Sample records for frequency pulse generation

  1. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  2. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  3. Frequency up-conversion of a high-power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.

    1992-01-01

    In the study of the propagation of a high-power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. A frequency autoconversion process that can lead to reflectionless propagation of powerful electromagnetic pulses in self-generated plasmas is studied. The theory shows that, under the proper condition, the carrier frequency omega of the pulse shifts upward during the growth of local plasma frequency omega(pe). Thus, the self-generated plasma remains underdense to the pulse. A chamber experiment to demonstrate the frequency autoconversion during the pulse propagation through the self-generated plasma is conducted. The detected frequency shift is compared with the theoretical result calculated by using the measured electron density distribution along the propagation path of the pulse. Good agreement is obtained.

  4. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  5. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  6. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  7. A compact nanosecond pulse generator for DBD tube characterization.

    PubMed

    Rai, S K; Dhakar, A K; Pal, U N

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  8. A compact nanosecond pulse generator for DBD tube characterization

    NASA Astrophysics Data System (ADS)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  9. 140 GHz pulsed fourier transform microwave spectrometer

    DOEpatents

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  10. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    PubMed

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  11. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  12. Enhancement cavities for zero-offset-frequency pulse trains.

    PubMed

    Holzberger, S; Lilienfein, N; Trubetskov, M; Carstens, H; Lücking, F; Pervak, V; Krausz, F; Pupeza, I

    2015-05-15

    The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers. The combination of pulse duration, power, and zero phase slip constitutes a crucial step toward the generation of attosecond pulses at multi-10-MHz repetition rates. In addition, this control affords the enhancement of pulses generated by difference-frequency mixing, e.g., for mid-infrared spectroscopy.

  13. Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto

    2015-02-01

    We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.

  14. Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon

    NASA Astrophysics Data System (ADS)

    Shi, Liping; Li, Wenxue; Zhou, Hui; Wang, Di; Ding, Liang'en; Zeng, Heping

    2013-11-01

    We demonstrate efficient generation of multicolor vacuum ultraviolet pulses with excellent mode quality through χ(3)-based four-wave sum-frequency mixing and third-order harmonic generation of 400- and 267-nm femtosecond laser pulses in argon gas. The χ(3)-based nonlinear optical processes were optimized with appropriate control of gas pressure and group velocity delay between the driving pulses. Furthermore, the pulse breakup effects were observed for tightly focused ultraviolet pulses.

  15. Frequency domain tailoring for intra-pulse frequency mixing.

    PubMed

    Ernotte, G; Lassonde, P; Légaré, F; Schmidt, B E

    2016-10-17

    Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.

  16. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    NASA Astrophysics Data System (ADS)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  17. Nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    2016-09-15

    It is shown that the nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency change substantially due to a reduction in the effective electron–ion collision frequency.

  18. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  19. Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.

  20. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  1. Prefire identification for pulse-power systems

    DOEpatents

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  2. Prefire identification for pulse power systems

    DOEpatents

    Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  3. VARIABLE TIME-INTERVAL GENERATOR

    DOEpatents

    Gross, J.E.

    1959-10-31

    This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

  4. Ultra-narrow pulse generator with precision-adjustable pulse width

    NASA Astrophysics Data System (ADS)

    Fu, Zaiming; Liu, Hanglin

    2018-05-01

    In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.

  5. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.

    PubMed

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-19

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  6. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  7. Pulse transmission transmitter including a higher order time derivate filter

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  8. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOEpatents

    Meyerhofer, David D.; Schmid, Ansgar W.; Chuang, Yung-ho

    1992-01-01

    Ultra short (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required.

  9. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOEpatents

    Meyerhofer, D.D.; Schmid, A.W.; Chuang, Y.

    1992-03-10

    Ultrashort (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required. 4 figs.

  10. Generation of picosecond optical pulse based on chirp compensation

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun

    2017-10-01

    Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.

  11. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  12. Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system

    NASA Astrophysics Data System (ADS)

    Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro

    2018-05-01

    To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.

  13. Observation of frequency up-conversion in the propagation of a high-power microwave pulse in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Ren, A.

    1990-01-01

    A chamber experiment is conducted to study the propagation of a high-power microwave pulse. The results show that the pulse is experiencing frequency up-shift while ionizing the background air if the initial carrier frequency of the pulse is higher than the electron plasma frequency at the incident boundary. Such a frequency autoconversion process may lead to reflectionless propagation of a high-power microwave pulse through the atmosphere.

  14. Correlation between audible noise and corona current generated by AC corona discharge in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang

    2018-06-01

    Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.

  15. [Design of MC-III low frequency pulsed strong magnetic fields generator].

    PubMed

    Wen, Jun; Zhong, Lisheng; Xie, Hengkun; Qu, Xuemin; Ju, Hongbo; Yang, Jiqing; Wang, Sigang

    2002-12-01

    In this paper, We designed and accomplished a low frequency pulsed strong magnetic fields generator, which provides a pulsed magnetic field with the intensity range from 0.1-2.5 T and the adjusted time interval of pulse. This device is easy to operate and performs reliably. It can work steady for a long time and has been successful used in the experiments of biological effects of electromagnetics.

  16. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms.

    PubMed

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-01

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  17. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  18. Method and means for generating a synchronizing pulse from a repetitive wave of varying frequency

    DOEpatents

    DeVolpi, Alexander; Pecina, Ronald J.; Travis, Dale J.

    1976-01-01

    An event that occurs repetitively at continuously changing frequencies can be used to generate a triggering pulse which is used to synchronize or control. The triggering pulse is generated at a predetermined percentage of the period of the repetitive waveform without regard to frequency. Counts are accumulated in two counters, the first counting during the "on" fraction of the period, and the second counting during the "off" fraction. The counts accumulated during each cycle are compared. On equality the trigger pulse is generated. Count input rates to each counter are determined by the ratio of the on-off fractions of the event waveform and the desired phase relationship. This invention is of particular utility in providing a trigger or synchronizing pulse during the open period of the shutter of a high-speed framing camera during its acceleration as well as its period of substantially constant speed.

  19. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  20. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  1. Pulsed infrared difference frequency generation in CdGeAs.sub.2

    DOEpatents

    Piltch, Martin S.; Rink, John P.; Tallman, Charles R.

    1977-03-08

    The disclosure relates to a laser apparatus for generating a line-tunable pulsed infrared difference frequency output. The apparatus comprises a CO.sub.2 laser which produces a first frequency, a CO laser which produces a second frequency and a mixer for combining the output of the CO.sub.2 and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.

  2. Pulsed infrared difference frequency generation in CdGeAs/sub 2/

    DOEpatents

    Piltch, M.S.; Rink, J.P.; Tallman, C.R.

    1975-11-26

    A laser apparatus for generating a line-tunable pulsed infrared difference frequency output is described. The apparatus comprises a CO/sub 2/ laser which produces a first frequency, a CO laser which produces a second frequency, and a mixer for combining the output of the CO/sub 2/ and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.

  3. Ultrastable automatic frequency control

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Furiga, A.

    1981-01-01

    Center frequency of wideband AFC circuit drifts only hundredths of percent per day. Since circuit responds only to slow frequency drifts and modulation signal has high-pass characteristics, AFC does not interfere with normal FM operation. Stable oscillator, reset circuit, and pulse generator constitute time-averaging discriminator; digital counter in pulse generator replaces usual monostable multivibrator.

  4. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.

    PubMed

    Lin, Kuang-Wei; Hall, Timothy L; Xu, Zhen; Cain, Charles A

    2015-08-01

    When histotripsy pulses shorter than 2 cycles are applied, the formation of a dense bubble cloud relies only on the applied peak negative pressure (p-) exceeding the "intrinsic threshold" of the medium (absolute value of 26-30 MPa in most soft tissues). It has been found that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds ("dual-beam histotripsy"). Here, the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach is investigated. More specifically, an ATL L7-4 imaging transducer (Philips Healthcare, Andover, MA, USA), pulsed by a V-1 Data Acquisition System (Verasonics, Redmond, WA, USA), was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345-kHz array transducer, driven by a custom high-voltage pulser. These dual-beam histotripsy pulses were applied to red blood cell tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the red blood cell phantoms. The results indicated that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm, whereas that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages: (i) lesion steering can be achieved using the steering of the imaging transducer (implemented with the beamformer of the accompanying programmable ultrasound system), and (ii) treatment can be simultaneously monitored when the imaging transducer is used in conjunction with an ultrasound imaging system. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Histotripsy Lesion Formation using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer

    PubMed Central

    Lin, Kuang-Wei; Hall, Timothy L.; Xu, Zhen; Cain, Charles A.

    2015-01-01

    When applying histotripsy pulses shorter than 2 cycles, the formation of a dense bubble cloud only relies on the applied peak negative pressure (p-) exceeding the “intrinsic threshold” of the medium (absolute value of 26 – 30 MPa in most soft tissue). A previous study conducted by our research group showed that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds (“dual-beam histotripsy”). This paper investigates the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach. More specifically, an ATL L7–4 imaging transducer, pulsed by a Verasonics V-1 Data Acquisition System, was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345 kHz array transducer, driven by a custom high voltage pulser. These dual-beam histotripsy pulses were applied to red-blood-cell (RBC) tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the RBC phantoms. The results showed that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm while that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages, 1) lesion steering can be achieved using the steering of the imaging transducer (implemented with the beamformer of the accompanying programmable ultrasound system) and 2) treatment can be simultaneously monitored when the imaging transducer is used in conjunction with an ultrasound imaging system. PMID:25929995

  6. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.

    PubMed

    Mero, M; Sipos, A; Kurdi, G; Osvay, K

    2011-05-09

    Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America

  7. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    DOE PAGES

    Rogers, III, C. E.; Gould, P. L.

    2016-02-01

    Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  8. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier.

    PubMed

    Rogers, C E; Gould, P L

    2016-02-08

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  9. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    PubMed

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  10. Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator.

    PubMed

    Kobayashi, Y; Torizuka, K

    2001-08-15

    We have generated femtosecond subharmonic pulses by using an optical parametric oscillator. The optical frequencies of the idler and the signal are one third and two thirds, respectively, of the optical frequency of the pump pulse. The carrier phase of the signal pulse relative to that of the pump pulse was locked by electronic feedback. The carrier-envelope phase slip frequency of the signal pulse relative to that of the pump was locked to F/6 , where F is defined as the repetition frequency.

  11. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    NASA Astrophysics Data System (ADS)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  12. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  13. Spectral variation of high power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Ren, A.; Kuo, S. P.; Kossey, Paul

    1995-01-01

    A systematic study to understand the spectral variation of a high power microwave pulse propagating in a self-generated plasma is carried out. It includes the theoretical formulation, experimental demonstration, and computer simulations and computer experiments. The experiment of pulse propagation is conducted in a vacuum chamber filled with dry air (approximately 0.2 torr); the chamber is made of a 2 ft. cube of Plexiglas. A rectangular microwave pulse (1 microsec pulse width and 3.27 GHz carrier frequency) is fed into the cube through an S band microwave horn placed at one side of the chamber. A second S-band horn placed at the opposite side of the chamber is used to receive the transmitted pulse. The spectra of the incident pulse and transmitted pulse are then compared. As the power of the incident pulse is only slightly (less than 15%) above the breakdown threshold power of the background air, the peak of the spectrum of the transmitted pulse is upshifted from the carrier frequency 3.27 GHz of the incident pulse. However, as the power of the incident pulse exceeds the breakdown threshold power of the background air by 30%, a different phenomenon appears. The spectrum of the transmitted pulse begins to have two peaks. One is upshifted and the other one downshifted from the single peak location of the incident pulse. The amount of frequency downshift is comparable to that of the upshifted frequency. A theoretical model describing the experiment of pulse propagation in a self-generated plasma is developed. There are excellent agreements between the experimental results and computer simulations based on this theoretical model, which is also used to further carry out computer experiments identifying the role of plasma introduced wave loss on the result of frequency downshift phenomenon.

  14. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  15. 1.8  mJ, 3.5  kW single-frequency optical pulses at 1572  nm generated from an all-fiber MOPA system.

    PubMed

    Lee, Wangkuen; Geng, Jihong; Jiang, Shibin; Yu, Anthony W

    2018-05-15

    High-energy single-frequency optical pulses at 1572 nm were generated from an all-fiber MOPA system for atmospheric CO 2 LIDAR system application. We report the experimental demonstration of 1.8 mJ, a peak power of 3.5 kW at the pulse repetition of 2.5 kHz, as well as 1.3 mJ, a peak power of 2.5 kW at the pulse repetition of 7.5 kHz single-frequency optical pulses at 1572 nm using single-mode large-core polarization-maintaining Er-Yb co-doped silicate glass fiber amplifiers pumped at 976 nm. To the best of our knowledge, this is the highest pulse energy of single frequency at 1572 nm from an all-fiber amplifier system.

  16. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  17. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  18. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  19. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses

    NASA Astrophysics Data System (ADS)

    Krogen, Peter; Suchowski, Haim; Liang, Houkun; Flemens, Noah; Hong, Kyung-Han; Kärtner, Franz X.; Moses, Jeffrey

    2017-03-01

    The generation of intense mid-infrared (mid-IR) optical pulses with customizable shape and spectra spanning a multiple-octave range of vibrational frequencies is an elusive technological capability. While some recent approaches to mid-IR supercontinuum generation—such as filamentation, multicolour four-wave-mixing and optical rectification—have successfully generated broad spectra, no process has been identified for achieving complex pulse shaping at the generation step. The adiabatic frequency converter allows for a one-to-one transfer of spectral phase through nonlinear frequency conversion over a larger-than-octave-spanning range and with an overall linear phase transfer function. Here, we show that we can convert shaped near-infrared (near-IR) pulses to shaped, energetic, multi-octave-spanning mid-IR pulses lasting only 1.2 optical cycles, and extendable to the sub-cycle regime. We expect this capability to enable a new class of precisely controlled nonlinear interactions in the mid-IR spectral range, from nonlinear vibrational spectroscopy to strong light-matter interactions and single-shot remote sensing.

  20. Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator.

    PubMed

    Zhang, Fangzheng; Pan, Shilong

    2013-11-04

    A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.

  1. Synchronization of 1064 and 1319 nm Pulses Emitted from Actively Mode-Locked Nd:YAG Lasers and Its Application to 589 nm Sum-Frequency Generation

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2005-11-01

    Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.

  2. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18  THz.

    PubMed

    Liu, B; Bromberger, H; Cartella, A; Gebert, T; Först, M; Cavalleri, A

    2017-01-01

    We report on the generation of high-energy (1.9 μJ) far-infrared pulses tunable between 4 and 18 THz frequency. Emphasis is placed on tunability and on minimizing the bandwidth of these pulses to less than 1 THz, as achieved by difference-frequency mixing of two linearly chirped near-infrared pulses in the organic nonlinear crystal DSTMS. As the two near-infrared pulses are derived from amplification of the same white light continuum, their carrier envelope phase fluctuations are mutually correlated, and hence the difference-frequency THz field exhibits absolute phase stability. This source opens up new possibilities for the control of condensed matter and chemical systems by selective excitation of low-energy modes in a frequency range that has, to date, been difficult to access.

  3. Synthesis of monopolar ultrasound pulses for therapy: the frequency-compounding transducer.

    PubMed

    Lin, Kuang-Wei; Hall, Timothy L; McGough, Robert J; Xu, Zhen; Cain, Charles A

    2014-07-01

    In diagnostic ultrasound, broadband transducers capable of short acoustic pulse emission and reception can improve axial resolution and provide sufficient bandwidth for harmonic imaging and multi-frequency excitation techniques. In histotripsy, a cavitation-based ultrasound therapy, short acoustic pulses (<2 cycles) can produce precise tissue ablation wherein lesion formation only occurs when the applied peak negative pressure exceeds an intrinsic threshold of the medium. This paper investigates a frequency compounding technique to synthesize nearly monopolar (half-cycle) ultrasound pulses. More specifically, these pulses were generated using a custom transducer composed of 23 individual relatively-broadband piezoceramic elements with various resonant frequencies (0.5, 1, 1.5, 2, and 3 MHz). Each frequency component of the transducer was capable of generating 1.5-cycle pulses with only one high-amplitude negative half-cycle using a custom 23-channel high-voltage pulser. By varying time delays of individual frequency components to allow their principal peak negative peaks to arrive at the focus of the transducer constructively, destructive interference occurs elsewhere in time and space, resulting in a monopolar pulse approximation with a dominant negative phase (with measured peak negative pressure [P-]: peak positive pressure [P+] = 4.68: 1). By inverting the excitation pulses to individual elements, monopolar pulses with a dominant positive phase can also be generated (with measured P+: P- = 4.74: 1). Experiments in RBC phantoms indicated that monopolar pulses with a dominant negative phase were able to produce very precise histotripsy-type lesions using the intrinsic threshold mechanism. Monopolar pulses with a dominant negative phase can inhibit shock scattering during histotripsy, leading to more predictable lesion formation using the intrinsic threshold mechanism, while greatly reducing any constructive interference, and potential hot-spots elsewhere. Moreover, these monopolar pulses could have many potential benefits in ultrasound imaging, including axial resolution improvement, speckle reduction, and contrast enhancement in pulse inversion imaging.

  4. Eye-Safe KGd(WO4)2:Nd Laser: Nano- and Subnanosecond Pulse Generation in Self-Frequency Raman Conversion Mode with Active Q-Switching

    NASA Astrophysics Data System (ADS)

    Dashkevich, V. I.; Orlovich, V. A.

    2017-03-01

    The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.

  5. Picosecond pulsed micro-module emitting near 560 nm using a frequency doubled gain-switched DBR ridge waveguide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther

    2017-02-01

    A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.

  6. Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation.

    PubMed

    Connaughton, M A; Taylor, M H; Fine, M L

    2000-05-01

    To categorize variation in disturbance calls of the weakfish Cynoscion regalis and to understand their generation, we recorded sounds produced by different-sized fish, and by similar-sized fish at different temperatures, as well as muscle electromyograms. Single, simultaneous twitches of the bilateral sonic muscles produce a single sound pulse consisting of a two- to three-cycle acoustic waveform. Typical disturbance calls at 18 degrees C consist of trains of 2-15 pulses with a sound pressure level (SPL) of 74 dB re 20 microPa at 10 cm, a peak frequency of 540 Hz, a repetition rate of 20 Hz and a pulse duration of 3.5 ms. The pulse duration suggests an incredibly short twitch time. Sound pressure level (SPL) and pulse duration increase and dominant frequency decreases in larger fish, whereas SPL, repetition rate and dominant frequency increase and pulse duration decreases with increasing temperature. The dominant frequency is inversely related to pulse duration and appears to be determined by the duration of muscle contraction. We suggest that the lower dominant frequency of larger fish is caused by a longer pulse (=longer muscle twitch) and not by the lower resonant frequency of a larger swimbladder.

  7. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  8. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  9. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination.

    PubMed

    Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang

    2010-11-22

    An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.

  10. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  12. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOEpatents

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  13. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO₂ multilayer structures pumped at Ti:sapphire wavelength.

    PubMed

    Stepanov, Andrei G; Rogov, Andrii; Bonacina, Luigi; Wolf, Jean-Pierre; Hauri, Christoph P

    2014-09-08

    We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO₂multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO₂layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

  14. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  15. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  16. Generation and Coherent Control of Pulsed Quantum Frequency Combs.

