Improving frequencies range measurement of vibration sensor based on Fiber Bragg Grating (FBG)
NASA Astrophysics Data System (ADS)
Qomaruddin; Setiono, A.; Afandi, M. I.
2017-04-01
This research aimed to develop a vibration sensor based on Fiber Bragg Grating (FBG). The design was mainly done by attaching FBG at the cantilever. The free-end of the cantilever was tied to a vibration source in order to increase the measurement range of vibration frequencies. The results indicated that the developed sensor was capable of detecting wide range of frequencies (i.e. 10 - 1700 Hz). The results also showed both good stability and repeatability. The measured frequency range was 566 times greater than the range obtained from the previous works.
NASA Astrophysics Data System (ADS)
Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri
2016-02-01
In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.
NASA Astrophysics Data System (ADS)
Liao, Zhikun; Lu, Dawei; Hu, Jiemin; Zhang, Jun
2018-04-01
For the random hopping frequency signal, the modulated frequencies are randomly distributed over given bandwidth. The randomness of modulated frequency not only improves the electronic counter countermeasure capability for radar systems, but also determines its performance of range compression. In this paper, the range ambiguity function of RHF signal is firstly derived. Then, a design method of frequency hopping pattern based on stationary phase principle to improve the peak to side-lobe ratio is proposed. Finally, the simulated experiments show a good effectiveness of the presented design method.
Noise and range considerations for close-range radar sensing of life signs underwater.
Hafner, Noah; Lubecke, Victor
2011-01-01
Close-range underwater sensing of motion-based life signs can be performed with low power Doppler radar and ultrasound techniques. Corresponding noise and range performance trade-offs are examined here, with regard to choice of frequency and technology. The frequency range examined includes part of the UHF and microwave spectrum. Underwater detection of motion by radar in freshwater and saltwater are demonstrated. Radar measurements exhibited reduced susceptibility to noise as compared to ultrasound. While higher frequency radar exhibited better signal to noise ratio, propagation was superior for lower frequencies. Radar detection of motion through saltwater was also demonstrated at restricted ranges (1-2 cm) with low power transmission (10 dBm). The results facilitate the establishment of guidelines for optimal choice in technology for the underwater measurement motion-based life signs, with respect to trade offs involving range and noise.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong
2018-01-01
An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.
Asynchronous BCI control using high-frequency SSVEP.
Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric
2011-07-14
Steady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels. The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.
Xia, Haiyun; Zhang, Chunxi
2010-03-01
An ultrafast and Doppler-free optical ranging system based on dispersive frequency-modulated interferometry is demonstrated. The principle is similar to the conventional frequency-modulated continuous-wave interferometry where the range information is derived from the beat frequency between the object signal and the reference signal. However, a passive and static frequency scanning is performed based on the chromatic dispersion of a transform-limited femtosecond pulse in the time domain. We point out that the unbalanced dispersion introduced in the Mach-Zehnder interferometer can be optimized to eliminate the frequency chirp in the temporal interferograms pertaining to the third order dispersion of the all-fiber system, if the dynamic range being considered is small. Some negative factors, such as the polarization instability of the femtosecond pulse, the power fluctuation of the optical signal and the nonuniform gain spectrum of the erbium-doped fiber amplifier lead to an obvious envelope deformation of the temporal interferograms from the Gaussian shape. Thus a new data processing method is proposed to guarantee the range resolution. In the experiment, the vibration of a speaker is measured. A range resolution of 1.59 microm is achieved with an exposure time of 394 fs at a sampling rate of 48.6 MHz.
High current nonlinear transmission line based electron beam driver
NASA Astrophysics Data System (ADS)
Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.
2017-10-01
A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).
Advanced Digital Signal Processing for Hybrid Lidar
2014-10-30
obtain range measurements . A MATLAB- based system developed at Clarkson University in FY14 has been used to perform real-time FDR ranging... measurement accuracy. There have been various methods that attempt to reduce the backscatter. One method is to increase the modulation frequency beyond...an unambiguous range measurement . In general, it is desired to determine which combination of Radio Frequency (RF) modulation frequencies, modulation
NASA Astrophysics Data System (ADS)
Xie, Shuai; Wang, Jing; Wang, Wufeng; Hou, Guoyan; Li, Bin; Shui, Zhonghe; Ji, Zhijiang
2018-02-01
In order to develop a cement based composites with high electromagnetic (EM) wave absorbing performance, helical carbon fibers (HCFs) were added into the cement matrix as an absorbent. The reflection loss (RL) of the prepared HCFs/cement based composites was studied by arched testing method in the frequency ranges of 1-8 GHz and 8-18 GHz. The results show that the EM wave absorption properties of the cement based composites can be evidently enhanced by the addition of HCFs. The composites with 1.5% HCFs exhibits optimum EM wave absorption performance in the frequency range of 1-8 GHz. However, in 8-18 GHz frequency range, the EM wave absorption performance of the cement composites with 1% HCFs is much better than others. The RL values of the prepared HCFs/cement based composites are less than -5 dB in the whole testing frequency regions, which can be attributed to the strong dielectric loss ability and unique chiral structure of HCFs.
Montagna, Fabio; Buiatti, Marco; Benatti, Simone; Rossi, Davide; Farella, Elisabetta; Benini, Luca
2017-10-01
EEG is a standard non-invasive technique used in neural disease diagnostics and neurosciences. Frequency-tagging is an increasingly popular experimental paradigm that efficiently tests brain function by measuring EEG responses to periodic stimulation. Recently, frequency-tagging paradigms have proven successful with low stimulation frequencies (0.5-6Hz), but the EEG signal is intrinsically noisy in this frequency range, requiring heavy signal processing and significant human intervention for response estimation. This limits the possibility to process the EEG on resource-constrained systems and to design smart EEG based devices for automated diagnostic. We propose an algorithm for artifact removal and automated detection of frequency tagging responses in a wide range of stimulation frequencies, which we test on a visual stimulation protocol. The algorithm is rooted on machine learning based pattern recognition techniques and it is tailored for a new generation parallel ultra low power processing platform (PULP), reaching performance of more that 90% accuracy in the frequency detection even for very low stimulation frequencies (<1Hz) with a power budget of 56mW. Copyright © 2017 Elsevier Inc. All rights reserved.
Discrete-time model reduction in limited frequency ranges
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A mathematical formulation for model reduction of discrete time systems such that the reduced order model represents the system in a particular frequency range is discussed. The algorithm transforms the full order system into balanced coordinates using frequency weighted discrete controllability and observability grammians. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency range of interest. Minimization of the criterion is accomplished without need for numerical optimization. Balancing requires the computation of discrete frequency weighted grammians. Close form solutions for the computation of frequency weighted grammians are developed. Numerical examples are discussed to demonstrate the algorithm.
Fiber optic vibration sensor using bifurcated plastic optical fiber
NASA Astrophysics Data System (ADS)
Abdullah, M.; Bidin, N.; Yasin, M.
2016-11-01
An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.
Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu
2013-11-15
A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.
A wide-range programmable frequency synthesizer based on a finite state machine filter
NASA Astrophysics Data System (ADS)
Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.
2013-11-01
In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.
Multiple-frequency continuous wave ultrasonic system for accurate distance measurement
NASA Astrophysics Data System (ADS)
Huang, C. F.; Young, M. S.; Li, Y. C.
1999-02-01
A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.
Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.
Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko
2016-08-22
We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.
A phase match based frequency estimation method for sinusoidal signals
NASA Astrophysics Data System (ADS)
Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao
2015-04-01
Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.
Sun, Chao; Pye, Stephen D.; Browne, Jacinta E.; Janeczko, Anna; Ellis, Bill; Butler, Mairead B.; Sboros, Vassilis; Thomson, Adrian J.W.; Brewin, Mark P.; Earnshaw, Charles H.; Moran, Carmel M.
2012-01-01
This study characterized the acoustic properties of an International Electromechanical Commission (IEC) agar-based tissue mimicking material (TMM) at ultrasound frequencies in the range 10–47 MHz. A broadband reflection substitution technique was employed using two independent systems at 21°C ± 1°C. Using a commercially available preclinical ultrasound scanner and a scanning acoustic macroscope, the measured speeds of sound were 1547.4 ± 1.4 m∙s−1 and 1548.0 ± 6.1 m∙s−1, respectively, and were approximately constant over the frequency range. The measured attenuation (dB∙cm−1) was found to vary with frequency f (MHz) as 0.40f + 0.0076f2. Using this polynomial equation and extrapolating to lower frequencies give values comparable to those published at lower frequencies and can estimate the attenuation of this TMM in the frequency range up to 47 MHz. This characterisation enhances understanding in the use of this TMM as a tissue equivalent material for high frequency ultrasound applications. PMID:22502881
NASA Astrophysics Data System (ADS)
Zheng, Bowen; Xu, Jun
2017-11-01
Mechanical information processing and control has attracted great attention in recent years. A challenging pursuit is to achieve broad functioning frequency ranges, especially at low-frequency domain. Here, we propose a design of mechanical logic switches based on DNA-inspired chiral acoustic metamaterials, which are capable of having ultrabroad band gaps at low-frequency domain. Logic operations can be easily performed by applying constraints at different locations and the functioning frequency ranges are able to be low, broad and tunable. This work may have an impact on the development of mechanical information processing, programmable materials, stress wave manipulation, as well as the isolation of noise and harmful vibration.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
High-frequency modulated signals of killer whales (Orcinus orca) in the North Pacific.
Simonis, Anne E; Baumann-Pickering, Simone; Oleson, Erin; Melcón, Mariana L; Gassmann, Martin; Wiggins, Sean M; Hildebrand, John A
2012-04-01
Killer whales in the North Pacific, similar to Atlantic populations, produce high-frequency modulated signals, based on acoustic recordings from ship-based hydrophone arrays and autonomous recorders at multiple locations. The median peak frequency of these signals ranged from 19.6-36.1 kHz and median duration ranged from 50-163 ms. Source levels were 185-193 dB peak-to-peak re: 1 μPa at 1 m. These uniform, repetitive, down-swept signals are similar to bat echolocation signals and possibly could have echolocation functionality. A large geographic range of occurrence suggests that different killer whale ecotypes may utilize these signals.
Heinz, M G; Colburn, H S; Carney, L H
2001-10-01
The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.
Semiconductor nanomembrane-based sensors for high frequency pressure measurements
NASA Astrophysics Data System (ADS)
Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing
2017-04-01
This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.
Quantum cascade lasers: from tool to product.
Razeghi, M; Lu, Q Y; Bandyopadhyay, N; Zhou, W; Heydari, D; Bai, Y; Slivken, S
2015-04-06
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.
NASA Technical Reports Server (NTRS)
Reddy C. J.
1998-01-01
Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.
Acoustic superlens using Helmholtz-resonator-based metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xishan; Yin, Jing; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn
2015-11-09
Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between themore » neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range.« less
Tegeler, Charles H; Tegeler, Catherine L; Cook, Jared F; Lee, Sung W; Pajewski, Nicholas M
2015-06-01
Increased amplitudes in high-frequency brain electrical activity are reported with menopausal hot flashes. We report outcomes associated with the use of High-resolution, relational, resonance-based, electroencephalic mirroring--a noninvasive neurotechnology for autocalibration of neural oscillations--by women with perimenopausal and postmenopausal hot flashes. Twelve women with hot flashes (median age, 56 y; range, 46-69 y) underwent a median of 13 (range, 8-23) intervention sessions for a median of 9.5 days (range, 4-32). This intervention uses algorithmic analysis of brain electrical activity and near real-time translation of brain frequencies into variable tones for acoustic stimulation. Hot flash frequency and severity were recorded by daily diary. Primary outcomes included hot flash severity score, sleep, and depressive symptoms. High-frequency amplitudes (23-36 Hz) from bilateral temporal scalp recordings were measured at baseline and during serial sessions. Self-reported symptom inventories for sleep and depressive symptoms were collected. The median change in hot flash severity score was -0.97 (range, -3.00 to 1.00; P = 0.015). Sleep and depression scores decreased by -8.5 points (range, -20 to -1; P = 0.022) and -5.5 points (range, -32 to 8; P = 0.015), respectively. The median sum of amplitudes for the right and left temporal high-frequency brain electrical activity was 8.44 μV (range, 6.27-16.66) at baseline and decreased by a median of -2.96 μV (range, -11.05 to -0.65; P = 0.0005) by the final session. Hot flash frequency and severity, symptoms of insomnia and depression, and temporal high-frequency brain electrical activity decrease after High-resolution, relational, resonance-based, electroencephalic mirroring. Larger controlled trials with longer follow-up are warranted.
Brain-computer interface based on intermodulation frequency
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong
2013-12-01
Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.
Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga
2013-10-01
Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Understanding auditory distance estimation by humpback whales: a computational approach.
Mercado, E; Green, S R; Schneider, J N
2008-02-01
Ranging, the ability to judge the distance to a sound source, depends on the presence of predictable patterns of attenuation. We measured long-range sound propagation in coastal waters to assess whether humpback whales might use frequency degradation cues to range singing whales. Two types of neural networks, a multi-layer and a single-layer perceptron, were trained to classify recorded sounds by distance traveled based on their frequency content. The multi-layer network successfully classified received sounds, demonstrating that the distorting effects of underwater propagation on frequency content provide sufficient cues to estimate source distance. Normalizing received sounds with respect to ambient noise levels increased the accuracy of distance estimates by single-layer perceptrons, indicating that familiarity with background noise can potentially improve a listening whale's ability to range. To assess whether frequency patterns predictive of source distance were likely to be perceived by whales, recordings were pre-processed using a computational model of the humpback whale's peripheral auditory system. Although signals processed with this model contained less information than the original recordings, neural networks trained with these physiologically based representations estimated source distance more accurately, suggesting that listening whales should be able to range singers using distance-dependent changes in frequency content.
Frequencies of solar p-mode oscillations
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Harvey, J. W.; Libbrecht, K. G.; Popp, B. D.; Pomerantz, M. A.
1988-01-01
A list is presented of frequencies that can be used as a basis for helioseismic investigations of the average structure of the solar interior as a function of depth. The list includes measurements of frequencies of p-mode multiplets covering the l range from 4 to 99. Two different data sets are employed: one based on Doppler shift measurements made in 1985 at the Big Bear Solar Observatory and another based on intensity measurements made in 1981 at the geographic South Pole. Frequencies from the two data sets are compared, and systematic frequency differences are found that range from less than 0.1 microHz at low values of l to about 0.6 microHz at l = 99; the uncertainty is + or - 0.1 microHz.
Soliton microcomb range measurement
NASA Astrophysics Data System (ADS)
Suh, Myoung-Gyun; Vahala, Kerry J.
2018-02-01
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.
Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation
NASA Astrophysics Data System (ADS)
Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu
2016-11-01
Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.
Marfeo, Elizabeth E; Ni, Pengsheng; Chan, Leighton; Rasch, Elizabeth K; Jette, Alan M
2014-07-01
The goal of this article was to investigate optimal functioning of using frequency vs. agreement rating scales in two subdomains of the newly developed Work Disability Functional Assessment Battery: the Mood & Emotions and Behavioral Control scales. A psychometric study comparing rating scale performance embedded in a cross-sectional survey used for developing a new instrument to measure behavioral health functioning among adults applying for disability benefits in the United States was performed. Within the sample of 1,017 respondents, the range of response category endorsement was similar for both frequency and agreement item types for both scales. There were fewer missing values in the frequency items than the agreement items. Both frequency and agreement items showed acceptable reliability. The frequency items demonstrated optimal effectiveness around the mean ± 1-2 standard deviation score range; the agreement items performed better at the extreme score ranges. Findings suggest an optimal response format requires a mix of both agreement-based and frequency-based items. Frequency items perform better in the normal range of responses, capturing specific behaviors, reactions, or situations that may elicit a specific response. Agreement items do better for those whose scores are more extreme and capture subjective content related to general attitudes, behaviors, or feelings of work-related behavioral health functioning. Copyright © 2014 Elsevier Inc. All rights reserved.
An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration
Stone, Jack A.; Egan, Patrick
2010-01-01
Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10−8 and never below 10−12, very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794
Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Curlander, John C.
1991-01-01
Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.
A time domain frequency-selective multivariate Granger causality approach.
Leistritz, Lutz; Witte, Herbert
2016-08-01
The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.
