299266
Frequency chirped light at large detuning with an injection-locked diode laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, K.; Disla, M.; Dellatto, J.
2015-04-15
We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generatemore » a 1 GHz frequency chirp in 5 ns.« less
Theoretical and simulated performance for a novel frequency estimation technique
NASA Technical Reports Server (NTRS)
Crozier, Stewart N.
1993-01-01
A low complexity, open-loop, discrete-time, delay-multiply-average (DMA) technique for estimating the frequency offset for digitally modulated MPSK signals is investigated. A nonlinearity is used to remove the MPSK modulation and generate the carrier component to be extracted. Theoretical and simulated performance results are presented and compared to the Cramer-Rao lower bound (CRLB) for the variance of the frequency estimation error. For all signal-to-noise ratios (SNR's) above threshold, it is shown that the CRLB can essentially be achieved with linear complexity.
76 FR 33653 - Maritime Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... maritime navigation safety communications system through which marine vessels automatically transmit... may also operate on 12.5 kHz offset frequencies in areas where the licensee is authorized on both... operate on the interstitial channel between Channels 27 and 87 and the interstitial channel between...
Competition between Langmuir and upper-hybrid turbulence in a high-frequency-pumped ionosphere.
Thidé, B; Sergeev, E N; Grach, S M; Leyser, T B; Carozzi, T D
2005-12-16
We show how the secondary escaping radiation, also known as stimulated electromagnetic emission (SEE), from the ionosphere irradiated by a high-intensity radio beam, can be used to study both reflection altitude ponderomotive parametric instabilities and upper-hybrid altitude thermal parametric instabilities. This has allowed us to observe the transfer of energy from smaller to higher sideband frequency offsets and to identify a new transient SEE feature.
Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor)
2010-01-01
A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.
Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.
2014-01-01
In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1 m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the field activity will be provided separately; this paper discusses the complications presented by such offset measurements using two channels from the San Andreas fault as illustrative cases. We conclude with best approaches for future data collection efforts based on input from the Fieldshop.
The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions
Dhar, Sumitrajit
2009-01-01
Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence. PMID:19798532
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2010-10-19
ribbons: A relationship between the soft magnetic properties and GMI effect has been established in Co69Fe4.5R1.5Si10B15 (R = Ni, Al , Cr) amorphous... deposition . A strain compression-relaxation mechanism has been proposed in order to explain the structure- property relationships in the CFO-PZT bilayer...being pursued. The new Laser Assisted Spray process chamber for co- deposition of QDs and polymer films is shown in Fig. 55. Fig. 55
2002-05-14
Defense Nuclear Facilities Safety Board has balance-sheet-only audits every 3 to 5 years, most recently for fiscal year 1997. It did not prepare fiscal...associated with the agency’s operations were the most important factors to Have had financial statements audits Defense Nuclear Facilities Safety...audits, the International Trade Commission and the Defense Nuclear Facilities Safety Board, did not have financial statements audits for fiscal year
Nanoscale Engineering of Multiferroic Hybrid Composites for Micro- and Nano-scale Devices
2012-09-14
saturation field of the nickel ferrite layer [7]. The ME coupling dE coefficient is conventionally defined as am =— (5), where E and H denote the electric...of Co- ferrite in granular composites measured at different electric fields Voltage(V) 0 To realize the first objective a series of NBT-CFO...sample with intermediate (30%) content of Co- ferrite [publications 3,5]. The effect of the electric field on ferromagnetic resonance curves is
Jeyaram, Kumaraswamy; Romi, Wahengbam; Singh, Thangjam Anand; Adewumi, Gbenga Adedeji; Basanti, Khundrakpam; Oguntoyinbo, Folarin Anthony
2011-11-01
PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species. Copyright © 2011 Elsevier B.V. All rights reserved.
Senate Confirmation Hearing CFO
2009-10-14
Dr. Elizabeth M. Robinson, nominee for Chief Financial Officer for NASA, center, answers questions during her confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Robinson is flanked by Dr. Patrick Gallagher, nominee to be Assistant Secretary of the Transportation Security Administration at the U.S. Department of Commerce, far left, and Paul K. Martin, nominee to be Inspector General at NASA. Photo Credit: (NASA/Paul E. Alers)
Where Hospital Boards Often Fail: Auditing Leadership Performance.
Friedman, Susan Y; Rabkin, Mitchell T
2018-03-06
Hospital boards address quality of care and patient safety as well as financial performance through long-accepted practices. By contrast, a hospital's administrative operations and institutional culture are not usually subject to such detailed scrutiny. Yet, despite a healthy bottom line and patient commendations, hospital personnel can be underperforming, burdened with poor morale, and suffering from less than optimal leadership, unwarranted inefficiency, and ethically questionable management practices. The resulting employee dissatisfaction or disengagement can affect productivity, quality, turnover, innovation, patient and donor attraction and retention, public image, etc., and can be missed by an unsuspecting board. While boards do not scrutinize most administrative operations, they do examine financial performance, through review of the independent auditor's Management Letter. Designed to help the chief financial officer (CFO) improve the efficiency and integrity of the hospital's financial systems and to recommend improvements to the board for implementation (rather than to assess the CFO's performance), the Management Letter has no equal with respect to a comparable evaluation of the hospital's administrative performance and workplace culture. When, as is often the case, there is only superficial review of the chief executive officer, the board has no source of analysis or recommendations to improve the hospital's institutional environment. In this Invited Commentary, the authors suggest a methodology to provide such a review, leading to a Leadership Letter, and discuss its utility for both non-profit and for-profit organizations.
Dau, Phuong D; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibson, John K
2017-12-06
Actinyl chemistry is extended beyond Cm to BkO 2 + and CfO 2 + through transfer of an O atom from NO 2 to BkO + or CfO + , establishing a surprisingly high lower limit of 73 kcal mol -1 for the dissociation energies, D[O-(BkO + )] and D[O-(CfO + )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO 2 + for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO + )]. For CmO 2 + , and AnO 2 + beyond EsO 2 + , the most stable structure has side-on bonded η 2 -(O 2 ), as An III peroxides for An=Cm and Lr, and as An II superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO 2 + is linear [O=Es V =O] + , einsteinyl, and that FmO 2 + and MdO 2 + , like CmO 2 + , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Validating and comparing GNSS antenna calibrations
NASA Astrophysics Data System (ADS)
Kallio, Ulla; Koivula, Hannu; Lahtinen, Sonja; Nikkonen, Ville; Poutanen, Markku
2018-03-01
GNSS antennas have no fixed electrical reference point. The variation of the phase centre is modelled and tabulated in antenna calibration tables, which include the offset vector (PCO) and phase centre variation (PCV) for each frequency according to the elevations and azimuths of the incoming signal. Used together, PCV and PCO reduce the phase observations to the antenna reference point. The remaining biases, called the residual offsets, can be revealed by circulating and rotating the antennas on pillars. The residual offsets are estimated as additional parameters when combining the daily GNSS network solutions with full covariance matrix. We present a procedure for validating the antenna calibration tables. The dedicated test field, called Revolver, was constructed at Metsähovi. We used the procedure to validate the calibration tables of 17 antennas. Tables from the IGS and three different calibration institutions were used. The tests show that we were able to separate the residual offsets at the millimetre level. We also investigated the influence of the calibration tables from the different institutions on site coordinates by performing kinematic double-difference baseline processing of the data from one site with different antenna tables. We found small but significant differences between the tables.
Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels
NASA Astrophysics Data System (ADS)
Mathias, Adam Dustin
The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.
Müller, Matthias M; Andersen, Søren K; Hindi Attar, Catherine
2011-11-02
A central controversy in the field of attention is how the brain deals with emotional distractors and to what extent they capture attentional processing resources reflexively due to their inherent significance for guidance of adaptive behavior and survival. Especially, the time course of competitive interactions in early visual areas and whether masking of briefly presented emotional stimuli can inhibit biasing of processing resources in these areas is currently unknown. We recorded frequency-tagged potentials evoked by a flickering target detection task in the foreground of briefly presented emotional or neutral pictures that were followed by a mask in human subjects. We observed greater competition for processing resources in early visual cortical areas with shortly presented emotional relative to neutral pictures ~275 ms after picture offset. This was paralleled by a reduction of target detection rates in trials with emotional pictures ~400 ms after picture offset. Our finding that briefly presented emotional distractors are able to bias attention well after their offset provides evidence for a rather slow feedback or reentrant neural competition mechanism for emotional distractors that continues after the offset of the emotional stimulus.