    PubMed

    MacLellan, Benjamin; Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Zhang, Yanbing; Sciara, Stefania; Wetzel, Benjamin; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2018-06-08

    We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain.

  17. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  18. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  19. High-frequency trigger generators for CuBr-laser high voltage pumping source

    NASA Astrophysics Data System (ADS)

    Torgaev, S.; Kozhemyak, O.; Yaroslavtsev, E.; Trigub, M.; Musorov, I.; Chertikhina, D.

    2016-04-01

    In this paper the circuits of high frequency trigger generators of pulses of the nanosecond duration are presented. A detailed study of a generator based on the avalanche transistor with the use of a coaxial cable instead of a capacitor is described. This circuit showed advanced characteristics of the output pulses. A circuit of a generator built on high-speed digital components is also considered. The basic advantages and disadvantages of both generators are presented in this paper.

  20. Modelling of graphene Q-switched Tm lasers

    NASA Astrophysics Data System (ADS)

    Yasukevich, A. S.; Loiko, P.; Gusakova, N. V.; Serres, J. M.; Mateos, X.; Yumashev, K. V.; Kuleshov, N. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2017-04-01

    We report on a model of diode-pumped Thulium lasers passively Q-switched by a graphene saturable absorber applicable also for any other "fast" saturable absorber. It reasonably predicts the dependence of the pulse duration, pulse energy and pulse repetition frequency on the absorbed power. The model is applied in the present work for a Tm: KLuW microchip laser passively Q-switched with a multi-layer graphene saturable absorber. The laser generates 1 W at 1926 nm with a slope efficiency of 39%. Stable 190 ns /4.1 μJ pulses are achieved at a pulse repetition frequency of 260 kHz. The potential of graphene for the generation of few-ns pulses at 2 μm is discussed.

  1. Sonoporation generator design and performance evaluation

    NASA Astrophysics Data System (ADS)

    Svilainis, L.; Chaziachmetovas, A.; Jurkonis, R.; Kybartas, D.

    2012-05-01

    We propose to perform the sonoporation by use of direct excitation employing the square wave pulser. Addition of the arbitrary waveform generator and programmable high voltage power supply to the pulser should allow for more economical experiment arrangement. Excitation stage has to be capable of transmitting high voltage signal into capacitive load. This paper reports the generator topology and performance evaluation experimental results. Transformer push-pull topology was suggested. Thanks to proposed pulser structure both unipolar and bipolar pulses can be obtained. Energy per pulse was suggested as performance parameter: any combination of achievable bust duration and repetition frequency can be estimated. Comparison of experimental results to Pspice modeling and energy delivered to load is presented. Energy per pulse at 300 V (600 Vpp) 2.7 MHz output into 3000 pF load was 1.1 mJ. Using 5 W power supplies this would allow for 3 kHz pulse repetition frequency single pulse of 100 Hz pulse repetition at 40 pulses burst. Focused 2.7 MHz center frequency transducer was targeted as load. Transducer impedance was measured to estimate the load and power delivery efficiency. It was found that 5 Ω is the optimal generator output impedance at 2.7 MHz. Using 2.7 MHz transducer we were able to achieve 1 MPa peak negative pressure at 250 V power supply.

  2. Long distance measurement with a femtosecond laser based frequency comb

    NASA Astrophysics Data System (ADS)

    Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.

    2017-11-01

    Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.

  3. Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri

    2018-04-01

    In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.

  4. 100μJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing

    2017-02-01

    We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.

  5. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixingmore » zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.« less

  6. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  7. R&D100: LED Pulser

    ScienceCinema

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    2018-06-12

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  8. Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Baldeck, P. L.; Ho, P. P.; Alfano, Robert R.

    Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

  9. Pulse transmission transceiver architecture for low power communications

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  10. Investigation of a High Voltage, High Frequency Power Conditioning System for Use with Flux Compression Generators

    DTIC Science & Technology

    2007-06-01

    missouri.edu Abstract The University of Missouri-Columbia is developing a compact pulsed power system to condition the high current signal from a...flux compression generator (FCG) to the high voltage, high frequency signal required for many pulsed power applications. The system consists of a...non-magnetic core, spiral-wound transformer, series exploding wire fuse, and an oscillating mesoband source. The flux compression generator is being

  11. A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.

    PubMed

    Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio

    2008-03-01

    We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.

  12. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  13. Saturation of subjective reward magnitude as a function of current and pulse frequency.

    PubMed

    Simmons, J M; Gallistel, C R

    1994-02-01

    In rats with electrodes in the medial forebrain bundle, the upper portion of the function relating the experienced magnitude of the reward to pulse frequency was determined at currents ranging from 100 to 1,000 microA. The pulse frequency required to produce an asymptotic level of reward was inversely proportional to current except at the lowest currents and highest pulse frequencies. At a given current, the subjective reward magnitude functions decelerated to an asymptote over an interval in which the pulse frequency doubled or tripled. The asymptotic level of reward was approximately constant for currents between 200 and 1,000 microA but declined substantially at currents at or below 100 microA and pulse frequencies at or above 250 to 400 pulses per second. The results are consistent with the hypothesis that the magnitude of the experienced reward depends only on the number of action potentials generated by the train of pulses in the bundle of reward-relevant axons.

  14. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  15. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-03-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  16. Pulse shaping of on-chip microresonator frequency combs: investigation of temporal coherence

    NASA Astrophysics Data System (ADS)

    Ferdous, F.; Miao, H.; Leaird, D. E.; Srinivasan, K.; Chen, L.; Aksyuk, V.; Weiner, A. M.

    2013-03-01

    We use pulse shaping to investigate the temporal coherence of frequency combs generated in microresonators pumped by a strong CW laser. We observe that different groups of comb lines have different mutual coherence.

  17. Practical system for the generation of pulsed quantum frequency combs.

    PubMed

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  18. Photonic microwave waveforms generation based on pulse carving and superposition in time-domain

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang

    2018-05-01

    A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.

  19. Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.

    We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.

  20. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    PubMed

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  2. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    NASA Astrophysics Data System (ADS)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  3. Tunable microwave generation based on frequency quadrupling

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Lei; Liang, Jun; Li, Xuan; Xiao, Nan; Yuan, Xiao-Gang

    2018-07-01

    To generate linearly chirped microwave signals with large frequency tunable range, a photonic approach is proposed. A dual-output dual-parallel Mach-Zehnder modulator followed by a polarisation beam combiner and an optical filter are utilised to generate orthogonally polarised ± second-order optical sidebands. A polarisation modulator is employed to achieve phase modulation of the two wavelengths. The balanced detection is applied to suppress the distortion and background noise. The central frequency of the generated signal is four times that of the local oscillator frequency. Simulation results show that a linear pulse is produced with time-bandwidth as well as a compression ratio for the pulse of 11 and 9.3 respectively. Moreover, a peak-to-sidelobe ratio of 7.4 dB is generated. The system has both good reconfigurability and tunability, and its frequency can be continuously adjusted from about 10 GHz to as much as 50 GHz in principle.

  4. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides

    NASA Astrophysics Data System (ADS)

    Kowligy, Abijith S.; Lind, Alex; Hickstein, Daniel D.; Carlson, David R.; Timmers, Henry; Nader, Nima; Cruz, Flavio C.; Ycas, Gabriel; Papp, Scott B.; Diddams, Scott A.

    2018-04-01

    We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-$\\chi^{(2)}$ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 $\\text{\\mu}$m region and intra-pulse difference-frequency generation in the 4--5 $\\text{\\mu}$m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.

  5. Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation

    NASA Astrophysics Data System (ADS)

    Yu, N.; Tu, M.; Maleki, L.

    2002-04-01

    Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.

  6. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-01

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  7. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides.

    PubMed

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-19

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  8. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    PubMed

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  9. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.

    We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less

  10. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light

    DOE PAGES

    Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.; ...

    2018-04-23

    We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less

  11. The usefulness of a stretch-polyester pouch to encase implanted pacemakers and defibrillators.

    PubMed

    Parsonnet, V; Bernstein, A D; Neglia, D; Omar, A

    1994-12-01

    This study was undertaken to assess the effects of enclosing permanent pacemaker and ICD pulse generators in a stretch-polyester pouch prior to implantation. Follow-up of 223 patients with oversized pacemakers and with ICDs and 344 with standard-sized pacemaker pulse generators showed that the pouch was effective in decreasing the frequency of pulse generator migration and extrusion.

  12. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  13. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  14. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  15. OH Production Enhancement in Bubbling Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-01

    The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  16. Circuit for monitoring temperature of high-voltage equipment

    DOEpatents

    Jacobs, Martin E.

    1976-01-01

    This invention relates to an improved circuit for measuring temperature in a region at high electric potential and generating a read-out of the same in a region at lower potential. The circuit is specially designed to combine high sensitivity, stability, and accuracy. A major portion of the circuit situated in the high-potential region can take the form of an integrated circuit. The preferred form of the circuit includes an input section which is situated in the high-potential region and comprises a temperature-compensated thermocouple circuit for sensing temperature, an oscillator circuit for generating a train of ramp voltages whose rise time varies inversely with the thermocouple output, a comparator and switching circuit for converting the oscillator output to pulses whose frequency is proportional to the thermocouple output, and a light-emitting diode which is energized by these pulses. An optical coupling transmits the light pulses generated by the diode to an output section of the circuit, situated in a region at ground. The output section comprises means for converting the transmitted pulses to electrical pulses of corresponding frequency, means for amplifying the electrical pulses, and means for displaying the frequency of the same. The preferred embodiment of the overall circuit is designed so that the frequency of the output signal in hertz and tenths of hertz is equal to the sensed temperature in degrees and tenths of degrees.

  17. Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.

    1998-01-01

    A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.

  18. A Two-Color Fourier Transform Mm-Wave Spectrometer for Gas Analysis Operating from 260-295 GHZ

    NASA Astrophysics Data System (ADS)

    Steber, Amanda L.; Harris, Brent J.; Lehmann, Kevin K.; Pate, Brooks H.

    2013-06-01

    We have designed a two-color mm-wave spectrometer for Fourier transform mm-wave spectroscopy that uses consumer level components for the tunable synthesizers, digital control of the pulse modulators, and digitization of the coherent free induction decay (FID). The excitation pulses are generated using an x24 active multiplier chain (AMC) that produces a peak power of 30 mW. The microwave input to the AMC is generated in a frequency up conversion circuit that accepts a microwave input frequency from about 2-4 GHz. This circuit also generates the input to the mm-wave subhamonic mixer that creates the local oscillator from a separate 2-4 GHz microwave input. Excitation pulses at two independently tunable frequencies are generated using a dual-channel source based on a low-cost, wideband synthesizer integrated circuit (Valon Technology Model 5008). The outputs of the synthesizer are pulse modulated using a PIN diode switch that is driven using the arbitrary waveform generator (AWG) output of a USB-controlled high-speed digitizer / arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM). The two pulses are combined using a Wilkinson power divider before input to the up conversion circuit. The FID frequency is down converted in a two-stage mixing process to 65 MHz. The two LO frequencies used in the receiver are provided by a second Valon 5008. The FID is digitized at 200 MSamples/s using the 12-bit Tie Pie digitizer. The digital oscilloscope (and its AWG channel) and the two synthesizers use a 10 MHz reference signal from a Rubidium clock to permit time-domain signal averaging. A key feature of the digital oscilloscope is its deep memory of 32 Mpts (complemented by the 64 Mpt memory in the 240 MS/s AWG). This makes it possible to perform several one- and two-color coherent measurements, including pulse echoes and double-resonance spectroscopy, in a single "readout" experiment to speed the analysis of mm-wave rotational spectra. The spectrometer sensitivity and frequency accuracy are illustrated by high-speed measurements of OCS rotational transitions for low-abundance isotopes. Examples of pulse echo measurements to determine the collisional relaxation rate and two-color double-resonance measurements to confirm the presence of a molecular species will be illustrated using OCS as the room-temperature gas sample.

  19. Experimental observation of carrier-envelope-phase effects by multicycle pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Scully, Marlan O.; Mechanical and Aerospace Engineering and the Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544

    2011-03-15

    We present an experimental and theoretical study of carrier-envelope-phase (CEP) effects on the population transfer between two bound atomic states interacting with pulses consisting of many cycles. Using intense radio-frequency pulse with Rabi frequency of the order of the atomic transition frequency, we investigate the influence of the CEP on the control of phase-dependent multiphoton transitions between the Zeeman sublevels of the ground state of {sup 87}Rb. Our scheme has no limitation on the duration of the pulses. Extending the CEP control to longer pulses creates interesting possibilities to generate pulses with accuracy that is better than the period ofmore » optical oscillations.« less

  20. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  1. Pulsed radio frequency energy in the treatment of complex diabetic foot wounds: two cases.

    PubMed

    Larsen, Jerrie A; Overstreet, Julia

    2008-01-01

    The use of radio waves (pulsed radio frequency energy) has become well accepted in the treatment of chronic wounds. We present 2 cases of complex diabetic foot wounds treated adjunctively with outpatient pulsed radio frequency energy using a solid-state, 27.12 MHz fixed power output radio frequency generator that transmits a fixed dose of nonionizing, nonthermal electromagnetic energy through an applicator pad. This therapy, in combination with offloading, debridement and advanced dressings, resulted in closure of both wounds in approximately 16 weeks.

  2. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    PubMed

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  3. Modeling perspectives on echolocation strategies inspired by bats flying in groups.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2015-12-21

    Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Femtosecond pulse with THz repetition frequency based on the coupling between quantum emitters and a plasmonic resonator

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li

    2018-03-01

    Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.

  5. Development and planning and design of equipment pumping generator of semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Popkov, A. V.

    1974-01-01

    The schematic of a multidimensional current pulse generator is studied. A MTKh-90 cold cathode thyratron is used as the current commutator. In the autooscillation mode on a frequency of 380 hertz the generator creates a current to 100 amps per pulse in a control resistance of 1 ohm. The pulse duration is regulated within the limits from 0.1 to 3.0 microseconds.

  6. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field.

    PubMed

    Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E

    2018-04-14

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  7. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-04-01

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  8. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

    NASA Astrophysics Data System (ADS)

    Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU

    2018-05-01

    The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.

  9. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  10. Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.

    2017-07-01

    In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ˜300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ˜2 ns, which correspond to power amplification of the input pulse from ˜6 to ˜13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.

  11. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  12. Stable optical frequency comb generation and applications in arbitrary waveform generation, signal processing and optical data mining

    NASA Astrophysics Data System (ADS)

    Ozharar, Sarper

    This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.

  13. Current pulse amplifier transmits detector signals with minimum distortion and attenuation

    NASA Technical Reports Server (NTRS)

    Bush, N. E.

    1967-01-01

    Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.

  14. Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers.

    PubMed

    Landgraf, Björn; Hoffmann, Andreas; Kartashov, Daniil; Gärtner, Felix; Samsonova, Zhanna; Polynkin, Pavel; Jacoby, Joachim; Kühl, Thomas; Spielmann, Christian

    2015-03-23

    The efficient generation of redshifted pulses from chirped femtosecond joule level Bessel beam pulses in gases is studied. The redshift spans from a few 100 cm⁻¹ to several 1000 cm⁻¹ corresponding to a shift of 50-500 nm for Nd:glass laser systems. The generated pulses have an almost perfect Gaussian beam profile insensitive of the pump beam profile, and are much shorter than the pump pulses. The highest measured energy is as high as 30 mJ, which is significantly higher than possible with solid state nonlinear frequency shifters.

  15. OH Production Enhancement in Bubbling Pulsed Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut

    2010-10-13

    The generation of active species, such as H{sub 2}O{sub 2}, O{sup *}, OH*, HO{sub 2}*, O{sub 3}, N{sub 2}{sup *}, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active speciesmore » were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).« less

  16. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  17. Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust f ceo singals.

    PubMed

    Jiang, Tongxiao; Wang, Aimin; Wang, Guizhong; Zhang, Wei; Niu, Fuzeng; Li, Chen; Zhang, Zhigang

    2014-01-27

    A tapered silica photonic crystal fiber was designed and fabricated to generate more than one octave spanning supercontinuum (from 550 nm to 1400 nm at -30 dB level), by an input pulse of 40 fs 200 pJ directly from an Yb:fiber ring laser. The low pulse energy spectrum broadening are favorable to generate the high contrast f ceo signals with low noise. The f ceo signal with 40 dB signal-to-noise ratio was detected, which helps to build a compact real-world frequency comb.

  18. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  19. Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 µm

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Yamanaka, Masahito; Sonnenschein, Volker; Tomita, Hideki; Iguchi, Tetsuo; Sato, Atsushi; Oh-hara, Toshinari; Nishizawa, Norihiko

    2017-01-01

    We report a tunable mid-infrared frequency comb working at 184 MHz, which is based on difference frequency generation in a periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT) crystal pumped by high-power supercontinuum pulses. Supercontinuum pulses from two fibers with different dispersion properties were examined. With a photonic crystal fiber (PCF) having normal dispersion properties, a tunable wavelength range of 2.9-4.7 µm was achieved. With another PCF having zero dispersion at 1040 nm, a maximum power of 1.34 mW was observed at 3.9 µm. The high coherence of the pulses generated with this scheme was verified experimentally, and a fringe visibility of 0.90 was observed.

  20. Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water

    NASA Astrophysics Data System (ADS)

    Baac, Hyoung Won; Lee, Taehwa; Ok, Jong G.; Hall, Timothy; Jay Guo, L.

    2013-12-01

    Pulsed ultrasonic cavitation is a promising modality for non-contact targeted therapy, enabling mechanical ablation of the tissue. We demonstrate a spatio-temporal superposition approach of two ultrasound pulses (high and low frequencies) producing a tight cavitation zone of 100 μm in water, which is an-order-of-magnitudes smaller than those obtained by the existing high-amplitude transducers. Particularly, laser-generated focused ultrasound (LGFU) was employed for the high-frequency operation (15 MHz). As demonstrated, LGFU plays a primary role to define the cavitation zone. The generation rate of cavitation bubbles could be dramatically increased up to 4.1% (cf. 0.06% without the superposition) with moderated threshold requirement.

  1. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  2. Control of the electrode metal transfer by means of the welding current pulse generator

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  3. Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus.

    PubMed

    Das, Susanta Kumar; Dasari, Kiran; Rosenfeld, Arkadi; Grunwald, Ruediger

    2010-04-16

    An efficient way to generate nanoscale laser-induced periodic surface structures (LIPSS) in rutile-type TiO(2) with frequency-converted femtosecond laser pulses at wavelengths around 400 nm is reported. Extended-area structuring on fixed and moving substrates was obtained by exploiting the line focus of a cylindrical lens. Under defined conditions with respect to pulse number, pulse energy and scanning velocity, two types of ripple-like LIPSS with high and low spatial frequencies (HSFL, LSFL) with periods in the range of 90 nm and 340 nm, respectively, were formed. In particular, lower numbers of high energetic pulses favour the generation of LSFL whereas higher numbers of lower energetic pulses enable the preferential creation of HSFL. Theoretical calculations on the basis of the Drude model support the assumption that refractive index changes by photo-excited carriers are a major mechanism responsible for LSFL. Furthermore, the appearance of random substructures as small as 30 nm superimposing low spatial frequency ripples is demonstrated and their possible origin is discussed.