A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring
Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang
2016-01-01
For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad/Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng/Hz, and the dynamic range is above 116 dB. PMID:28036011
Multi-dynamic range compressional wave detection using optical-frequency comb
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Masuoka, Takashi; Oe, Ryo; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi
2018-02-01
Compressional wave detection is useful means for health monitoring of building, detection of abnormal vibration of moving objects, defect evaluation, and biomedical imaging such as echography and photoacoustic imaging. The frequency of the compressional wave is varied from quasi-static to a few tens of megahertz depending on applications. Since the dynamic range of general compressional wave detectors is limited, we need to choose a proper compressional wave detector depending on applications. For the compressional wave detection with wide dynamic range, two or more detectors with different detection ranges is required. However, these detectors with different detection ranges generally has different accuracy and precision, disabling the seamless detection over these detection ranges. In this study, we proposed a compressional wave detector employing optical frequency comb (OFC). The compressional wave was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The compressional wave-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. To enhance the dynamic range of the compressional wave detection, we developed a cavityfeedback-based system and a phase-sensitive detection system, both of which the accuracy and precision are coherently linked to these of the OFC. We provided a proof-of-principle demonstration of the detection of compressional wave from quasi-static to ultrasound wave by using the OFC-based compressional wave sensor. Our proposed approach will serve as a unique and powerful tool for detecting compressional wave versatile applications in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing, E-mail: hqng@163.com; Mao, Xinhua, E-mail: 30400414@qq.com; Chu, Dongliang, E-mail: 569256386@qq.com
This study proposes an optimized frequency adjustment method that uses a micro-cantilever beam-based piezoelectric vibration generator based on a combination of added mass and capacitance. The most important concept of the proposed method is that the frequency adjustment process is divided into two steps: the first is a rough adjustment step that changes the size of the mass added at the end of cantilever to adjust the frequency in a large-scale and discontinuous manner; the second step is a continuous but short-range frequency adjustment via the adjustable added capacitance. Experimental results show that when the initial natural frequency of amore » micro piezoelectric vibration generator is 69.8 Hz, then this natural frequency can be adjusted to any value in the range from 54.2 Hz to 42.1 Hz using the combination of the added mass and the capacitance. This method simply and effectively matches a piezoelectric vibration generator’s natural frequency to the vibration source frequency.« less
Subarray-based FDA radar to counteract deceptive ECM signals
NASA Astrophysics Data System (ADS)
Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang
2016-12-01
In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.
Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods
NASA Astrophysics Data System (ADS)
Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua
2010-03-01
This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.
Long-range AIS message analysis based on the TianTuo-3 micro satellite
NASA Astrophysics Data System (ADS)
Li, Shiyou; Chen, Lihu; Chen, Xiaoqian; Zhao, Yong; Bai, Yuzhu
2017-07-01
The "Type-27 AIS message" is the long-range AIS broadcast message, which is primarily intended for the long-range detection of AIS typically by satellite. The TT3-AIS uses a four-frequency receiver scheme which includes two frequency channels conventionally applied by the AIS system and two new frequency channels allocated to the long-range AIS broadcast message. To the end of April 2016, the TT3-AIS has already received more than 11,400 packets of Type-27 AIS messages. In this paper, a detailed analysis of the Type-27 AIS messages is performed. Firstly, an eavesdropper diagram of the space-borne AIS received from the worldwide vessels is obtained. Secondly, the analysis to the trend of the number and the ratio of the new-type vessels is performed based on the Type-27 AIS message. The detection probability of the new-type vessels is also discussed. The result would be helpful on the usage of the long-range AIS message both for data application and for the improvement in designing the next space-based AIS receiver.
NASA Astrophysics Data System (ADS)
Zhang, Sai; Xu, Bai-qiang; Cao, Wenwu
2018-03-01
We have investigated low-frequency forbidden transmission (LFT) of acoustic waves with frequency lower than the first Bragg bandgap in a solid-fluid superlattice (SFSL). LFT is formed when the acoustic planar wave impinges on the interface of a SFSL within a certain angle range. However, for the SFSL comprised of metallic material and water, the angle range of LFT is extremely narrow, which restricts its practical applications. The variation characteristics of the angle range have been comprehensively studied here by the control variable method. The results suggest that the filling ratio, layer number, wave velocity, and mass density of the constituent materials have a significant impact on the angle range. Based on our results, an effective strategy for obtaining LFT with a broad angle range is provided, which will be useful for potential applications of LFT in various devices, such as low frequency filters and subwavelength one-way diodes.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander; IAPS-team Team
2017-10-01
The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.
First low frequency all-sky search for continuous gravitational wave signals
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, M.; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 ×10-10 and +1.5 ×10-11 Hz /s , and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 1 0-24 and 2 ×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ˜2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander; IAPS Team
The novel study of the epileptogenesis mechanisms is proposed. It is based on the pulsed-operated (amplitude modulation) multi-photon (frequency modulation) fiber-laser interaction with the brain epilepsy-topion (the epilepsy onset area), so as to prevent the excessive electrical discharge (epileptic seizure) in the brain. The repetition frequency, Ω, matches the low frequency (epileptic) phonon waves in the brain. The laser repetition frequency (5-100 pulses per second) enables the resonance-scanning of the wide range of the phonon (possible epileptic-to-be) activity in the brain. The tunable fiber laser frequencies, Δω (multi photon operation), are in the ultraviolet frequency range, thus enabling monitoring of the electrical charge imbalance (within the 10s of milliseconds), and the DNA-corruption in the epilepsy-topion, as the possible cause of the disease. Supported by Nikola Tesla Labs., Stefan University.
Soliton microcomb range measurement.
Suh, Myoung-Gyun; Vahala, Kerry J
2018-02-23
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Diode-laser frequency stabilization based on the resonant Faraday effect
NASA Technical Reports Server (NTRS)
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.
NASA Astrophysics Data System (ADS)
Yamashita, Takashi; Nakano, Daisuke; Mori, Masayuki; Maezawa, Koichi
2018-04-01
A resonant tunneling diode oscillator having a wide frequency variation range based on a novel MEMS resonator was proposed, which exploits the change in the signal propagation velocity on a coplanar waveguide according to a movable ground plane. First, we discussed the velocity modulation mechanism, and clarified the importance of the dielectric constant of the substrate. Then, a prototype device oscillating in a 10 to 20 GHz frequency range was fabricated to demonstrate the basic operation. A large and continuous increase in the oscillation frequency of about two times was achieved with this device. This is promising for various applications including THz spectroscopy.
Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G
2009-11-09
We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.
Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C.; Fujimoto, James G.
2010-01-01
We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a ~−1.2dB sensitivity roll off over ~3mm range, compared to conventional swept source and FDML lasers which have −10dB and −5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0–3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed. PMID:19997365
Parallel PWMs Based Fully Digital Transmitter with Wide Carrier Frequency Range
Zhou, Bo; Zhang, Kun; Zhou, Wenbiao; Zhang, Yanjun; Liu, Dake
2013-01-01
The carrier-frequency (CF) and intermediate-frequency (IF) pulse-width modulators (PWMs) based on delay lines are proposed, where baseband signals are conveyed by both positions and pulse widths or densities of the carrier clock. By combining IF-PWM and precorrected CF-PWM, a fully digital transmitter with unit-delay autocalibration is implemented in 180 nm CMOS for high reconfiguration. The proposed architecture achieves wide CF range of 2 M–1 GHz, high power efficiency of 70%, and low error vector magnitude (EVM) of 3%, with spectrum purity of 20 dB optimized in comparison to the existing designs. PMID:24223503
Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Jiang, Taofei; Ba, Dexin; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Li, Hui
2017-02-06
We present a slope-assisted BOTDA system based on the vector stimulated Brillouin scattering (SBS) and frequency-agile technique (FAT) for the wide-strain-range dynamic measurement. A dimensionless coefficient K defined as the ratio of Brillouin phase-shift to gain is employed to demodulate the strain of the fiber, and it is immune to the power fluctuation of pump pulse and has a linear relation of the frequency detuning for the continuous pump and Stokes waves. For a 30ns-square pump pulse, the available frequency span of the K spectrum can reach up to 200MHz, which is larger than fourfold of 48MHz-linewidth of Brillouin gain spectrum. For a single-slope assisted BOTDA, dynamic strain measurement with the maximum strain of 2467.4με and the vibration frequency components of 10.44Hz and 20.94Hz is obtained. For a multi-slope-assisted BOTDA, dynamic measurement with the strain variation up to 5372.9με and the vibration frequency components of 5.58Hz and 11.14Hz is achieved by using FAT to extend the strain range.
NASA Astrophysics Data System (ADS)
Asano, Shogo; Matsumoto, Hideki
2001-05-01
This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.
Lee, Myung W.
2007-01-01
The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.
Josephson frequency meter for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Anischenko, S. E.; Larkin, S. Y.; Chaikovsky, V. I.; Kabayev, P. V.; Kamyshin, V. V.
1995-01-01
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoffs for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decrease with the increase of wavelength due to diffraction losses. That requires a priori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is one based on frequency conversion, resonance and interferometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain a panoramic display of the results as well as full automation of the measuring process.
Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming
2016-09-01
A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.
Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.
RT-CW: widely tunable semiconductor THz QCL sources
NASA Astrophysics Data System (ADS)
Razeghi, M.; Lu, Q. Y.
2016-09-01
Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.
A compact frequency stabilized telecom laser diode for space applications
NASA Astrophysics Data System (ADS)
Philippe, C.; Holleville, D.; Le Targat, R.; Wolf, P.; Leveque, T.; Le Goff, R.; Martaud, E.; Acef, O.
2017-09-01
We report on a Telecom laser diode (LD) frequency stabilization to a narrow iodine hyperfine line in the green range, after frequency tripling process using fibered nonlinear waveguide PPLN crystals. We have generated up to 300 mW optical power in the green range ( 514 nm) from 800 mW of infrared power ( 1542 nm), corresponding to a nonlinear conversion efficiency h = P3?/P? 36%. Less than 10 mW of the generated green power are used for Doppler-free spectroscopy of 127I2 molecular iodine, and -therefore- for the frequency stabilization purpose. The frequency tripling optical setup is very compact (< 5 l), fully fibered, and could operate over the full C-band of the Telecom range (1530 nm - 1565 nm). Several thousands of hyperfine iodine lines may thus be interrogated in the 510 nm - 521 nm range. We build up an optical bench used at first in free space configuration, using the well-known modulation transfer spectroscopy technique (MTS), in order to test the potential of this new frequency standard based on the couple "1.5 ?m laser / iodine molecule". We have already demonstrated a preliminary frequency stability of 4.8 x 10-14 ? -1/2 with a minimum value of 6 x 10-15 reached after 50 s of integration time, conferred to a laser diode operating at 1542.1 nm. We focus now our efforts to expand the frequency stability to a longer integration time in order to meet requirements of many space experiments, such earth gravity missions, inters satellites links or space to ground communications. Furthermore, we investigate the potential of a new approach based on frequency modulation technique (FM), associated to a 3rd harmonic detection of iodine lines to increase the compactness of the optical setup.
An interferometric fiber optic hydrophone with large upper limit of dynamic range
NASA Astrophysics Data System (ADS)
Zhang, Lei; Kan, Baoxi; Zheng, Baichao; Wang, Xuefeng; Zhang, Haiyan; Hao, Liangbin; Wang, Hailiang; Hou, Zhenxing; Yu, Wenpeng
2017-10-01
Interferometric fiber optic hydrophone based on heterodyne detection is used to measure the missile dropping point in the sea. The signal caused by the missile dropping in the water will be too large to be detected, so it is necessary to boost the upper limit of dynamic range (ULODR) of fiber optic hydrophone. In this article we analysis the factors which influence the ULODR of fiber optic hydrophone based on heterodyne detection, the ULODR is decided by the sampling frequency fsam and the heterodyne frequency Δf. The sampling frequency and the heterodyne frequency should be satisfied with the Nyquist sampling theorem which fsam will be two times larger than Δf, in this condition the ULODR is depended on the heterodyne frequency. In order to enlarge the ULODR, the Nyquist sampling theorem was broken, and we proposed a fiber optic hydrophone which the heterodyne frequency is larger than the sampling frequency. Both the simulation and experiment were done in this paper, the consequences are similar: When the sampling frequency is 100kHz, the ULODR of large heterodyne frequency fiber optic hydrophone is 2.6 times larger than that of the small heterodyne frequency fiber optic hydrophone. As the heterodyne frequency is larger than the sampling frequency, the ULODR is depended on the sampling frequency. If the sampling frequency was set at 2MHz, the ULODR of fiber optic hydrophone based on heterodyne detection will be boosted to 1000rad at 1kHz, and this large heterodyne fiber optic hydrophone can be applied to locate the drop position of the missile in the sea.
Gfeller, Kate; Turner, Christopher; Oleson, Jacob; Zhang, Xuyang; Gantz, Bruce; Froman, Rebecca; Olszewski, Carol
2007-06-01
The purposes of this study were to (a) examine the accuracy of cochlear implant recipients who use different types of devices and signal processing strategies on pitch ranking as a function of size of interval and frequency range and (b) to examine the relations between this pitch perception measure and demographic variables, melody recognition, and speech reception in background noise. One hundred fourteen cochlear implant users and 21 normal-hearing adults were tested on a pitch discrimination task (pitch ranking) that required them to determine direction of pitch change as a function of base frequency and interval size. Three groups were tested: (a) long electrode cochlear implant users (N = 101); (b) short electrode users that received acoustic plus electrical stimulation (A+E) (N = 13); and (c) a normal-hearing (NH) comparison group (N = 21). Pitch ranking was tested at standard frequencies of 131 to 1048 Hz, and the size of the pitch-change intervals ranged from 1 to 4 semitones. A generalized linear mixed model (GLMM) was fit to predict pitch ranking and to determine if group differences exist as a function of base frequency and interval size. Overall significance effects were measured with Chi-square tests and individual effects were measured with t-tests. Pitch ranking accuracy was correlated with demographic measures (age at time of testing, length of profound deafness, months of implant use), frequency difference limens, familiar melody recognition, and two measures of speech reception in noise. The long electrode recipients performed significantly poorer on pitch discrimination than the NH and A+E group. The A+E users performed similarly to the NH listeners as a function of interval size in the lower base frequency range, but their pitch discrimination scores deteriorated slightly in the higher frequency range. The long electrode recipients, although less accurate than participants in the NH and A+E groups, tended to perform with greater accuracy within the higher frequency range. There were statistically significant correlations between pitch ranking and familiar melody recognition as well as with pure-tone frequency difference limens at 200 and 400 Hz. Low-frequency acoustic hearing improves pitch discrimination as compared with traditional, electric-only cochlear implants. These findings have implications for musical tasks such as familiar melody recognition.
NASA Astrophysics Data System (ADS)
Lehn, Andrea M.; Thornycroft, Patrick J. M.; Lauder, George V.; Leftwich, Megan C.
2017-02-01
In this paper we consider the effects of adding high-frequency, low-amplitude perturbations to a smooth sinusoidal base input signal for a heaving panel in a closed loop flow tank. Specifically, 0.1 cm amplitude sinusoidal perturbation waves with frequency fp ranging from 0.5 to 13.0 Hz are added to 1 cm heave sinusoids with base frequencies, fb, ranging from 0.5 to 3.0 Hz. Two thin foils with different flexural stiffness are heaved with the combined input signals in addition to both the high-heave and low-heave signals independently. In all cases, the foils are heaved in a recirculating water channel with an incoming velocity of Vx=10 cm/s and a Reynolds number based on the chord length of Re=17 300 . Results demonstrate that perturbations increase the net axial force, in the streamwise direction, in most cases tested (with the exception of some poor performing flexible foil cases). Most significantly, for a base frequency of 1 Hz, perturbations at 9 Hz result in a 780.7% increase in net streamwise force production. Generally, the higher the perturbation frequency, fp the more axial force generated. However, for the stiffer foil, a clear peak in net force exists at fp=9 Hz , regardless of the base frequency. For the stiffer foil, swimming efficiency at a 1 Hz flapping frequency is increased dramatically with the addition of a perturbation, with reduced efficiency increases at higher flapping frequencies. Likewise, for the flexible foil, swimming efficiency gains are greatest at the lower flapping frequencies. Perturbations alter the wake structure by increasing the vorticity magnitude and increasing the vortex shedding frequency; i.e., more, stronger vortices are produced in each flapping cycle.
Molecular Electronic Angular Motion Transducer Broad Band Self-Noise.
Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna
2015-11-20
Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01-200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01-2 Hz. At the frequency range of 2-100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100-200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu
2014-06-01
A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Schwarze, Gene E.
1999-01-01
100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.
NASA Astrophysics Data System (ADS)
Oregui, M.; Li, Z.; Dollevoet, R.