A Low Power Linear Phase Programmable Long Delay Circuit.
Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J
2014-06-01
A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.
Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.
2007-01-01
We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472
Long distance measurement with a femtosecond laser based frequency comb
NASA Astrophysics Data System (ADS)
Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.
2017-11-01
Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles
2015-11-15
This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100more » kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.« less
Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe
2015-11-01
This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24,000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad(2)/Hz at 1 kHz offset and -150 dB rad(2)/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10(-9) at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10(-11) τ(-1/2) up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.
NASA Astrophysics Data System (ADS)
Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe
2015-11-01
This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.
Spatial Identification of Passive Radio Frequency Identification Tags Using Software Defined Radios
2012-03-01
75 3.4 Experiment Configurations . . . . . . . . . . . . . . . . . . . . 77 4.1 Simulation Enviromental Elements . . . . . . . . . . . . . . . . 79...tabletop zReader 20cm Tag vertical offset from reader z 10 cm 3dB angle of sensor antenna theat3db 0.698 radians Table 4.1: Simulation Enviromental
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Trade-off between linewidth and slip rate in a mode-locked laser model.
Moore, Richard O
2014-05-15
We demonstrate a trade-off between linewidth and loss-of-lock rate in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, whereas the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit, as calculated from large deviation theory.
NASA Astrophysics Data System (ADS)
Chave, Alan D.; Mattsson, Johan; Everett, Mark E.
2017-11-01
In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire sub-seafloor resistivity structure with the sea surface. The Fréchet derivatives are dominated by preferential sensitivity to the vertical conductivity in the reservoir layer and overburden at short offsets. The horizontal conductivity Fréchet derivatives are weaker than to comparable to the vertical derivatives at long offsets in the substrate. This means that the sensitivity to the horizontal conductivity is present in the shallow parts of the subsurface. In the presence of transverse anisotropy, it is necessary to go to higher frequencies to sense the horizontal conductivity in the overburden as compared to an isotropic model with the same horizontal conductivity. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
Stockholder expectations should temper aggressive strategic planning.
Lowell, W
1995-04-14
Too often, healthcare organizations make strategic plans with performance targets that don't justify the company's stock price. The result: They never really know if those plans will create value--even if they are fully achieved. In the race to provide superior returns to shareholders, companies must instead keep one eye on the competitive marketplace and the other on equity market expectations. In this article, Wayne Lowell, CFO of PacifiCare Health System, explains how his organization learned to do just that.
2014-03-24
ASFF) as of March 31, 2013. We identified material internal control weaknesses related to the financial reporting processes and noncompliance with...controls to achieve the objectives of effective and efficient operations, reliable financial reporting , and compliance with applicable laws and...internal control deficiencies in other financial reporting processes. Inadequate Controls OUSD(C)/CFO and NTM-A/CSTC-A did not have adequate internal
2001-03-30
I am pleased to be here today to discuss our report on the U.S. government’s consolidated financial statements for fiscal year 2000. Both the... consolidated financial statements and our report are included in the Fiscal Year 2000 Financial Report of the United States Government (Financial Report...CFO Act agencies), beginning with fiscal year 1996, and consolidated financial statements for the U.S. government, beginning with fiscal year 1997.
Steering optical comb frequencies by rotating the polarization state
NASA Astrophysics Data System (ADS)
Zhang, Yanyan; Zhang, Xiaofei; Yan, Lulu; Zhang, Pan; Rao, Bingjie; Han, Wei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng
2017-12-01
Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.
NASA Astrophysics Data System (ADS)
Monserrat, Bartomeu; Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-05-01
The efficiencies of solar cells based on kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) are limited by a low open-circuit voltage due to high rates of non-radiative electron-hole recombination. To probe the origin of this bottleneck, we calculate the band offset of CZTS(Se) with CdS, confirming a weak spike of 0.1 eV for CZTS/wurtzite-CdS and a strong spike of 0.4 eV for CZTSe/wurtzite-CdS. We also consider the effects of temperature on the band alignment, finding that increasing temperature significantly enhances the spike-type offset. We further resolve an outstanding discrepancy between the measured and calculated phonon frequencies for the kesterites, and use these to estimate the upper limit of electron and hole mobilities based on optic phonon Fröhlich scattering, which uncovers an intrinsic asymmetry with faster (minority carrier) electron mobility.
Zahari, Marina; Lee, Dominic Savio; Darlow, Brian Alexander
2016-10-01
The displayed readings of Masimo pulse oximeters used in the Benefits Of Oxygen Saturation Targeting (BOOST) II and related trials in very preterm babies were influenced by trial-imposed offsets and an artefact in the calibration software. A study was undertaken to implement new algorithms that eliminate the effects of offsets and artefact. In the BOOST-New Zealand trial, oxygen saturations were averaged and stored every 10 s up to 36 weeks' post-menstrual age. Two-hundred and fifty-seven of 340 babies enrolled in the trial had at least two weeks of stored data. Oxygen saturation distribution patterns corresponding with a +3 % or -3 % offset in the 85-95 % range were identified together with that due to the calibration artefact. Algorithms involving linear and quadratic interpolations were developed, implemented on each baby of the dataset and validated using the data of a UK preterm baby, as recorded from Masimo oximeters with the original software and a non-offset Siemens oximeter. Saturation distributions obtained were compared for both groups. There were a flat region at saturations 85-87 % and a peak at 96 % from the lower saturation target oximeters, and at 93-95 and 84 % respectively from the higher saturation target oximeters. The algorithms lowered the peaks and redistributed the accumulated frequencies to the flat regions and artefact at 87-90 %. The resulting distributions were very close to those obtained from the Siemens oximeter. The artefact and offsets of the Masimo oximeter's software had been addressed to determine the true saturation readings through the use of novel algorithms. The implementation would enable New Zealand data be included in the meta-analysis of BOOST II trials, and be used in neonatal oxygen studies.
Tunable dispersion compensation of quantum cascade laser frequency combs.
Hillbrand, Johannes; Jouy, Pierre; Beck, Mattias; Faist, Jérôme
2018-04-15
Compensating for group velocity dispersion is an important challenge to achieve stable midinfrared quantum cascade laser (QCL) frequency combs with large spectral coverage. We present a tunable dispersion compensation scheme consisting of a planar mirror placed behind the back facet of the QCL. Dispersion can be either enhanced or decreased depending on the position of the mirror. We demonstrate that the fraction of the comb regime in the dynamic range of the laser increases considerably when the dispersion induced by the Gires-Tournois interferometer compensates the intrinsic dispersion of the laser. Furthermore, it is possible to tune to the offset frequency of the comb with the Gires-Tournois interferometer while the repetition frequency is almost unaffected.
Offset fed slot antenna for broadband operation
NASA Astrophysics Data System (ADS)
Ritish, K.; Piyush, S.; Praveen Kumar, A. V.
2018-03-01
In this paper, a microstrip fed rectangular slot antenna with wideband characteristics is proposed. Both the impedance and radiation characteristics of the proposed antenna are presented. It is shown that a properly offset feed can give a dual resonance nature, which can be optimized to enable wideband behavior. From HFSS simulation, an impedance bandwidth (-10 dB) of 49.92 % (2.51 GHz to 4.18 GHz) about the center frequency of the band is obtained. Prototype measurement demonstrates a bandwidth of 45.30 % (2.51 GHz to 3.98 GHz). Simulated radiation patterns show bidirectional behavior, which is stable in the band with a peak gain of 5.7 dBi and a gain variation of 2 dBi.
47 CFR 1.1914 - Collection in installments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Claims Owed the United States Administrative Offset-Consumer Reporting Agencies-Contracting for... will be sufficient in size and frequency to liquidate the debt in three years or less. (c) Security for... notwithstanding the refusal of the debtor to execute a written agreement or to give security, at the Commission's...