  4. Directly driven source of multi-gigahertz, sub-picosecond optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.

    2015-10-20

    A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less

  5. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  6. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  7. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  8. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOEpatents

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  9. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-10-08

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

  10. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  11. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  12. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less

  13. Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-03-01

    We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

  14. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    NASA Astrophysics Data System (ADS)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate coherent laser-like radiations at which frequency the common gain material is not available. It is also a good candidate for extend frequency comb spectral range, for comb generation, the OPO is usually pumped by a comb source thus the OPO cavity needs to be synchronized to the pump pulses. Depending on whether the signal or idle light is in resonance, the OPO could be singly or doubly resonant. The doubly resonant OPO (DOPO) has much lower lasing threshold since both signal and idle are in resonance, but it also requires more cavity stability and was historically considered unstable for operation. However, recent research has proved that the synchronously pumped doubly resonant OPO could operate even without active cavity stabilization. Moreover, when the OPO is in degenerate state where the signal and idler are identical the OPO will remain frequency stabilized because it's acting as a frequency divide-by-2 system. This makes the DOPO an excellent candidate for extending the frequency comb spectral range to mid-IR by pumping with a frequency comb at near IR wavelength. In the dissertation, first a 1 mum Yb-doped fiber oscillator will be frequency stabilized to generate a frequency comb. The repetition rate is locked indirectly by locking the Yb laser to a stabilization single frequency laser and the CEO frequency is locked by f-2f self-reference. The fully locked 1 mum comb is then used to pump a DOPO. The DOPO can operate at either degenerate or non-degenerate states by tuning its cavity length. To characterize the OPO, its output spectral, output power will be measured. More importantly the CEO frequency of the OPO will also need to be simultaneously measured in order to verify and study the self stabilization of DOPO at degeneracy. To quantify the coherence property of the DOPO, the CEO frequency noise transfer function will also be measured, the pump comb is frequency modulated with an acousto-optic modulator (AOM) and the transfer function could be measured by measuring the DOPO CEO frequency phase noise. The DOPO would be a self-locked comb source if it fully inherits the pump comb coherence. This enables measuring the CEO frequency phase noise of the unlocked DOPO comb to be compared with the pump phase noise quantitatively. In the second part of the dissertation, the intensity noise of a soliton mode-locked laser is studied. The soliton is a pulse with perfect balance of dispersion and nonlinearity so it can propagate without any change of its spectral and temporal shape. In this project, an all-fiber Er soliton laser will be build. Due to the perturbation of cavity elements such as segmental gain and loss, the soliton generate dispersive wave that co-propagates inside the cavity. Notably the dispersive wave with the same phase shift of the soliton can interfere with the soliton and produce spectral peaks known as Kelly sidebands. In this work, the spectrally resolved intensity noise coupling in the soliton laser is studied. The results reveal that most of the intensity noise from the pump is couple to the Kelly sidebands while the soliton is much quieter in terms of intensity noise. In the last part of the dissertation, the 3D wave packets generation and measurement system are introduced. A SLM-based pulse shaper and beam shaper are used to generate special 3D optical wave packets from a mode-locked fiber laser. The programmable SLM enables generation of varies beam and pulse shapes. In particular, the so called wave bullets are generated with combination of diffraction free Bessel beams and dispersion free Airy pulses. To measure the 3D wave packets, a cross-correlation interferometer is demonstrated to have the capacity to reconstruct the full 3D intensity profiles of the complex wave packets.

  15. Generating coherent broadband continuum soft-x-ray radiation by attosecond ionization gating.

    PubMed

    Pfeifer, Thomas; Jullien, Aurélie; Abel, Mark J; Nagel, Phillip M; Gallmann, Lukas; Neumark, Daniel M; Leone, Stephen R

    2007-12-10

    The current paradigm of isolated attosecond pulse production requires a few-cycle pulse as the driver for high-harmonic generation that has a cosine-like electric field stabilized with respect to the peak of the pulse envelope. Here, we present simulations and experimental evidence that the production of high-harmonic light can be restricted to one or a few cycles on the leading edge of a laser pulse by a gating mechanism that employs time-dependent ionization of the conversion medium. This scheme enables the generation of broadband and tunable attosecond pulses. Instead of fixing the carrier-envelope phase to produce a cosine driver pulse, the phase becomes a control parameter for the center frequency of the attosecond pulse. A method to assess the multiplicity of attosecond pulses in the pulse train is also presented. The results of our study suggest an avenue towards relaxing the requirement of few-cycle pulses for isolated attosecond pulse generation.

  16. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2018-02-01

    We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.

  17. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    PubMed

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  18. Generation and parametric amplification of broadband chirped pulses in the near-infrared

    NASA Astrophysics Data System (ADS)

    Marcinkevičiūtė, A.; Michailovas, K.; Butkus, R.

    2018-05-01

    We demonstrate generation and optical parametric amplification of broadband chirped pulses in the range of 1.8- 2 . 5 μm. The setup is built around Ti:sapphire oscillator as a seed source and 1 kHz Nd:YAG laser system as a pump source. Visible broadband seed pulses are temporally stretched and amplified in a non-collinear optical parametric amplifier before being mixed with fundamental harmonic of the pump laser. Difference frequency generation between positively-chirped broadband pulses centered at 0 . 7 μm and non-chirped narrowband pulses at 1064 nm produces negatively-chirped wide spectral bandwidth pulses in the infrared. After subsequent parametric amplification, pulses with more than 0.5 mJ energy were obtained with spectral bandwidth supporting transform-limited pulse durations as short as 23 fs.

  19. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  20. Method for ambiguity resolution in range-Doppler measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)

    1994-01-01

    A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.

  1. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  2. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  3. Soft-state biomicrofluidic pulse generator for single cell analysis

    NASA Astrophysics Data System (ADS)

    Sabounchi, Poorya; Ionescu-Zanetti, Cristian; Chen, Roger; Karandikar, Manjiree; Seo, Jeonggi; Lee, Luke P.

    2006-05-01

    We present the design, fabrication, and characterization of a soft-state biomicrofluidic pulse generator for single cell analysis. Hydrodynamic cell trapping via lateral microfluidic junctions allows the trapping of single cells from a bulk suspension. Microfluidic injection sites adjacent to the cell-trapping channels enable the pulsed delivery of nanoliter volumes of biochemical reagent. We demonstrated the application and removal of reagent at a frequency of 10Hz with a rise time of less than 33ms and a reagent consumption rate of 0.2nL/s. It is shown that this system operates as a low-pass filter with a cutoff frequency of 7Hz.

  4. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  5. Effects of Electromagnetic Pulses on a Multilayered System

    DTIC Science & Technology

    2014-07-01

    repeatable high - power generators . Repetitive EMP (REMP) is usually wideband with each pulse being composed of a wide range of frequencies. This larger...types of EMPs that are of concern regarding electronics and system infrastructures; they are high -altitude EMP (HEMP) generated from nuclear...ELECTROMAGNETIC PULSES ON A MULTILAYERED SYSTEM A. Upia, K. M. Burke, J. L. Zirnheld Energy Systems Institute, Department of Electrical Engineering

  6. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies.

    PubMed

    Jones, Kevin C; Seghal, Chandra M; Avery, Stephen

    2016-03-21

    The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.

  7. Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2014-02-01

    We report a fiber based approach to broadly tunable femtosecond mid-IR source based on difference frequency mixing of the outputs from dual photonic crystal fibers (PCF) pumped by a femtosecond fiber laser, which is a custom-built Yb-doped fiber chirped pulse amplifier (CPA) delivering 1.35 W, 300 fs, 40 MHz pulses centered at 1035 nm. The CPA output is split into two arms to pump two different types of PCFs for generation of the spectrally separated pulses. The shorter wavelength pulses are generated in one PCF with its single zero dispersion wavelength (ZDW) at 1040 nm. Low normal dispersion around the pumping wavelength enables spectral broadening dominated by self-phase modulation (SPM), which extends from 970 to 1092 nm with up to 340 mW of average power. The longer wavelength pulses are generated in a second PCF which has two closely spaced ZDWs around the laser wavelength. Facilitated by its special dispersion profile, the laser wavelength is converted to the normal dispersion region of the fiber, leading to the generation of the narrow-band intense Stokes pulses with 1 to 1.25 nJ of pulse energy at a conversion efficiency of ~30% from the laser pulses. By difference mixing the outputs from both PCFs in a type-II AgGaS2 crystal, mid-IR pulses tunable from 4.2 to 9 μm are readily generated with its average power ranging from 135 - 640 μW, corresponding to 3 - 16 pJ of pulse energy which is comparable to the reported fiber based mid-IR sources enabled by the solitons self-frequency shift (for example, 3 - 10 μm with 10 pJ of maximum pulse energy in [10]). The reported approach provides a power-scalable route to the generation of broadly tunable femtosecond mid-IR pulses, which we believe to be a promising solution for developing compact, economic and high performance mid-IR sources.

  8. Embedded fiber optic ultrasonic sensors and generators

    NASA Astrophysics Data System (ADS)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  9. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.

    PubMed

    Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.

  10. Muonic molecular ions p p μ and p d μ driven by superintense VUV laser pulses: Postexcitation muonic and nuclear oscillations and high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Paramonov, Guennaddi K.; Saalfrank, Peter

    2018-05-01

    The non-Born-Oppenheimer quantum dynamics of p p μ and p d μ molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z ) is studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and ρ , a transversal degree of freedom. It is shown that in both p p μ and p d μ , muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values , <ρ > , and demonstrate "post-laser-pulse" oscillations in both p p μ and p d μ . In the case of p d μ , the post-laser-pulse oscillations of and appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For p d μ it is found that there exists a unique characteristic frequency ωoscp d μ representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of p d μ . The homonuclear p p μ ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.

  11. Pulsed phase locked loop strain monitor

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor)

    1995-01-01

    A pulse phase locked loop system according to the present invention is described. A frequency generator such as a voltage controlled oscillator (VCO) generates an output signal and a reference signal having a frequency equal to that of the output signal. A transmitting gate gates the output frequency signal and this gated signal drives a transmitting transducer which transmits an acoustic wave through a material. A sample/hold samples a signal indicative of the transmitted wave which is received by a receiving transducer. Divide-by-n counters control these gating and sampling functions in response to the reference signal of the frequency generator. Specifically, the output signal is gated at a rate of F/h, wherein F is the frequency of the output signal and h is an integer; and the received signal is sampled at a delay of F/n wherein n is an integer.

  12. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  13. Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator

    PubMed Central

    Metcalf, A. J.; Quinlan, F.; Fortier, T. M.; Diddams, S. A.; Weiner, A. M.

    2016-01-01

    We investigate the low timing jitter properties of a tunable single-pass optoelectronic frequency comb generator. The scheme is flexible in that both the repetition rate and center frequency can be continuously tuned. When operated with 10 GHz comb spacing, the integrated residual pulse-to-pulse timing jitter is 11.35 fs (1 Hz to 10 MHz) with no feedback stabilization. The corresponding phase noise at 1 Hz offset from the photodetected 10 GHz carrier is −100 dBc/Hz. PMID:26865734

  14. Cascaded chirped photon acceleration for efficient frequency conversion

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Qu, Kenan; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2018-05-01

    A cascaded sequence of photon acceleration stages using the instantaneous creation of a plasma density gradient by flash ionization allows the generation of coherent and chirped ultraviolet and x-ray pulses with independently tunable frequency and bandwidth. The efficiency of the cascaded process scales with 1/ω in energy, and multiple stages produce significant frequency up-conversion with gas-density plasmas. Chirping permits subsequent pulse compression to few-cycle durations, and output frequencies are not limited to integer harmonics.

  15. Radiation comb generation with extended Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solinas, P., E-mail: paolo.solinas@spin.cnr.it; Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it; NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate upmore » to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.« less

  16. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    NASA Astrophysics Data System (ADS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; de Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-09-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is “captured” and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ(3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface, part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an exceedingly small χ(2) discontinuity, releases the trapped pulse which then propagates in the backward direction. These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propagation phenomena.

  17. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roppo, Vito; Centini, Marco; Sibilia, Concita

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not onlymore » second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface, part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an exceedingly small {chi}{sup (2)} discontinuity, releases the trapped pulse which then propagates in the backward direction. These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propagation phenomena.« less

  18. Er:YAG laser technology for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Chen, Moran; Burns, Patrick M.; Litvinovitch, Viatcheslav; Storm, Mark; Sawruk, Nicholas W.

    2016-10-01

    Fibertek has developed an injection locked, resonantly pumped Er:YAG solid-state laser operating at 1.6 μm capable of pulse repetition rates of 1 kHz to 10 kHz for airborne methane and water differential absorption lidars. The laser is resonantly pumped with a fiber-coupled 1532 nm diode laser minimizing the quantum defect and thermal loading generating tunable single-frequency output of 1645-1646 nm with a linewidth of < 100 MHz. The frequency-doubled 1.6 μm Er:YAG laser emits wavelengths in the 822-823 nm spectrum, coincident with water vapor lines. Various cavity designs were studied and optimized for compactness and performance, with the optimal design being an injection seeded and locked five-mirror ring cavity. The laser generated 4 W of average power at pulse repetition frequencies (PRFs) of 1 kHz and 10 kHz, corresponding to 4 mJ and 400 μJ pulse energies, respectively. The 1645 nm was subsequently frequency doubled to 822.5 nm with a 600 pm tuning range covering multiple water absorption lines, with a pulse energy of 1 mJ and a pulse repetition frequency of 1 kHz. The resonator cavity was locked to the seed wavelength via a Pound Drever Hall (PDH) technique and an analog Proportional Integral Derivative (PID) Controller driving a high-bandwidth piezoelectric (PZT)-mounted cavity mirror. Two seed sources lasing on and off the methane absorption line were optically switched to tune the resonator wavelength on and off the methane absorption line between each sequential output pulse. The cavity locking servo maintained the cavity resonance for each pulse.

  19. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  20. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    NASA Astrophysics Data System (ADS)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  1. Adding a dimension to the infrared spectra of interfaces: 2D SFG spectroscopy via mid-IR pulse shaping

    NASA Astrophysics Data System (ADS)

    Zanni, Martin

    2012-02-01

    Sum-frequency generation spectroscopy provides an infrared spectrum of interfaces and thus has widespread use in the materials and chemical sciences. In this presentation, I will present our recent work in developing a 2D pulse sequence to generate 2D SFG spectra of interfaces, in analogy to 2D infrared spectra used to measure bulk species. To develop this spectroscopy, we have utilized many of the tricks-of-the-trade developed in the 2D IR and 2D Vis communities in the last decade, including mid-IR pulse shaping. With mid-IR pulse shaping, the 2D pulse sequence is manipulated by computer programming in the desired frequency resolution, rotating frame, and signal pathway. We believe that 2D SFG will become an important tool in the interfacial sciences in an analogous way that 2D IR is now being used in many disciplines.

  2. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    PubMed

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  3. A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation

    NASA Astrophysics Data System (ADS)

    Kwende, Randy; Bardin, Joseph

    Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.

  4. NO Removal with Repetitive Discharges Caused by Reciprocal Traveling Wave Voltage Pulse in a Coaxial Cable

    NASA Astrophysics Data System (ADS)

    Yamaga, Keisuke; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu

    This paper describes experimental results of NO removal using barrier discharges produced by a reciprocal pulse generator. When a coaxial cable is charged and then grounded at one end of the cable without any resistance, a reciprocal traveling voltage pulse is repeatedly applied to a barrier-type reactor at the opposite end with a change in its polarity. 50% streamer initiation voltage for the reciprocal pulse generator was much smaller than that with the self-matched pulse generator having a matching resistance. The reason for the low initiation voltage in the reciprocal pulse was that space charges which accumulated on the barrier surface during cable charging had an effect on field enhancement in the reactor after the first polarity reversal. High speed photographs of discharge light produced by the reciprocal pulse showed that the voltage oscillation caused by one switching induced alternate propagation of positive and negative streamers with a very high frequency. In measurements of NO concentration, the reciprocal pulse generator gave a better performance for NO removal ratio than the self-matched pulse generator even though the stored energy in the recipocal pulse generator was very low.

  5. A data-driven wavelet-based approach for generating jumping loads

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  6. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    PubMed

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  7. Controlling the high frequency response of H2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    NASA Astrophysics Data System (ADS)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann

    2016-01-01

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

  8. Controlling the high frequency response of H{sub 2} by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de

    2016-01-28

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show howmore » adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.« less

  9. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

  10. 200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals

    PubMed Central

    Deng, Z. Daniel; Southall, Brandon L.; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Ingraham, John M.

    2014-01-01

    The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered. PMID:24736608

  11. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  12. A single-frequency double-pulse Ho:YLF laser for CO2-lidar

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.

    2016-03-01

    A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.

  13. Characterizing the parameters of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Mansurova, Svetlana; Il'in, Yurij V.; Tarasov, Il'ya S.

    2010-06-01

    We discuss specifically elaborated approach for characterizing the train-average parameters of low-power picosecond optical pulses with the frequency chirp, arranged in high-repetition-frequency trains, in both time and frequency domains. This approach had been previously applied to rather important case of pulse generation when a single-mode semiconductor heterolaser operates in a multi-pulse regime of the active mode-locking with an external single-mode fiber cavity. In fact, the trains of optical dissipative solitary pulses, which appear under a double balance between mutually compensating actions of dispersion and nonlinearity as well as gain and optical losses, are under characterization. However, in the contrast with the previous studies, now we touch an opportunity of describing two chirped optical pulses together. The main reason of involving just a pair of pulses is caused by the simplest opportunity for simulating the properties of just a sequence of pulses rather then an isolated pulse. However, this step leads to a set of specific difficulty inherent generally in applying joint time-frequency distributions to groups of signals and consisting in manifestation of various false signals or artefacts. This is why the joint Chio-Williams time-frequency distribution and the technique of smoothing are under preliminary consideration here.

  14. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.

    PubMed

    Choi, James J; Coussios, Constantin-C

    2012-11-01

    Ultrasound and microbubble-based therapies utilize cavitation to generate bioeffects, yet cavitation dynamics during individual pulses and across consecutive pulses remain poorly understood under physiologically relevant flow conditions. SonoVue(®) microbubbles were made to flow (fluid velocity: 10-40 mm/s) through a vessel in a tissue-mimicking material and were exposed to ultrasound [frequency: 0.5 MHz, peak-rarefactional pressure (PRP): 150-1200 kPa, pulse length: 1-100,000 cycles, pulse repetition frequency (PRF): 1-50 Hz, number of pulses: 10-250]. Radiated emissions were captured on a linear array, and passive acoustic mapping was used to spatiotemporally resolve cavitation events. At low PRPs, stable cavitation was maintained throughout several pulses, thus generating a steady rise in energy with low upstream spatial bias within the focal volume. At high PRPs, inertial cavitation was concentrated in the first 6.3 ± 1.3 ms of a pulse, followed by an energy reduction and high upstream bias. Multiple pulses at PRFs below a flow-dependent critical rate (PRF(crit)) produced predictable and consistent cavitation dynamics. Above the PRF(crit), energy generated was unpredictable and spatially biased. In conclusion, key parameters in microbubble-seeded flow conditions were matched with specific types, magnitudes, distributions, and durations of cavitation; this may help in understanding empirically observed in vivo phenomena and guide future pulse sequence designs.