2015-03-01
In this paper, the feasibility of the Frequency Response Function (FRF)-based statistical method to identify the characteristic frequencies of railway track defects is studied. The method compares a damaged track state to a healthy state based on non-destructive field hammer test measurements. First, a study is carried out to investigate the repeatability of hammer tests in railway tracks. By changing the excitation and measurement locations it is shown that the variability introduced by the test process is negligible. Second, following the concepts of control charts employed in process monitoring, a method to define an approximate healthy state is introduced by using hammer test measurements at locations without visual damage. Then, the feasibility study includes an investigation into squats (i.e. a major type of rail surface defect) of varying severity. The identified frequency ranges related to squats agree with those found in an extensively validated vehicle-borne detection system. Therefore, the FRF-based statistical method in combination with the non-destructive hammer test measurements has the potential to be employed to identify the characteristic frequencies of damaged conditions in railway tracks in the frequency range of 300-3000 Hz.
Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.
Magnetodynamic properties of spatially distributed films based on a metal-dielectric composite
NASA Astrophysics Data System (ADS)
Tarasova, O. S.; Kalinin, Yu. E.; Sitnikov, A. V.; Yanchenko, L. I.
2017-09-01
The frequency dependences of the absorption coefficient of electromagnetic radiation and frequency dependences of the complex magnetic permeability of the fiberglass made of fiberglass cloth with a heterogeneous film deposited on the surface were investigated in the frequency range from 300 MHz to 10 GHz.
Path Loss Prediction Formula in Urban Area for the Fourth-Generation Mobile Communication Systems
NASA Astrophysics Data System (ADS)
Kitao, Koshiro; Ichitsubo, Shinichi
A site-general type prediction formula is created based on the measurement results in an urban area in Japan assuming that the prediction frequency range required for Fourth-Generation (4G) Mobile Communication Systems is from 3 to 6GHz, the distance range is 0.1 to 3km, and the base station (BS) height range is from 10 to 100m. Based on the measurement results, the path loss (dB) is found to be proportional to the logarithm of the distance (m), the logarithm of the BS height (m), and the logarithm of the frequency (GHz). Furthermore, we examine the extension of existing formulae such as the Okumura-Hata, Walfisch-Ikegami, and Sakagami formulae for 4G systems and propose a prediction formula based on the Extended Sakagami formula.
Josephson frequency meter for millimeter and submillimeter wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.
1994-12-31
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelengthmore » due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.« less
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
670-GHz Down- and Up-Converting HEMT-Based Mixers
NASA Technical Reports Server (NTRS)
Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry
2012-01-01
A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers and amplifiers. Fabrication of all the down-/up-conversion circuitry on single MMICs, using a ll-HEMT circuits, would constitute a major advance in circuit simplicity.
Segers, Laurent; Van Bavegem, David; De Winne, Sam; Braeken, An; Touhafi, Abdellah; Steenhaut, Kris
2015-01-01
This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy. PMID:26263986
200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhiqun; Southall, Brandon; Carlson, Thomas J.
2014-04-15
The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that sound energy in below the center (carrier) frequency might be heard by marine mammals. The study found that all three sounders generated sound at frequencies below the center frequency and within the hearing range of some marine mammals and that this sound was likely detectable by the animals over limited ranges. However, at standard operating source levels for the sounders, the sound below the center frequency was well below potentially harmful levels. It was concluded that the sounds generatedmore » by the sounders could affect the behavior of marine mammals within fairly close proximity to the sources and that that the blanket exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered.« less
Omni-directional selective shielding material based on amorphous glass coated microwires.
Ababei, G; Chiriac, H; David, V; Dafinescu, V; Nica, I
2012-01-01
The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.
Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor
NASA Astrophysics Data System (ADS)
Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.
2008-05-01
High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.
Design of miniature type parallel coupled microstrip hairpin filter in UHF range
NASA Astrophysics Data System (ADS)
Hasan, Adib Belhaj; Rahman, Maj Tarikur; Kahhar, Azizul; Trina, Tasnim; Saha, Pran Kanai
2017-12-01
A microstrip parallel coupled line bandpass filter is designed in UHF range and the filter size is reduced by microstrip hairpin structure. The FR4 substrate is used as base material of the filter. The filter is analyzed by both ADS and CST design studio in the frequency range of 500 MHz to 650 MHz. The Bandwidth is found 13.27% with a center frequency 570 MHz. Simulation from both ADS and CST shows a very good agreement of performance of the filter.
Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong
2017-10-23
Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.
Howells, Tim; Johnson, Ulf; McKelvey, Tomas; Enblad, Per
2015-02-01
The objective of this study was to identify the optimal frequency range for computing the pressure reactivity index (PRx). PRx is a clinical method for assessing cerebral pressure autoregulation based on the correlation of spontaneous variations of arterial blood pressure (ABP) and intracranial pressure (ICP). Our hypothesis was that optimizing the methodology for computing PRx in this way could produce a more stable, reliable and clinically useful index of autoregulation status. The patients studied were a series of 131 traumatic brain injury patients. Pressure reactivity indices were computed in various frequency bands during the first 4 days following injury using bandpass filtering of the input ABP and ICP signals. Patient outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The optimization criterion was the strength of the correlation with GOSe of the mean index value over the first 4 days following injury. Stability of the indices was measured as the mean absolute deviation of the minute by minute index value from 30-min moving averages. The optimal index frequency range for prediction of outcome was identified as 0.018-0.067 Hz (oscillations with periods from 55 to 15 s). The index based on this frequency range correlated with GOSe with ρ=-0.46 compared to -0.41 for standard PRx, and reduced the 30-min variation by 23%.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-12
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.
Frequency-reconfigurable water antenna of circular polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Meng; Pan, Jin; Shen, Zhongxiang, E-mail: ezxshen@ntu.edu.sg
A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibitsmore » a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.« less
Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie
2017-01-01
Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.
Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band
NASA Astrophysics Data System (ADS)
Maestrini, Alain; Mehdi, Imran; Siles, José V.; Lin, Robert; Lee, Choonsup; Chattopadhyay, Goutam; Pearson, John; Siegel, Peter
2012-10-01
Compact, room temperature terahertz sources are much needed in the 1 to 3 THz band for developing multi-pixel heterodyne receivers for astrophysics and planetary science or for building short-range high spatial resolution THz imaging systems able to see through low water content and non metallic materials, smoke or dust for a variety of applications ranging from the inspection of art artifacts to the detection of masked or concealed objects. All solid-sate electronic sources based on a W-band synthesizer followed by a high-power W-band amplifier and a cascade of Schottky diode based THz frequency multipliers are now capable of producing more than 1 mW at 0.9THz, 50 μW at 2 THz and 18 μW at 2.6 THz without the need of any cryogenic system. These sources are frequency agile and have a relative bandwidth of 10 to 15%, limited by the high power W-band amplifiers. The paper will present the latest developments of this technology and its perspective in terms of frequency range, bandwidth and power.
Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0 and 10 Hz frequencies for liquid filled level in the range between 30 to 80 percent, it shows that the selection of 1.0 Hz frequency impulsive thrust over the other frequency ranges of impulsive thrust is most proper based on the present study.
Experimental demonstration of highly localized pulses (X waves) at microwave frequencies
NASA Astrophysics Data System (ADS)
Chiotellis, Nikolaos; Mendez, Victor; Rudolph, Scott M.; Grbic, Anthony
2018-02-01
A device that radiates transverse magnetic Bessel beams in the radiative near field is reported. The cone angle of the emitted radiation remains constant over a wide frequency range (18-30 GHz), allowing highly localized pulses (X waves) to be generated under a broadband excitation. The design process, based on ray optics, is discussed. Both frequency and time domain experimental results for a prototype are presented. The measured fields show close agreement with simulation results, and demonstrate the radiator's ability to emit X waves within its nondiffracting range.
Molecular Electronic Angular Motion Transducer Broad Band Self-Noise
Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna
2015-01-01
Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502
Shen, Xiaohan; Lu, Zonghuan; Timalsina, Yukta P; Lu, Toh-Ming; Washington, Morris; Yamaguchi, Masashi
2018-05-04
We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO 2 ) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO 2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO 2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO 2 . In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.
Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan
2013-11-01
A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.
Using a PC as a Frequency Meter or a Counter.
ERIC Educational Resources Information Center
Sartori, J.; And Others
1995-01-01
Describes hardware that enables the use of an IBM PC microcomputer as a frequency meter or a counter by using the parallel printer port. Eliminates the 16-bit time-day counter through the use of an external time base that can be conveniently set depending on the desired frequency range. (JRH)
USDA-ARS?s Scientific Manuscript database
To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...
Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong
2017-10-01
When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.
Research on vibration signal of engine based on subband energy method
NASA Astrophysics Data System (ADS)
Wu, Chunmei; Cui, Feng; Zhao, Yong; Fu, Baohong; Ma, Junchi; Yang, Guihua
2017-04-01
Based on the research of DA462 type engine cylinder and cylinder head vibration signal of the surface, the signal measured in the time domain and frequency domain are analyzed in detail, draw the following conclusions: the analysis of vibration signal of the subband energy method is applied to the engine, the concentration response of each of the motivation band can clearly be seen. Through the analysis we can see that the combustion excitation frequency response from 0k to 1K, the vibration influence on the body piston lateral impact force is mainly concentrated in 2K˜5K frequency range of Hz, valve opening and closing the excitation response frequency is mainly concentrated in the 3K˜4K range of Hz, and thus locating the valve clearance fault. This method is simple, accurate and practical for the post processing and analysis of vibration signals.
NASA Astrophysics Data System (ADS)
Aksenov, V. N.; Angeluts, A. A.; Balakin, A. V.; Maksimov, E. M.; Ozheredov, I. A.; Shkurinov, A. P.
2018-05-01
We demonstrate the possibility of using a multi-frequency terahertz source to identify substances basing on the analysis of relative amplitudes of the terahertz waves scattered by the object. The results of studying experimentally the scattering of quasi-monochromatic radiation generated by a two-frequency terahertz quantum-cascade laser by the surface of the samples containing inclusions of absorbing substances are presented. It is shown that the spectral features of absorption of these substances within the terahertz frequency range manifest themselves in variations of the amplitudes of the waves at frequencies of 3.0 and 3.7 THz, which are scattered by the samples under consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavelyev, D. G., E-mail: pavelev@rf.unn.ru, E-mail: obolensk@rf.unn.ru; Vasilev, A. P., E-mail: vasiljev@mail.ioffe.ru; Kozlov, V. A., E-mail: kozlov@ipm.sci-nnov.ru
2016-11-15
The electron transport in superlattices based on GaAs/AlAs heterostructures with a small number of periods (6 periods) is calculated by the Monte Carlo method. These superlattices are used in terahertz diodes for the frequency stabilization of quantum cascade lasers in the range up to 4.7 THz. The band structure of superlattices with different numbers of AlAs monolayers is considered and their current–voltage characteristics are calculated. The calculated current–voltage characteristics are compared with the experimental data. The possibility of the efficient application of these superlattices in the THz frequency range is established both theoretically and experimentally.
Research on the range side lobe suppression method for modulated stepped frequency radar signals
NASA Astrophysics Data System (ADS)
Liu, Yinkai; Shan, Tao; Feng, Yuan
2018-05-01
The magnitude of time-domain range sidelobe of modulated stepped frequency radar affects the imaging quality of inverse synthetic aperture radar (ISAR). In this paper, the cause of high sidelobe in modulated stepped frequency radar imaging is analyzed first in real environment. Then, the chaos particle swarm optimization (CPSO) is used to select the amplitude and phase compensation factors according to the minimum sidelobe criterion. Finally, the compensated one-dimensional range images are obtained. Experimental results show that the amplitude-phase compensation method based on CPSO algorithm can effectively reduce the sidelobe peak value of one-dimensional range images, which outperforms the common sidelobe suppression methods and avoids the coverage of weak scattering points by strong scattering points due to the high sidelobes.
NASA Astrophysics Data System (ADS)
Guo, Xinxin; Yan, Guqi; Benyahia, Lazhar; Sahraoui, Sohbi
2016-11-01
This paper presents a time domain method to determine viscoelastic properties of open-cell foams on a wide frequency range. This method is based on the adjustment of the stress-time relationship, obtained from relaxation tests on polymeric foams' samples under static compression, with the four fractional derivatives Zener model. The experimental relaxation function, well described by the Mittag-Leffler function, allows for straightforward prediction of the frequency-dependence of complex modulus of polyurethane foams. To show the feasibility of this approach, complex shear moduli of the same foams were measured in the frequency range between 0.1 and 16 Hz and at different temperatures between -20 °C and 20 °C. A curve was reconstructed on the reduced frequency range (0.1 Hz-1 MHz) using the time-temperature superposition principle. Very good agreement was obtained between experimental complex moduli values and the fractional Zener model predictions. The proposed time domain method may constitute an improved alternative to resonant and non-resonant techniques often used for dynamic characterization of polymers for the determination of viscoelastic moduli on a broad frequency range.
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
Eddy current imaging with an atomic radio-frequency magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.
2016-05-02
We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.
Dual frequency comb metrology with one fiber laser
NASA Astrophysics Data System (ADS)
Zhao, Xin; Takeshi, Yasui; Zheng, Zheng
2016-11-01
Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.
Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P
2017-04-17
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.
Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.
2014-03-28
As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less
NASA Astrophysics Data System (ADS)
Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong
2014-03-01
A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.
The Design and Operation of Ultra-Sensitive and Tunable Radio-Frequency Interferometers.
Cui, Yan; Wang, Pingshan
2014-12-01
Dielectric spectroscopy (DS) is an important technique for scientific and technological investigations in various areas. DS sensitivity and operating frequency ranges are critical for many applications, including lab-on-chip development where sample volumes are small with a wide range of dynamic processes to probe. In this work, we present the design and operation considerations of radio-frequency (RF) interferometers that are based on power-dividers (PDs) and quadrature-hybrids (QHs). Such interferometers are proposed to address the sensitivity and frequency tuning challenges of current DS techniques. Verified algorithms together with mathematical models are presented to quantify material properties from scattering parameters for three common transmission line sensing structures, i.e., coplanar waveguides (CPWs), conductor-backed CPWs, and microstrip lines. A high-sensitivity and stable QH-based interferometer is demonstrated by measuring glucose-water solution at a concentration level that is ten times lower than some recent RF sensors while our sample volume is ~1 nL. Composition analysis of ternary mixture solutions are also demonstrated with a PD-based interferometer. Further work is needed to address issues like system automation, model improvement at high frequencies, and interferometer scaling.
Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya
2016-08-01
Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range).
Frequency-Specific Fractal Analysis of Postural Control Accounts for Control Strategies
Gilfriche, Pierre; Deschodt-Arsac, Véronique; Blons, Estelle; Arsac, Laurent M.
2018-01-01
Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans. PMID:29643816
Zhao, Jie; Hua, Mei
2004-06-01
To develop a wavelet noise canceller that cancels muscle electricity and power line hum in wide range of frequency. According to the feature that the QRS complex has higher frequency components, and the T, P wave have lower frequency components, the biorthogonal wavelet was selected to decompose the original signals. An interference-eliminated signal ECG was formed by reconstruction from the changed coefficients of wavelet. By using the canceller, muscle electricity and power line interference between 49 Hz and 61 Hz were eliminated from the ECG signals. This canceller works well in canceling muscle electricity, and basic and harmonic frequencies of power line hum. The canceller is also insensitive to the frequency change of power line, the same procedure is good for both 50 and 60 Hz power line hum.
Sheikhaleh, Arash; Abedi, Kambiz; Jafari, Kian; Gholamzadeh, Reza
2016-11-10
In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.
Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit
2016-04-01
This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.
An atomic magnetometer with autonomous frequency stabilization and large dynamic range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, S., E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.
2015-06-15
The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the biasmore » magnetic field without compromising on its sensitivity.« less
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-01
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980
NASA Astrophysics Data System (ADS)
Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating
2018-06-01
The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
Segmentation of the Thalamus Based on BOLD Frequencies Affected in Temporal Lobe Epilepsy
Morgan, Victoria L.; Rogers, Baxter P.; Abou-Khalil, Bassel
2015-01-01
Objective Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Methods Resting-state functional MRI (fMRI) was acquired from twenty unilateral TLE (14 right, 6 left) patients and twenty healthy controls who were each age and gender matched to a specific patient. Wavelet based functional MRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Results Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067–0.013 Hz and 0.024–0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. Significance This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. PMID:26360535
High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.
2015-02-02
We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.
DSS range delay calibrations: Current performance level
NASA Technical Reports Server (NTRS)
Spradlin, G. L.