A Report on GPS and Galileo Time Offset Coordination Efforts
2007-01-01
broadcast as part of the GPS and Galileo navigation message and determined by: Two-way Satellite Time and Frequency Transfer ( TWSTFT ); Common...navigation message • use of TWSTFT and GPS Common View The overall goal is to verify the GGTO performance budget for the IOV Phase (detailed budget
Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator
Metcalf, A. J.; Quinlan, F.; Fortier, T. M.; Diddams, S. A.; Weiner, A. M.
2016-01-01
We investigate the low timing jitter properties of a tunable single-pass optoelectronic frequency comb generator. The scheme is flexible in that both the repetition rate and center frequency can be continuously tuned. When operated with 10 GHz comb spacing, the integrated residual pulse-to-pulse timing jitter is 11.35 fs (1 Hz to 10 MHz) with no feedback stabilization. The corresponding phase noise at 1 Hz offset from the photodetected 10 GHz carrier is −100 dBc/Hz. PMID:26865734
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Phillips, C. R.; Langrock, C.; Klenner, A.; Johnson, A. R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A. L.; Fejer, M. M.; Keller, U.
2016-11-01
We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μ m and covers a critical spectral region for important environmental and industrial applications, such as molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped semiconductor saturable absorber mirror-mode-locked ytterbium-doped calcium-aluminum gadolynate (Yb:CALGO) laser operating at 1 μ m . The frequency-conversion process is based on optical parametric amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of 1.4 - 1.8 μ m via supercontinuum generation in a silicon-nitride (Si3 N4 ) waveguide. Both the PPLN and Si3 N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to 35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices. Based on numerical simulations, we explain how high amplification can be achieved at low energy using the interplay between mode confinement and a favorable group-velocity mismatch configuration where the mid-IR pulse moves at the same velocity as the pump.
Influence of modulation frequency in rubidium cell frequency standards
NASA Technical Reports Server (NTRS)
Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.
1983-01-01
The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.
The ESA/MBB unfurlable mesh antenna development for mobile services
NASA Astrophysics Data System (ADS)
Kellermeier, H.; Vorbrugg, H.; Pontoppidan, K.; Eaton, D. C. G.
Mobile services via satellite in the 800-900 MHz frequency range have recently been studied by SPAR Aerospace Ltd in the M-SAT phase B using various unfurlable offset reflector concepts between 9 and 5 m aperture diameters for 6-, 4- and 2-beam coverage. For a 2-beam coverage of Canada and U.S.A. two offset antennas each of 5 m aperture diameter are required. The MBB offset unfurlable mesh antenna (UMA) developed since 1983 under an ESA contract is one of the attractive candidates: The design concept chosen uses foldable radial ribs of carbon fibre which deploy a gold plated molybdenum mesh on adjustable stand-offs. This concept is applicable for offset aperture diameters up to 12 m since the carbon fibre ribs are double folded and provide for a high package density when stowed at the spacecraft during launch. The electrical analysis performed by TICRA/Copenhagen was assisted by electrical measurements on mesh samples, verifying that main charactertics as ohmic resistance, transmission loss and passive intermodulation products (PIMP) lie within the required tolerances if the mesh is pretensioned to a certain configuration. For on-orbit testing and retrieval by the Shuttle the reflector shows a unique design feature of retractability by the reversable deployment sequence.
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
Low-noise sub-harmonic injection locked multiloop ring oscillator
NASA Astrophysics Data System (ADS)
Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui
2016-09-01
A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.
Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves
NASA Astrophysics Data System (ADS)
Ding, Yu; Umbanhowar, Paul
2003-03-01
We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.
The case of the combative CFO.
Nichols, N A; Bagley, C E; Beard, E; Dworkin, D; Millstein, I M
1992-01-01
Minute Publishing Chairman and CEO Neil Harcum has a right to be proud of his new national newspaper, America Today. It has won three Pulitzer Prizes and attracted one million readers in just three years of publication. But, as CFO Peter Rawson points out, it's also losing $100 million a year and has broken Minute's 20-year string of earnings gains. In the process, the company has been split between two warring factions: one is backing Harcum and favors continuing the paper. The other agrees with Rawson that the project must be stopped. The board of directors has been assembled to decide the newspaper's fate. In his speech to the board, Rawson says it's time to cut Minute's losses and put an end to America Today. And Wall Street agrees. Several brokerage houses have taken Minute off their buy lists, and rating agencies are about to down-grade the company's debt. "America Today is not a good investment," Rawson argues. "Certainly, it isn't in keeping with our commitment to deliver maximum value to our shareholders." But Harcum thinks Rawson is way out of line. "We cannot allow our bean-counters to set policy," he claims. Harcum sees the newspaper as a product of the future that has created its own market. It's only a matter of time before America Today attracts enough advertising to put it in the black. He has a successful track record, and he doesn't want the board to lose faith in him now.(ABSTRACT TRUNCATED AT 250 WORDS)
Ground control system for the midcourse space experiment UTC clock
NASA Technical Reports Server (NTRS)
Dragonette, Richard
1994-01-01
One goal of the Midcourse Space Experiment (MSX) spacecraft Operations Planning Center is to maintain the onboard satellite UTC clock (UTC(MSX)) to within 1 millisecond of UTC(APL) (the program requirement is 10 msec). The UTC(MSX) clock employs as its time base an APL built 5 MHz quartz oscillator, which is expected to have frequency instabilities (aging rate + drift rate + frequency offset) that will cause the clock to drift approximately two to ten milliseconds per day. The UTC(MSX) clock can be advanced or retarded by the APL MSX satellite ground control center by integer multiples of 1 millisecond. The MSX Operations Planning Center is developing software which records the drift of UTC(MSX) relative to UTC(APL) and which schedules the time of day and magnitude of UTC(MSX) clock updates up to 48 hours in advance. Because of the manner in which MSX spacecraft activities are scheduled, MSX clock updates are planned 24 to 48 hours in advance, and stored in the satellite's computer controller for later execution. Data will be collected on the drift of UTC(MSX) relative to UTC(APL) over a three to five day period. Approximately six times per day, the time offset between UTC(MSX) and UTC(APL) will be measured by APL with a resolution of less than 100 microseconds. From this data a second order analytical model of the clock's drift will be derived. This model will be used to extrapolate the offset of the MSX clock in time from the present to 48 hours in the future. MSX clock updates will be placed on the spacecraft's daily schedule whenever the predicted clock offset exceeds 0.5 milliseconds. The paper includes a discussion of how the empirical model of the MSX clock is derived from satellite telemetry data, as well as the algorithm used to schedule MSX clock updates based on the model.
LISA Technology Development at GSFC
NASA Technical Reports Server (NTRS)
Thorpe, James Ira; McWilliams, S.; Baker, J.
2008-01-01
The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry, specifically in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. Here, we report on a modification to the standard modulation/demodulation techniques used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed-length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meets the LISA requirements.
High density terahertz frequency comb produced by coherent synchrotron radiation
Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-01-01
Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043
Optical-frequency transfer over a single-span 1840 km fiber link.
Droste, S; Ozimek, F; Udem, Th; Predehl, K; Hänsch, T W; Schnatz, H; Grosche, G; Holzwarth, R
2013-09-13
To compare the increasing number of optical frequency standards, highly stable optical signals have to be transferred over continental distances. We demonstrate optical-frequency transfer over a 1840-km underground optical fiber link using a single-span stabilization. The low inherent noise introduced by the fiber allows us to reach short term instabilities expressed as the modified Allan deviation of 2×10(-15) for a gate time τ of 1 s reaching 4×10(-19) in just 100 s. We find no systematic offset between the sent and transferred frequencies within the statistical uncertainty of about 3×10(-19). The spectral noise distribution of our fiber link at low Fourier frequencies leads to a τ(-2) slope in the modified Allan deviation, which is also derived theoretically.
On-chip dual-comb based on quantum cascade laser frequency combs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.
2015-12-21
Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-combmore » systems.« less
Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)
2015-01-01
An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.
75 FR 65046 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... benefits as earnings increase. The experimental design for BOND will test a benefit offset alone and in... proposed public survey data collections will have four components--an impact study, a cost-benefit analysis..., 2010 at 75 FR 49013. Average burden Survey Number of Frequency of Number of per response Total annual...