  15. Physical mechanism of coherent acoustic phonons generation and detection in GaAs semiconductor

    NASA Astrophysics Data System (ADS)

    Babilotte, P.; Morozov, E.; Ruello, P.; Mounier, D.; Edely, M.; Breteau, J.-M.; Bulou, A.; Gusev, V.

    2007-12-01

    We first describe the picosecond acoustic interferometry study of GaAs with two-colors pump-probe laser pulses. The dependence of the generation process on the pump wavelength and the detection process on the probe wavelength both can cause the shift in the phase of the Brillouin signal. Secondly, in order to distinguish the short high frequency wideband acoustic pulse from low frequency Brillouin contribution, we accomplished experiments with (100)GaAs semiconductor coated by a transparent and photoelastically inactive thin film, serving a delay line for the acoustic pulse. Even with highly penetrating pump light (approx 680nm), short acoustic disturbances of approx 7ps of duration have been registered.

  16. Human Pulse Wave Measurement by MEMS Electret Condenser Microphone

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi

    A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.

  17. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (< 1 kV) and series connected step-up (1:10) transformers.

    PubMed

    Redondo, L M; Fernando Silva, J; Margato, E

    2007-03-01

    This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.

  18. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB_3O_5

    NASA Astrophysics Data System (ADS)

    Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick

    2016-05-01

    We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2<1.26 for the SH beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.

  19. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    PubMed

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  1. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  2. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  3. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  4. Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation.

    PubMed

    Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo

    2017-04-15

    This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.

  5. Method and apparatus for nondestructive testing. [using high frequency arc discharges

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    High voltage is applied to an arc gap adjacent to a test specimen to develop a succession of high frequency arc discharges. Those high frequency arc discharges generate pulses of ultrasonic energy within the test specimen without requiring the arc discharges to contact that test specimen and without requiring a coupling medium. Those pulses can be used for detection of flaws and measurements of certain properties and stresses within the test specimen.

  6. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

  7. Generation of high-power subpicosecond pulses at 155 nm.

    PubMed

    Mossavi, K; Fricke, L; Liu, P; Wellegehausen, B

    1995-06-15

    Subpicosecond vacuum-ultraviolet radiation at 155 nm with pulse energies above 0.2 mJ has been obtained by near-resonant four-wave difference-frequency mixing in a Xe gas jet. Laser fields for the mixing process have been generated by a short-pulse KrF dye excimer laser system and a Raman converter. The process permits tuning in a broad vacuum-ultraviolet range and can be scaled up to higher output energies.

  8. Fiber-laser frequency combs for the generation of tunable single-frequency laser lines, mm- and THz-waves and sinc-shaped Nyquist pulses

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas

    2015-03-01

    High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.

  9. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  10. Random pulse generator

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1975-01-01

    An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.

  11. High-frequency harmonic imaging of the eye.

    PubMed

    Silverman, Ronald H; Coleman, D Jackson; Ketterling, Jeffrey A; Lizzi, Frederic L

    2005-01-01

    PURPOSE: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. METHODS: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. RESULTS: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. CONCLUSION: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  12. High-frequency harmonic imaging of the eye

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  13. Tunable picosecond infrared pulses generated by stimulated electronic Raman scattering of a mode-locked Ti:Sapphire laser in potassium vapor

    NASA Astrophysics Data System (ADS)

    Ohde, H.; Lin, S.; Minoh, A.; Shimizu, F. O.; Aono, M.; Suzuki, T.

    1996-01-01

    A down-conversion to the mid-infrared region by using Stimulated Electronic Raman Scattering (SERS) in potassium vapor is described. The pump radiation is a frequency-doubled regeneratively amplified Ti:Sapphire laser with a pulse duration of 2 ps, pulse energy of 0.2 mJ, and repetition rate of 10 Hz. With the pumping frequency tuned around the potassium 4 s-5 p transition, nearly transform-limited infrared radiation tunable between 2.2 and 3.4 μm has been generated with a peak infrared energy of 12 µJ, corresponding to a quantum efficiency of 17%, and with a pulse duration of 2 ps. The present tuning range could be extended by extending the tuning range of the pump laser. In comparison, intense infrared radiation of 90 µJ energy but with a very narrow tunability around 2.9 μm has also been generated by SERS in barium vapor.

  14. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    NASA Astrophysics Data System (ADS)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  15. Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration.

    PubMed

    Zhang, Peng; Jiang, Youen; Zhou, Shenlei; Fan, Wei; Li, Xuechun

    2014-12-10

    A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 μJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 μJ.

  16. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.

    2014-11-01

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO4)2 (high dispersion) and Ba(NO3)2 (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes - anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes - anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium.

  17. Frequency-resolved optical gating system with a tellurium crystal for characterizing free-electron lasers in the wavelength range of 10-30 {mu}m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki

    2009-12-15

    A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 {mu}m. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength {approx}22 {mu}m) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THzmore » at full width half maximum, respectively.« less

  18. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    PubMed

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  19. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  20. Picosecond acoustic phonon dynamics in LaF3:Pr3+

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean M.; Yang, Ho-Soon; Dennis, W. M.

    1998-09-01

    A plasma switching technique is used to generate subnanosecond, far-infrared (FIR) pulses with frequency 113 cm-1. The generation of subnanosecond FIR pulses enables us to improve the time resolution of phonon spectroscopic measurements from 50 ns to 350 ps. As an application of this technique, we investigate the subnanosecond dynamics of high-frequency phonons in 0.5% LaF3:Pr3+. In particular, we report on the generation and detection of a subnanosecond nonequilibrium phonon population at 113 cm-1, and the temporal evolution of the resulting decay products. The frequency dependence of the phonon relaxation rates of acoustic phonons in this material is found to deviate from the ω5 frequency dependence predicted by an isotropic model with linear dispersion. A more realistic model based on the actual dispersion curves of the material is presented and compared with the data.

  1. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    NASA Astrophysics Data System (ADS)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  2. Correlated Photon-Pair Generation in Reverse Proton-Exchange PPLN Waveguides With Integrated Mode Demultiplexer at 10 GHz Clock

    DTIC Science & Technology

    2007-07-31

    number of photon-pairs per pulse is μ ( 1<<μ ) and the laser repetition frequency isν . The average noise photon numbers per pulse are sμ and iμ for the...and 1563-nm center wavelength pass through a tunable bandpass filter to remove the background noise from the EDFA. The pump is then frequency doubled...generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber", Opt. Express, 13, 7832 (2005) #83485 - $15.00 USD Received 29 May

  3. Semiconductor laser-based optoelectronics oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-08-01

    We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  4. Programmable pulse generator based on programmable logic and direct digital synthesis.

    PubMed

    Suchenek, M; Starecki, T

    2012-12-01

    The paper presents a new approach of pulse generation which results in both wide range tunability and high accuracy of the output pulses. The concept is based on the use of programmable logic and direct digital synthesis. The programmable logic works as a set of programmable counters, while direct digital synthesis (DDS) as the clock source. Use of DDS as the clock source results in stability of the output pulses comparable to the stability of crystal oscillators and quasi-continuous tuning of the output frequency.

  5. Transition from wakefield generation to soliton formation.

    PubMed

    Holkundkar, Amol R; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  6. Transition from wakefield generation to soliton formation

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  7. A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.

    2017-03-01

    The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.

  8. Weakfish sonic muscle: influence of size, temperature and season.

    PubMed

    Connaughton, M A; Fine, M L; Taylor, M H

    2002-08-01

    The influence of temperature, size and season on the sounds produced by the sonic muscles of the weakfish Cynoscion regalis are categorized and used to formulate a hypothesis about the mechanism of sound generation by the sonic muscle and swimbladder. Sounds produced by male weakfish occur at the time and location of spawning and have been observed in courtship in captivity. Each call includes a series of 6-10 sound pulses, and each pulse expresses a damped, 2-3 cycle acoustic waveform generated by single simultaneous twitches of the bilateral sonic muscles. The sonic muscles triple in mass during the spawning season, and this hypertrophy is initiated by rising testosterone levels that trigger increases in myofibrillar and sarcoplasmic cross-sectional area of sonic muscle fibers. In response to increasing temperature, sound pressure level (SPL), dominant frequency and repetition rate increase, and pulse duration decreases. Likewise, SPL and pulse duration increase and dominant frequency decreases with fish size. Changes in acoustic parameters with fish size suggest the possibility that drumming sounds act as an 'honest' signal of male fitness during courtship. These parameters also correlate with seasonally increasing sonic muscle mass. We hypothesize that sonic muscle twitch duration rather than the resonant frequency of the swimbladder determines dominant frequency. The brief (3.5 ms), rapidly decaying acoustic pulses reflect a low-Q, broadly tuned resonator, suggesting that dominant frequency is determined by the forced response of the swimbladder to sonic muscle contractions. The changing dominant frequency with temperature in fish of the same size further suggests that frequency is not determined by the natural frequency of the bladder because temperature is unlikely to affect resonance. Finally, dominant frequency correlates with pulse duration (reflecting muscle twitch duration), and the inverse of the period of the second cycle of acoustic energy approximates the recorded frequency. This paper demonstrates for the first time that the dominant frequency of a fish sound produced by a single muscle twitch is apparently determined by the velocity of the muscle twitch rather than the natural frequency of the swimbladder.

  9. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  10. A laser based frequency modulated NL-OSL phenomenon

    NASA Astrophysics Data System (ADS)

    Mishra, D. R.; Bishnoi, A. S.; Soni, Anuj; Rawat, N. S.; Bhatt, B. C.; Kulkarni, M. S.; Babu, D. A. R.

    2015-01-01

    The detailed theoretical and experimental approach to novel technique of pulse frequency modulated stimulation (PFMS) method has been described for NL-OSL phenomenon. This method involved pulsed frequency modulation with respect to time for fixed pulse width of 532 nm continuous wave (CW)-laser light. The linearly modulated (LM)-, non-linearly (NL)-stimulation profiles have been generated using fast electromagnetic optical shutter. The PFMS parameters have been determined for present experimental setup. The PFMS based LM-, NL-OSL studies have been carried out on dosimetry grade single crystal α-Al2O3:C. The photo ionization cross section of α-Al2O3:C has been found to be ∼9.97 × 10-19 cm2 for 532 nm laser light using PFMS LM-OSL studies under assumption of first order of kinetic. This method of PFMS is found to be a potential alternative to generate different stimulation profiles using CW-light sources.

  11. Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition

    NASA Astrophysics Data System (ADS)

    Heard, David W.; Boselli, Julien; Gauvin, Raynald; Brochu, Mathieu

    Electrospark deposition (ESD) is a rapid solidification processing technique capable of depositing a metal onto a conductive substrate. The short pulse duration and high pulse frequency, combined with the small amount of material transferred during each pulse, results in high cooling rates being realized, on the order of 105-106 C/sec. This study investigates the ability to induce solute trapping behavior, for a new generation aluminum-lithium alloy, AA2199, using ESD.

  12. Rapid testing of pulse transformers

    NASA Technical Reports Server (NTRS)

    Grillo, J.

    1980-01-01

    Quality-control testing of pulse transformers is speeded up by method for determining rise time and droop. Instead of using oscilloscope and square-wave generator to measure these characteristics directly, method uses voltmeter and sine-wave generator to measure them indirectly in about one-tenth time. Droop and rise time are determined by measuring input/output voltage ratio at just four frequencies.

  13. Microwave Comb Generator

    NASA Technical Reports Server (NTRS)

    Sigman, E. H.

    1989-01-01

    Stable reference tones aid testing and calibration of microwave receivers. Signal generator puts out stable tones in frequency range of 2 to 10 GHz at all multiples of reference input frequency, at any frequency up to 1 MHz. Called "comb generator" because spectral plot resembles comb. DC reverse-bias current switched on and off at 1 MHz to generate sharp pulses in step-recovery diode. Microwave components mounted on back of special connector containing built-in attenuator. Used in testing microwave and spread-spectrum wide-band receivers.

  14. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    NASA Astrophysics Data System (ADS)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  15. Generation and amplification of sub-THz radiation in a rare gases plasma formed by a two-color femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2018-06-01

    A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.

  16. Frequency stability measurement of pulsed superradiance from strontium

    NASA Astrophysics Data System (ADS)

    Norcia, Matthew; Cline, Julia; Robinson, John; Ye, Jun; Thompson, James

    2017-04-01

    Superradiant laser light from an ultra-narrow optical transition holds promise as a next-generation of active frequency references. We have recently demonstrated pulsed lasing on the milliHertz linewidth clock transition in strontium. Here, we present the first frequency comparisons between such a superradiant source and a state of the art stable laser system. We characterize the stability of the superradiant system, and demonstrate a reduction in sensitivity to cavity frequency fluctuations of nearly five orders of magnitude compared to a conventional laser. DARPA QUASAR, NIST, NSF PFC.

  17. On Frequency Combs in Monolithic Resonators

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  18. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniyappan, S.; Johnson, R.; Shimada, T.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  19. Single-shot detection and direct control of carrier phase drift of midinfrared pulses.

    PubMed

    Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea

    2010-03-01

    We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.

  20. A cavity-dumped and regenerative amplifier system for generating high-energy, high-repetition-rate picosecond pulses

    NASA Astrophysics Data System (ADS)

    Peng, ZhiGang; Chen, Meng; Yang, Chao; Chang, Liang; Li, Gang

    2015-02-01

    We report a high-energy, high-repetition CW pumped Nd:YVO4 amplifier system, that produces 10.5 W, 14.2 ps pulses at 1064 nm wavelength and 5 W pulses at 532 nm wavelength with a repetition rate of 10 kHz. Pulses from a passively mode-locked Nd:YVO4 oscillator are first generated by cavity dumping, and then further amplified in a regenerative amplifier from 545 nJ to 1 mJ with a CW diode-pumped Nd:YVO4. After frequency doubling, 0.5 mJ pulses are obtained with a wavelength of 532 nm.

  1. Generation of Gigawatt Circularly Polarized Attosecond-Pulse Pairs

    NASA Astrophysics Data System (ADS)

    Hu, K.; Wu, H.-C.

    2017-12-01

    A novel scheme for generating a pair of gigawatt attosecond pulses by coherent Thomson scattering from relativistic electron sheets is proposed. With a circularly polarized relativistic laser pulse, the scattered x-ray signal can have a saddlelike temporal profile, where the lower electromagnetic frequencies are found mostly in the center region of this saddlelike profile. By filtering out the latter, we can obtain two few-attosecond pulses separated by a subfemtosecond interval, which is tunable by controlling the energy of the sheet electrons. Such a pulse pair can be useful for an attosecond pump probe at an unprecedented time resolution and for ultrafast chiral studies in molecules and materials.

  2. Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G. (Inventor); Maserjian, Joseph (Inventor)

    1995-01-01

    A submillimeter wave-generating integrated circuit includes an array of N photoconductive switches biased across a common voltage source and an optical path difference from a common optical pulse of repetition rate f sub 0 providing a different optical delay to each of the switches. In one embodiment, each incoming pulse is applied to successive ones of the N switches with successive delays. The N switches are spaced apart with a suitable switch-to-switch spacing so as to generate at the output load or antenna radiation of a submillimeter wave frequency f on the order of N f sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.

  3. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  4. Electronic circuit delivers pulse of high interval stability

    NASA Technical Reports Server (NTRS)

    Fisher, B.

    1966-01-01

    Circuit generates a pulse of high interval stability with a complexity level considerably below systems of comparable stability. This circuit is being used as a linear frequency discriminator in the signal conditioner of the Apollo command module.

  5. [Study of emission spectroscopy of OH radicals in pulsed corona discharge].

    PubMed

    Wei, Bo; Luo, Zhong-Yang; Xu, Fei; Zhao, Lei; Gao, Xiang; Cen, Ke-Fa

    2010-02-01

    In the present paper, OH radicals generated by pulsed corona discharge in humidified air, N2 and Ar in a needle-plate reactor were measured by emission spectra. With the analysis of the emission spectra, the influence of pulse peak voltage and frequency on OH radical generation was investigated in the three kinds of background gases. The influence of the gas humidity on the generation and the distribution of OH radicals in the electric field was also discussed in detail. The authors studied the influence of the gas humidity on the generation of OH radicals in the electric field by the control of accurate change in humidity, and we also studied the distribution of OH radicals in the electric field in different background gases including humidified air, N2 and Ar by the accurate change in scales. The experiment shows that the output of OH radicals grows as the pulse peak voltage and frequency grow, but the influence of gas humidity on the process of generating OH radicals by pulsed corona discharge depends on the discharge background. The rules of the generation change when the background gases change. As the humidity in the background gases grows, the amount of OH radicals grows in the air, but it grows at first and decreases at last in N2, while it decreases at first and grows at last in Ar. The distribution of OH radical shows a trend of decreasing from the needle-electrode to its circumambience.

  6. Linear transformer driver for pulse generation

    DOEpatents

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  7. All-optical central-frequency-programmable and bandwidth-tailorable radar

    PubMed Central

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uryupin, S A; Frolov, A A

    We have developed a theory of generation of low-frequency radiation and surface waves under the pondermotive action of a femtosecond laser pulse irradiating a conductor along the normal and focused by a cylindrical lens. It is shown that for the chosen focusing method and specified values of laser pulse duration and flux density it is possible to significantly increase the total energy of both surface waves and low-frequency radiation. (terahertz radiation)

  9. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  10. Cross-correlation between vagal afferent impulses from pulmonary mechanoreceptors and high-frequency inflation (HFI) and deflation (HFD) in rabbits.

    PubMed

    Homma, I; Isobe, A; Iwase, M; Onimaru, H; Sibuya, M

    1987-04-10

    The effects of high-frequency airway inflation (HFI) and high-frequency airway deflation (HFD) generated by a triangular pressure pulse generator on pulmonary mechanoreceptors were examined. The cross-correlograms between vagal afferent impulses from the slowly adapting (SAR) and the rapidly adapting receptors (RAR) and the HFI or the HFD pulses were analysed. HFI stimulated SAR and RAR and HFD stimulated RAR, but inhibited SAR. The time lag of the mode in the correlogram between SAR and HFI was shorter than that of the mode in the correlogram between RAR and HFI. The span of the mode and the trough of SAR was shorter than the span of the mode of RAR. This may indicate that the time to peak of the generator potential of RAR is longer than that of SAR.

  11. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr

    NASA Astrophysics Data System (ADS)

    Abou-Saleh, A.; Karim, E. T.; Maurice, C.; Reynaud, S.; Pigeon, F.; Garrelie, F.; Zhigilei, L. V.; Colombier, J. P.

    2018-04-01

    Interaction of ultrafast laser pulses with metal surfaces in the spallation regime can result in the formation of anisotropic nanoscale surface morphology commonly referred to as laser-induced periodic surface structures (LIPSS) or ripples. The surface structures generated by a single pulse irradiation of monocrystalline Cr samples are investigated experimentally and computationally for laser fluences that produce high spatial frequency nanostructures in the multi-pulse irradiation regime. Electron microscopy reveals distinct response of samples with different crystallographic surface orientations, with (100) surfaces exhibiting the formation of more refined nanostructure by a single pulse irradiation and a more pronounced LIPSS after two laser pulses as compared to (110) surfaces. A large-scale molecular dynamics simulation of laser interaction with a (100) Cr target provides detailed information on processes responsible for spallation of a liquid layer, redistribution of molten material, and rapid resolidification of the target. The nanoscale roughness of the resolidified surface predicted in the simulation features elongated frozen nanospikes, nanorims and nanocavities with dimensions and surface density similar to those in the surface morphology observed for (100) Cr target with atomic force microscopy. The results of the simulation suggest that the types, sizes and dimensions of the nanoscale surface features are defined by the competition between the evolution of transient liquid structures generated in the spallation process and the rapid resolidification of the surface region of the target. The spallation-induced roughness is likely to play a key role in triggering the generation of high-frequency LIPSS upon irradiation by multiple laser pulses.