1976-01-01
A means for evaluating Deep Space Station (DSS) range delay calibration performance was developed. Inconsistencies frequently noted in these data are resolved. Development of the DSS range delay data base is described. The data base is presented with comments regarding apparent discontinuities. Data regarding the exciter frequency dependence of the delay values are presented. The improvement observed in the consistency of current DSS range delay calibration data over the performance previously observed is noted.
Magnetic losses of commercial REBCO coated conductors in the low frequency range
NASA Astrophysics Data System (ADS)
De Marzi, G.; Iannone, G.; Gambardella, U.
2018-05-01
We have investigated the frequency dependence of the magnetic losses of different 2 G commercial REBCO coated-conductor tapes in the low frequency range ∼1–10 mHz of applied magnetic field at 5 and 77 K. We explored high field range, well above the penetration field, with fields applied perpendicularly to the flat surface. We found that the in-field hysteresis losses increase with increasing frequencies in all the investigated high-temperature superconductor (HTS) tapes, following a power-law dependence. An electromagnetic 2D finite element method model, based on H-formulation, has also been implemented, in which the frequency dependence of the hysteretic loss is computed taking into account the measured power-law E(J) characteristic for the electric field, and the experimental J c(B). Experimental and numerical findings are in very good agreement, so an extrapolation to higher ramp rate values is possible, thus providing a useful basis for the assessment of the hysteresis losses in fusion and accelerator HTS magnets.
Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui
2015-02-23
A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.
NASA Astrophysics Data System (ADS)
Li, Ruixiao; Li, Kun; Zhao, Changming
2018-01-01
Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.
Fabrication and characterization of biotissue-mimicking phantoms in the THz frequency range
NASA Astrophysics Data System (ADS)
Liakhov, E.; Smolyanskaya, O.; Popov, A.; Odlyanitskiy, E.; Balbekin, N.; Khodzitsky, M.
2016-08-01
The study revealed the most promising candidates for phantoms mimicking different biological tissues in the terahertz frequency range. Closest to biological tissues in terms of the refractive index appeared to be gelatin-based gels; in terms of the absorption coefficient they were agar-based gels. Gelatin is more stable in time, but requires special storage conditions to limit water evaporation. The dense structure of the agar-based phantom allows its use without mold and risk of damage. However, agar is a nutrient medium for bacteria and its parameters degrade even when the phantom form and water content are retained. Use of liquid suspensions of lecithin and milk powder are found to be extremely limited.
200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals
Deng, Z. Daniel; Southall, Brandon L.; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Ingraham, John M.
2014-01-01
The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered. PMID:24736608
Zhang, Sa; Li, Zhou; Xin, Xue-Gang
2017-12-20
To achieve differential diagnosis of normal and malignant gastric tissues based on discrepancies in their dielectric properties using support vector machine. The dielectric properties of normal and malignant gastric tissues at the frequency ranging from 42.58 to 500 MHz were measured by coaxial probe method, and the Cole?Cole model was used to fit the measured data. Receiver?operating characteristic (ROC) curve analysis was used to evaluate the discrimination capability with respect to permittivity, conductivity, and Cole?Cole fitting parameters. Support vector machine was used for discriminating normal and malignant gastric tissues, and the discrimination accuracy was calculated using k?fold cross? The area under the ROC curve was above 0.8 for permittivity at the 5 frequencies at the lower end of the measured frequency range. The combination of the support vector machine with the permittivity at all these 5 frequencies combined achieved the highest discrimination accuracy of 84.38% with a MATLAB runtime of 3.40 s. The support vector machine?assisted diagnosis is feasible for human malignant gastric tissues based on the dielectric properties.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1999-01-01
100 kHz core loss and magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, at B(sub peak) = 0.1 T and 50 C only. A linear permeability model is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials arc reviewed. This linear modeling shows that, due to their high permeabilities, these cores must he gapped in order to make up high Q or high current inductors. However, they should serve well, as is, for high frequency, anti ratcheting transformer applications.
Ladar imaging detection of salient map based on PWVD and Rényi entropy
NASA Astrophysics Data System (ADS)
Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing
2013-10-01
Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.
Tunable meta-atom using liquid metal embedded in stretchable polymer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Peng; Yang, Siming; Wang, Qiugu
2015-07-07
Reconfigurable metamaterials have great potential to alleviate complications involved in using passive metamaterials to realize emerging electromagnetic functions, such as dynamical filtering, sensing, and cloaking. This paper presents a new type of tunable meta-atoms in the X-band frequency range (8–12 GHz) toward reconfigurable metamaterials. The meta-atom is made of all flexible materials compliant to the surface of an interaction object. It uses a liquid metal-based split-ring resonator as its core constituent embedded in a highly flexible elastomer. We demonstrate that simple mechanical stretching of the meta-atom can lead to the great flexibility in reconfiguring its resonance frequency continuously over moremore » than 70% of the X-band frequency range. The presented meta-atom technique provides a simple approach to dynamically tune response characteristics of metamaterials over a broad frequency range.« less
Wide bandwidth phase-locked loop circuit
NASA Technical Reports Server (NTRS)
Koudelka, Robert David (Inventor)
2005-01-01
A PLL circuit uses a multiple frequency range PLL in order to phase lock input signals having a wide range of frequencies. The PLL includes a VCO capable of operating in multiple different frequency ranges and a divider bank independently configurable to divide the output of the VCO. A frequency detector detects a frequency of the input signal and a frequency selector selects an appropriate frequency range for the PLL. The frequency selector automatically switches the PLL to a different frequency range as needed in response to a change in the input signal frequency. Frequency range hysteresis is implemented to avoid operating the PLL near a frequency range boundary.
Fundamentals of dielectric properties measurements and agricultural applications.
Nelson, Stuart O
2010-01-01
Dielectrics and dielectric properties are defined generally and dielectric measurement methods and equipment are described for various frequency ranges from audio frequencies through microwave frequencies. These include impedance and admittance bridges, resonant frequency, transmission-line, and free-space methods in the frequency domain and time-domain and broadband techniques. Many references are cited describing methods in detail and giving sources of dielectric properties data. Finally a few applications for such data are presented and sources of tabulated and dielectric properties data bases are identified.
Laser frequency stabilization using a commercial wavelength meter
NASA Astrophysics Data System (ADS)
Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias
2018-04-01
We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.
NASA Astrophysics Data System (ADS)
Rösch, Markus; Benea-Chelmus, Ileana-Cristina; Scalari, Giacomo; Bonzon, Christopher B.; Süess, Martin J.; Beck, Mattias; Faist, Jérôme
2017-02-01
Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.
All-Solid-State 2.45-to-2.78-THz Source
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seith; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Pearson, John C.; Goldsmith, Paul F.;
2011-01-01
Sources in the THz range are required in order for NASA to implement heterodyne instruments in this frequency range. The source that has been demonstrated here will be used for an instrument on the SOFIA platform as well as for upcoming astrophysics missions. There are currently no electronic sources in the 2 3- THz frequency range. An electronically tunable compact source in this frequency range is needed for lab spectroscopy as well as for compact space-deployable heterodyne receivers. This solution for obtaining useful power levels in the 2 3- THz range is based on utilizing power-combined multiplier stages. Utilizing power combining, the input power can be distributed between different multiplier chips and then recombined after the frequency multiplication. A continuous wave (CW) coherent source covering 2.48 2.75 THz, with greater than 10 percent instantaneous and tuning bandwidth, and having l 14 W of output power at room temperature, has been demonstrated. This source is based on a 91.8 101.8-GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid-state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source has enabled wideband, high-resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by other existing systems, providing new insight in the physics of these molecules. Further - more, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 1012, and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 108. The harmonic purity is better than 25 dB. This source can serve as a local oscillator for a variety of heterodyne systems, and can be used as a method for precision control of more powerful but much less frequency-agile quantum mechanical terahertz sources.
Modeling of thermal coupling in VO2-based oscillatory neural networks
NASA Astrophysics Data System (ADS)
Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander
2018-01-01
In this study, we have demonstrated the possibility of using the thermal coupling to control the dynamics of operation of coupled VO2 oscillators. Based on the example of a 'switch-microheater' pair, we have explored the synchronization and dissynchronization modes of a single oscillator with respect to an external harmonic heat impact. The features of changes in the spectra are shown, in particular, the effect of the natural frequency attraction to the affecting signal frequency and the self-oscillation noise reduction effects at synchronization. The time constant of the temperature effect for the considered system configuration is in the range 7-140 μs, which allows operation in the oscillation frequency range of up to ∼70 kHz. A model estimate of the minimum temperature sensitivity of the switch is δTswitch ∼ 0.2 K, and the effective action radius RTC of the switch-to-switch thermal coupling is not less than 25 μm. Nevertheless, as the simulation shows, the frequency range can be significantly extended up to the values of 1-30 GHz if using nanometer-scale switches (heaters).
NASA Astrophysics Data System (ADS)
Lyu, Jiang-Tao; Zhou, Chen
2017-12-01
Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.
Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E
2010-01-01
Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.
NASA Astrophysics Data System (ADS)
Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.
2018-05-01
We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.
NASA Astrophysics Data System (ADS)
Sun, Hao-yu; Cui, Zhiwei; Wang, Jiajie; Han, Yiping; Sun, Peng; Shi, Xiaowei
2018-06-01
A numerical analysis of electromagnetic (EM) scattering characteristics of a hypersonic aerocraft enveloped by a plasma sheath is presented. The flow field parameters around a hypersonic aerocraft are derived by numerically solving the Navier-Stokes equations. Through multiphysics coupling of flow field and electromagnetic field, distributions of plasma frequency and collision frequency in plasma sheaths are obtained. A high-order auxiliary differential equation finite-difference time-domain algorithm is employed to investigate the EM wave scattering properties of the aerocraft covered by a plasma sheath. The backward radar cross sections (RCSs) of a blunt cone in the hypersonic flows at different velocities and altitudes with frequencies from 0.1 GHz to 18 GHz are studied. Numerical results show that, for the cases of altitude ranging from 50 km to 55 km and velocity ranging from 18 Ma to 20 Ma, the plasma sheath enhances the backscattering of the blunt cone when frequencies are below 1.5 GHz, and it reduces the backward RCSs of the blunt cone as frequency ranges from 1.5 GHz to 13.5 GHz. The plasma sheath has a larger attenuation effect for frequency lying in the range of 2 GHz to 6 GHz, but it has little influence on the backward electromagnetic scattering characteristics when frequencies are above 14 GHz.
Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A.; Muetsch, Steffen
2018-01-01
The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2–150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2–150 kHz frequency range. PMID:29360754
Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen
2018-01-23
The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.
NASA Astrophysics Data System (ADS)
Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko
2017-10-01
We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.
The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls
Vanderelst, Dieter; Lee, Ya-Fu; Geipel, Inga; Kalko, Elisabeth K. V.; Kuo, Yen-Min; Peremans, Herbert
2013-01-01
Bats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant frequency part of the calls, previous evidence suggests that the noseleaves of these animals are tuned to the frequencies in the frequency modulated components of the calls. In this paper, we seek further support for this hypothesis by simulating the emission beam pattern of the bat Rhinolophus formosae. Filling the furrows of lancet and removing the basal lappets (i.e., two flaps on the noseleaf) we find that these conspicuous features of the noseleaf focus the emitted energy mostly for frequencies in the frequency-modulated components. Based on the assumption that this component of the call is used by the bats for ranging, we develop a qualitative model to assess the increase in performance due to the furrows and/or the lappets. The model confirms that both structures decrease the ambiguity in selecting relevant targets for ranging. The lappets and the furrows shape the emission beam for different spatial regions and frequency ranges. Therefore, we conclude that the presented evidence is in line with the hypothesis that different parts of the noseleaves of Rhinolophidae are tuned to different frequency ranges with at least some of the most conspicuous ones being tuned to the frequency modulated components of the calls—thus yielding strong evidence for the sensory importance of the component. PMID:23882226
Spatial filtering velocimeter for vehicle navigation with extended measurement range
NASA Astrophysics Data System (ADS)
He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu
2015-05-01
The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.
Influence of imperfect end boundary condition on the nonlocal dynamics of CNTs
NASA Astrophysics Data System (ADS)
Fathi, Reza; Lotfan, Saeed; Sadeghi, Morteza H.
2017-03-01
Imperfections that unavoidably occur during the fabrication process of carbon nanotubes (CNTs) have a significant influence on the vibration behavior of CNTs. Among these imperfections, the boundary condition defect is studied in this investigation based on the nonlocal elasticity theory. To this end, a mathematical model of the non-ideal end condition in a cantilever CNT is developed by a strongly non-linear spring to study its effect on the vibration behavior. The weak form equation of motion is derived via Hamilton's principle and solved based on Rayleigh-Ritz approach. Once the frequency response function (FRF) of the CNT is simulated, it is found that the defect parameter injects noise to the FRF in the range of lower frequencies and as a result the small scale effect on the FRF remains undisturbed in high frequency ranges. Besides, in this work a process is introduced to estimate the nonlocal and defect parameters for establishing the mathematical model of the CNT based on FRF, which can be competitive because of its lower instrumentation and data analysis costs. The estimation process relies on the resonance frequencies and the magnitude of noise in the frequency response function of the CNT. The results show that the constructed dynamic response of the system based on estimated parameters is in good agreement with the original response of the CNT.
Li, Yi; Qian, Li; Zhou, Ciming; Fan, Dian; Xu, Qiannan; Pang, Yandong; Chen, Xi; Tang, Jianguan
2018-01-12
Multi-point vibration sensing at the low frequency range of 0.5-100 Hz is of vital importance for applications such as seismic monitoring and underwater acoustic imaging. Location-resolved multi-point sensing using a single fiber and a single demodulation system can greatly reduce system deployment and maintenance costs. We propose and demonstrate the demodulation of a fiber-optic system consisting of 500 identical ultra-weak Fiber Bragg gratings (uwFBGs), capable of measuring the amplitude, frequency and phase of acoustic signals from 499 sensing fibers covering a total range of 2.5 km. For demonstration purposes, we arbitrarily chose six consecutive sensors and studied their performance in detail. Using a passive demodulation method, we interrogated the six sensors simultaneously, and achieved a high signal-to-noise ratio of 22.1 dB, excellent linearity, phase sensitivity of around 0.024 rad/Pa, and a dynamic range of about 38 dB. We demonstrated a frequency response flatness of <1.2 dB in the range of 0.5-100 Hz. Compared to the prior state-of-the-art demonstration using a similar method, we have increased the sensing range from 1 km to 2.5 km, and increased the frequency range from 0.4 octaves to 7.6 octaves, in addition to achieving sensing in the very challenging low-frequency range of 0.5-100 Hz.
EHME: a new word database for research in Basque language.
Acha, Joana; Laka, Itziar; Landa, Josu; Salaburu, Pello
2014-11-14
This article presents EHME, the frequency dictionary of Basque structure, an online program that enables researchers in psycholinguistics to extract word and nonword stimuli, based on a broad range of statistics concerning the properties of Basque words. The database consists of 22.7 million tokens, and properties available include morphological structure frequency and word-similarity measures, apart from classical indexes: word frequency, orthographic structure, orthographic similarity, bigram and biphone frequency, and syllable-based measures. Measures are indexed at the lemma, morpheme and word level. We include reliability and validation analysis. The application is freely available, and enables the user to extract words based on concrete statistical criteria 1 , as well as to obtain statistical characteristics from a list of words
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
A novel cost-effective parallel narrowband ANC system with local secondary-path estimation
NASA Astrophysics Data System (ADS)
Delegà, Riccardo; Bernasconi, Giancarlo; Piroddi, Luigi
2017-08-01
Many noise reduction applications are targeted at multi-tonal disturbances. Active noise control (ANC) solutions for such problems are generally based on the combination of multiple adaptive notch filters. Both the performance and the computational cost are negatively affected by an increase in the number of controlled frequencies. In this work we study a different modeling approach for the secondary path, based on the estimation of various small local models in adjacent frequency subbands, that greatly reduces the impact of reference-filtering operations in the ANC algorithm. Furthermore, in combination with a frequency-specific step size tuning method it provides a balanced attenuation performance over the whole controlled frequency range (and particularly in the high end of the range). Finally, the use of small local models is greatly beneficial for the reactivity of the online secondary path modeling algorithm when the characteristics of the acoustic channels are time-varying. Several simulations are provided to illustrate the positive features of the proposed method compared to other well-known techniques.
Liquid identification by Hilbert spectroscopy
NASA Astrophysics Data System (ADS)
Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.
2009-11-01
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Avramov, Ivan D
2003-03-01
This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.