Analysis, Simulation, and Fabrication of Current Mode Controlled DC-DC Power Converters
1999-12-01
susceptibility), vou/ vin . 3 . The output impedance including the load. 22 The crossover frequency, coc, appears in all poles and is defined as: oo... VIN - 3 0 VIN - 3 V Delay to Outputs (TJ=25*C, (Note 2) 200 500 200 500 ns ( Current Limit Adjust Section Current Limit Offset
Four-channel temperature and humidity microwave scanning radiometer
NASA Astrophysics Data System (ADS)
Xu, Pei-Yuan
1994-06-01
A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.
Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.
2010-01-01
We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitachi, K., E-mail: hitachi.kenichi@lab.ntt.co.jp; Ishizawa, A.; Mashiko, H.
2015-06-08
We report the stabilization of the carrier-envelope offset (CEO) frequency of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. The interferometer is implemented by a dual-pitch periodically poled lithium niobate ridge waveguide with two different quasi-phase matching pitch sizes. We obtain a 52-dB signal-to-noise ratio in the 100-kHz resolution bandwidth of a heterodyne beat signal, which is sufficient for frequency stabilization. We also demonstrate that the collinear geometry is robust against environmental perturbation by comparing in-loop and out-of-loop Allan deviations when the in-loop CEO frequency is stabilized with a phase-locked loop circuit.
Frequency and Phase-lock Control of a 3 THz Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Betz, A. L.; Boreiko, R. T.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2005-01-01
We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with l-part-in-lO(exp 8) accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2017-03-01
National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity signals on the estimation of height datum offsets is analyzed in detail for representative GNSS/leveling data sets in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of up to 3 cm, the conducted analyses show that significant improvements of 30-40% can be achieved in terms of a reduced standard deviation and range of the least squares adjusted residuals.
Accounting for the Effect of Earth's Rotation in Magnetotelluric Inference
NASA Astrophysics Data System (ADS)
Riegert, D. L.; Thomson, D. J.
2017-12-01
The study of geomagnetism has been documented as far back as 1722 when the watchmaker G. Graham constructed a more sensitive compass and showed that the variations in geomagnetic direction varied with an irregular daily pattern. Increased interest in geomagnetism in geomagnetism began at the end of the 19th century (Lamb, Schuster, Chapman, and Price). The Magnetotelluric Method was first introduced in the 1950's (Cagniard and Tikhonov), and, at its core, is simply a regression problem. The result of this method is a transfer function estimate which describes the earth's response to magnetic field variations. This estimate can then be used to infer the earth's subsurface structure; useful for applications such as natural resource exploration. The statistical problem of estimating a transfer function between geomagnetic and induced current measurements has evolved since the 1950's due to a variety of problems: non-stationarity, outliers, and violation of Gaussian assumptions. To address some of these issues, robust regression methods (Chave and Thomson, 2004) and the remote reference method (Gambel, 1979) have been proposed and used. The current method seems to provide reasonable estimates, but still requires a large amount of data. Using the multitaper method of spectral analysis (Thomson, 1982), taking long (greater than 4 months) blocks of geomagnetic data, and concentrating on frequencies below 1000 microhertz to avoid ultraviolet effects, one finds that:1) the cross-spectra are dominated by many offset frequencies including plus and minus 1 and 2 cycles per day;2) the coherence at these offset frequencies is often stronger than at zero offset;3) there are strong couplings from the "quasi two-day" cycle;4) frequencines are usually not symmetric;5) the spectra are dominated by the normal modes of the Sun. This talk will discuss the method of incorporating these observations into the transfer function estimation model, some of the difficulties that arose, their solutions, and current results.
2014 Summer Series - Lewis Braxton III - Lessons Learned Enroute to Becoming Deputy Center Director
2014-07-01
This talk will take you on a journey of Mr. Lewis Braxton's successful career through the lens of an African American. You will gain insights to his success as he shares the wisdom he gained through personal and professional experiences. He will walk you through his early childhood, education, NASA internship at Dryden Flight Research Center (DFRC), and his transition to Ames as he developed and matured into a senior leader. Mr. Braxton will also provide a special focus on his CFO and Deputy Director roles at NASA Ames.
Financial Audit Guide: Auditing the Statement of Budgetary Resources
2001-12-01
financial reporting should assist in fulfilling the government’s duty to be publicly accountable for moneys raised from the public and for their expenditure in accordance with applicable laws that establish the budget and other related laws and regulations. As a means to help achieve this objective, beginning with fiscal year 1998, executive agencies subject to the Chief Financial Officers (CFO) Act of 1990, as expanded by the Government Management Reform Act of 1994, were each required to prepare and submit for audit a Statement of Budgetary Resources (SBR) in
High-precision multi-node clock network distribution.
Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2017-10-01
A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.
Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz
NASA Astrophysics Data System (ADS)
Santarelli, G.; Clairon, A.; Lea, S. N.; Tino, G. M.
1994-01-01
In order to stimulate atomic velocity-selective Raman transitions on the 852 nm caesium D 2 line in an atomic fountain clock, two extended-cavity diode lasers have been optically phase-locked at a frequency offset of 9.192 GHz. The measured linewidth (fwhm) of the free-running lasers is 50 kHz. The phase-locked loop bandwidth, evaluated by observing the frequency noise spectrum, is 3.7 MHz and the phase error variance is found to be no more than 4 × 10 -3 rad 2.
A Microwave Tunable Bandpass Filter for Liquid Crystal Applications
NASA Astrophysics Data System (ADS)
Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan
2017-07-01
In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.
Method and apparatus for Doppler frequency modulation of radiation
NASA Technical Reports Server (NTRS)
Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)
1980-01-01
A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.
Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye
2014-11-15
In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.
Kadner, Alexander; Berrebi, Albert S.
2008-01-01
Neurons in the superior paraolivary nucleus (SPON) respond to the offset of pure tones with a brief burst of spikes. Medial nucleus of the trapezoid body (MNTB) neurons, which inhibit the SPON, produce a sustained pure tone response followed by an offset response characterized by a period of suppressed spontaneous activity. This MNTB offset response is duration dependent and critical to the formation of SPON offset spikes (Kadner et al., 2006; Kulesza, Jr. et al., 2007). Here we examine the temporal resolution of the MNTB/SPON circuit by assessing its capability to i) detect gaps in tones, and ii) synchronize to sinusoidally amplitude modulated (SAM) tones. Gap detection was tested by presenting two identical pure tone markers interrupted by gaps ranging from 0–25 ms duration. SPON neurons responded to the offset of the leading marker even when the two markers were separated only by their ramps (i.e., a 0 ms gap); longer gap durations elicited progressively larger responses. MNTB neurons produced an offset response at gap durations of 2 ms or longer, with a subset of neurons responding to 0 ms gaps. SAM tone stimuli used the unit’s characteristic frequency as a carrier, and modulation rates ranged from 40–1160 Hz. MNTB neurons synchronized to modulation rates up to ~1 KHz, whereas spiking of SPON neurons decreased sharply at modulation rates ≥ 400 Hz. Modulation transfer functions based on spike count were all-pass for MNTB neurons and low-pass for SPON neurons; the modulation transfer functions based on vector strength were low-pass for both nuclei, with a steeper cut-off for SPON neurons. Thus, the MNTB/SPON circuit encodes episodes of low stimulus energy, such as gaps in pure tones and troughs in amplitude modulated tones. The output of this circuit consists of brief SPON spiking episodes; their potential effects on the auditory midbrain and forebrain are discussed. PMID:18155850
NASA Astrophysics Data System (ADS)
Pamuk, Eren; Önsen, Funda; Turan, Seçil
2014-05-01
Shear-wave velocity is so critical parameter for evaluating the dynamic behaviour of soil in the subsurface investigations. Multichannel Analysis of Surface Waves (MASW) is a popular method to utilize shear-wave velocity in shallow depth surveys. This method uses the dispersive properties of shear-waves for imaging the subsurface layers. In MASW method, firstly data are acquired multichannel field records (or shot gathers), then dispersion curves are extracted. Finally, these dispersion curves are inverted to obtain one dimension (1D) Vs depth profiles. Reliable and accurate results of evaluating shear wave velocity depends on dispersion curves. Therefore, determination of basic mode dispersion curve is very important. In this study, MASW measurements were carried out different types of spread and various offsets to obtain better results in İzmir, Turkey. The types of spread were selected as pairs geophone group of spread, increase spread and constant interval spread. The data were collected in the Campus of Tinaztepe, Dokuz Eylul University, Izmir (Buca). 24 channel Geometrix Geode seismic instruments, 4.5 Hz low frequency receiver (geophone) and sledge hammer (8kg) as an energy source were used in this study. The data were collected with forward shots. MASW measurements were applied different profiles and their lengths were 24 m. Geophone intervals were selected 1 m in the constant interval spread and offsets were selected respectively 1, 4, 8, 12, 24 m in all spreads. In the first stage of this study, the measurements, which were taken in these offsets, were compared between each other in all spreads. The results show that higher resolution dispersion curves were observed at 1 m, 2 m and 4 m offsets. In the other offsets (8, 12, 24 m), distinguishability between basic and higher modes dispersion curves became difficult. In the second stage of this study, obtained dispersion curves of different spread were compared to all spread type of MASW survey.