  12. Recent Results With Coupled Opto-Electronic Oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.

    1998-07-01

    We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  13. Recent results with the coupled opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-11-01

    We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  14. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  15. Optimization of a Fully-Pulsed Jet in a Fluid of Similar Density

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, Morteza

    1998-11-01

    In a previous work, Gharib et al.(Morteza Gharib, Edmond Rambod, Karim Shariff, "A Universal Time Scale for Vortex Ring Formation," JFM, vol. 360, pp. 121-140, 1998) have studied vortex rings generated through impulsively started jets using a piston/cylinder arrangement. This work showed that the vortex ring that formed at the leading edge of the jet reached a maximum strength for a piston stroke to diameter ratio (L/D) of approximately 4 for a wide range of piston motions and jet exit boundaries. This result suggests interesting consequences for a fully-pulsed jet, which is simply a series of impulsively started jets strung together. Specifically, the thrust of the present investigation is to study how the physical behavior of a fully-pulsed jet varies as both L/D and the pulsing frequency of the jet (rate at which pulses are ejected) are varied. To this end, a piston/cylinder arrangement with a stepper motor is used to generate a fully-pulsed jet with different L/D and pulsing frequency (f) combinations. The thrust produced by these various jets is measured directly and used as a gauge of the effectiveness of the pulsed jet. Combinations of L/D and f leading to optimization of the pulsed jet will be presented.

  16. Solid-state YVO4/Nd:YVO4/KTP green laser system for the generation of subnanosecond pulses with adjustable kilohertz repetition rate.

    PubMed

    Zhang, Haijuan; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Wang, Yonggang

    2013-09-20

    A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO(4)/Nd:YVO(4)/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz.

  17. Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics

    NASA Astrophysics Data System (ADS)

    Nakazawa, Masataka

    Ultrashort optical pulse sources in the 1.5-µm region are becoming increasingly important in terms of realizing ultrahigh-speed optical transmission and signal processing at optical nodes. This paper provides a detailed description of several types of mode-locked erbium-doped fiber laser, which are capable of generating picosecond-femtosecond optical pulses in the 1.55-µm region. In terms of ultrashort pulse generation at a low repetition rate (˜100 MHz), passively mode-locked fiber lasers enable us to produce pulses of approximately 100 fs. With regard to high repetition rate pulse generation at 10-40 GHz, harmonically mode-locked fiber lasers can produce picosecond pulses. This paper also describes the generation of a femtosecond pulse train at a repetition rate of 10-40 GHz by compressing the output pulses from harmonically mode-locked fiber lasers with dispersion-decreasing fibers. Finally, a new Cs optical atomic clock at a frequency of 9.1926 GHz is reported that uses a re-generatively mode-locked fiber laser as an opto-electronic oscillator instead of a quartz oscillator. The repetition rate stability reaches as high as 10-12-10-13.

  18. Storage and retrieval of light pulse in coupled quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jibing, E-mail: liu0328@foxmail.com; Liu, Na; Shan, Chuanjia

    In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, themore » results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.« less

  19. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  20. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  1. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  2. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetanin, S N

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourthmore » Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)« less

  3. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  4. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration < 250 fs (more than 20 bound pulses when obtained multi-bound soliton generation with intertemporal width 5 ps) at a repetition rate 11.3 MHz (with signal-to-noise ratio at fundamental frequency > 59 dB) and relative intensity noise <-101 dBc / Hz.

  5. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less

  6. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  7. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  8. Stochastic modeling of the hypothalamic pulse generator activity.

    PubMed

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  9. Airy pulse shaping using time-dependent power-law potentials

    NASA Astrophysics Data System (ADS)

    Han, Tianwen; Chen, Hao; Qin, Chengzhi; Li, Wenwan; Wang, Bing; Lu, Peixiang

    2018-06-01

    We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal processing.

  10. Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser

    NASA Astrophysics Data System (ADS)

    Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan

    2018-01-01

    The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.

  11. High-frequency strontium vapor laser for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  12. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    NASA Astrophysics Data System (ADS)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  13. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  14. The beluga whale produces two pulses to form its sonar signal

    PubMed Central

    Lammers, Marc O.; Castellote, Manuel

    2009-01-01

    Odontocete cetaceans use biosonar clicks to acoustically probe their aquatic environment with an aptitude unmatched by man-made sonar. A cornerstone of this ability is their use of short, broadband pulses produced in the region of the upper nasal passages. Here we provide empirical evidence that a beluga whale (Delphinapterus leucas) uses two signal generators simultaneously when echolocating. We show that the pulses of the two generators are combined as they are transmitted through the melon to produce a single echolocation click emitted from the front of the animal. Generating two pulses probably offers the beluga the ability to control the energy and frequency distribution of the emitted click and may allow it to acoustically steer its echolocation beam. PMID:19324643

  15. High-speed precise cell patterning by pulsed electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Makaev, A. V.; Mingaliev, E. A.; Karpov, V. R.; Zubarev, I. V.; Shur, V. Ya; El'kina, O. S.

    2017-10-01

    The generation of micro-droplets of nutrient medium with living cells by pulsed electrohydrodynamic printing has been studied. In-situ visualization by high-speed camera made it possible to measure the characteristic times of droplet generation process and to determine the optimal printing parameters. Maximal frequency of stable generation was achieved at 700 Hz. This technique was applied successfully for drop-on-demand printing of culture medium with live HeLa cells and yeasts.

  16. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  17. Powerful timing generator using mono-chip timers: An application to pulsed nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Saint-Jalmes, Hervé; Barjhoux, Yves

    1982-01-01

    We present a 10 line-7 MHz timing generator built on a single board around two LSI timer chips interfaced to a 16-bit microcomputer. Once programmed from the host computer, this device is able to generate elaborate logic sequences on its 10 output lines without further interventions from the CPU. Powerful architecture introduces new possibilities over conventional memory-based timing simulators and word generators. Loop control on a given sequence of events, loop nesting, and various logic combinations can easily be implemented through a software interface, using a symbolic command language. Typical applications of such a device range from development, emulation, and test of integrated circuits, circuit boards, and communication systems to pulse-controlled instrumentation (radar, ultrasonic systems). A particular application to a pulsed Nuclear Magnetic Resonance (NMR) spectrometer is presented, along with customization of the device for generating four-channel radio-frequency pulses and the necessary sequence for subsequent data acquisition.

  18. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  19. Skyrmion-based high-frequency signal generator

    NASA Astrophysics Data System (ADS)

    Luo, Shijiang; Zhang, Yue; Shen, Maokang; Ou-Yang, Jun; Yan, Baiqian; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long

    2017-03-01

    Many concepts for skyrmion-based devices have been proposed, and most of their possible applications are based on the motion of skyrmions driven by a dc current in an area with a constricted geometry. However, skyrmion motion driven by a pulsed current has not been investigated so far. In this work, we propose a skyrmion-based high-frequency signal generator based on the pulsed-current-driven circular motion of skyrmions in a square-shaped film by micromagnetic simulation. The results indicate that skyrmions can move in a closed curve with central symmetry. The trajectory and cycle period can be adjusted by tuning the size of the film, the current density, the Dzyaloshinskii-Moriya interaction constant, and the local in-plane magnetic anisotropy. The period can be tuned from several nanoseconds to tens of nanoseconds, which offers the possibility to prepare high-frequency signal generator based on skyrmions.

  20. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  1. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  2. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  3. Noise reduction and control in mode-locked semiconductor diode lasers for use in next-generation all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    DePriest, Christopher M.; Abeles, Joseph H.; Braun, Alan; Delfyett, Peter J., Jr.

    2000-07-01

    External-cavity, actively-modelocked semiconductor diode lasers (SDLs) have proven to be attractive candidates for forming the backbone of next-generation analog-to-digital converters (ADCs), which are currently being developed to sample signals at repetition rates exceeding several GHz with up to 12 bits of digital resolution. Modelocked SDLs are capable of producing waveform-sampling pulse trains with very low temporal jitter (phase noise) and very small fluctuations in pulse height (amplitude noise)--two basic conditions that must be met in order for high-speed ADCs to achieve projected design goals. Single-wavelength modelocked operation (at nominal repetition frequencies of 400 MHz) has produced pulse trains with very low amplitude noise (approximately 0.08%), and the implementation of a phase- locked-loop has been effective in reducing the system's low- frequency phase noise (RMS timing jitter for offset frequencies between 10 Hz and 10 kHz has been reduced from 240 fs to 27 fs).

  4. Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.

    2013-03-01

    Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.

  5. Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator.

    PubMed

    Wu, Tsu-Hsiu; Wu, Jui-pin; Chiu, Yi-Jen

    2010-02-15

    We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89 ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4 GHz of frequency ranges from 0.1 GHz to 8 GHz for -10 dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.

  6. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  7. Optimization of mid-IR generation from a periodically poled MgO doped stoichiometric lithium tantalate optical parametric oscillator with intracavity difference frequency mixing

    NASA Astrophysics Data System (ADS)

    Hatano, Hideki; Slater, Richard; Takekawa, Shunji; Kusano, Masahiro; Watanabe, Makoto

    2017-07-01

    We demonstrate 43% slope efficiency for generation of ∼3200 nm light, a wavelength considered to be ideal for laser induced ultrasound generation in carbon fiber reinforced plastic. High slope efficiency was obtained by optimizing crystal lengths, cavity length and mirror reflectivity using a two crystal optical parametric oscillator+difference frequency mixing (OPO+DFM) nonlinear wavelength conversion scheme. Mid-IR output >12 mJ was obtained from a 1064 nm Nd:YAG pump laser with 12 ns pulse width (FWHM) and containing pulse energy of 43 mJ. A compact, single temperature crystal oven is described along with some suggestions for improving the slope efficiency.

  8. The Effect of Pulse Length and Ejector Radius on Unsteady Ejector Performance

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    2005-01-01

    The thrust augmentation of a set of ejectors driven by a shrouded Hartmann-Sprenger tube has been measured at four different frequencies. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A three level, three parameter Box-Behnken statistical design of experiment scheme was performed at each frequency, measuring the thrust augmentation generated by the appropriate ejectors from the set. The three parameters were ejector length, radius, and inlet radius. The results showed that there is an optimum ejector radius and length at each frequency. Using a polynomial fit to the data, the results were interpolated to different ejector radii and pulse length to diameter ratios. This showed that a peak in thrust augmentation occurs when the pulse length to diameter ratio equals the formation number, and that the optimum ejector radius is 0.87 times the sum of the vortex ring radius and the core radius.

  9. Relativistic runaway breakdown in low-frequency radio

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  10. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    NASA Astrophysics Data System (ADS)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  11. Exploiting solitons in all-optical networks

    NASA Astrophysics Data System (ADS)

    Atieh, Ahmad K.

    Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.

  12. All-fiber mode-locked erbium-doped ring laser based on a highly-nonlinear resonator with a low-noise ultrashort pulse generation

    NASA Astrophysics Data System (ADS)

    Kudelin, Igor S.; Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2018-04-01

    Ultrashort pulse (USP) fiber lasers have found applications in such various fields as frequency metrology and spectroscopy, telecommunication systems, etc. For the last decade, mode-locking (ML) fiber lasers have been under carefully investigations for scientific, medical and industrial applications. Also, USP fiber sources can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics with a presence of high value of group velocity dispersion (GVD) and the third order dispersion in the resonator. For more reliable and robust launching of passive mode-locking based on a nonlinear polarization evolution, we used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the cavity and we have obtained ultrashort stretched pulses with a high peak power and energy. In this work relative intensity noise and frequency repetition stability is improved by applying isolator-polarizer (ISO-PM) with increased extinction ratio Pext and by compensation of intracavity group-velocity dispersion from the value β2 - 0.021 ps2 to - 0.0053 ps2 at 1550 nm. As a result, we have obtained the low-noise stretched pulse generation with duration 180 fs at a repetition rate 11.3 MHz (with signal-tonoise ratio at fundamental frequency 59 dB) with Allan deviation of a pulse repetition frequency for 1 s interval 5,7 * 10-9 and a relative intensity noise < -101 dBc / Hz.

  13. Scalable UWB photonic generator based on the combination of doublet pulses.

    PubMed

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  14. Squeezed pulsed light from a fiber ring interferometer

    NASA Technical Reports Server (NTRS)

    Bergman, K.; Haus, H. A.

    1992-01-01

    Observation of squeezed noise, 5 +/- 0.3 dB below the shot noise level, generated with pulses in a fiber ring interferometer is reported. The interferometric geometry is used to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is reused as the local oscillator in a homodyne detection. The pump fluctuations are successfully subtracted and shot noise limited performance is achieved at low frequencies (35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber gyro's signal to noise ratio is discussed.

  15. Experimental demonstration of highly localized pulses (X waves) at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Chiotellis, Nikolaos; Mendez, Victor; Rudolph, Scott M.; Grbic, Anthony

    2018-02-01

    A device that radiates transverse magnetic Bessel beams in the radiative near field is reported. The cone angle of the emitted radiation remains constant over a wide frequency range (18-30 GHz), allowing highly localized pulses (X waves) to be generated under a broadband excitation. The design process, based on ray optics, is discussed. Both frequency and time domain experimental results for a prototype are presented. The measured fields show close agreement with simulation results, and demonstrate the radiator's ability to emit X waves within its nondiffracting range.

  16. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  17. Apparatus for millimeter-wave signal generation

    DOEpatents

    Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.

    1999-01-01

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  18. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  19. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses.

    PubMed

    Mondal, S; Wei, Q; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2017-01-10

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  20. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    PubMed Central

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results. PMID:28071764

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr; University of Farhat Abbas Setif1, Sétif, 19000; Mohamadi, Tayeb

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  2. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-05-16

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  3. Record fifth-harmonic-generation efficiency producing 211  nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-01-01

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  4. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begishev, I. A.; Bromage, J.; Yang, S. T.

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  5. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  6. Generation of laser-induced periodic surface structures on transparent material-fused silica

    NASA Astrophysics Data System (ADS)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-01

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.

  7. Generation of laser-induced periodic surface structures on transparent material-fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-02

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less

  8. [Microsecond Pulsed Hollow Cathode Lamp as Enhanced Excitation Source of Hydride Generation Atomic Fluorescence Spectrometry].

    PubMed

    Zhang, Shuo

    2015-09-01

    The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.

  9. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  10. Enhancing high-order harmonic generation by sculpting waveforms with chirp

    NASA Astrophysics Data System (ADS)

    Peng, Dian; Frolov, M. V.; Pi, Liang-Wen; Starace, Anthony F.

    2018-05-01

    We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω , 2 ω ) and (ω , 3 ω ). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical analysis is based on numerical solutions of the time-dependent Schrödinger equation and on a semiclassical analytical approach that affords a clear physical interpretation of how our optimized waveforms lead to enhanced HHG spectra.

  11. Proceedings of the International Cryocoolers Conference (6th) Held in Plymouth, Massachusetts on October 25-26, 1990. Volume 2

    DTIC Science & Technology

    1991-01-01

    Pulse - Tube Cryocooler , BJ. Huang, L.T. Lee and C .W . Lu ................................................... 77 Pulse Tube Cooler Modeling . G.M...resistors, inductors and pulse generators. The design combines on one chip a test circuit and a sampler, which allows high frequency testing without...tube7 provides the opportunity to simplify the design and dispense with the reciprocating displacer shown in Figure 3. The superrniniaturised pulse

  12. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.

  13. Extremely High Peak Power Obtained at 29 GHZ Microwave Pulse Generation

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Gunin, A. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shunailov, S. A.; Ul'maskulov, M. R.; Yalandin, M. I.

    2017-12-01

    The paper presents research results on enhancing the peak power of microwave pulses with sub- and nanosecond length using a backward-wave oscillator (BWO) operating at 29 GHz frequency and possessing a reproducible phase structure. Experiments are conducted in two modes on a high-current electron accelerator with the required electron beam power. In the first (superradiation) mode, which utilizes the elongated slow-wave structure, the BWO peak power is 3 GW at 180 ns pulse duration (full width at halfmaximum, FWHM). In the second (quasi-stationary) mode, the BWO peak power reaches 600 MW at 2 ns pulse duration (FWHM). The phase spread from pulse to pulse can vary from units to several tens of percent in a nanosecond pulse mode. The experiments do not show any influence of microwave breakdown on the BWO power generation and radiation pulse duration.

  14. Measurement of electron density transients in pulsed RF discharges using a frequency boxcar hairpin probe

    NASA Astrophysics Data System (ADS)

    Peterson, David; Coumou, David; Shannon, Steven

    2015-11-01

    Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.

  15. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong

    2015-09-15

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is aboutmore » 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.« less

  16. Passive mode-locking of a diode-pumped Nd:YVO(4) laser by intracavity SHG in PPKTP.

    PubMed

    Iliev, Hristo; Chuchumishev, Danail; Buchvarov, Ivan; Petrov, Valentin

    2010-03-15

    Experimental results on passive mode-locking of a Nd:YVO(4) laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded chi((2)) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded chi((2)) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.

  17. 1645-nm single-frequency, injection-seeded Q-switched Er:YAG master oscillator and power amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Gao, Chunqing; Shi, Yang; Song, Rui; Na, Quanxin; Gao, Mingwei; Wang, Qing

    2018-02-01

    A 1645-nm injection-seeded Q-switched Er:YAG master oscillator and power amplifier system is reported. The master oscillator generates single-frequency pulse energy of 11.10 mJ with a pulse width of 188.8 ns at 200 Hz. An Er:YAG monolithic nonplanar ring oscillator is employed as a seed laser. The output pulse from the master oscillator is amplified to 14.33-mJ pulse energy through an Er:YAG amplifier, with a pulse width of 183.3 ns. The M2-factors behind the amplifier are 1.14 and 1.23 in x- and y-directions, respectively. The full width at half maximum of the fast Fourier transformation spectrum of the heterodyne beating signal is 2.84 MHz.

  18. Optical generation and detection of gigahertz-frequency longitudinal and shear acoustic waves in liquids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Klieber, Christoph; Pezeril, Thomas; Andrieu, Stéphane; Nelson, Keith A.

    2012-07-01

    We describe an adaptation of picosecond laser ultrasonics tailored for study of GHz-frequency longitudinal and shear acoustic waves in liquids. Time-domain coherent Brillouin scattering is used to detect multicycle acoustic waves after their propagation through variable thickness liquid layers into a solid substrate. A specialized optical pulse shaping method is used to generate sequences of pulses whose repetition rate determines the acoustic frequency. The measurements reveal the viscoelastic liquid properties and also include signatures of the optical and acoustic cavities formed by the multilayer sample assembly. Modeling of the signals allows their features to be distinguished so that liquid properties can be extracted reliably. Longitudinal and shear acoustic wave data from glycerol and from the silicon oil DC704 are presented.

  19. Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy.