NASA Astrophysics Data System (ADS)
Schuhmann, Karsten; Kirch, Klaus; Marszałek, Mirosław; Pototschnig, Martin; Sinkunaite, Laura; Wichmann, Gunther; Zeyen, Manuel; Antognini, Aldo
2018-02-01
We present a frequency selective optical setup based on a Gires-Tournois interferometer suitable to enforce single-frequency operation of high power lasers. It is based on a birefringent Gires-Tournois interferometer combined with a λ/4 plate and a polarizer. The high-reflective part of the Gires-Tournois interferometer can be contacted to a heat sink to obtain efficient cooling (similar cooling principle as for the active medium in thin-disk lasers) enabling power scaling up to output powers in the kW range.
Tunable Magnetic Resonance in Microwave Spintronics Devices
NASA Technical Reports Server (NTRS)
Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.
2015-01-01
Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.
Tunable Magnetic Resonance in Microwave Spintronics Devices
NASA Technical Reports Server (NTRS)
Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.
2015-01-01
Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
Jones, Kevin C; Seghal, Chandra M; Avery, Stephen
2016-03-21
The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.
NASA Astrophysics Data System (ADS)
Trollinger, Valerie L.
This study investigated the relationship between acoustical measurement of singing accuracy in relationship to speech fundamental frequency, speech fundamental frequency range, age and gender in preschool-aged children. Seventy subjects from Southeastern Pennsylvania; the San Francisco Bay Area, California; and Terre Haute, Indiana, participated in the study. Speech frequency was measured by having the subjects participate in spontaneous and guided speech activities with the researcher, with 18 diverse samples extracted from each subject's recording for acoustical analysis for fundamental frequency in Hz with the CSpeech computer program. The fundamental frequencies were averaged together to derive a mean speech frequency score for each subject. Speech range was calculated by subtracting the lowest fundamental frequency produced from the highest fundamental frequency produced, resulting in a speech range measured in increments of Hz. Singing accuracy was measured by having the subjects each echo-sing six randomized patterns using the pitches Middle C, D, E, F♯, G and A (440), using the solfege syllables of Do and Re, which were recorded by a 5-year-old female model. For each subject, 18 samples of singing were recorded. All samples were analyzed by the CSpeech for fundamental frequency. For each subject, deviation scores in Hz were derived by calculating the difference between what the model sang in Hz and what the subject sang in response in Hz. Individual scores for each child consisted of an overall mean total deviation frequency, mean frequency deviations for each pattern, and mean frequency deviation for each pitch. Pearson correlations, MANOVA and ANOVA analyses, Multiple Regressions and Discriminant Analysis revealed the following findings: (1) moderate but significant (p < .001) relationships emerged between mean speech frequency and the ability to sing the pitches E, F♯, G and A in the study; (2) mean speech frequency also emerged as the strongest predictor of subjects' ability to sing the notes E and F♯; (3) mean speech frequency correlated moderately and significantly (p < .001) with sharpness and flatness of singing response accuracy in Hz; (4) speech range was the strongest predictor of singing accuracy for the pitches G and A in the study (p < .001); (5) gender emerged as a significant, but not the strongest, predictor for ability to sing the pitches in the study above C and D; (6) gender did not correlate with mean speech frequency and speech range; (7) age in months emerged as a low but significant predictor of ability to sing the lower notes (C and D) in the study; (8) age correlated significantly but negatively low (r = -.23, p < .05, two-tailed) with mean speech frequency; and (9) age did not emerge as a significant predictor of overall singing accuracy. Ancillary findings indicated that there were significant differences in singing accuracy based on geographic location by gender, and that siblings and fraternal twins in the study generally performed similarly. In addition, reliability for using the CSpeech for acoustical analysis revealed test/retest correlations of .99, with one exception at .94. Based on these results, suggestions were made concerning future research concerned with studying the use of voice in speech and how it may affect singing development, overall use in singing, and pitch-matching accuracy.
Detecting high-frequency gravitational waves with optically levitated sensors.
Arvanitaki, Asimina; Geraci, Andrew A
2013-02-15
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
...]Pa rms. Due to its high frequency range, NMFS does not consider its acoustic energy would be strong... source levels of the sub-bottom profiler and the high-frequency nature of the multi-beam echo sounder...-frequency side scan sonar, (100-400 kHz or 300-600 kHz): Based on Shell's 2006 90-day report, the source...
MIT Lincoln Laboratory Facts 2015
2015-01-01
this technology to industry for deployment in operational systems. Current efforts focus on radio - frequency (RF) military satellite communications ... frequency submarine communications demonstration ■■ Continuous-wave diode laser developed in InGaAsP/InP alloy ■■ Ground-based Electro-Optical Deep...Radar upgrade ■■ Miniaturized radio - frequency receiver ■■ Missile Alternative Range Target Instrument payloads ■■ Multifunction phased array radar
Revil, A
2013-01-01
A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823
Frequency stabilization for space-based missions using optical fiber interferometry.
McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B
2013-02-01
We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-07-14
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-01-01
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974
NASA Technical Reports Server (NTRS)
Kuhn, Gary D.
1988-01-01
Turbulent flows subjected to various kinds of unsteady disturbances were simulated using a large-eddy-simulation computer code for flow in a channel. The disturbances were: a normal velocity expressed as a traveling wave on one wall of the channel; staggered blowing and suction distributions on the opposite walls of the channel; and oscillations of the mean flow through the channel. The wall boundary conditions were designed to simulate the effects of wakes of a stator stage passing through a rotor channel in a turbine. The oscillating flow simulated the effects of a pressure pulse moving over the rotor blade boundary layer. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances of the type found in turbomachinery. Results showed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and characteristic burst frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. The viscous phenomena near solid walls was found to be the dominant influence for high frequency perturbations. At high frequencies, the turbulence was found to be undisturbed, remaining the same as for the steady mean flow. A transition range exists between the high frequency range and the low, or quasi-steady, range in which the turbulence is not predictable by either quasi-steady models or the steady flow model. The limiting lowest frequency for use of the steady flow turbulence model is that for which the viscous Stokes layer based on the blade passing frequency is thicker than the laminar sublayer.
Propagation of THz acoustic wave packets in GaN at room temperature
NASA Astrophysics Data System (ADS)
Maznev, A. A.; Hung, T.-C.; Yao, Y.-T.; Chou, T.-H.; Gandhi, J. S.; Lindsay, L.; Shin, H. D.; Stokes, D. W.; Forrest, R. L.; Bensaoula, A.; Sun, C.-K.; Nelson, K. A.
2018-02-01
We use femtosecond laser pulses to generate coherent longitudinal acoustic phonons at frequencies of 1-1.4 THz and study their propagation in GaN-based structures at room temperature. Two InGaN-GaN multiple-quantum-well (MQW) structures separated by a 2.3 μm-thick GaN spacer are used to simultaneously generate phonon wave packets with a central frequency determined by the period of the MQW and detect them after passing through the spacer. The measurements provide lower bounds for phonon lifetimes in GaN, which are still significantly lower than those from first principles predictions. The material Q-factor at 1 THz is found to be at least as high as 900. The measurements also demonstrate a partial specular reflection from the free surface of GaN at 1.4 THz. This work shows the potential of laser-based methods for THz range phonon spectroscopy and the promise for extending the viable frequency range of GaN-based acousto-electronic devices.
A MEMS-based high frequency x-ray chopper.
Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J
2009-04-29
Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.
NASA Astrophysics Data System (ADS)
Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry
2017-11-01
Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.
2005-11-01
Bottom Areas near Target Areas in the EGTTR, Florida.......................3-41 Figure 4-1. Safety Footprint Around Target Area...Thus, at many deep-water locations, it is not unusual for the low-frequency noise field to be influenced by contributions from tens or even... field at some range. Oilrigs, on the other hand, produce noise throughout the frequency domain. Recently, economic and political factors have not been
Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.
Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A
2010-01-10
As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.
Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2
2010-04-30
the various TDWR base data quality issues, range-velocity (RV) ambiguity was deemed to be the most severe challenge nationwide. Compared to S - band ... power is computed as PN = median(|5«| 2)/(ln 2), where s is the complex I&Q signal, k is the range gate number, and / is the pulse time index. The...frequencies to the ground-clutter band around zero, the clutter filtering also removes power from the aliased frequencies and distorts the phase response
Reply-frequency interference/jamming detector
NASA Astrophysics Data System (ADS)
Bishop, Walton B.
1995-01-01
Received IFF reply-frequency signals are examined to determine whether they are being interfered with by enemy sources and indication of the extent of detected interference is provided. The number of correct replies received from selected range bins surrounding and including the center one in which a target leading edge is first declared is counted and compared with the count of the number of friend-accept decisions made based on replies from the selected range bins. The level of interference is then indicated by the ratio between the two counts.
NASA Astrophysics Data System (ADS)
Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor
2015-03-01
Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.
NASA Astrophysics Data System (ADS)
Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.
2012-12-01
We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with satellite data. However, in opposite to satellite measurements, ground-based instrument registers properly daily variations of ozone concentration above 50 km.
Automatic Locking of Laser Frequency to an Absorption Peak
NASA Technical Reports Server (NTRS)
Koch, Grady J.
2006-01-01
An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that constantly adjusts the frequency in an effort to drive the error to zero. When the laser frequency deviates from the midpeak value but remains within the locking range, the magnitude and sign of the error signal indicate the amount of detuning and the control circuitry adjusts the frequency by what it estimates to be the negative of this amount in an effort to bring the error to zero.
Sanada, Akira; Higashiyama, Kouji; Tanaka, Nobuo
2015-01-01
This study deals with the active control of sound transmission through a rectangular panel, based on single input, single output feedforward vibration control using point-force actuators and piezoelectric film sensors. It focuses on the phenomenon in which the sound power transmitted through a finite-sized panel drops significantly at some frequencies just below the resonance frequencies of the panel in the low-frequency range as a result of modal coupling cancellation. In a previous study, it was shown that when point-force actuators are located on nodal lines for the frequency at which this phenomenon occurs, a force equivalent to the incident sound wave can act on the panel. In this study, a practical method for sensing volume velocity using a small number of piezoelectric film strips is investigated. It is found that two quadratically shaped piezoelectric film strips, attached at the same nodal lines as those where the actuators were placed, can sense the volume velocity approximately in the low-frequency range. Results of simulations show that combining the proposed actuation method and the sensing method can achieve a practical control effect at low frequencies over a wide frequency range. Finally, experiments are carried out to demonstrate the validity and feasibility of the proposed method.
A time and frequency synchronization method for CO-OFDM based on CMA equalizers
NASA Astrophysics Data System (ADS)
Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum
2018-06-01
In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.
NASA Technical Reports Server (NTRS)
Lester, H. C.; Posey, J. W.
1976-01-01
A discrete frequency study is made of the influence of source characteristics on the optimal properties of acoustically lined uniform and two section ducts. Two simplified sources, a plane wave and a monopole, are considered in some detail and over a greater frequency range than has been previously studied. Source and termination impedance effects are given limited examination. An example of a turbomachinery source and three associated source variants is also presented. Optimal liner designs based on modal theory approach the Cremer criterion at low frequencies and the geometric acoustics limit at high frequencies. Over an intermediate frequency range, optimal two section liners produced higher transmission losses than did the uniform configurations. Source distribution effects were found to have a significant effect on optimal liner design, but source and termination impedance effects appear to be relatively unimportant.
Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range
NASA Astrophysics Data System (ADS)
Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao
2017-04-01
Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.
Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.
Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio
2009-04-01
We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.
NASA Astrophysics Data System (ADS)
Adams, J. W.; Ondrejka, A. R.; Medley, H. W.
1987-11-01
A method of measuring the natural resonant frequencies of a structure is described. The measurement involves irradiating this structure, in this case a helicopter, with an impulsive electromagnetic (EM) field and receiving the echo reflected from the helicopter. Resonances are identified by using a mathematical algorithm based on Prony's method to operate on the digitized reflected signal. The measurement system consists of special TEM horns, pulse generators, a time-domain system, and Prony's algorithm. The frequency range covered is 5 megahertz to 250 megahertz. This range is determined by antenna and circuit characteristics. The measurement system is demonstrated, and measured data from several different helicopters are presented in different forms. These different forms are needed to determine which of the resonant frequencies are real and which are false. The false frequencies are byproducts of Prony's algorithm.
Is the Linear Mode Conversion Theory Viable for Generating Kilometric Continuum?
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Green, James L.; Hashimoto, K.; Gallagher, Dennis L.; Webb, P. A.
2006-01-01
Kilometric Continuum (KC) usually exhibits a complicated banded radiation pattern observed in frequency time spectrograms. Can the number of bands, the frequency range over which the bands are observed, and their time variation be explained with Linear Mode Conversion Theory (LMCT) using realistic plasmapause models and Extreme Ultraviolet (EUV) plasmaspheric observations? In this paper we compare KC observations with simulated frequency emission bands based on LMCT for a number of cases. In LMCT the allowed frequency range across the equatorial plasmapause is restricted to frequencies much greater than the electron cyclotron frequency (fce) and less than the maximum plasma frequency in this region. Fce also determines the number of allowed bands in this range. Is the observed frequency range and number of bands consistent with the predications of LMCT? Can irregularities in the shape of plasmaspheric structures like notches be observed in the time variations of KC emissions? We will investigate these and other questions. Simulated radiation patterns will be generated by ray tracing calculations in the L-O mode from the radio window at the near equatorial plasmapause. The KC observations used in this study are from the Plasma Wave Instrument on the Geotail spacecraft and from the Radio Plasma Imager on the IMAGE spacecraft. The plasmasphere and plasmapause will be derived either from plasmasphere simulations, from images by the EUV imager on the IMAGE spacecraft, and by using empirical models. In situ plasma density measurements from a number of spacecraft will also be used in order to reconstruct the plasmasphere for these case studies.
Kneifel, Stefan; Redl, Stephanie; Orlandi, Emiliano; ...
2014-04-10
Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to –33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios aremore » independent of liquid water path and equal to the ratio of αL at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for αL at 90 GHz; together with the observed opacity ratios, the temperature dependence of αL at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. Furthermore, these findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.« less
Terahertz detection of alcohol using a photonic crystal fiber sensor.
Sultana, Jakeya; Islam, Md Saiful; Ahmed, Kawsar; Dinovitser, Alex; Ng, Brian W-H; Abbott, Derek
2018-04-01
Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10 -12 cm -1 at 1 THz frequency and x -polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi
2016-09-01
A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.
Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim
2018-06-21
Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Haxter, Stefan; Brouwer, Jens; Sesterhenn, Jörn; Spehr, Carsten
2017-08-01
Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.
Oxygen measurements at high pressures with vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Wang, J.; Sanders, S. T.; Jeffries, J. B.; Hanson, R. K.
Measurements of oxygen concentration at high pressures (to 10.9 bar) were made using diode-laser absorption of oxygen A-band transitions near 760 nm. The wide current-tuning frequency range (>30 cm-1) of vertical cavity surface-emitting lasers (VCSELs) was exploited to enable the first scanned-wavelength demonstration of diode-laser absorption at high pressures; this strategy is more robust than fixed-wavelength strategies, particularly in hostile environments. The wide tuning range and rapid frequency response of the current tuning were further exploited to demonstrate wavelength-modulation absorption spectroscopy in a high-pressure environment. The minimum detectable absorbance demonstrated, 1×10-4, corresponds to 800 ppm-m oxygen detectivity at room temperature and is limited by etalon noise. The rapid- and wide-frequency tunability of VCSELs should significantly expand the application domain of absorption-based sensors limited in the past by the small current-tuning frequency range (typically <2 cm-1) of conventional edge-emitting diode lasers.
Application of Time-Frequency Representations To Non-Stationary Radar Cross Section
2009-03-01
The three- dimensional plot produced by a TFR allows one to determine which spectral components of a signal vary with time [25... a range bin ( of width cT 2 ) from the stepped frequency waveform. 2. Cancel the clutter (stationary components) by zeroing out points associated with ...generating an infinite number of bilinear Time Frequency distributions based on a generalized equation and a change- able
Pump Frequency Noise Coupling into a Microcavity by Thermo-optic Locking
2014-06-05
high coherence, Brillouin microcavity laser on silicon ,” Opt. Express 20, 20170–20180 (2012). 19. J. Li, H. Lee, and K. J. Vahala, “Microwave...measurements in a range of subjects including cavity optomechanics, microresonator-based frequency combs and microcavity Brillouin lasers ...SECURITY CLASSIFICATION OF: As thermo-optic locking is widely used to establish a stable frequency detuning between an external laser and a high Q
Silicon-Chip-Based Optical Frequency Combs
2015-10-26
waveform generation, frequency metrology, and astronomical spectrograph calibration [2,3,4]. Traditionally, modelocked solid-state and fiber lasers have...different external-cavity diode lasers covering a total tuning range between 1450 nm and 1640 nm. Lensed fibers are used to couple into and out of the...cavity resonance of a Si3N4 microring resonator with a single-frequency tunable diode laser amplified by a ytterbium-doped fiber amplifier. We use a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majetich, Sara
In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less
Segmentation of the thalamus based on BOLD frequencies affected in temporal lobe epilepsy.