NASA Technical Reports Server (NTRS)
Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)
2011-01-01
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)
Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration
Porter, Heather L.; Hall, Joseph W.; Grose, John H.
2017-01-01
Purpose The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method Thresholds were obtained for wideband noise (500–4500 Hz) with 4- or 40-ms raised-cosine ramps and for a 25-Hz-wide low-fluctuation narrowband noise centered on either 500 or 5000 Hz with 40-ms ramps. Stimuli were played continuously at 70 dB SPL, and the task was to indicate which of 3 intervals contained a gap. Listeners were 5.2- to 15.1-year-old children (n = 40) and adults (n = 10) with normal hearing. Results Regardless of listener age, gap detection thresholds for the wideband noise tended to be lower when gaps were shaped using 4-ms rather than 40-ms ramps. Thresholds also tended to be lower for the low-fluctuation narrowband noise centered on 5000 Hz than 500 Hz. Performance reached adult levels after 11 years of age for all 4 stimuli. Maturation was not uniform across individuals, however; a subset of young children performed like adults, including some 5-year-olds. Conclusion For these stimuli, the developmental trajectory was similar regardless of narrowband noise center frequency or wideband noise onset and offset ramp duration. PMID:28056469
NASA Astrophysics Data System (ADS)
Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss
2018-03-01
Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.
Wang, G.-Q.; Boore, D.M.; Igel, H.; Zhou, X.-Y.
2003-01-01
The digital accelerograph network installed in Taiwan produced a rich set of records from the 20 September 1999 Chi-Chi, Taiwan earthquake (Mw 7.6). Teledyne Geotech model A-800 and A-900A* digital accelerographs were colocated at 22 stations that recorded this event. Comparisons of the amplitudes, frequency content, and baseline offsets show that records from several of the A-800 accelerographs are considerably different than those from the colocated A-900A accelerographs. On this basis, and in view of the more thorough predeployment testing of the newer A-900A instruments, we recommend that the records from the A-800 instruments be used with caution in analyses of the mainshock and aftershocks. At the Hualien seismic station two A-900A and one A-800 instruments were colocated, along with a Global Positioning System instrument. Although the records from the two A-900A instruments are much more similar than those from a colocated A-800 instrument, both three-component records contain unpredictable baseline offsets, which produced completely unrealistic ground displacements derived from the accelerations by double integration, as do many of the strong-motion data from this event; the details of the baseline offsets differ considerably on the two three-component records. There are probably numerous sources of the baseline offsets, including sources external to the instruments, such as tilting or rotation of the ground, and sources internal to the instruments, such as electrical or mechanical hysteresis in the sensors. For the two colocated A-900A records at the Hualien seismic station, however, the differences in the baseline offsets suggest that the principal source is some transient disturbance within the instrument. The baseline offsets generally manifest themselves in the acceleration time series as pulses or steps, either singly or in combination. We find a 0.015-Hz low-cut filter can almost completely eliminate the effects of the baseline offsets, but then information regarding the permanent displacements is lost. The causative mechanisms of the baseline offsets are unknown presently. Hence, it is very difficult to recover the permanent displacements from the modern digital records, although for records close to large earthquakes, the signal-to-noise ratio should theoretically be adequate to obtain ground motions with periods of hundreds of seconds. This study reinforces our conclusion from previous studies that the sources of baseline offsets occurring in digital strong-motion records are very complex and often unpredictable, and that, therefore, it is difficult to remove the baseline effects to maximize the information content of the record. The baseline offsets only affect very long period motions (e.g., >20 sec), however, and therefore are of little or no engineering concern.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
The best-laid incentive plans.
Kerr, Steve
2003-01-01
Hiram Phillips couldn't have been in better spirits. The CFO and chief administrative officer of Rainbarrel Products, a diversified consumer-durables manufacturer, Phillips felt he'd single-handedly turned the company's performance around. He'd only been at Rainbarrel a year, but the company's numbers had, according to his measures, already improved by leaps and bounds. Now the day had come for Hiram to share the positive results of his new performance management system with his colleagues. The corporate executive council was meeting, and even CEO Keith Randall was applauding the CFO's work: "Hiram's going to give us some very good news about cost reductions and operating efficiencies, all due to the changes he's designed and implemented this year." Everything looked positively rosy--until some questionable information began to trickle in from other meeting participants. It came to light, for instance, that R&D had developed a breakthrough product that was not being brought to market as quickly as it should have been--thanks to Hiram's inflexible budgeting process. Then, too, an employee survey showed that workers were demoralized. And customers were complaining about Rainbarrel's service. The general message? The new performance metrics and incentives had indeed been affecting overall performance--but not for the better. Should Rainbarrel revisit its approach to performance management? Commentators Stephen Kaufman, a senior lecturer at Harvard Business School; compensation consultant Steven Gross; retired U.S. Navy vice admiral and management consultant Diego Hernandez; and Barry Leskin, a consultant and former chief learning officer for Chevron Texaco, offer their advice in this fictional case study.
NASA Astrophysics Data System (ADS)
Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.
2014-04-01
The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995more » financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.« less
Talaee, Rezvan; Katiraee, Farzad; Ghaderi, Maryam; Erami, Mahzad; Kazemi Alavi, Azam; Nazeri, Mehdi
2014-01-01
Background: Malassezia species are lipophilic yeasts found on the skin surface of humans and other warm-blooded vertebrates. It is associated with various human diseases, especially pityriasis versicolor, which is a chronic superficial skin disorder. Objectives: The aim of the present study was to identify Malassezia species isolated from patients’ samples affected by pityriasis versicolor, using molecular methods in Kashan, Iran. Patients and Methods: A total of 140 subjects, suspected of having pityriasis versicolor from Kashan, were clinically diagnosed and then confirmed by direct microscopic examination. The scraped skin specimens were inoculated in modified Dixon’s medium. DNA was extracted from the colonies and PCR amplification was carried out for the 26s rDNA region. PCR products were used to further restriction fragment length polymorphism by CfoI enzyme. Results: Direct examination was positive in 93.3% of suspected pityriasis versicolor lesions. No statistically significant difference was observed in the frequency of Malassezia species between women and men. The highest prevalence of tinea versicolor was seen in patients 21–30 years-of-age. No difference could be seen in the frequency of Malassezia species depending on the age of the patients. In total, 65% of patients with pityriasis versicolor had hyperhidrosis. The most commonly isolated Malassezia species in the pityriasis versicolor lesions were; Malassezia globosa (66%), M. furfur (26%), M. restricta (3%), M. sympodialis (3%), and M. slooffiae (2%). Malassezia species were mainly isolated from the neck and chest. Conclusions: This study showed M. globosa to be the most common Malassezia species isolated from Malassezia skin disorders in Kashan, Iran. The PCR-RFLP method was useful in the rapid identification of the Malassezia species. By using these methods, the detection and identification of individual Malassezia species from clinical samples was substantially easier. PMID:25485051
Hsi-Ping, Liu
1990-01-01
Impulse responses including near-field terms have been obtained in closed form for the zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space. The method is based on the correspondence principle. Through transformation of variables, the Fourier transform of the elastic impulse response is put in a form such that the Fourier transform of the corresponding anelastic impulse response can be expressed as elementary functions and their definite integrals involving distance angular frequency, phase velocities, and attenuation factors. These results are used for accurate calculation of shear-wave arrival rise times of synthetic seismograms needed for data interpretation of anelastic-attenuation measurements in near-surface sediment. -Author
NASA Astrophysics Data System (ADS)
Lee, Kai-Hsuan; Chang, Ping-Chuan; Chen, Tse-Pu; Chang, Sheng-Po; Shiu, Hung-Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chang, Shoou-Jinn
2013-02-01
Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 ± 0.1 eV and conduction band offset of 1.61 ± 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kai-Hsuan; Chen, Chia-Hao; Chang, Ping-Chuan
2013-02-18
Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.
Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H
1992-06-01
There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.
Fast Offset Laser Phase-Locking System
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent
2008-01-01
Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog-to-digital converter (ADC) as that of the previously reported phasemeter. The ADC output is passed to the FPGA, wherein the signal is demodulated using a digitally generated oscillator signal at the offset locking frequency specified by the user. The demodulated signal is low-pass filtered, decimated to a sample rate of 1 MHz, then filtered again. The decimated and filtered signal is converted to an analog output by a 1 MHz, 16-bit digital-to-analog converters. After a simple low-pass filter, these analog signals drive the thermal and piezoelectric transducers of the laser.
Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses
NASA Astrophysics Data System (ADS)
Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto
2015-02-01
We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.
Regulation control and energy management scheme for wireless power transfer
Miller, John M.
2015-12-29
Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.
NASA Technical Reports Server (NTRS)
Chen, C. C.; Franklin, C. F.
1980-01-01
The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.
OBIST methodology incorporating modified sensitivity of pulses for active analogue filter components
NASA Astrophysics Data System (ADS)
Khade, R. H.; Chaudhari, D. S.
2018-03-01
In this paper, oscillation-based built-in self-test method is used to diagnose catastrophic and parametric faults in integrated circuits. Sallen-Key low pass filter and high pass filter circuits with different gains are used to investigate defects. Variation in seven parameters of operational amplifier (OP-AMP) like gain, input impedance, output impedance, slew rate, input bias current, input offset current, input offset voltage and catastrophic as well as parametric defects in components outside OP-AMP are introduced in the circuit and simulation results are analysed. Oscillator output signal is converted to pulses which are used to generate a signature of the circuit. The signature and pulse count changes with the type of fault present in the circuit under test (CUT). The change in oscillation frequency is observed for fault detection. Designer has flexibility to predefine tolerance band of cut-off frequency and range of pulses for which circuit should be accepted. The fault coverage depends upon the required tolerance band of the CUT. We propose a modification of sensitivity of parameter (pulses) to avoid test escape and enhance yield. Result shows that the method provides 100% fault coverage for catastrophic faults.
Fu, Songnian; Xu, Zuying; Lu, Jianing; Jiang, Hexun; Wu, Qiong; Hu, Zhouyi; Tang, Ming; Liu, Deming; Chan, Calvin Chun-Kit
2018-03-19
We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.
Symmetry-controlled time structure of high-harmonic carrier fields from a solid
Langer, F.; Hohenleutner, M.; Huttner, U.; Koch, S. W.; Kira, M.; Huber, R.
2017-01-01
High-harmonic (HH) generation in crystalline solids1–6 marks an exciting development, with potential applications in high-efficiency attosecond sources7, all-optical bandstructure reconstruction8,9, and quasiparticle collisions10,11. Although the spectral1–4 and temporal shape5 of the HH intensity has been described microscopically1–6,12, the properties of the underlying HH carrier wave have remained elusive. Here we analyse the train of HH waveforms generated in a crystalline solid by consecutive half cycles of the same driving pulse. Extending the concept of frequency combs13–15 to optical clock rates, we show how the polarization and carrier-envelope phase (CEP) of HH pulses can be controlled by crystal symmetry. For some crystal directions, we can separate two orthogonally polarized HH combs mutually offset by the driving frequency to form a comb of even and odd harmonic orders. The corresponding CEP of successive pulses is constant or offset by π, depending on the polarization. In the context of a quantum description of solids, we identify novel capabilities for polarization- and phase-shaping of HH waveforms that cannot be accessed with gaseous sources. PMID:28572835
Seismic Linear Noise Attenuation with Use of Radial Transform
NASA Astrophysics Data System (ADS)
Szymańska-Małysa, Żaneta
2018-03-01
One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.
Integration of ERS and ASAR Time Series for Differential Interferometric SAR Analysis
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.; Wiesmann, A.
2005-12-01
Time series SAR interferometric analysis requires SAR data with good temporal sampling covering the time period of interest. The ERS satellites operated by ESA have acquired a large global archive of C-Band SAR data since 1991. The ASAR C-Band instrument aboard the ENVISAT platform launched in 2002 operates in the same orbit as ERS-1 and ERS-2 and has largely replaced the remaining operational ERS-2 satellite. However, interferometry between data acquired by ERS and ASAR is complicated by a 31 MHz offset in the radar center frequency between the instruments leading to decorrelation over distributed targets. Only in rare instances, when the baseline exceeds 1 km, can the spectral shift compensate for the difference in the frequencies of the SAR instruments to produce visible fringes. Conversely, point targets do not decorrelate due to the frequency offset making it possible to incorporate the ERS-ASAR phase information and obtain improved temporal coverage. We present an algorithm for interferometric point target analysis that integrates ERS-ERS, ASAR-ASAR and ERS-ASAR data. Initial analysis using the ERS-ERS data is used to identify the phase stable point-like scatterers within the scene. Height corrections relative to the initial DEM are derived by regression of the residual interferometric phases with respect to perpendicular baseline for a set of ERS-ERS interferograms. The ASAR images are coregistered with the ERS scenes and the point phase values are extracted. The different system pixel spacing values between ERS and ASAR requires additional refinement in the offset estimation and resampling procedure. Calculation of the ERS-ASAR simulated phase used to derive the differential interferometric phase must take into account the slightly different carrrier frequencies. Differential ERS-ASAR point phases contain an additional phase component related to the scatterer location within the resolution element. This additional phase varies over several cycles making the differential interferogram appear as uniform phase noise. We present how this point phase difference can be determined and used to correct the ERS-ASAR interferograms. Further processing proceeds as with standard ERS-ERS interferogram stacks utilizing the unwrapped point phases to obtain estimates of the deformation history, and path delay due to variations in tropospheric water vapor. We show and discuss examples demonstrating the success of this approach.
Gravity mode offset and properties of the evanescent zone in red-giant stars
NASA Astrophysics Data System (ADS)
Hekker, S.; Elsworth, Y.; Angelou, G. C.
2018-03-01
Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed are sensitive to the range of input frequencies.
Johnston, M.J.; Mueller, R.J.; Sasai, Yoichi
1994-01-01
Recent reports suggest that large magnetic field changes occur prior to, and during, large earthquakes. Two continuously operating proton magnetometers, LSBM and OCHM, at distances of 17.3 and 24.2 km, respectively, from the epicenter of the 28 June 1992 Mw 7.3 Landers earthquake, recorded data through the earthquake and its aftershocks. These two stations are part of a differentially connected array of proton magnetometers that has been operated along the San Andreas fault since 1976. The instruments have a sensitivity of 0.25 nT or better and transmit data every 10 min through the GOES satellite to the USGS headquarters in Menlo Park, California. Seismomagnetic offsets of −1.2 ± 0.6 and −0.7 ± 0.7 nT were observed at these sites. In comparison, offsets of −0.3 ± 0.2 and −1.3 ± 0.2 nT were observed during the 8 July 1986 ML 5.9 North Palm Springs earthquake, which occurred directly beneath the OCHM magnetometer site. The observations are generally consistent with seismomagnetic models of the earthquake, in which fault geometry and slip have the same from as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. In these models, right-lateral rupture occurs on connected fault segments in a homogeneous medium with average magnetization of 2 A/m. The fault-slip distribution has roughly the same form as the observed surface rupture, and the total moment release is 1.1 × 1020 Nm. There is no indication of diffusion-like character to the magnetic field offsets that might indicate these effects result from fluid flow phenomena. It thus seems unlikely that these earthquake-generated offsets and those produced by the North Palm Springs earthquake were generated by electrokinetic effects. Also, there are no indications of enhanced low-frequency magnetic noise before the earthquake at frequencies below 0.001 Hz.
Antenna Characterization for the Wideband Instrument for Snow Measurements
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.