    PubMed

    He, Yuhan; Wang, Ying; Wang, Jingjing; Guo, Wei; Wang, Zhaohui

    2016-03-01

    The resonant spectral bands of the broadband sum frequency generation (BB-SFG) spectra are often distorted by the nonresonant portion and the lineshapes of the laser pulses. Frequency domain nonlinear regression (FDNLR) algorithm was proposed to retrieve the first-order polarization induced by the infrared pulse and to improve the analysis of SFG spectra through simultaneous fitting of a series of time-resolved BB-SFG spectra. The principle of FDNLR was presented, and the validity and reliability were tested by the analysis of the virtual and measured SFG spectra. The relative phase, dephasing time, and lineshapes of the resonant vibrational SFG bands can be retrieved without any preset assumptions about the SFG bands and the incident laser pulses.

  20. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  1. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  2. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  3. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  4. A Josephson radiation comb generator.

    PubMed

    Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F

    2015-07-20

    We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.

  5. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  6. Fatigue Effect on Low-Frequency Force Fluctuations and Muscular Oscillations during Rhythmic Isometric Contraction

    PubMed Central

    Lin, Yen-Ting; Kuo, Chia-Hua; Hwang, Ing-Shiou

    2014-01-01

    Continuous force output containing numerous intermittent force pulses is not completely smooth. By characterizing force fluctuation properties and force pulse metrics, this study investigated adaptive changes in trajectory control, both force-generating capacity and force fluctuations, as fatigue progresses. Sixteen healthy subjects (20–24 years old) completed rhythmic isometric gripping with the non-dominant hand to volitional failure. Before and immediately following the fatigue intervention, we measured the gripping force to couple a 0.5 Hz sinusoidal target in the range of 50–100% maximal voluntary contraction. Dynamic force output was off-line decomposed into 1) an ideal force trajectory spectrally identical to the target rate; and 2) a force pulse trace pertaining to force fluctuations and error-correction attempts. The amplitude of ideal force trajectory regarding to force-generating capacity was more suppressed than that of the force pulse trace with increasing fatigue, which also shifted the force pulse trace to lower frequency bands. Multi-scale entropy analysis revealed that the complexity of the force pulse trace at high time scales increased with fatigue, contrary to the decrease in complexity of the force pulse trace at low time scales. Statistical properties of individual force pulses in the spatial and temporal domains varied with muscular fatigue, concurrent with marked suppression of gamma muscular oscillations (40–60 Hz) in the post-fatigue test. In conclusion, this study first reveals that muscular fatigue impairs the amplitude modulation of force pattern generation more than it affects the amplitude responsiveness of fine-tuning a force trajectory. Besides, motor fatigue results disadvantageously in enhancement of motor noises, simplification of short-term force-tuning strategy, and slow responsiveness to force errors, pertaining to dimensional changes in force fluctuations, scaling properties of force pulse, and muscular oscillation. PMID:24465605

  7. Generation of single-cycle mid-infrared pulses via coherent synthesis.

    PubMed

    Ma, Fen; Liu, Hongjun; Huang, Nan; Sun, Qibing

    2012-12-17

    A new approach for the generation of single-cycle mid-infrared pulses without complicated control systems is proposed, which is based on direct coherent synthesis of two idlers generated by difference frequency generation (DFG) processes. It is found that the waveform of synthesized pulses is mainly determined by the spectra superposition, the carrier-envelope phase (CEP) difference, the relative timing and the chirp ratio between the idlers. The influences of these parameters on the synthesized waveform are also numerically calculated and analyzed via second-order autocorrelation, which offers general guidelines for the waveform optimization. The single-cycle synthesized mid-infrared pulses, which are centered at 4233 nm with the spectrum spanning from 3000 nm to 7000 nm, are achieved by carefully optimizing these parameters. The single-cycle mid-infrared laser source presents the possibility of investigating and controlling the strong field light-matter interaction.

  8. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  9. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave.

    PubMed

    Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F

    2005-03-01

    During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.

  10. Probe Measurements of Parameters of Streamers of Nanosecond Frequency Crown Discharge

    NASA Astrophysics Data System (ADS)

    Ponizovskiy, A. Z.; Gosteev, S. G.

    2017-12-01

    Investigations of the parameters of single streamers of nanosecond frequency corona discharge, creating a voluminous low-temperature plasma in extended coaxial electrode systems, are performed. Measurements of the parameters of streamers were made by an isolated probe situated on the outer grounded electrode. Streamers were generated under the action of voltage pulses with a front of 50-300 ns, duration of 100-600 ns, and amplitude up to 100 kV at the frequency of 50-1000 Hz. The pulse voltage, the total current of the corona, current per probe, and glow in the discharge gap were recorded in the experiments. It was established that, at these parameters of pulse voltage, streamers propagate at an average strength of the electric field of 4-10 kV/cm. Increasing the pulse amplitude leads to an increase in the number of streamers hitting the probe, an increase in the average charge of the head of a streamer, and, as a consequence, an increase in the total streamer current and the energy introduced into the gas. In the intervals up to 3 cm, streamer breakdown at an average field strength of 5-10 kV/cm is possible. In longer intervals, during the buildup of voltage after generation of the main pulse, RF breakdown is observed at E av ≈ 4 kV/cm.

  11. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    NASA Astrophysics Data System (ADS)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  12. Performance analysis and optimization of high capacity pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Ghahremani, Amir R.; Saidi, M. H.; Jahanbakhshi, R.; Roshanghalb, F.

    High capacity pulse tube refrigerator (HCPTR) is a new generation of cryocoolers tailored to provide more than 250 W of cooling power at cryogenic temperatures. The most important characteristics of HCPTR when compared to other types of pulse tube refrigerators are a powerful pressure wave generator, and an accurate design. In this paper the influence of geometrical and operating parameters on the performance of a double inlet pulse tube refrigerator (DIPTR) is studied. The model is validated with the existing experimental data. As a result of this optimization, a new configuration of HCPTR is proposed. This configuration provides 335 W at 80 K cold end temperature with a frequency of 50 Hz and COP of 0.05.

  13. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  14. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  15. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Junjie; Zeng Bin; Yu Yongli

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecondmore » pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.« less

  16. Spatiotemporal characterization of ultrashort optical vortex pulses

    NASA Astrophysics Data System (ADS)

    Miranda, Miguel; Kotur, Marija; Rudawski, Piotr; Guo, Chen; Harth, Anne; L'Huillier, Anne; Arnold, Cord L.

    2017-12-01

    We use a spiral phase plate to generate few-cycle optical vortices from an ultrafast titanium:sapphire oscillator and characterize them in the spatiotemporal domain with a recently introduced technique based on spatially resolved Fourier transform spectrometry. The performance of this simple approach to the generation of optical vortices is analysed from a wavelength-dependent perspective as well as in the spatiotemporal domain, allowing us to characterize ultrashort vortex pulses in space, frequency and time.

  17. On the frequency response of a Wenglor particle-counting system for aeolian transport measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Bernard O.; Davidson-Arnott, Robin G. D.; Hilton, Michael J.; Fraser, Douglas

    2018-06-01

    A commonly deployed particle-counting system for aeolian saltation flux, consisting of a Wenglor fork sensor and an Onset Hobo Pulse Input Adapter linked to an Onset Hobo Energy Logger Pro data logger, was tested for frequency response. The Wenglor fork sensor is an optical gate device that has very fast switching capacity that can accommodate the time of flight of saltating sand particles through the sensing volume with the exception of very fine sand or silt and very quickly moving particles. The Pulse Input Adapter, in contrast, imposes limitations on the frequency response of the system. The manufacturer of the pulse adapter specifies an upper limit of 120 Hz, although bench tests with an electronic pulse generator indicate that the frequency response of the Pulse Input Adapter, in isolation, is excellent up to 3000 Hz, with only small error (less than 1.6%) due to under-counting during data transfer intervals. A mechanical test of the integrated system (fork sensor, pulse input adapter, and data logger) demonstrates excellent performance up to about 700 Hz (less than 2% error), but significant under-counting above 1000 Hz for unknown reasons. This specific particle-counting system therefore has a frequency response that is well suited for investigation of the dynamics of aeolian saltation as typically encountered in most field conditions on coastal beaches with the exception of extreme wind events and very small particle sizes.

  18. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  19. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation

    DTIC Science & Technology

    2012-02-29

    picosecond green light from a frequency-doubled hybrid cryogenic Yb:YAG laser system,” 36 UFO /HFSW 2009 (Arcachon, France, Aug. 31-Sept. 4, 2009...High Fields Short Wavelength,” ( UFO VII – HFSW XIII), Arcachon, France, August 31 – September 4, 2009 (invited). 25) Kyung-Han Hong, Juliet Gopinath

  20. Superconducting Qubit with Integrated Single Flux Quantum Controller Part II: Experimental Characterization

    NASA Astrophysics Data System (ADS)

    Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.

  1. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  2. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  3. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    NASA Astrophysics Data System (ADS)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  4. Mach-zehnder based optical marker/comb generator for streak camera calibration

    DOEpatents

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  5. Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.

    1983-01-01

    An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.

  6. Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber

    DOE PAGES

    Domingue, Scott R.; Bartels, Randy A.

    2014-12-04

    Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less

  7. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America

  8. Pulse evolution and mode selection characteristics in a TEA-CO2 laser perturbed by injection of external radiation

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.

    1983-01-01

    A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.

  9. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform.

    PubMed

    Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-09-22

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  10. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  11. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  12. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.

    PubMed

    Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T

    2011-03-24

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society

  13. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal.

    PubMed

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-03-09

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO(3) cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm(-1)) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR.

  14. Nonlinear pulse compression stage delivering 43-W few-cycle pulses with GW peak-power at 2-μm wavelength

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schüuzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Limpert, J.

    2018-02-01

    In this contribution we demonstrate the nonlinear pulse compression of an ultrafast thulium-doped fiber laser down to 14 fs FWHM duration (sub-3 optical cycles) at a record average power of 43 W and 34.5 μJ pulse energy. To the best of our knowledge, we present the highest average power few-cycle laser source at 2 μm wavelength. This performance level in combination with GW-class peak power makes our laser source extremely interesting for driving high-harmonic generation or for generating mid-infrared frequency combs via intra-pulse frequency down-conversion at an unprecedented average power. The experiments were enabled by an ultrafast thulium-doped fiber laser delivering 110 fs pulses at high repetition rates, and an argon gas-filled antiresonant hollow-core fiber (ARHCF) with excellent transmission and weak anomalous dispersion, leading to the self-compression of the pulses. We have shown that ARHCFs are well-suited for nonlinear pulse compression around 2 μm wavelength and that this concept features excellent power handling capabilities. Based on this result, we discuss the next steps for energy and average power scaling including upscaling the fiber dimensions in order to fully exploit the capabilities of our laser system, which can deliver several GW of peak power. This way, a 100 W-class laser source with mJ-level few-cycle pulses at 2 μm wavelength is feasible in the near future.

  15. Inhibition of linear absorption in opaque materials using phase-locked harmonic generation.

    PubMed

    Centini, Marco; Roppo, Vito; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-09-12

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

  16. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    PubMed

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

  17. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  18. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  19. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser.

    PubMed

    Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2015-03-09

    In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.

  20. Simulative research on generating UWB signals by all-optical BPF

    NASA Astrophysics Data System (ADS)

    Yang, Chunyong; Hou, Rui; Chen, Shaoping

    2007-11-01

    The simulating technique is used to investigate generating and distributing Ultra-Wide-Band signals depend on fiber transmission. Numerical result for the system about the frequency response shows that the characteristics of band-pass filter is presented, and the shorter the wavelength is, the bandwidth of lower frequency is wider. Transmission performance simulation for 12.5Gb/s psudo-random sequence also shows that Gaussian pulse signal after transported in fiber is similar to UWB wave pattern mask of FCC in time domain and frequency spectrum specification of FCC in frequency domain .

  1. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  2. Quantitative measures of air-gun pulses recorded on sperm whales (Physeter macrocephalus) using acoustic tags during controlled exposure experiments.

    PubMed

    Madsen, P T; Johnson, M; Miller, P J O; Aguilar Soto, N; Lynch, J; Tyack, P

    2006-10-01

    The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.

  3. Laser-Bioplasma Interaction: Excitation and Suppression of the Brain Waves by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander; IAPS-team Team

    2017-10-01

    The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.

  4. [Effect of pulse magnetic field on distribution of neuronal action potential].

    PubMed

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  5. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    DTIC Science & Technology

    2016-04-19

    optics; ultrafast optics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a...generation at frequency spacings down to 25 GHz, in the range where convenient electronic detection is possible. (c) Our best Purdue microrings had...time domain measurements of the generated combs, leading to observation of novel, ultrafast dark pulse waveforms, have introduced new structures such

  6. A compact, multichannel, and low noise arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govorkov, S.; Ivanov, B. I.; Novosibirsk State Technical University, K.Marx-Ave. 20, Novosibirsk 630092

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analogmore » compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.« less

  7. 80GHz waveform generator by optical Fourier synthesis of four spectral sidebands (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fatome, Julien; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe

    2016-04-01

    Versatile and easy to implement methods to generate arbitrary optical waveforms at high repetition rates are of considerable interest with applications in optical communications, all-optical signal processing, instrumentation systems and microwave signal manipulation. While shaping sinusoidal, Gaussian or hyperbolic secant intensity profiles is commonly achieved by means of modulators or mode-locked lasers, other pulse profiles such as parabolic, triangular or flat-top shapes still remain challenging to synthesize. In this context, several strategies were already explored. First, the linear pulse shaping is a common method to carve an initial ultrashort pulse train into the desired shape. The line-by-line shaping of a coherent frequency comb made of tens of spectral components was also investigated to generate more complex structures whereas Fourier synthesis of a few discrete frequencies spectrum was exploited to efficiently generate high-fidelity ultrafast periodic intensity profiles. Besides linear shaping techniques, several nonlinear methods were implemented to benefit from the adiabatic evolution of the intensity pulse profile upon propagation in optical fibers. Other examples of efficient methods are based on the photonic generation involving specific Mach-Zehnder modulators, microwave photonic filters as well as frequency-to-time conversion. In this contribution, we theoretically and experimentally demonstrate a new approach enabling the synthesis of periodic high-repetition rate pulses with various intensity profiles ranging from parabola to triangular and flat-top pulses. More precisely by linear phase and amplitude shaping of only four spectral lines is it possible to reach the targeted temporal profile. Indeed, tailoring the input symmetric spectrum only requires the determination of two physical parameters: the phase difference between the inner and outer spectral sidebands and the ratio between the amplitude of these sidebands. Therefore, a systematic bidimensional analysis provides the optimum parameters and also highlights that switching between the different waveforms is achieved by simply changing the spectral phase between the inner and outer sidebands. We successfully validate this concept with the generation of high-fidelity ultrafast periodic waveforms at 40 GHz by shaping with a liquid cristal on insulator a four sideband comb resulting from a phase-modulated continuous wave. In order to reach higher repetition rates, we also describe a new scenario to obtain the required initial spectrum by taking advantage of the four-wave mixing process occurring in a highly nonlinear fiber. This approach is experimentally implemented at a repetition rate of 80-GHz by use of intensity and phase measurements that stress that full-duty cycle, high-quality, triangular, parabolic or flat-top profiles are obtained in full agreement with numerical simulations. The reconfigurable property of this photonic waveform generator is confirmed. Finally, the generation of bunch of shaped pulses is investigated, as well as the impact of Brillouin backscattering.

  8. Characterization of Pilot Technique

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Aponso, Bimal; Godfroy, Martine

    2017-01-01

    Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.

  9. QKD Via a Quantum Wavelength Router Using Spatial Soliton

    NASA Astrophysics Data System (ADS)

    Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.

    2011-05-01

    A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.

  10. The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2008-01-01

    The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.

  11. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  12. Coherent ultra-violet to near-infrared generation in silica ridge waveguides

    PubMed Central

    Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.

    2017-01-01

    Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233

  13. Optical rogue waves generation in a nonlinear metamaterial

    NASA Astrophysics Data System (ADS)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  14. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  15. Demonstration of Flying Mirror with Improved Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji

    2009-07-25

    A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less

  16. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

  17. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.

    PubMed

    Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew

    2007-02-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.

  18. Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects

    PubMed Central

    Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew

    2007-01-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697

  19. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  20. Generation, storage, and retrieval of nonclassical states of light using atomic ensembles

    NASA Astrophysics Data System (ADS)

    Eisaman, Matthew D.

    This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.

  1. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    PubMed

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  2. The frequency-domain method of calculation for the pulsed electromagnetic field in a conductive ferromagnetic plate

    NASA Astrophysics Data System (ADS)

    Nosov, G. V.; Kuleshova, E. O.; Lefebvre, S.; Plyusnin, A. A.; Tokmashev, D. M.

    2017-02-01

    The technique for parameters determination of magnetic skin effect on ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. It is based on a frequency-domain method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core. Due to this technique, such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These parameters depend on the steel type, the amplitude, the rms value, the duration and the form of the magnetic field intensity impulse on the plate surface. The plate thickness is defined by the value of the flux attenuation factor and the plate q-factor that should be maximal. The reliability of the proposed technique is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and the conformity of obtained results with the sinusoidal steady-state mode.

  3. Reflectometry diagnostics on TCV

    NASA Astrophysics Data System (ADS)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  4. gr-MRI: A software package for magnetic resonance imaging using software defined radios.

    PubMed

    Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.

  5. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy.

    PubMed

    Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D

    2015-05-14

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.

  6. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.

    2015-05-01

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, , than in the standard all parallel configuration, , in which all four pulses have the same polarization. The 2D IR experiment with polarizations ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.

  7. Guided wave methods and apparatus for nonlinear frequency generation

    DOEpatents

    Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.

    2000-01-01

    Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.

  8. Effects of Bias Pulsing on Etching of SiO2 Pattern in Capacitively-Coupled Plasmas for Nano-Scale Patterning of Multi-Level Hard Masks.

    PubMed

    Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung

    2016-05-01

    In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern.

  9. A coaxial-output capacitor-loaded annular pulse forming line.

    PubMed

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

  10. A coaxial-output capacitor-loaded annular pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

  11. Gigahertz frequency comb from a diode-pumped solid-state laser.

    PubMed

    Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2014-12-15

    We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.

  12. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  13. Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm.

    PubMed

    Lagatsky, A A; Fusari, F; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W

    2009-09-01

    We report the first demonstration, to our knowledge, of passive mode locking in a Tm(3+), Ho(3+)-codoped KY(WO(4))(2) laser operating in the 2000-2060 nm spectral region. An InGaAsSb-based quantum well semiconductor saturable absorber mirror is used for the initiation and stabilization of the ultrashort pulse generation. Pulses as short as 3.3 ps were generated at 2057 nm with average output powers up to 315 mW at a pulse repetition frequency of 132 MHz for 1.15 W of absorbed pump power at 802 nm from a Ti:sapphire laser.

  14. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    PubMed

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  15. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  16. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Höhne, Jens

    2014-01-01

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%1. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  17. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhne, Jens

    2014-01-29

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  18. Neuroendocrine abnormalities in hypothalamic amenorrhea: spectrum, stability, and response to neurotransmitter modulation.