Morgan, Victoria L; Rogers, Baxter P; Abou-Khalil, Bassel
2015-11-01
Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula, and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Resting-state functional magnetic resonance imaging (fMRI) was acquired from 20 patients with unilateral temporal lobe epilepsy (TLE; 14 right and 6 left) and 20 healthy controls who were each age and gender matched to a specific patient. Wavelet-based fMRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067-0.013 Hz and 0.024-0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Chi, W. C.; To, A.; Chen, W. J.; Konishi, K.
2017-12-01
Two types of anomalous seismic events of long duration with signals depleted in high frequencies relative to most earthquakes are recorded in a network of broadband ocean bottom seismometers (BBOBS) deployed at shallow Nankai subduction zone (DONET1). The first type is very low frequency earthquake (VLFE) whose signals are observed both in the lower and higher frequency ranges of the 0.1 Hz microseism band, which are 0.02-0.06 Hz and 2-8 Hz. The second type is low frequency tremor (LFT), whose signals are only observed at 2-8 Hz. The waveform similarity at 2-8 Hz and concurrences of the two types of event warrant further investigations on whether they represent the same phenomenon or not. Previously, To et al., (2015) examined the relation between VLFEs and LFTs by comparing their maximum amplitude at two different frequency ranges, 2-8 Hz and 0.02-0.05 Hz. The comparison showed that the maximum amplitudes measured at the two frequency ranges correlate positively for VLFEs, that is, large magnitude VLFEs showed large amplitude in both frequency ranges. The comparison also showed that the amplitude measured at 2-8 Hz were larger for VLFEs than those of LFTs. Based on such amplitude observations, they concluded that VLFEs and LFTs are likely smaller and larger events of the same phenomenon. Here, we examined the relation between the two types of event based on their spatial distribution. Their distributions should be similar if they represent the same phenomenon. The data are broadband seismographs of 20 stations of DONET1. We detected 144 VLFEs and 775 LFTs during the intense LFT/VLFE activity period of one week in October 2015. Events are located using an envelope cross correlation method. We used the root-mean-square (RMS) amplitudes constructed from the two horizontal components, bandpass filtered at 2-8 Hz and then smoothed by taking a moving average with a window length of 5 s. The obtained distributions of VLFEs and LFTs show similar patterns. They both formed two spatially separated groups, one in the northeast side and the other in the southwest side of DONET1. There is no spatial segregation between the two event types, supporting the speculation that VLFEs and LFEs are different manifestations of the same phenomenon. Acknowledgement: Data of DONET1 were downloaded through https://hinetwww11.bosai.go.jp.
Active laser ranging with frequency transfer using frequency comb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongyuan; Wei, Haoyun; Yang, Honglei
2016-05-02
A comb-based active laser ranging scheme is proposed for enhanced distance resolution and a common time standard for the entire system. Three frequency combs with different repetition rates are used as light sources at the two ends where the distance is measured. Pulse positions are determined through asynchronous optical sampling and type II second harmonic generation. Results show that the system achieves a maximum residual of 379.6 nm and a standard deviation of 92.9 nm with 2000 averages over 23.6 m. Moreover, as for the frequency transfer, an atom clock and an adjustable signal generator, synchronized to the atom clock, are used asmore » time standards for the two ends to appraise the frequency deviation introduced by the proposed system. The system achieves a residual fractional deviation of 1.3 × 10{sup −16} for 1 s, allowing precise frequency transfer between the two clocks at the two ends.« less
High precision spectroscopy and imaging in THz frequency range
NASA Astrophysics Data System (ADS)
Vaks, Vladimir L.
2014-03-01
Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.
Kappa, Jan; Schmitt, Klemens M; Rahm, Marco
2017-08-21
Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.
NASA Astrophysics Data System (ADS)
Greenwood, W. G.; Tang, K. T.
1987-03-01
The R-6, R-8, and R-10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R-6 terms are based on the dipole oscillator strength sums. For helium, the R-8 and R-10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R-8 and R-10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R-8 and R-10 terms.
Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-10-15
A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.
Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan
2016-04-14
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
A method to improve the range resolution in stepped frequency continuous wave radar
NASA Astrophysics Data System (ADS)
Kaczmarek, Paweł
2018-04-01
In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs.
Zheng, Yu; Yang, Yang; Chen, Wu
2017-06-25
In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.
2009-02-01
range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always
Levashov, V A
2014-09-28
We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.
Millimeter wave spectra of carbonyl cyanide ⋆
Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.
2016-01-01
Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349
NASA Technical Reports Server (NTRS)
Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.
2005-01-01
Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.
Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns
Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske
2013-01-01
A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851
a High-Frequency Three-Dimensional Tyre Model Based on Two Coupled Elastic Layers
NASA Astrophysics Data System (ADS)
LARSSON, K.; KROPP, W.
2002-06-01
Road traffic noise is today a serious environmental problem in urban areas. The dominating noise source at speeds greater than 50 km/h is car tyres. In order to achieve a reduction of traffic noise tyres have to become quieter. To reduce tyre/road noise a deep understanding of the noise generation mechanisms is of major importance. An existing tyre/road noise simulation model consists of a smooth tyre rolling at a constant speed on a rough road surface. It is composed of three separate modules: a tyre model, a contact model and a radiation model. The major drawback with the contact model is that it only takes the radial component of the contact forces into account. To improve this model, a description of the tangential motion at high frequencies is necessary. Most of the models for the structure-borne sound behaviour of tyres are designed for the low-frequency range (i.e., below 400 Hz). Above this frequency range, the curvature of the tyre is unimportant, while the internal structure (multi-layers of steel and rubber) increases in importance. For the high-frequency range, a double-layer tyre model is proposed, which is based on the general field equations, to take into account the tangential motion and the local deformation of the tread. Both propagating waves and mode shapes have been investigated by the use of this model. Calculations of the response of the tyre to an external excitation show relatively good agreement with measurements on a smooth tyre.
Measurements of vocal fold tissue viscoelasticity: Approaching the male phonatory frequency range
NASA Astrophysics Data System (ADS)
Chan, Roger W.
2004-06-01
Viscoelastic shear properties of human vocal fold tissues have been reported previously. However, data have only been obtained at very low frequencies (<=15 Hz). This necessitates data extrapolation to the frequency range of phonation based on constitutive modeling and time-temperature superposition. This study attempted to obtain empirical measurements at higher frequencies with the use of a controlled strain torsional rheometer, with a design of directly controlling input strain that introduced significantly smaller system inertial errors compared to controlled stress rheometry. Linear viscoelastic shear properties of the vocal fold mucosa (cover) from 17 canine larynges were quantified at frequencies of up to 50 Hz. Consistent with previous data, results showed that the elastic shear modulus (G'), viscous shear modulus (G''), and damping ratio (ζ) of the vocal fold mucosa were relatively constant across 0.016-50 Hz, whereas the dynamic viscosity (ɛ') decreased monotonically with frequency. Constitutive characterization of the empirical data by a quasilinear viscoelastic model and a statistical network model demonstrated trends of viscoelastic behavior at higher frequencies generally following those observed at lower frequencies. These findings supported the use of controlled strain rheometry for future investigations of the viscoelasticity of vocal fold tissues and phonosurgical biomaterials at phonatory frequencies.
Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms
Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.
2015-01-01
Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877
Budke, Christine M.; Carabin, Hélène; Ndimubanzi, Patrick C.; Nguyen, Hai; Rainwater, Elizabeth; Dickey, Mary; Bhattarai, Rachana; Zeziulin, Oleksandr; Qian, Men-Bao
2013-01-01
A systematic literature review of cystic echinoccocosis (CE) frequency and symptoms was conducted. Studies without denominators, original data, or using one serological test were excluded. Random-effect log-binomial models were run for CE frequency and proportion of reported symptoms where appropriate. A total of 45 and 25 articles on CE frequency and symptoms met all inclusion criteria. Prevalence of CE ranged from 1% to 7% in community-based studies and incidence rates ranged from 0 to 32 cases per 100,000 in hospital-based studies. The CE prevalence was higher in females (Prevalence Proportion Ratio: 1.35 [95% Bayesian Credible Interval: 1.16–1.53]) and increased with age. The most common manifestations of hepatic and pulmonary CE were abdominal pain (57.3% [95% confidence interval [CI]: 37.3–76.1%]) and cough (51.3% [95% CI: 35.7–66.7%]), respectively. The results are limited by the small number of unbiased studies. Nonetheless, the age/gender prevalence differences could be used to inform future models of CE burden. PMID:23546806
Budke, Christine M; Carabin, Hélène; Ndimubanzi, Patrick C; Nguyen, Hai; Rainwater, Elizabeth; Dickey, Mary; Bhattarai, Rachana; Zeziulin, Oleksandr; Qian, Men-Bao
2013-06-01
A systematic literature review of cystic echinoccocosis (CE) frequency and symptoms was conducted. Studies without denominators, original data, or using one serological test were excluded. Random-effect log-binomial models were run for CE frequency and proportion of reported symptoms where appropriate. A total of 45 and 25 articles on CE frequency and symptoms met all inclusion criteria. Prevalence of CE ranged from 1% to 7% in community-based studies and incidence rates ranged from 0 to 32 cases per 100,000 in hospital-based studies. The CE prevalence was higher in females (Prevalence Proportion Ratio: 1.35 [95% Bayesian Credible Interval: 1.16-1.53]) and increased with age. The most common manifestations of hepatic and pulmonary CE were abdominal pain (57.3% [95% confidence interval [CI]: 37.3-76.1%]) and cough (51.3% [95% CI: 35.7-66.7%]), respectively. The results are limited by the small number of unbiased studies. Nonetheless, the age/gender prevalence differences could be used to inform future models of CE burden.
Yang, Jia Ji; Cheng, Yong Zhi; Ge, Chen Chen; Gong, Rong Zhou
2018-04-19
A class of linear polarization conversion coding metasurfaces (MSs) based on a metal cut-wire structure is proposed, which can be applied to the reduction properties of radar cross section (RCS). We firstly present a hypothesis based on the principle of planar array theory, and then verify the RCS reduction characteristics using linear polarization conversion coding MSs by simulations and experiments. The simulated results show that in the frequency range of 6⁻14 GHz, the linear polarization conversion ratio reaches a maximum value of 90%, which is in good agreement with the theoretical predictions. For normal incident x - and y -polarized waves, RCS reduction of designed coding MSs 01/01 and 01/10 is essentially more than 10 dB in the above-mentioned frequency range. We prepare and measure the 01/10 coding MS sample, and find that the experimental results in terms of reflectance and RCS reduction are in good agreement with the simulated ones under normal incidence. In addition, under oblique incidence, RCS reduction is suppressed as the angle of incidence increases, but still exhibits RCS reduction effects in a certain frequency range. The designed MS is expected to have valuable potential in applications for stealth field technology.
2-SR-based electrically small antenna for RFID applications
NASA Astrophysics Data System (ADS)
Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Zamora, Gerard; Martin, Ferran; Bonache, Jordi
2016-04-01
In this work, the 2-turn spiral resonator (2-SR) is proposed as an electrically small antenna for passive radio frequency identification (RFID) tags at the European ultra-high frequency (UHF) band. The radiation properties are studied in order to explore the viability of the 2-SR applied to tag antenna design. Based on analytical calculations, the radiation pattern is found to provide a cancelation of the radiation nulls. This results in a mitigation of the blind spots in the read range, which are present in typical UHF-RFID tags as an undesired feature. As a proof of concept, a passive tag of size 35 mm × 40 mm (λ 0/10 × λ 0/9) based on the 2-SR antenna is designed and fabricated. Good radiation efficiency (75 %) and a quasi-isotropic radiation pattern are obtained. The experimental tag read range for different directions is in good agreement with the simulation results. The measured read range exhibits maximum and minimum values of 6.7 and 3.5 m, respectively.
Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui
2018-02-01
A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.
Design and industrial production of frequency standards in the USSR
NASA Technical Reports Server (NTRS)
Demidov, Nikolai A.; Uljanov, Adolph A.
1990-01-01
Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.
Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-08-21
Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.
47 CFR 18.309 - Frequency range of measurements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MEDICAL EQUIPMENT Technical Standards § 18.309 Frequency range of measurements. (a) For field strength measurements: Frequency band in which device operates (MHz) Range of frequency measurements Lowest frequency...
Jones, Benjamin A; Stanton, Timothy K; Colosi, John A; Gauss, Roger C; Fialkowski, Joseph M; Michael Jech, J
2017-06-01
For horizontal-looking sonar systems operating at mid-frequencies (1-10 kHz), scattering by fish with resonant gas-filled swimbladders can dominate seafloor and surface reverberation at long-ranges (i.e., distances much greater than the water depth). This source of scattering, which can be difficult to distinguish from other sources of scattering in the water column or at the boundaries, can add spatio-temporal variability to an already complex acoustic record. Sparsely distributed, spatially compact fish aggregations were measured in the Gulf of Maine using a long-range broadband sonar with continuous spectral coverage from 1.5 to 5 kHz. Observed echoes, that are at least 15 decibels above background levels in the horizontal-looking sonar data, are classified spectrally by the resonance features as due to swimbladder-bearing fish. Contemporaneous multi-frequency echosounder measurements (18, 38, and 120 kHz) and net samples are used in conjunction with physics-based acoustic models to validate this approach. Furthermore, the fish aggregations are statistically characterized in the long-range data by highly non-Rayleigh distributions of the echo magnitudes. These distributions are accurately predicted by a computationally efficient, physics-based model. The model accounts for beam-pattern and waveguide effects as well as the scattering response of aggregations of fish.
Siupsinskiene, Nora; Lycke, Hugo
2011-07-01
This prospective cross-sectional study examines the effects of voice training on vocal capabilities in vocally healthy age and gender differentiated groups measured by voice range profile (VRP) and speech range profile (SRP). Frequency and intensity measurements of the VRP and SRP using standard singing and speaking voice protocols were derived from 161 trained choir singers (21 males, 59 females, and 81 prepubescent children) and from 188 nonsingers (38 males, 89 females, and 61 children). When compared with nonsingers, both genders of trained adult and child singers exhibited increased mean pitch range, highest frequency, and VRP area in high frequencies (P<0.05). Female singers and child singers also showed significantly increased mean maximum voice intensity, intensity range, and total VRP area. The logistic regression analysis showed that VRP pitch range, highest frequency, maximum voice intensity, and maximum-minimum intensity range, and SRP slope of speaking curve were the key predictors of voice training. Age, gender, and voice training differentiated norms of VRP and SRP parameters are presented. Significant positive effect of voice training on vocal capabilities, mostly singing voice, was confirmed. The presented norms for trained singers, with key parameters differentiated by gender and age, are suggested for clinical practice of otolaryngologists and speech-language pathologists. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Improving mental task classification by adding high frequency band information.
Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping
2010-02-01
Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.
Ground Motion Prediction Equations for the Central and Eastern United States
NASA Astrophysics Data System (ADS)
Seber, D.; Graizer, V.
2015-12-01
New ground motion prediction equations (GMPE) G15 model for the Central and Eastern United States (CEUS) is presented. It is based on the modular filter based approach developed by Graizer and Kalkan (2007, 2009) for active tectonic environment in the Western US (WUS). The G15 model is based on the NGA-East database for the horizontal peak ground acceleration and 5%-damped pseudo spectral acceleration RotD50 component (Goulet et al., 2014). In contrast to active tectonic environment the database for the CEUS is not sufficient for creating purely empirical GMPE covering the range of magnitudes and distances required for seismic hazard assessments. Recordings in NGA-East database are sparse and cover mostly range of M<6.0 with limited amount of near-fault recordings. The functional forms of the G15 GMPEs are derived from filters—each filter represents a particular physical phenomenon affecting the seismic wave radiation from the source. Main changes in the functional forms for the CEUS relative to the WUS model (Graizer and Kalkan, 2015) are a shift of maximum frequency of the acceleration response spectrum toward higher frequencies and an increase in the response spectrum amplitudes at high frequencies. Developed site correction is based on multiple runs of representative VS30 profiles through SHAKE-type equivalent-linear programs using time histories and random vibration theory approaches. Site amplification functions are calculated for different VS30 relative to hard rock definition used in nuclear industry (Vs=2800 m/s). The number of model predictors is limited to a few measurable parameters: moment magnitude M, closest distance to fault rupture plane R, average shear-wave velocity in the upper 30 m of the geological profile VS30, and anelastic attenuation factor Q0. Incorporating anelastic attenuation Q0 as an input parameter allows adjustments based on the regional crustal properties. The model covers the range of magnitudes 4.0
Jun, Changsu; Villiger, Martin; Oh, Wang-Yuhl; Bouma, Brett E.