2015-01-01
Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.
Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.
2015-01-01
Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
Optimized OFDM Transmission of Encrypted Image Over Fading Channel
NASA Astrophysics Data System (ADS)
Eldin, Salwa M. Serag
2014-11-01
This paper compares the quality of diffusion-based and permutation-based encrypted image transmission using orthogonal frequency division multiplexing (OFDM) over wireless fading channel. Sensitivity to carrier frequency offsets (CFOs) is one of the limitations in OFDM transmission that was compensated here. Different OFDM diffusions are investigated to study encrypted image transmission optimization. Peak signal-to-noise ratio between the original image and the decrypted image is used to evaluate the received image quality. Chaotic encrypted image modulated with CFOs compensated FFT-OFDM was found to give outstanding performance against other encryption and modulation techniques.
Evolution of genuine cross-correlation strength of focal onset seizures.
Müller, Markus F; Baier, Gerold; Jiménez, Yurytzy López; Marín García, Arlex O; Rummel, Christian; Schindler, Kaspar
2011-10-01
To quantify the evolution of genuine zero-lag cross-correlations of focal onset seizures, we apply a recently introduced multivariate measure to broad band and to narrow-band EEG data. For frequency components below 12.5 Hz, the strength of genuine cross-correlations decreases significantly during the seizure and the immediate postseizure period, while higher frequency bands show a tendency of elevated cross-correlations during the same period. We conclude that in terms of genuine zero-lag cross-correlations, the electrical brain activity as assessed by scalp electrodes shows a significant spatial fragmentation, which might promote seizure offset.
NASA Astrophysics Data System (ADS)
Storch, Joel A.; Elishakoff, Isaac
2013-11-01
We calculate the natural frequencies and mode shapes of a cantilevered double-walled carbon nanotube carrying a rigid body—representative of a bacterium or virus—at the tip of the outer nanotube. By idealizing the nanotubes as Bernoulli-Euler beams, we are able to obtain exact expressions for both the mode shapes and characteristic frequency equation. Separate analyses are performed for the special case of a concentrated tip mass and the more complicated situation where the tip body also exhibits inertia and mass center offset from the beam tip.
Two-Photon Absorption Characterization of HgCdTe
1990-07-30
r17 L3 _ , 952L2 9521- 240 L 976 , 210 979 LU ’~-~’ ~180~ - Eg=136.0 _-0.5 m eV Z-150 T 7K W FIG. 2. Wavelength depend- 0120[0 0 12 > ence of the...8217 / Army Center for Night Vision and Electro-Optics, Contract 0 i No. DAAB07-87-C-FO94. j W 9.329 FIG. 12. Wavelength depend- w ence of the...pres- presented in Fig. I. The two-photon magnetoabsorption ence of impurities and defects in samples of MCT with (TPMA) transitions are indicated by
2013-07-25
at remanent state (Fig. 4(d)). The obtained ME coefficient (the highest value we measure is 102 mV/ cm/Oe) and is comparable to that of bulk PZT -CFO...For a large field (H > Hc), a mag- netostrictive strain (k) must be already saturated and the ME coefficient estimated (Fig. 4) should be nearly...zero at high field (as a function of piezomagnetic coefficient (dk=dH), leading to a maximum in the ME response near Hc. That this is not observed can be
NASA Astrophysics Data System (ADS)
Zhou, Yangliu
The most commonly used proton conductive membrane in polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) studies to date is DuPont's NafionRTM, which is a perfluorinated copolymer of tetrafluoroethylene (TFE) and perfluorovinyl ether with a pendant sulfonic acid group. A focus of this work is to find ways to improve the performance of NafionRTM membranes. Crosslinking the TFE chains of fluorinated ionomeric copolymers to improve their thermal and mechanical stability is a proven route to this goal. A straightforward synthetic route to perfluorinated divinyl ethers of the formula CF2=CFO(CF 2)3[OCF(CF3)CF2]mOCF=CF 2 (m = 0-1) has been demonstrated. The compounds CF2=CFO(CF 2)3OCF=CF2 and CF2=CFO(CF2) 3OCF(CF3)CF2OCF=CF2 were prepared and characterized by GC-MS, 13C and 19F NMR, and gas-IR spectroscopy. Synthetic routes to fluorosulfato-tetrafluoropropionyl fluoride [FSO3CF2CF2C(O)F] and difluoromalonyl difluoride [F(O)CCF2C(O)F] with improved yields were found. The second focus of the dissertation was the development of fluorous triarylphosphines for use as new doping materials for the modification of NafionRTM membranes and for use as ligands in catalysts for biphasic catalysis. The synthesis and characterization of a series of new polyhexafluoropropylene oxide derivatives for preparation of fluorous triarylphosphines and phosphonium salts was studied, such as F[CF(CF3)CF2O] 4CF(CF3)CH2CH2I, F[CF(CF3)CF 2O]4CF(CF3)CH=CH2, F[CF(CF3)CF 2O]4CF(CF3) CH2CH2C6H5, and F[CF(CF 3)CF2O]4CF(CF3)CH2CH 2C6H4Br. In a separate study, the photochlorination of 2,2,3,3-tetrafluoro-1-propanol (HCF2CF2CH2OH) and 2,2,3,3-tetrafluoropropyl 2,2,3,3-tetrafluoropropionate [HCF2CF2C(O)OCH2 CF2CF2H] with super diazo blue light (lambda max = 420 nm) were investigated. The photochemical products are different from those obtained under mercury light (lambda = 253.7nm). A new compound ClCF2CF2C(O)OC(H)ClCF2CF2Cl was prepared and characterized by GC-MS, elemental analysis, 1H, 13C and 19F NMR, and gas-IR spectroscopy.
High-sensitivity multifunctional spinner magnetometer using a magneto-impedance sensor
NASA Astrophysics Data System (ADS)
Kodama, Kazuto
2017-01-01
A novel spinner magnetometer was developed with a wide dynamic range from 10-10 to 10-4 Am2 and a resolution of 10-11 Am2. High sensitivity was achieved with the use of a magneto-impedance (MI) sensor, which is a compact, sensitive magnetic sensor used industrially. Its slow-spinning rate (5 Hz) and the incorporation of a unique mechanism for adjusting the spacing between the sensing unit and the spinning axis allows the measurement of fragile samples sized 10-50 mm. The sensor configuration, in which a pair of MI sensors is connected in opposite serial, along with an amplification circuit with a programmable low-pass filter, reduces the problems of external noise and sensor drift. The signal, with reference to the spinning frequency, is detected with a lock-in amplifier. The MI spinner has two selectable measurement modes: the fundamental mode (F mode) and the harmonic mode (H mode). Measurements in the F mode detect signals of the fundamental frequency (5 Hz), in the same way as conventional spinner magnetometers. In the H mode, the second (10 Hz) and the third (15 Hz) harmonic components are measured, in addition to the fundamental component. Tests in the H mode were performed using a small coil and a natural sample to simulate dipoles with various degrees of offset. The results revealed that the magnitude of the fundamental component of the offset dipole was systematically larger (by several percent) than that of the nonoffset dipole. These findings suggest that this novel MI spinner will be useful in estimating the inhomogeneity of the magnetization of a sample that can equivalently be described by an offset dipole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch
2016-09-07
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function ofmore » pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.« less
A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.
Ying, Rex; Wall, Christine E
2016-12-08
Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias
2016-09-07
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.
A decision-directed network for dual-polarization crosstalk cancellation
NASA Technical Reports Server (NTRS)
Weber, W. J., III
1979-01-01
Frequency reuse in the specific form of dual-polarized microwave communication systems has grown in importance in recent years as a practical means of radio spectrum conservation. Ideally the capacity of a given frequency allocation can be doubled through dual-polarization. However, hardware imperfections and propagation effects, particularly rain depolarization, prevent the achievement of this doubling without severe system performance degradation. A decision-directed cross-polarization correction network is presented whose operation depends on only simple base-band signal processing. No pilot tones or frequency offsets are required. The loop can work with any two-dimensional signal set for digital data transmission. The loop has been experimentally verified and provides a means of doubling the data capacity with little performance degradation.