    PubMed

    Perkins, R B; Hall, J E; Martin, K A

    1999-06-01

    To characterize the neuroendocrine patterns of abnormal GnRH secretion in hypothalamic amenorrhea (HA), 49 women with primary and secondary HA underwent frequent sampling of LH in a total of 72 baseline studies over 12-24 h. A subset of women participated in more than one study to address 1) the variability of LH pulse patterns over time; and 2) the impact of modulating opioid, dopaminergic, and adrenergic tone on LH secretory patterns. The frequency and amplitude of LH secretion was compared with that seen in the early follicular phase (EFP) of normally cycling women. The spectrum of abnormalities of LH pulses was 8% apulsatile, 27% low frequency/low amplitude, 8% low amplitude/normal frequency, 43% low frequency/normal amplitude, 14% normal frequency/normal amplitude. Of patients studied overnight, 45% demonstrated a pubertal pattern of augmented LH secretion during sleep. Of patients studied repeatedly, 75% demonstrated at least 2 different patterns of LH secretion, and 33% reverted at least once to a normal pattern of secretion. An increase in LH pulse frequency was seen in 12 of 15 subjects in response to naloxone (opioid receptor antagonist). Clonidine (alpha-2 adrenergic agonist) was associated with a decrease in mean LH in 3 of 3 subjects. An increase in LH pulse frequency was seen in 4 of 8 subjects in response to metoclopramide (dopamine receptor antagonist), but the response was not statistically significant. Baseline abnormalities in LH secretion did not appear to influence response to neurotransmitter modulation. 1) HA represents a spectrum of disordered GnRH secretion that can vary over time; 2) LH pulse patterns at baseline do not appear to influence the ability to respond to neurotransmitter modulation; 3) Opioid and adrenergic tone appear to influence the hypothalamic GnRH pulse generator in some individuals with HA.

  19. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    PubMed

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  20. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  1. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misochko, O. V., E-mail: misochko@issp.ac.ru

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separationmore » between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.« less

  3. Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber.

    PubMed

    Tang, W W; Shu, C

    2005-02-21

    We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.

  4. Periodic structures on germanium induced by high repetition rate femtosecond laser

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoming; Li, Xiaohong; Zhang, Yanbin; Xie, Changxin; Liu, Kaijun; Zhou, Qiang

    2018-05-01

    Laser-induced periodic surface structures (LIPSS) are studied on germanium surface in air by the femtosecond pulsed laser with repetition frequency of 76 MHz and wavelength λ of 800 nm. Three types of LIPSS were found and they are low-spatial-frequency LIPSS (LSFL), high-spatial-frequency LIPSS (HSFL), and LSFL superimposed with HSFL. The period ΛLSFL of LSFL shrinks quickly from approximately 650 nm to 400 nm (∼λ/2) when lowering the scanning speed. Comparatively, the period ΛHSFL of HSFL keeps almost constant between 90 and 100 nm (∼λ/8) when the scanning speed and the laser pulse energy vary. LSFL and HSFL coexist when the laser pulse energy is around 3.3 nJ/pulse and the scanning speed ranges between 3 and 8 mm/s. The surface plasmon polariton waves make a contribution to the formation of LIPSS and the fourth harmonic generation (FHG) might be involved in the formation of HSFL.

  5. Vibration reduction of pulse tube cryocooler driven by single piston compressor

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Xu, Nana; Liang, Jingtao; Yang, Luwei

    2012-12-01

    The development of pulse tube coolers has progressed significantly during the past two decades. A single piston linear compressor is used to in order to reduce the size and mass of a high frequency pulse tube cryocooler. The pulse tube achieved a no-load temperature of 61 K and a cooling power of 1 W@80 K with an operating frequency of 80 Hz and an electrical input power of 50 W. By itself, the single piston compressor generates a large vibration, so a set of leaf springs with an additional mass is used to reduce the vibration. The equation relating the mass, the elasticity coefficient of leaf spring and the working frequency is obtained through an empirical fit of the experimental data. The vibration amplitude is reduced from 55 mm/s to lower than 5 mm/s by using a proper leaf spring. This paper demonstrates that a single piston compressor with vibration reduction provides a good choice for a PTC.

  6. Progress Towards Chirped-Pulse Fourier Transform Thz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin O.; Plusquellic, David F.; Gerecht, Eyal

    2010-06-01

    New opportunities are provided by the development of higher power THz frequency multiplier sources, the development of a broadband Chirped-Pulse FTMW spectroscopy technique at microwave and mm Wave frequencies, and recently demonstrated heterodyne hot electron bolometer detection technology in the THz frequency region with near quantum noise-limited performance and high spectral resolution. Combining these three technologies and extending the chirped-pulse technique to 0.85 THz enables a host of new applications. NIST is currently pursing applications as a point sensor for greenhouse gases, volatile organic compounds, and potentially human breath. The generation and detection of phase stable chirped pulses at 850 GHz will be demonstrated. A description of the experimental setup and preliminary data will be presented for nitrous oxide. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S. Shipman and B.H. Pate, Rev.Sci.Instrum. 79 (2008) 053103. E. Gerecht, D. Gu, L. You, K.S. Yngvesson, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. 56, (2008) 1083.

  7. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides.

    PubMed

    Kowligy, Abijith S; Lind, Alex; Hickstein, Daniel D; Carlson, David R; Timmers, Henry; Nader, Nima; Cruz, Flavio C; Ycas, Gabriel; Papp, Scott B; Diddams, Scott A

    2018-04-15

    We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ (2) nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 μm region and intrapulse difference frequency generation in the 4-5 μm region. By engineering the quasi-phase-matched grating profiles, tunable, narrowband MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment-and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.

  8. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, wemore » generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.« less

  9. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    NASA Astrophysics Data System (ADS)

    Savanier, Marc; Mookherjea, Shayan

    2016-06-01

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.

  10. Frequency-resolved optical gating with the use of second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLong, K.W.; Trebino, R.; Hunter, J.

    1994-11-01

    We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than [similar to] 1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail.more » SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.« less

  11. Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals

    DTIC Science & Technology

    2004-07-01

    NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES

  12. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-04

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.

  13. Linear transformer driver for pulse generation with fifth harmonic

    DOEpatents

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  14. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  15. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  16. Limitations to THz generation by optical rectification using tilted pulse fronts.

    PubMed

    Ravi, Koustuban; Huang, W Ronny; Carbajo, Sergio; Wu, Xiaojun; Kärtner, Franz

    2014-08-25

    Terahertz (THz) generation by optical rectification (OR) using tilted-pulse-fronts is studied. A one-dimensional (1-D) model which simultaneously accounts for (i) the nonlinear coupled interaction of the THz and optical radiation, (ii) angular and material dispersion, (iii) absorption, iv) self-phase modulation and (v) stimulated Raman scattering is presented. We numerically show that the large experimentally observed cascaded frequency down-shift and spectral broadening (cascading effects) of the optical pump pulse is a direct consequence of THz generation. In the presence of this large spectral broadening, the large angular dispersion associated with tilted-pulse-fronts which is ~15-times larger than material dispersion, accentuates phase mismatch and degrades THz generation. Consequently, this cascading effect in conjunction with angular dispersion is shown to be the strongest limitation to THz generation in lithium niobate for pumping at 1 µm. It is seen that the exclusion of these cascading effects in modeling OR, leads to a significant overestimation of the optical-to-THz conversion efficiency. The results are verified with calculations based on a 2-D spatial model. The simulation results are supported by experiments.

  17. Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Hernández-Escobar, E.; Bello-Jiménez, M.; Pottiez, O.; Ibarra-Escamilla, B.; López-Estopier, R.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.

    2017-10-01

    The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results demonstrate a satisfactory flatness of ~3 dB over a bandwidth of ~1000 nm in the range from 1261 to 2261 nm, achieving to the best of our knowledge, one of the flattest SC generated from noise-like pulses.

  18. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    NASA Astrophysics Data System (ADS)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  19. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  20. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  1. Theoretical detection threshold of the proton-acoustic range verification technique.

    PubMed

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-10-01

    Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.

  2. Theoretical detection threshold of the proton-acoustic range verification technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less

  3. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247

  4. Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF.

    PubMed

    Chugreev, Alexey; Nazarkin, Alexander; Abdolvand, Amir; Nold, Johannes; Podlipensky, Alexander; Russell, Philip St J

    2009-05-25

    Transient stimulated Raman scattering is investigated in methane-filled hollow-core photonic crystal fiber. Using frequency-chirped ps-pulses at 1.06 microm as pump and tunable CW-radiation as Stokes seed, the vibrational excitation of the CH(4) molecules can be controlled on the sub T(2) time-scale. In this way the generated Stokes pulse can be phase-locked to the pump pulse and its spectrum manipulated.

  5. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-06

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

  6. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating.

    PubMed

    Miao, Houxun; Weiner, Andrew M; Langrock, Carsten; Roussev, Rostislav V; Fejer, Martin M

    2007-04-01

    We demonstrate polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating (FROG) measurements with a fiber-pigtailed, aperiodically poled lithium niobate waveguide. By scrambling the polarization much faster than the measurement integration time, we eliminate the impairment that frequency-independent random polarization fluctuations induce in FROG measurements. As a result we are able to retrieve intensity and phase profiles of few hundred femtosecond optical pulses with 50 MHz repetition rates at 5.2 nW coupled average power without control of the input polarization.

  8. Analysis of the transfer function for layered piezoelectric ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.

    2017-06-01

    We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.

  9. 10 Gb/s optical carrier distributed network with W-band (0.1 THz) short-reach wireless communication system

    NASA Astrophysics Data System (ADS)

    Chow, C. W.; Yang, L. G.; Yeh, C. H.; Huang, C. B.; Shi, J. W.; Pan, C. L.

    2012-10-01

    Millimeter-wave (mm-wave) operated in W-band (75 GHz-0.11 THz) is of particular interests, since this frequency band can carry signals at much higher data rates. We demonstrate a 10 Gb/s optical carrier-distributed network with the wireless communication system. The mm-wave signal at carrier frequency of 0.1 THz is generated by a high speed near-ballistic uni-traveling carrier photodiode (NBUTC-PD) based transmitter (Tx), which is optically excited by optical short pulses. The optical pulse source is produced from a self-developed photonic mm-wave waveform generator (PMWG), which allows spectral line-by-line pulse shaping. Hence these optical pulses have high tolerance to fiber chromatic dispersion. The W-band 10 Gb/s wireless data is transmitted and received via a pair of horn antennas. The received 10 Gb/s data is envelope-detected and then used to drive an optical modulator at the remote antenna unit (RAU) to produce the upstream signal sending back to the central office (CO). 20 km single mode fiber (SMF) error free transmission is achieved. Analysis about the optimum repetition rate of the optical pulse source and the transmission performance of the upstream signal are also performed and discussed.

  10. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    PubMed

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  11. Tracking Servobridge Detector. Volume 1

    DTIC Science & Technology

    1976-12-15

    34 _ - b[ Section 1 ABSTRACT 1.0 General This report is in three volumes - Volume I describes technically the Tracking Servo Bridge Detector in final...28 4.1.9.2 Typical Pulse Generator ....... ............... ... 29 4.1.10 Unlock Alarm .......... ..................... .... 30 4.1.11.1 DC...46 4.3.8.4 RF Oucput Harmonic Distortion vs. Frequency Plot . . .. 48 4.3.8.5 Generator Input Level Limits vs. Frequency Plot. . . .. 49 4.3.8.6 RF

  12. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  13. Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm.

    PubMed

    Pallas, Florent; Herault, Emilie; Roux, Jean-Francois; Kevorkian, Antoine; Coutaz, Jean-Louis; Vitrant, Guy

    2012-07-15

    A passively Q-switched dual-wavelength solid-state laser is presented. The two wavelengths are emitted by two different crystals in order to avoid gain competition, and the synchronization between the pulses is obtained by external triggering of the saturable absorber. Sum frequency mixing is demonstrated, proving the interest of this source for terahertz generation in the 0.3-0.4 THz range through difference frequency generation.

  14. Frequency-doubled green picosecond laser based on K3B6O10Br nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Meng, Luping; Zhang, Ling; Hou, Zhanyu; Wang, Lirong; Xu, Hui; Shi, Meng; Wang, Lingwu; Yang, Yingying; Qi, Yaoyao; He, Chaojian; Yu, Haijuan; Lin, Xuechun; Su, Fufang; Xia, Mingjun; Li, Rukang

    2018-05-01

    We report a frequency-doubled green picosecond (ps) laser based on K3B6O10Br (KBB) nonlinear optical crystal with cutting angle of θ = 34.7° and φ = 30°. Through intracavity frequency doubling using a type I phase-matched KBB crystal with dimensions of 4 mm × 4 mm × 13.2 mm, the average output power of 185.00 mW green ps laser was obtained with a repetition rate of 80 MHz and pulse width of 25.0 ps. In addition, we present external frequency doubling using KBB crystal. The average output power of 3.00 W green ps laser was generated with a repetition rate of 10 kHz and pulse width of 38.1 ps, which corresponds to a pulse energy of 0.30 mJ and a peak power 7.89 MW, respectively. The experimental results show that KBB crystal is a promising nonlinear optical material.

  15. Frequency stabilization in injection controlled pulsed CO2 lasers

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Ancellet, Gerard M.

    1987-01-01

    Longitudinal mode selection by injection has been demonstrated as a viable technique for tailoring a TEA-CO2 laser with pulse energies of a Joule or greater to fit the requirements of a coherent lidar transmitter. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, one can study the intrapulse frequency variation and attempt to determine the sources of frequency sweeping, or chirp. These sources include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with transverse spatial dimensions of the order of centimeters to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are briefly discussed in the paper, and representative experimental examples are included.

  16. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.

    PubMed

    Burdt, R; Curry, R D

    2007-07-01

    Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.

  17. High-power multi-megahertz source of waveform-stabilized few-cycle light

    PubMed Central

    Pronin, O.; Seidel, M.; Lücking, F.; Brons, J.; Fedulova, E.; Trubetskov, M.; Pervak, V.; Apolonski, A.; Udem, Th.; Krausz, F.

    2015-01-01

    Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator. A diode-pumped Kerr-lens-mode-locked Yb:YAG thin-disk laser combined with extracavity pulse compression yields waveform-stabilized few-cycle pulses (7.7 fs, 2.2 cycles) with a pulse energy of 0.15 μJ and an average power of 6 W. The demonstrated concept is scalable to pulse energies of several microjoules and near-gigawatt peak powers. The generation of attosecond pulses at the full repetition rate of the oscillator comes into reach. The presented system could serve as a primary source for frequency combs in the mid infrared and vacuum UV with unprecedented high power levels. PMID:25939968

  18. Laser-Matter Interaction in Dielectrics: Insight from Picosecond-Pulsed Second-Harmonic Generation in Periodically Poled LiTaO3

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Wada, Satoshi; Panchenko, Vladislav Ya.

    2017-08-01

    We develop a modified two-temperature (2T) model of laser-matter interaction in dielectrics based on experimental insight from picosecond-pulsed high-frequency temperature-controlled second-harmonic (515 nm) generation in periodically poled stoichiometric LiTaO3 crystal and required for computational treatment of short-pulsed nonlinear optics and materials processing applications. We show that the incorporation of an extended set of recombination-kinetics-related energy-release and heat-exchange processes following short-pulsed photoionization by two-photon absorption of the second harmonic allows accurate simulation of the electron-lattice relaxation dynamics and electron-lattice temperature evolution in LiTaO3 crystal in nonlinear laser-frequency conversion. Our experimentally confirmed model and detailed simulation study show that two-photon ionization with the recombination mechanism via ion-electron-lattice interaction followed by a direct transfer of the recombination energy to the lattice is the main laser-matter energy-transfer pathway responsible for the majority of the crystal lattice heating (approximately 90%) continuing for approximately 50 ps after laser-pulse termination and competing with effect of electron-phonon energy transfer from the free electrons. This time delay is due to a recombination bottleneck which hinders faster relaxation to thermal equilibrium in photoionized dielectric crystal. Generally, our study suggests that in dielectrics photoionized by short-pulsed radiation with intensity range used in nonlinear laser-frequency conversion, the electron-lattice relaxation period is defined by the recombination-stage bottleneck of a few tens of picoseconds and not by the time of the electron-phonon energy transfer. This modification of the 2T model can be applied to a broad range of processes involving laser-matter interactions in dielectrics and semiconductors for charge density reaching the range of 1021- 1022 cm-3 .

  19. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  20. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; ...

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  1. Broadband noise limit in the photodetection of ultralow jitter optical pulses.

    PubMed

    Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C

    2014-11-14

    Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.

  2. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  3. Third harmonic from air breakdown plasma induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Negutu, C.; Puscas, N. N.

    2018-06-01

    Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

  4. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  5. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  6. Implementing a Digital Phasemeter in an FPGA

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2008-01-01

    Firmware for implementing a digital phasemeter within a field-programmable gate array (FPGA) has been devised. In the original application of this firmware, the phase that one seeks to measure is the difference between the phases of two nominally-equal-frequency heterodyne signals generated by two interferometers. In that application, zero-crossing detectors convert the heterodyne signals to trains of rectangular pulses, the two pulse trains are fed to a fringe counter (the major part of the phasemeter) controlled by a clock signal having a frequency greater than the heterodyne frequency, and the fringe counter computes a time-averaged estimate of the difference between the phases of the two pulse trains. The firmware also does the following: Causes the FPGA to compute the frequencies of the input signals; Causes the FPGA to implement an Ethernet (or equivalent) transmitter for readout of phase and frequency values; and Provides data for use in diagnosis of communication failures. The readout rate can be set, by programming, to a value between 250 Hz and 1 kHz. Network addresses can be programmed by the user.

  7. Effect of the voltage pulse frequency on the structure of TiO2 coatings grown by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Torres-Cerón, D. A.; Gordillo-Delgado, F.; Moya-Betancourt, S. N.

    2017-12-01

    Plasma Electrolytic Oxidation (PEO) is used to synthetize titanium dioxide (TiO2) ceramic coatings with the appropriate selection of an electrolyte. The dimension of the micro-cavities and the particle size at the surface can be controlled through the pulse frequency of the voltage that is applied between the electrodes. The change of surface morphology can increase the surface area-to-volume ratio. In this work, PEO of an ASME SB-265 titanium substrate (20×20×1mm) was made in a water solution containing 8g/L Na3PO4 and 0.4g/L NaOH. Hence, the coatings were fabricated using voltage pulses of 340V for 10 minutes with a 10% duty cycle and frequencies of 1000, 1500 and 2000Hz. According to the X-ray diffractograms of the obtained samples, the sintering process at 500°C during 1 hour generated Anatase titanium dioxide porous coatings. The grain size decreased approximately from 29nm for 1000 and 1500Hz pulse frequencies until 21nm for 2000Hz. On the other hand, from the micrographs of scanning electron microscopy was possible to see the uniform formation of the micro-cavities with the largest diameter, 900nm, for the lowest frequency value used in PEO.

  8. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  9. Demonstration of an 8 × 25-Gb/s optical time-division multiplexing system

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huo, Li; Li, Yunbo; Wang, Lei; Li, Han; Jiang, Xiangyu; Chen, Xin; Lou, Caiyun

    2017-11-01

    An 8 × 25-Gb/s optical time-division multiplexing (OTDM) system is demonstrated experimentally. The optical pulse source is based on optical frequency comb (OFC) generation and pulse shaping, which can generate nearly chirp-free 25-GHz 1.6-ps optical Gaussian pulse. The eightfold optical time-division demultiplexer consists of a single-driven dual-parallel Mach-Zehnder modulator (DPMZM) and a Mamyshev reshaper. Error-free demultiplexing of 8 × 25-Gb/s back-to-back (B2B) signal with a power penalty of 4.1 dB to 4.4 dB at a bit error rate (BER) of 10-9 is achieved to confirm the performance of the proposed system.

  10. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  11. Dynamic modelling and experimental study of asymmetric optothermal microactuator

    NASA Astrophysics Data System (ADS)

    Wang, Shuying; Chun, Qin; You, Qingyang; Wang, Yingda; Zhang, Haijun

    2017-01-01

    This paper reports the dynamic modelling and experimental study of an asymmetric optothermal microactuator (OTMA). According to the principle of thermal flux, a theoretical model for instantaneous temperature distribution of an expansion arm is established and the expression of expansion increment is derived. Dynamic expansion properties of the arm under laser pulse irradiation are theoretically analyzed indicating that both of the maximum expansion and expansion amplitude decrease with the pulse frequency increasing. Experiments have been further carried out on an OTMA fabricated by using an excimer laser micromachining system. It is shown that the OTMA deflects periodically with the same frequency of laser pulse irradiation. Experimental results also prove that both OTMA's maximum deflection and deflection amplitude (related to maximum expansion and expansion amplitude of the arm) decrease as frequency increases, matching with the theoretical model quite well. Even though the OTMA's deflection decrease at higher frequency, it is still capable of generating 8.2 μm maximum deflection and 4.2 μm deflection amplitude under 17 Hz/2 mW laser pulse irradiation. This work improves the potential applications of optothermal microactuators in micro-opto-electro-mechanical system (MOEMS) and micro/nano-technology fields.

  12. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    PubMed

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  13. Terahertz emission driven by two-color laser pulses at various frequency ratios

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.

    2017-08-01

    We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.

  14. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  15. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  16. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  17. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    PubMed

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  18. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  19. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  20. Experimental investigation of wave dispersion in hardened concrete and reference liquid media

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Sokratis N.; Malm, Fabian; Grosse, Christian U.; Aggelis, Dimitrios G.

    2017-04-01

    Nowadays, more and more, the monitoring of concrete's setting and hardening as well as concrete's condition assessment and mechanical characterization is realized with the Ultrasonic Pulse Velocity technique. However, despite its increasing use, the high potential and the vast applicability over a wide range of materials and structures, the aforementioned nondestructive testing technique is only partially exploited since a) a default pulse usually not selected by the user is transmitted, b) a single frequency band dependent on the testing equipment (pulse generator and sensors) is excited and c) usually the first part of the signal is only considered. Moreover, the technique, as defined by its name, is based on pulse velocity measurements which strongly rely on a predefined threshold value for the calculation of the travel time between the transmitting and receiving sensor. To overcome all these issues, in the current experimental campaign, user-defined signals are generated, a broad range of ultrasonic frequencies is excited, while the full length of the signal is also taken into account. In addition, the pulse velocity measurements are replaced by the more advanced phase velocity calculations determined by reference phase points of the time domain signals or by phase differences of the signals transformed in the frequency domain. The experiments are mainly conducted in hardened concrete specimens but the aggregates are substituted by spherical glass beads of well-defined sizes and contents in order to better control the microstructure. Reference liquid media are also examined for comparison purposes. The results in both cases show strong dispersive trends indicated by significant changes in the phase velocity.

  1. Laser-Generated Ultrasonic Source for a Real-Time Dry-Contact Imaging System

    NASA Astrophysics Data System (ADS)

    Petculescu, G.; Zhou, Y.; Komsky, I.; Krishnaswamy, S.

    2006-03-01

    A laser-generated ultrasonic source, to be used with a real-time imaging device, was developed. The ultrasound is generated in the thermoelastic regime, in a composite layer composed of absorbing particles (carbon) and silicone rubber. The composite layer plays three roles: of absorption, constriction and dry-coupling. The central frequency of the generated pulse was controlled by varying the absorption depth of the generation layer. The maximum peak frequency obtained was 4MHz. When additional constriction was provided to the composite layer, the amplitude of the generated signal increased further, due to the large thermal expansion coefficient of the silicone. Images using the laser-generated ultrasonic source were taken.

  2. Microwave temperature-jump nuclear magnetic resonance system for aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kawakami, Masaru; Akasaka, Kazuyuki

    1998-09-01

    A microwave temperature-jump nuclear magnetic resonance (NMR) system suitable for aqueous solutions has been developed. A microwave pulse of a desired length is generated at a frequency of 2.46 GHz from a 1.3 kW magnetron, and is delivered through a waveguide and a coaxial cable to a coupling loop which works as an antenna to the dielectric resonator in the NMR probe. Inside the dielectric resonator, the microwave power is efficiently absorbed by the sample solution (about 100 μl) contained in a glass tube, causing a temperature jump by about 25 °C in less than 20 ms. The temperature after the jump can be maintained by applying intermittent microwave pulses of shorter length. A saddle-type radio-frequency coil is placed around the sample tube inside the hollow of the dielectric resonator to excite spins and detect NMR signals. Both the microwave pulses and the radio-frequency pulses are gated by a pulse programmer of the NMR spectrometer to form a desired temperature-jump pulse sequence. A mechanical mixing device is introduced, which significantly reduces the temperature gradient of the sample solution well within 100 ms after the jump. Application to an aqueous solution of ribonuclease A showed that the protein unfolds within 20 ms of microwave heating.

  3. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  4. Membrane Vibration Analysis Above the Nyquist Limit with Fluorescence Videogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2004-01-01

    A new method for generating photogrammetric targets by projecting an array of laser beams onto a membrane doped with fluorescent laser dye has recently been developed. In this paper we review this new fluorescence based technique, then proceed to show how it can be used for dynamic measurements, and how a short pulsed (10 ns) laser allows the measurement of vibration modes at frequencies several times the sampling frequency. In addition, we present experimental results showing the determination of fundamental and harmonic vibration modes of a drum style dye-doped polymer membrane tautly mounted on a 12-inch circular hoop and excited with 30 Hz and 62 Hz sinusoidal acoustic waves. The projected laser dot pattern was generated by passing the beam from a pulsed Nd:YAG laser though a diffractive optical element, and the resulting fluorescence was imaged with three digital video cameras, all of which were synchronized with a pulse and delay generator. Although the video cameras are capable of 240 Hz frame rates, the laser s output was limited to 30 Hz and below. Consequently, aliasing techniques were used to allow the measurement of vibration modes up to 186 Hz with a Nyquist limit of less than 15 Hz.

  5. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  6. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    NASA Astrophysics Data System (ADS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-09-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.

  7. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  8. Evolution of Hyperbolic-Secant Pulses Towards Cross-Phase Modulation Induced Optical Wave Breaking and Soliton or Soliton Trains Generation in Quintic Nonlinear Fibers

    NASA Astrophysics Data System (ADS)

    Zhong, Xian-Qiong; Zhang, Xiao-Xia; Du, Xian-Tong; Liu, Yong; Cheng, Ke

    2015-10-01

    The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking (OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity (QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses. Supported by the Postdoctoral Fund of China under Grant No. 2011M501402, the Key Project of Chinese Ministry of Education under Grant No. 210186, the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No. 13ZA0081, the Key Project of National Natural Science Foundation of China under Grant No 61435010, and the National Natural Science Foundation of China under Grant No. 61275039

  9. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  10. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  11. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation.

    PubMed

    Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo

    2017-08-07

    In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.

  12. Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas

    NASA Technical Reports Server (NTRS)

    Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.

    1992-01-01

    We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.

  13. Polarization Maintaining, Very-Large-Mode Area, Er Fiber Amplifier for High Energy Pulses at 1572.3 nm

    NASA Technical Reports Server (NTRS)

    Nicholoson, J. W.; DeSantolo, A.; Yan, M. F.; Wisk, P.; Mangan, B.; Puc, G.; Yu, A.; Stephen, M.

    2016-01-01

    We demonstrate the first polarization maintaining, very-large-mode-area Er-doped fiber amplifier with 1000 square micron effective area. The amplifier is core pumped by a Raman fiber laser and is used to generate single frequency one microsecond pulses with pulse energy of 368 microJoules, M2 of 1.1, and polarization extinction greater than 20 dB. The amplifier operates at 1572.3 nm, a wavelength useful for trace atmospheric CO2 detection.

  14. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  15. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  16. Analytic theory of high-order-harmonic generation by an intense few-cycle laser pulse

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Popov, A. M.; Tikhonova, O. V.; Volkova, E. A.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.

    2012-03-01

    We present a theoretical model for describing the interaction of an electron, weakly bound in a short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential probability of above-threshold ionization and for the yield of high-order-harmonic generation (HHG) are presented. For HHG we then derive detailed analytic expressions for the spectral density of generated radiation in terms of the key laser parameters, including the number N of optical cycles in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation, we provide detailed derivations of the closed-form formulas presented briefly by M. V. Frolov [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.021405 83, 021405(R) (2011)], which were used to describe key features of HHG by both H and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most importantly, we show analytically that the structure of the HHG spectrum stems from interference between electron wave packets originating from electron ionization from neighboring half-cycles near the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency) is shown analytically to occur only in the limit of very large N, and begins to form, as N increases, in the energy region beyond the HHG plateau cutoff.

  17. Remote distribution of a mode-locked pulse train with sub 40-as jitter

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Fei; Jiang, Jie; Jones, David J.

    2006-12-01

    Remote transfer of an ultralow-jitter microwave frequency reference signal is demonstrated using the pulse trains generated by a mode-locked fiber laser. The timing jitter in a ~ 30-m fiber link is reduced to 38 attoseconds (as) integrated over a bandwidth from 1 Hz to 10 MHz via active stabilization which represents a significant improvement over previously reported jitter performance. Our approach uses an all-optical generation of the synchronization error signal and an accompanying out-of-loop optical detection technique to verify the jitter performance.

  18. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    NASA Astrophysics Data System (ADS)

    Cooling, M. P.; Humphrey, V. F.; Wilkens, V.

    2011-02-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  19. Frequency comb generation in a silicon ring resonator modulator.

    PubMed

    Demirtzioglou, Iosif; Lacava, Cosimo; Bottrill, Kyle R H; Thomson, David J; Reed, Graham T; Richardson, David J; Petropoulos, Periklis

    2018-01-22

    We report on the generation of an optical comb of highly uniform in power frequency lines (variation less than 0.7 dB) using a silicon ring resonator modulator. A characterization involving the measurement of the complex transfer function of the ring is presented and five frequency tones with a 10-GHz spacing are produced using a dual-frequency electrical input at 10 and 20 GHz. A comb shape comparison is conducted for different modulator bias voltages, indicating optimum operation at a small forward-bias voltage. A time-domain measurement confirmed that the comb signal was highly coherent, forming 20.3-ps-long pulses.

  20. Modified Blumlein pulse-forming networks for bioelectrical applications.

    PubMed

    Romeo, Stefania; Sarti, Maurizio; Scarfì, Maria Rosaria; Zeni, Luigi

    2010-07-01

    Intense nanosecond pulsed electric fields (nsPEFs) have been shown to induce, on intracellular structures, interesting effects dependent on electrical exposure conditions (pulse length and amplitude, repetition frequency and number of pulses), which are known in the literature as "bioelectrical effects" (Schoenbach et al., IEEE Trans Plasma Sci 30:293-300, 2002). In particular, pulses with a shorter width than the plasma membrane charging time constant (about 100 ns for mammalian cells) can penetrate the cell and trigger effects such as permeabilization of intracellular membranes, release of Ca(2+) and apoptosis induction. Moreover, the observed effects have led to exploration of medical applications, like the treatment of melanoma tumors (Nuccitelli et al., Biochem Biophys Res Commun 343:351-360, 2006). Pulsed electric fields allowing such effects usually range from several tens to a few hundred nanoseconds in duration and from a few to several tens of megavolts per meter in amplitude (Schoenbach et al., IEEE Trans Diel Elec Insul 14:1088-1109, 2007); however, the biological effects of subnanosecond pulses have been also investigated (Schoenbach et al., IEEE Trans Plasma Sci 36:414-422, 2008). The use of such a large variety of pulse parameters suggests that highly flexible pulse-generating systems, able to deliver wide ranges of pulse durations and amplitudes, are strongly required in order to explore effects and applications related to different exposure conditions. The Blumlein pulse-forming network is an often-employed circuit topology for the generation of high-voltage electric pulses with fixed pulse duration. An innovative modification to the Blumlein circuit has been recently devised which allows generation of pulses with variable amplitude, duration and polarity. Two different modified Blumlein pulse-generating systems are presented in this article, the first based on a coaxial cable configuration, matching microscopic slides as a pulse-delivery system, and the other based on microstrip transmission lines and designed to match cuvettes for the exposure of cell suspensions.

  1. The prediction, observation and study of long-distant undamped thermal waves generated in pulse radiative processes

    NASA Astrophysics Data System (ADS)

    Vysotskii, V. I.; Kornilova, A. A.; Vasilenko, A. O.; Krit, T. B.; Vysotskyy, M. V.

    2017-07-01

    The problems of the existence, generation, propagation and registration of long-distant undamped thermal waves formed in pulse radiative processes have been theoretically analyzed and confirmed experimentally. These waves may be used for the analysis of short-time processes of interaction of particles or electromagnetic fields with different targets. Such undamped waves can only exist in environments with a finite (nonzero) time of local thermal relaxation and their frequencies are determined by this time. The results of successful experiments on the generation and registration of undamped thermal waves at a large distance (up to 2 m) are also presented.

  2. Development of deep-ultraviolet metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Sabotinov, Nikola V.

    2004-06-01

    Deep ultraviolet laser generation is of great interest in connection with both the development of new industrial technologies and applications in medicine, biology, chemistry, etc. The development of metal vapor UV lasers oscillating in the pulsed mode with high pulse repetition frequencies and producing high average output powers is of particular interest for microprocessing of polymers, photolithography and fluorescence applications. At present, metal vapor lasers generate deep-UV radiation on the base of two methods. The first method is non-linear conversion of powerful laser generation from the visible region into the deep ultraviolet region. The second method is direct UV laser action on ion and atomic transitions of different metals.

  3. Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon.

    PubMed

    Tal, Idan; Large, Edward W; Rabinovitch, Eshed; Wei, Yi; Schroeder, Charles E; Poeppel, David; Zion Golumbic, Elana

    2017-06-28

    Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals' speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception. SIGNIFICANCE STATEMENT Humans perceive music as having a regular pulse marking equally spaced points in time, within which musical notes are temporally organized. Neural resonance theory (NRT) provides a theoretical model explaining how an internal periodic representation of a pulse may emerge through nonlinear coupling between oscillating neural systems. After testing key falsifiable predictions of NRT using MEG recordings, we demonstrate the emergence of neural oscillations at the pulse frequency, which can be related to pulse perception. These findings rule out alternative explanations for neural entrainment and provide evidence linking neural synchronization to the perception of pulse, a widely debated topic in recent years. Copyright © 2017 the authors 0270-6474/17/376331-11$15.00/0.

  4. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.

    PubMed

    Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W

    2011-04-28

    Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water.

  5. Developmental variation in sound production in water and air in the blue catfish Ictalurus furcatus.

    PubMed

    Ghahramani, Zachary N; Mohajer, Yasha; Fine, Michael L

    2014-12-01

    Blue catfish, Ictalurus furcatus, the largest catfish in North America, produce pectoral stridulation sounds (distress calls) when attacked and held. They have both fish and bird predators, and the frequency spectrum of their sounds is better matched to the hearing of birds than to that of unspecialized fish predators with low frequency hearing. It is unclear whether their sounds evolved to function in air or water. We categorized the calls and how they change with fish size in air and water and compared developmental changes in call parameters with stridulation motions captured with a high-speed camera. Stridulation sounds consist of a variable series of pulses produced during abduction of the pectoral spine. Pulses are caused by quick rapid spine rotations (jerks) of the pectoral spine that do not change with fish size although larger individuals generate longer, higher amplitude pulses with lower peak frequencies. There are longer pauses between jerks, and therefore fewer jerks and fewer pulses, in larger fish, which take longer to abduct their spines and therefore produce a longer series of pulses per abduction sweep. Sounds couple more effectively to water (1400 times greater pressure in Pascals at 1 m), are more sharply tuned and have lower peak frequencies than in air. Blue catfish stridulation sounds appear to be specialized to produce underwater signals although most of the sound spectrum includes frequencies matched to catfish hearing but largely above the hearing range of unspecialized fishes. © 2014. Published by The Company of Biologists Ltd.

  6. Photoacoustic simulation study of chirp excitation response from different size absorbers

    NASA Astrophysics Data System (ADS)

    Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.

    2017-03-01

    Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.

  7. REVIEW ARTICLE: Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.

    2009-10-01

    Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.

  8. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.

    PubMed

    Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K

    2017-05-24

    The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0  ≥ 0.025 λ) and lateral shear (y 0  ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.

  9. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon.

    PubMed

    Xue, Hongyan; Deng, Guoliang; Feng, Guoying; Chen, Lin; Li, Jiaqi; Yang, Chao; Zhou, Shouhuan

    2017-09-01

    An initial roughness is assumed in the most accepted Sipe-Drude model to analyze laser-induced periodic surface structures (LIPSS). However, the direct experimental observation for the crucial parameters is still lacking. The generation of nanoparticles and low-spatial frequency LIPSS (LSFL) (LIPSS with a periodicity close to laser wavelength) on a silicon surface upon a single pulse and subsequent pulses irradiation, respectively, is observed experimentally. Finite-difference time-domain (FDTD) simulation indicates that the nanoparticles generated with the first pulse enhance the local electric field greatly. Based on the experimental extrapolated parameters, FDTD-η maps have been calculated. The results show that the inhomogeneous energy deposition, which leads to the formation of LSFL, is mainly from the modulation of the nanoparticles with a radius of around 100 nm.

  10. Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm.

    PubMed

    Lagatsky, A A; Han, X; Serrano, M D; Cascales, C; Zaldo, C; Calvez, S; Dawson, M D; Gupta, J A; Brown, C T A; Sibbett, W

    2010-09-15

    We report, for the first time to our knowledge, femtosecond-pulse operation of a Tm,Ho:NaY(WO(4))(2) laser at around 2060 nm. Transform-limited 191 fs pulses are produced with an average output power of 82 mW at a 144 MHz pulse repetition frequency. Maximum output power of up to 155 mW is generated with a corresponding pulse duration of 258 fs. An ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror is used for passive mode-locking maintenance.

  11. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  12. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  13. Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber.

    PubMed

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian

    2013-12-15

    Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.

  14. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, E G; Hickman, B C; Lee, B S

    2002-06-24

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less

  15. Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems.

    PubMed

    Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G

    2013-08-12

    We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

  16. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser.

    PubMed

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  17. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    NASA Astrophysics Data System (ADS)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  18. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  19. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier

    DOE PAGES

    Zhao, Zhi; Sheehy, Brian; Minty, Michiko

    2017-03-29

    Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.

  20. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganot, Yuval, E-mail: yuvalga@sapir.ac.il, E-mail: ibar@bgu.ac.il; Bar, Ilana, E-mail: yuvalga@sapir.ac.il, E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340more » mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.« less

Top