System stability and calibrations for hand-held electromagnetic frequency domain instruments
NASA Astrophysics Data System (ADS)
Saksa, Pauli J.; Sorsa, Joona
2017-05-01
There are a few multiple-frequency domain electromagnetic induction (EMI) hand-held rigid boom systems available for shallow geophysical resistivity investigations. They basically measure secondary field real and imaginary components after the system calibrations. One multiple-frequency system, the EMP-400 Profiler from Geophysical Survey Systems Inc., was tested for system calibrations, stability and various effects present in normal measurements like height variation, tilting, signal stacking and time stability. Results indicated that in test conditions, repeatable high-accuracy imaginary component values can be recorded for near-surface frequency soundings. In test conditions, real components are also stable but vary strongly in normal surveying measurements. However, certain calibration issues related to the combination of user influence and measurement system height were recognised as an important factor in reducing for data errors and for further processing like static offset corrections.
Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng
2015-07-13
We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.
Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP.
Sergeev, E; Grach, S; Shindin, A; Mishin, E; Bernhardt, P; Briczinski, S; Isham, B; Broughton, M; LaBelle, J; Watkins, B
2013-02-08
We report on artificial descending plasma layers created in the ionosphere F region by high-power high-frequency (HF) radio waves from High-frequency Active Auroral Research Program at frequencies f(0) near the fourth electron gyroharmonic 4f(ce). The data come from concurrent measurements of the secondary escaping radiation from the HF-pumped ionosphere, also known as stimulated electromagnetic emission, reflected probing signals at f(0), and plasma line radar echoes. The artificial layers appeared only for injections along the magnetic field and f(0)>4f(ce) at the nominal HF interaction altitude in the background ionosphere. Their average downward speed ~0.5 km/s holds until the terminal altitude where the local fourth gyroharmonic matches f(0). The total descent increases with the nominal offset f(0)-4f(ce).
Minimizing Environmental Magnetic Field Sources for nEDM
NASA Astrophysics Data System (ADS)
Brinson, Alex; Filippone, Bradley; Slutsky, Simon; Osthelder, Charles
2017-09-01
Measurement of the neutron's Electric Dipole Moment (nEDM) could potentially explain the Baryon Asymmetry Problem, and would suggest plausible extensions to the Standard Model. We will attempt to detect the nEDM by measuring the electric-field-dependent neutron precession frequency, which is highly sensitive to magnetic field gradients. In order to produce fields with sufficiently low gradients for our experiment, we eliminate environmental effects by offsetting the ambient field with a Field Compensation System (FCS), then magnetically shielding the reduced field with a Mu-Metal cylinder. We discovered that the strongest environmental effect in our lab came from iron rebar embedded in the floor beneath the proposed experiment location. The large extent and strength of the floor's magnetization made the effect too large to offset with the FCS, forcing us to relocate our apparatus. The floor's magnetic field was mapped with a Hall probe in order to determine the most viable experiment locations. A 3-axis Fluxgate magnetometer was then used to determine the floor field's drop-off and shape at these locations, and a final apparatus position was determined which minimized the floor's effect such that it could be effectively offset and shielded by our experiment. Caltech SFP Office.
Time Analyzer for Time Synchronization and Monitor of the Deep Space Network
NASA Technical Reports Server (NTRS)
Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert
2003-01-01
A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Roth, Titus
1988-01-01
Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage.
NASA Astrophysics Data System (ADS)
He, Y. F.; Zhu, W.; Zhang, Q.; Zhang, W. T.
2018-04-01
InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.
Lucero, Jorge C.; Koenig, Laura L.; Lourenço, Kelem G.; Ruty, Nicolas; Pelorson, Xavier
2011-01-01
This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic ∕h∕. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon. PMID:21428520
A time-frequency classifier for human gait recognition
NASA Astrophysics Data System (ADS)
Mobasseri, Bijan G.; Amin, Moeness G.
2009-05-01
Radar has established itself as an effective all-weather, day or night sensor. Radar signals can penetrate walls and provide information on moving targets. Recently, radar has been used as an effective biometric sensor for classification of gait. The return from a coherent radar system contains a frequency offset in the carrier frequency, known as the Doppler Effect. The movements of arms and legs give rise to micro Doppler which can be clearly detailed in the time-frequency domain using traditional or modern time-frequency signal representation. In this paper we propose a gait classifier based on subspace learning using principal components analysis(PCA). The training set consists of feature vectors defined as either time or frequency snapshots taken from the spectrogram of radar backscatter. We show that gait signature is captured effectively in feature vectors. Feature vectors are then used in training a minimum distance classifier based on Mahalanobis distance metric. Results show that gait classification with high accuracy and short observation window is achievable using the proposed classifier.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Borutzki, S. E.; Kirk, A.
1984-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.
Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M
2017-06-23
We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.
Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M
2005-01-30
The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.
Modeling and experimental studies of a side band power re-injection locked magnetron
NASA Astrophysics Data System (ADS)
Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang
2016-12-01
A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).
Barry, Robert L.; Klassen, L. Martyn; Williams, Joy M.; Menon, Ravi S.
2008-01-01
A troublesome source of physiological noise in functional magnetic resonance imaging (fMRI) is due to the spatio-temporal modulation of the magnetic field in the brain caused by normal subject respiration. fMRI data acquired using echo-planar imaging is very sensitive to these respiratory-induced frequency offsets, which cause significant geometric distortions in images. Because these effects increase with main magnetic field, they can nullify the gains in statistical power expected by the use of higher magnetic fields. As a study of existing navigator correction techniques for echo-planar fMRI has shown that further improvements can be made in the suppression of respiratory-induced physiological noise, a new hybrid two-dimensional (2D) navigator is proposed. Using a priori knowledge of the slow spatial variations of these induced frequency offsets, 2D field maps are constructed for each shot using spatial frequencies between ±0.5 cm−1 in k-space. For multi-shot fMRI experiments, we estimate that the improvement of hybrid 2D navigator correction over the best performance of one-dimensional navigator echo correction translates into a 15% increase in the volume of activation, 6% and 10% increases in the maximum and average t-statistics, respectively, for regions with high t-statistics, and 71% and 56% increases in the maximum and average t-statistics, respectively, in regions with low t-statistics due to contamination by residual physiological noise. PMID:18024159
Hakobyan, Sargis; Wittwer, Valentin J; Gürel, Kutan; Mayer, Aline S; Schilt, Stéphane; Südmeyer, Thomas
2017-11-15
We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250 kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.
NASA Astrophysics Data System (ADS)
He, Jing; Shi, Jin; Deng, Rui; Chen, Lin
2017-08-01
Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.
Two-photon Direct Frequency Comb Spectroscopy of Alkali Atoms
NASA Astrophysics Data System (ADS)
Nguyen, Khoa; Pradhananga, Trinity; Palm, Christopher; Stalnaker, Jason; Kimball, Derek Jackson
2012-06-01
We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
Direct Frequency Comb Spectroscopy of Alkali Atoms
NASA Astrophysics Data System (ADS)
Pradhananga, Trinity; Palm, Christopher; Nguyen, Khoa; Guttikonda, Srikanth; Kimball, Derek Jackson
2011-11-01
We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
An all digital phase locked loop for FM demodulation.
NASA Technical Reports Server (NTRS)
Greco, J.; Garodnick, J.; Schilling, D. L.
1972-01-01
A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.
One nanosecond time synchronization using series and GPS
NASA Technical Reports Server (NTRS)
Buennagel, A. A.; Spitzmesser, D. J.; Young, L. E.
1983-01-01
Subnanosecond time sychronization between two remote rubidium frequency standards is verified by a traveling clock comparison. Using a novel, code ignorant Global Positioning System (GPS) receiver developed at JPL, the SERIES geodetic baseline measurement system is applied to establish the offset between the 1 Hz. outputs of the remote standards. Results of the two intercomparison experiments to date are presented as well as experimental details.
DSS 14 64-meter antenna. Computed RF pathlength changes under gravity loadings
NASA Technical Reports Server (NTRS)
Katow, M. S.
1981-01-01
Using a computer model of the reflector structure and its supporting assembly of the 64-m antenna rotating about the elevation axis, the radio frequency (RF) pathlengths changes resulting from gravity loadings were computed. A check on the computed values was made by comparing the computed foci offsets with actual field readings of the Z or axial focussing required for elevation angle changes.