2014-01-01
Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available materials at a low total cost. It was enabled by an insight regarding the significance of isolation against bidirectional operation and by configuring the sweep range of the intracavity filter to exceed its free spectral range. The design can easily be optimized to meet a range of operating specifications while yielding robust and stable performance. As an example, we demonstrate 240 kHz operation with 125 nm sweep range and >70 mW of average output power and demonstrate high quality frequency domain OCT imaging. The complete component list and directions for assembly of the laser are posted on-line at www.octresearch.org. PMID:25401614
Benefits of fading in perceptual learning are driven by more than dimensional attention.
Wisniewski, Matthew G; Radell, Milen L; Church, Barbara A; Mercado, Eduardo
2017-01-01
Individuals learn to classify percepts effectively when the task is initially easy and then gradually increases in difficulty. Some suggest that this is because easy-to-discriminate events help learners focus attention on discrimination-relevant dimensions. Here, we tested whether such attentional-spotlighting accounts are sufficient to explain easy-to-hard effects in auditory perceptual learning. In two experiments, participants were trained to discriminate periodic, frequency-modulated (FM) tones in two separate frequency ranges (300-600 Hz or 3000-6000 Hz). In one frequency range, sounds gradually increased in similarity as training progressed. In the other, stimulus similarity was constant throughout training. After training, participants showed better performance in their progressively trained frequency range, even though the discrimination-relevant dimension across ranges was the same. Learning theories that posit experience-dependent changes in stimulus representations and/or the strengthening of associations with differential responses, predict the observed specificity of easy-to-hard effects, whereas attentional-spotlighting theories do not. Calibrating the difficulty and temporal sequencing of training experiences to support more incremental representation-based learning can enhance the effectiveness of practice beyond any benefits gained from explicitly highlighting relevant dimensions.
NASA Astrophysics Data System (ADS)
Afanasiev, N. T.; Markov, V. P.
2011-08-01
Approximate functional relationships for the calculation of a disturbed transionogram with a trace deformation caused by the influence of a large-scale irregularity in the electron density are obtained. Numerical and asymptotic modeling of disturbed transionograms at various positions of a spacecraft relative to a ground-based observation point is performed. A possibility of the determination of the intensity and dimensions of a single large-scale irregularity near the boundary of the radio transparency frequency range of the ionosphere is demonstrated.
Growth of suppression in humans based on distortion-product otoacoustic emission measurements
Gorga, Michael P.; Neely, Stephen T.; Kopun, Judy; Tan, Hongyang
2011-01-01
Distortion-product otoacoustic emissions (DPOAEs) were used to describe suppression growth in normal-hearing humans. Data were collected at eight f2 frequencies ranging from 0.5 to 8 kHz for L2 levels ranging from 10 to 60 dB sensation level. For each f2 and L2 combination, suppression was measured for nine or eleven suppressor frequencies (f3) whose levels varied from −20 to 85 dB sound pressure level (SPL). Suppression grew nearly linearly when f3 ≈ f2, grew more rapidly for f3 < f2, and grew more slowly for f3 > f2. These results are consistent with physiological and mechanical data from lower animals, as well as previous DPOAE data from humans, although no previous DPOAE study has described suppression growth for as wide a range of frequencies and levels. These trends were evident for all f2 and L2 combinations; however, some exceptions were noted. Specifically, suppression growth rate was less steep as a function of f3 for f2 frequencies ≤1 kHz. Thus, despite the qualitative similarities across frequency, there were quantitative differences related to f2, suggesting that there may be subtle differences in suppression for frequencies above 1 kHz compared to frequencies below 1 kHz. PMID:21361439
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Kikuchi, Kenichi; Maezawa, Masaaki; Furuta, Tomofumi; Wakatsuki, Atsushi; Ito, Hiroshi; Shimizu, Naofumi; Nagatsuma, Tadao; Kado, Yuichi
2008-09-01
We have demonstrated that a superconductor-insulator-superconductor (SIS) mixer pumped by a photonic local oscillator (LO) covers the whole frequency range of 0.2-0.5THz. In the bandwidth of 74% of the center frequency, this single-band receiver exhibits noise temperature of TRX⩽20hf/kB, where h is Planck's constant, f is the frequency, and kB is Boltzmann's constant. Resultant TRX is almost equal to TRX of the identical SIS mixer pumped by three conventional frequency-multiplier-based LOs which share the 0.2-0.5THz band. This technique will contribute to simple, wide-band, and low-noise heterodyne receivers in the terahertz region.
Frequency-selective surfaces for infrared imaging
NASA Astrophysics Data System (ADS)
Lesmanne, Emeline; Boulard, François; Espiau Delamaestre, Roch; Bisotto, Sylvette; Badano, Giacomo
2017-09-01
Bayer filter arrays are commonly added to visible detectors to achieve multicolor sensitivity. To extend this approach to the infrared range, we present frequency selective surfaces that work in the mid-infrared range (MWIR). They are easily integrated in the device fabrication process and are based on a simple operating principle. They consist of a thin metallic sheet perforated with apertures filled with a high-index dielectric material. Each aperture behaves as a separate resonator. Its size determines the transmission wavelength λ. Using an original approach based on the temporal coupled mode theory, we show that metallic loss is negligible in the infrared range, as long as the filter bandwidth is large enough (typically <λ/10). We develop closed-form expressions for the radiative and dissipative loss rates and show that the transmission of the filter depends solely on their ratio. We present a prototype infrared detector functionalized with one such array of filters and characterize it by electro-optical measurements.
A widely tunable dual-wavelength based on a microring resonator filter device
NASA Astrophysics Data System (ADS)
Amiri, Iraj S.; Ariannejad, M. M.; Tiu, Z. C.; Ooi, S. I.; Aidit, S. N.; Alizadeh, F.; Yupapin, P.
2018-06-01
We demonstrate a stable, tunable dual-wavelength (DW) generated by launching an in-house built supercontinuum (SC) into an add-drop microring resonator (MRR). The MRR is fabricated from a silicon–nitrogen–oxygen substrate. The frequency comb of the filtered SC is obtained with an experimental free spectral range (FSR) from 0.39 to 0.46 nm corresponding to 48.7–57 GHz within the wavelength range 1520–1660 nm. The stability of a generated DW within the ranges 1561.16 and 1561.57 nm over 120 min is examined, where high, stable DW with a very low power fluctuation is achieved. This work has demonstrated the use of waveguide based MRR in the fiber laser system, and a remarkable flat and low power fluctuations frequency comb is achieved using the in-house built SC source and MRR.
Propagation of THz acoustic wave packets in GaN at room temperature
Maznev, A. A.; Hung, T.-C.; Yao, Y.-T.; ...
2018-02-05
We use femtosecond laser pulses to generate coherent longitudinal acoustic phonons at frequencies of 1–1.4 THz and study their propagation in GaN-based structures at room temperature. Two InGaN-GaN multiple-quantum-well (MQW) structures separated by a 2.3 μm-thick GaN spacer are used to simultaneously generate phonon wave packets with a central frequency determined by the period of the MQW and detect them after passing through the spacer. The measurements provide lower bounds for phonon lifetimes in GaN, which are still significantly lower than those from first principles predictions. The material Q-factor at 1 THz is found to be at least as highmore » as 900. The measurements also demonstrate a partial specular reflection from the free surface of GaN at 1.4 THz. This work shows the potential of laser-based methods for THz range phonon spectroscopy and the promise for extending the viable frequency range of GaN-based acousto-electronic devices.« less
Propagation of THz acoustic wave packets in GaN at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maznev, A. A.; Hung, T.-C.; Yao, Y.-T.
We use femtosecond laser pulses to generate coherent longitudinal acoustic phonons at frequencies of 1–1.4 THz and study their propagation in GaN-based structures at room temperature. Two InGaN-GaN multiple-quantum-well (MQW) structures separated by a 2.3 μm-thick GaN spacer are used to simultaneously generate phonon wave packets with a central frequency determined by the period of the MQW and detect them after passing through the spacer. The measurements provide lower bounds for phonon lifetimes in GaN, which are still significantly lower than those from first principles predictions. The material Q-factor at 1 THz is found to be at least as highmore » as 900. The measurements also demonstrate a partial specular reflection from the free surface of GaN at 1.4 THz. This work shows the potential of laser-based methods for THz range phonon spectroscopy and the promise for extending the viable frequency range of GaN-based acousto-electronic devices.« less
Characteristics of different frequency ranges in scanning electron microscope images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.
2015-07-22
We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.
NASA Astrophysics Data System (ADS)
Chambers, Andrew T.
Airborne noise with a low dominant frequency content (< 500 Hz) has detrimental effects in many applications, but is as yet beyond the scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and sound pressure level on the attenuation across folded core liners is evaluated using grazing flow impedance tube tests. Up to 20 dB of attenuation is observed in the targeted frequency range in these tests indicating potential for performance retention in an operational scenario. With current additive and hybrid manufacturing techniques attaining critical commercial maturity, lightweight and compact acoustic liners employing folded cores could provide a promising practical solution to mitigate low-frequency airborne noise, especially in aerospace applications.
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.
Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.
Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples
NASA Astrophysics Data System (ADS)
Tümkaya, Mehmet Ali; Dinçer, Furkan; Karaaslan, Muharrem; Sabah, Cumali
2017-08-01
A metamaterial-based sensor has been realized to distinguish authentic and inauthentic fuel samples in the microwave frequency regime. Unlike the many studies in literature on metamaterial-based sensor applications, this study focuses on a compact metamaterial-based sensor operating in the X-band frequency range. Firstly, electromagnetic properties of authentic and inauthentic fuel samples were obtained experimentally in a laboratory environment. Secondly, these experimental results were used to design and create a highly efficient metamaterial-based sensor with easy fabrication characteristics and simple design structure. The experimental results for the sensor were in good agreement with the numerical ones. The proposed sensor offers a more efficient design and can be used to detect fuel and multiple other liquids in various application fields from medical to military areas in several frequency regimes.
NASA Astrophysics Data System (ADS)
Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi
2017-11-01
A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.
A methodology for spectral wave model evaluation
NASA Astrophysics Data System (ADS)
Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.
2017-12-01
Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave climate, omitting the energy in the frequency band between the two lower limits tested can lead to an incomplete characterization of model performance. This methodology was developed to aid in selecting a comparison frequency range that does not needlessly increase computational expense and does not exclude energy to the detriment of model performance analysis.
Temperature and frequency dependence of anelasticity in a nickel oscillator
NASA Astrophysics Data System (ADS)
Berg, Robert F.
1995-09-01
The frequency dependence of the real and imaginary parts of a nickel oscillator's transfer function is described over 3 decades in frequency by the use of simple expressions. These expressions incorporate only the resonance frequency ω0, the quality factor Q, and a characteristic exponent β determined by a single measurement of creep. They are based on the ansatz φ(ω)=Q-1(ω/ω0)-β, where φ is the imaginary part of the spring constant. Over a 100 K range of temperature T, the exponent β≂0.18 was constant even though Q(T) changed by a factor of 8. These expressions are potentially useful for accurately describing a mechanical oscillator whose transfer function must be modeled at frequencies far below ω0. Examples include accelerometers based on a flexure element and suspensions for interferometric gravitational wave detectors.
On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.
2013-01-01
A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.
The isolation of low frequency impact sounds in hotel construction
NASA Astrophysics Data System (ADS)
LoVerde, John J.; Dong, David W.
2002-11-01
One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.
Dendritic-metasurface-based flexible broadband microwave absorbers
NASA Astrophysics Data System (ADS)
Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng
2017-06-01
Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan O.; Aguirre Lopez, Arturo
2016-09-01
We develop a multi-band spectrometer with a few spatially parallel optical arms for the combined processing of their data flow. Such multi-band capability has various applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar possibility is based on designing each optical arm individually via exploiting different materials for acousto-optical cells operating within various regimes, frequency ranges and light wavelengths from independent light sources. Individual beam shapers provide both the needed incident light polarization and the required apodization to increase the dynamic range of a system. After parallel acousto-optical processing, data flows are united by the joint CCD matrix on the stage of the combined electronic data processing. At the moment, the prototype combines still three bands, i.e. includes three spatial optical arms. The first low-frequency arm operates at the central frequencies 60-80 MHz with frequency bandwidth 40 MHz. The second arm is oriented to middle-frequencies 350-500 MHz with frequency bandwidth 200-300 MHz. The third arm is intended for ultra-high-frequency radio-wave signals about 1.0-1.5 GHz with frequency bandwidth <300 MHz. To-day, this spectrometer has the following preliminary performances. The first arm exhibits frequency resolution 20 KHz; while the second and third arms give the resolution 150-200 KHz. The numbers of resolvable spots are 1500- 2000 depending on the regime of operation. The fourth optical arm at the frequency range 3.5 GHz is currently under construction.
NASA Astrophysics Data System (ADS)
Yamada, Ryuhei; Nébut, Tanguy; Shiraishi, Hiroaki; Lognonné, Philippe; Kobayashi, Naoki; Tanaka, Satoshi
2015-07-01
Seismic data obtained over a broad frequency range are very useful in investigation of the internal structures of the Earth and other planetary bodies. However, planetary seismic data acquired through the NASA Apollo and Viking programs were obtained only over a very limited frequency range. To obtain effective seismic data over a broader frequency range on planetary surfaces, broadband seismometers suitable for planetary seismology must be developed. In this study, we have designed a new broadband seismometer based on a short-period seismometer whose resonant frequency is 1 Hz for future geophysical missions. The seismometer is of an electromagnetic type, light weight, small size and has good shock-durability, making it suitable for being loaded onto a penetrator, which is a small, hard-landing probe developed in the LUNAR-A Project, a previous canceled mission. We modified the short-period seismometer so as to have a flat frequency response above about 0.1 Hz and the detection limit could be lowered to cover frequencies below the frequency. This enlargement of the frequency band will allow us to investigate moonquakes for lower frequency components in which waveforms are less distorted because strong scattering due to fractured structures near the lunar surface is likely to be suppressed. The modification was achieved simply by connecting a feedback circuit to the seismometer, without making any mechanical changes to the short-period sensor. We have confirmed that the broadband seismometer exhibits the frequency response as designed and allows us to observe long-period components of small ground motions. Methods to improve the performance of the broadband seismometer from the current design are also discussed. These developments should promise to increase the opportunity for application of this small and tough seismometer in various planetary seismological missions.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs
Zheng, Yu; Yang, Yang; Chen, Wu
2017-01-01
In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm. PMID:28672830
Capability of THz sources based on Schottky diode frequency multiplier chains
NASA Technical Reports Server (NTRS)
Ward, John; Schlecht, Erich; Chattopadhyay, Goutam; Maestrini, Alain; Gill, John; Maiwald, Frank; Javadi, Hamid; Mehdi, Imran
2004-01-01
We have developed and tesed a number of fixed-tuned GaAs Schottky diode frequency doubler and tripler designs covering over 50 percent of the 100 - 2000 GHz band, with best measured 120 K peak efficiencies ranging from 39 percent for 190 GHz doubler to 0.94 percent for a 1800 GHz tripler.
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
Blanks, Deidra A.; Buss, Emily; Grose, John H.; Fitzpatrick, Douglas C.; Hall, Joseph W.
2009-01-01
Objectives The present study investigated interaural time discrimination for binaurally mismatched carrier frequencies in listeners with normal hearing. One goal of the investigation was to gain insights into binaural hearing in patients with bilateral cochlear implants, where the coding of interaural time differences may be limited by mismatches in the neural populations receiving stimulation on each side. Design Temporal envelopes were manipulated to present low frequency timing cues to high frequency auditory channels. Carrier frequencies near 4 kHz were amplitude modulated at 128 Hz via multiplication with a half-wave rectified sinusoid, and that modulation was either in-phase across ears or delayed to one ear. Detection thresholds for non-zero interaural time differences were measured for a range of stimulus levels and a range of carrier frequency mismatches. Data were also collected under conditions designed to limit cues based on stimulus spectral spread, including masking and truncation of sidebands associated with modulation. Results Listeners with normal hearing can detect interaural time differences in the face of substantial mismatches in carrier frequency across ears. Conclusions The processing of interaural time differences in listeners with normal hearing is likely based on spread of excitation into binaurally matched auditory channels. Sensitivity to interaural time differences in listeners with cochlear implants may depend upon spread of current that results in the stimulation of neural populations that share common tonotopic space bilaterally. PMID:18596646
Distinguishing the central drive to tremor in Parkinson's disease and essential tremor.
Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R; Saifee, Tabish A; Edwards, Mark J; Brown, Peter
2015-01-14
Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. Copyright © 2015 Brittain et al.
Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor
Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R.; Saifee, Tabish A.; Edwards, Mark J.
2015-01-01
Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. PMID:25589772
Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The purpose of present study is to investigate the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0, and 10 Hz frequencies for liquid-filled level in the range between 30 to 80 percent shows that the selection of a medium frequency of 1.0 Hz impulsive thrust over the other frequency ranges of impulsive thrust is the most proper.
Synthetic aperture radar range - Azimuth ambiguity design and constraints
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1980-01-01
Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.
Working memory, age, and hearing loss: susceptibility to hearing aid distortion.
Arehart, Kathryn H; Souza, Pamela; Baca, Rosalinda; Kates, James M
2013-01-01
Hearing aids use complex processing intended to improve speech recognition. Although many listeners benefit from such processing, it can also introduce distortion that offsets or cancels intended benefits for some individuals. The purpose of the present study was to determine the effects of cognitive ability (working memory) on individual listeners' responses to distortion caused by frequency compression applied to noisy speech. The present study analyzed a large data set of intelligibility scores for frequency-compressed speech presented in quiet and at a range of signal-to-babble ratios. The intelligibility data set was based on scores from 26 adults with hearing loss with ages ranging from 62 to 92 years. The listeners were grouped based on working memory ability. The amount of signal modification (distortion) caused by frequency compression and noise was measured using a sound quality metric. Analysis of variance and hierarchical linear modeling were used to identify meaningful differences between subject groups as a function of signal distortion caused by frequency compression and noise. Working memory was a significant factor in listeners' intelligibility of sentences presented in babble noise and processed with frequency compression based on sinusoidal modeling. At maximum signal modification (caused by both frequency compression and babble noise), the factor of working memory (when controlling for age and hearing loss) accounted for 29.3% of the variance in intelligibility scores. Combining working memory, age, and hearing loss accounted for a total of 47.5% of the variability in intelligibility scores. Furthermore, as the total amount of signal distortion increased, listeners with higher working memory performed better on the intelligibility task than listeners with lower working memory did. Working memory is a significant factor in listeners' responses to total signal distortion caused by cumulative effects of babble noise and frequency compression implemented with sinusoidal modeling. These results, together with other studies focused on wide-dynamic range compression, suggest that older listeners with hearing loss and poor working memory are more susceptible to distortions caused by at least some types of hearing aid signal-processing algorithms and by noise, and that this increased susceptibility should be considered in the hearing aid fitting process.
Gas spectroscopy system with transmitters and receivers in SiGe BiCMOS for 225-273 GHz
NASA Astrophysics Data System (ADS)
Schmalz, Klaus; Rothbart, Nick; Borngräber, Johannes; Yilmaz, Selahattin Berk; Kissinger, Dietmar; Hübers, Heinz-Wilhelm
2017-10-01
This paper updates results of our work on gas spectroscopy based on transmitters (TXs) and receivers (RXs) in IHP's 0.13 μm SiGe BiCMOS technology. The improved performance of our system is shown by the absorption spectra of gaseous methanol in the range 241 - 242 GHz at 1.4 Pa, corresponding to an absorption line width of about 1 MHz. The signal-noise ratio (SNR) for the absorption line of methanol at 241.7 GHz is used as measure. The system includes two fractional-n phase-locked loops (PLLs), which allow frequency ramps for the TX and RX, and a superimposed frequency shift keying modulation (FSK) for the TX. Another option includes reference frequency ramps for the PLLs in integer-n mode, which are realized by a direct digital synthesizer (DDS). An SNR of 1515 is observed for the 241.7 GHz absorption line at 1.4 Pa. We extend our single band TX/RX system with the range 238 - 252 GHz to a multi-band system to cover the range 225 - 273 GHz. It is built by combining corresponding pairs of TXs and RXs of three frequency bands in this range. The multi-band operation allows parallel spectra acquisition for these bands. For the TXs and RXs appropriate frequency ramps are generated by their external fractional-n PLL devices.
IRCI-Free MIMO-OFDM SAR Using Circularly Shifted Zadoff-Chu Sequences
NASA Astrophysics Data System (ADS)
Cao, Yun-He; Xia, Xiang-Gen
2015-05-01
Cyclic prefix (CP) based MIMO-OFDM radar has been recently proposed for distributed transmit antennas, where there is no inter-range-cell interference (IRCI). It can collect full spatial diversity and each transmitter transmits signals with the same frequency band, i.e., the range resolution is not reduced. However, it needs to transmit multiple OFDM pulses consecutively to obtain range profiles for a single swath, which may be too long in time for a reasonable swath width. In this letter, we propose a CP based MIMO-OFDM synthetic aperture radar (SAR) system, where each transmitter transmits only a single OFDM pulse to obtain range profiles for a swath and has the same frequency band, thus the range resolution is not reduced. It is IRCI free and can collect the full spatial diversity if the transmit antennas are distributed. Our main idea is to use circularly shifted Zadoff-Chu sequences as the weighting coefficients in the OFDM pulses for different transmit antennas and apply spatial filters with multiple receive antennas to divide the whole swath into multiple subswaths, and then each subswath is reconstructed/imaged using our proposed IRCI free range reconstruction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián
We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for amore » wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.« less
Recent progress in opto-electronic oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute
2005-01-01
The optoelectronic oscillator (OEO) is a unique device based on photonics techniques to generate highly spectrally pure microwave signals [1]. The development of the OEO was motivated by the need for high performance oscillators in the frequency range larger than 10 GHz, where conventional electronic oscillators have a number of limitations. These limitations typically stem from the product of fQ, where f is the oscillator frequency and Q is the quality factor of the resonator in the oscillator. In conventional resonators, whether electromagnetic or piezoelectric, this product is usually a constant. Thus, as the oscillator frequency is pushed higher, the quality factor degrades, resulting in degradation of the phase noise of the oscillator. An approach to mitigate the problem is to start with a very high quality signal in the 5 to 100 MHz range generated by a quartz oscillator and multiply the frequency to achieve the desired microwave signal. Here again, frequency multiplication also results in an increase of the phase noise by a factor of 2010gN, where N is the multiplication factor.
NASA Astrophysics Data System (ADS)
Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.
2002-10-01
A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
Tong, Yitian; Zhou, Qian; Han, Daming; Li, Baiyu; Xie, Weilin; Liu, Zhangweiyi; Qin, Jie; Wang, Xiaocheng; Dong, Yi; Hu, Weisheng
2016-08-15
A photonics-based scheme is presented for generating wideband and phase-stable chirped microwave signals based on two phase-locked combs with fixed and agile repetition rates. By tuning the difference of the two combs' repetition rates and extracting different order comb tones, a wideband linearly frequency-chirped microwave signal with flexible carrier frequency and chirped range is obtained. Owing to the scheme of dual-heterodyne phase transfer and phase-locked loop, extrinsic phase drift and noise induced by the separated optical paths is detected and suppressed efficiently. Linearly frequency-chirped microwave signals from 5 to 15 GHz and 237 to 247 GHz with 30 ms duration are achieved, respectively, contributing to the time-bandwidth product of 3×108. And less than 1.3×10-5 linearity errors (RMS) are also obtained.
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
Flexible and stackable terahertz metamaterials via silver-nanoparticle inkjet printing
NASA Astrophysics Data System (ADS)
Kashiwagi, K.; Xie, L.; Li, X.; Kageyama, T.; Miura, M.; Miyashita, H.; Kono, J.; Lee, S.-S.
2018-04-01
There is presently much interest in tunable, flexible, or reconfigurable metamaterial structures that work in the terahertz frequency range. They can be useful for a range of applications, including spectroscopy, sensing, imaging, and communications. Various methods based on microelectromechanical systems have been used for fabricating terahertz metamaterials, but they typically require high-cost facilities and involve a number of time-consuming and intricate processes. Here, we demonstrate a simple, robust, and cost-effective method for fabricating flexible and stackable multiresonant terahertz metamaterials, using silver nanoparticle inkjet printing. Using this method, we designed and fabricated two arrays of split-ring resonators (SRRs) having different resonant frequencies on separate sheets of paper and then combined the two arrays by stacking. Through terahertz time-domain spectroscopy, we observed resonances at the frequencies expected for the individual SRR arrays as well as at a new frequency due to coupling between the two SRR arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Kenichi; Iwasaki, Hotsumi; Okano, Makoto
2016-01-04
We investigated polarization-sensitive electro-optic (EO) detection of terahertz (THz) waves by using two uniaxial crystals: a c-cut gallium selenide and a c-cut lithium niobate crystals. We formulated a general frequency-domain description of EO detection by in-plane isotropic EO crystals, which holds regardless of the frequency. Based on this description, the polarization of THz waves can be derived by analyzing EO sampling signals measured with two orthogonal configurations of the in-plane isotropic EO crystals as well as typical (111) zinc-blende EO crystals. In addition, we experimentally demonstrated that the frequency-dependent polarization of THz waves can be reproducibly retrieved using three EOmore » crystals with different crystal symmetries and with different phase matching conditions. Our description provides essential information for practical polarization sensing in the THz frequency range as well as in the mid-infrared range.« less
NASA Astrophysics Data System (ADS)
Seo, Seong-Heon; Lee, K. D.
2012-10-01
A frequency modulation reflectometer has been developed to measure the density profile of the KSTAR tokamak. It has two channels operating in X-mode in the frequency range of Q band (33-50 GHz) and V band (50-75 GHz). The full band is swept in 20 μs. The mixer output is directly digitized at the sampling rate of 100 MSamples/s. A new phase detection algorithm is developed to analyze both amplitude and frequency modulated signal. The algorithm is benchmarked for a synthesized amplitude modulation-frequency modulation signal. This new algorithm is applied to the data analysis of KSTAR reflectometer.
RF Bearing Estimation in Wireless Sensor Networks
2010-01-01
are the main design drivers. Techniques based on ultrasonic and infrared signal modalities have short range and require line-of-sight. Clearly, RF...generating a Doppler shifted RF signal . The small frequency change can be measured even on low cost resource constrained nodes using a radio...is already included in the power budget and RF range is superior to most other signals . Radio signal strength (RSS) based approaches are the most
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Ghosh, Surajit; Seth, Sudeshna
2013-11-15
Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less
All-integrated terahertz modulators
NASA Astrophysics Data System (ADS)
Degl'Innocenti, Riccardo; Kindness, Stephen J.; Beere, Harvey E.; Ritchie, David A.
2018-01-01
Terahertz (0.1-10 THz corresponding to vacuum wavelengths between 30 μm and 3 mm) research has experienced impressive progress in the last few decades. The importance of this frequency range stems from unique applications in several fields, including spectroscopy, communications, and imaging. THz emitters have experienced great development recently with the advent of the quantum cascade laser, the improvement in the frequency range covered by electronic-based sources, and the increased performance and versatility of time domain spectroscopic systems based on full-spectrum lasers. However, the lack of suitable active optoelectronic devices has hindered the ability of THz technologies to fulfill their potential. The high demand for fast, efficient integrated optical components, such as amplitude, frequency, and polarization modulators, is driving one of the most challenging research areas in photonics. This is partly due to the inherent difficulties in using conventional integrated modulation techniques. This article aims to provide an overview of the different approaches and techniques recently employed in order to overcome this bottleneck.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
Ultra-broadband microwave metamaterial absorber based on resistive sheets
NASA Astrophysics Data System (ADS)
Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.
2017-01-01
We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Kang, Jinho; Shin, Junho; Kim, Chur; Jung, Kwangyun; Park, Suhyeon; Kim, Jungwon
2014-10-20
We characterize the timing jitter spectral density of the time-of-flight (TOF) in the indoor atmospheric transfer of optical pulse train over 10 decades of Fourier frequency range (10 μHz - 100 kHz) with sub-100-as resolution using a balanced optical cross-correlator (BOC). Based on the well-known theory for atmospheric transfer of a laser beam, we could fit the measured timing jitter power spectral density to the theory and analyze it with a fairly good agreement from 20 mHz to 10 Hz Fourier frequency range. Moreover, we demonstrate that the BOC-based timing stabilization method can suppress the excess fluctuations in timing from >200 fs (rms) to 2.6 fs (rms) maintained over 130 hours when an optical pulse train is transferred over a 76.2-m long free-space beam path in laboratory environment. The demonstrated stabilization result corresponds to 4 × 10(-20) overlapping Allan deviation at 117,000 s averaging time.
Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot
NASA Astrophysics Data System (ADS)
Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang
2015-01-01
In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.
NASA Astrophysics Data System (ADS)
Fannin, P. C.; Vekas, L.; Marin, C. N.; Malaescu, I.
2017-02-01
Complex susceptibility measurements provide a unique and efficient means for the investigation and determination of the dynamic properties of magnetic fluids. In particular, measurement of the frequency, f(Hz), and field, H(kA/m), dependent, complex susceptibility, χ(ω, Η)= χ‧(ω, Η)-iχ″(ω, Η), of magnetic fluids has proven to be a valuable and reliable technique for investigating such properties. The experimental data presented here was obtained from measurements of a transformer oil based ferrofluid, with measurements being performed over the frequency range 0.1-20 GHz and polarising fields 0-168 kA/m. In the case of transformer oil magnetic fluids, the normal measurement emphasis has been on the investigation of their dielectric properties, including the effects which lightning may have on these properties. Little has been reported on the measurement of the corresponding magnetic susceptibility, χ(ω), of such fluids and in this paper we address this fact. Thus we consider it worthwhile, in the case of a transformer with magnetic fluid transformer oil, being affected as a result of a lightening occurrence, to have knowledge of the fluids dynamic properties, at the microwave frequencies. In the process of determining the sample susceptibility profiles, it was found that the peak value of the χ″(ω) component, was approximately constant over the frequency range 2.4-6.3 GHz. From this it was determined that the fluid was effectively operating as a wideband absorber over a bandwidth of 3.9 GHz.
A unified framework for physical print quality
NASA Astrophysics Data System (ADS)
Eid, Ahmed; Cooper, Brian; Rippetoe, Ed
2007-01-01
In this paper we present a unified framework for physical print quality. This framework includes a design for a testbed, testing methodologies and quality measures of physical print characteristics. An automatic belt-fed flatbed scanning system is calibrated to acquire L* data for a wide range of flat field imagery. Testing methodologies based on wavelet pre-processing and spectral/statistical analysis are designed. We apply the proposed framework to three common printing artifacts: banding, jitter, and streaking. Since these artifacts are directional, wavelet based approaches are used to extract one artifact at a time and filter out other artifacts. Banding is characterized as a medium-to-low frequency, vertical periodic variation down the page. The same definition is applied to the jitter artifact, except that the jitter signal is characterized as a high-frequency signal above the banding frequency range. However, streaking is characterized as a horizontal aperiodic variation in the high-to-medium frequency range. Wavelets at different levels are applied to the input images in different directions to extract each artifact within specified frequency bands. Following wavelet reconstruction, images are converted into 1-D signals describing the artifact under concern. Accurate spectral analysis using a DFT with Blackman-Harris windowing technique is used to extract the power (strength) of periodic signals (banding and jitter). Since streaking is an aperiodic signal, a statistical measure is used to quantify the streaking strength. Experiments on 100 print samples scanned at 600 dpi from 10 different printers show high correlation (75% to 88%) between the ranking of these samples by the proposed metrologies and experts' visual ranking.
Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila
2017-06-01
Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.
Tellers, Philipp; Lehmann, Jessica; Führ, Hartmut; Wagner, Hermann
2017-09-01
Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit. NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species. Copyright © 2017 the American Physiological Society.
Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization
NASA Astrophysics Data System (ADS)
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-01
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-10
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Schwarze, Gene E.
1999-01-01
100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as B(sub peak) is sufficiently low to avoid saturation effects. Due to the high permeabilities, rather low values of the 'quality factor' Q, from about 20 to below unity, were obtained over the frequency range of 50 kHz to 1 MHz (50 C, B(sub peak) = 0.1 T). Therefore these cores must be gapped in order to make up high Q or high current inductors. However, being rugged, low core loss materials with flat B-H loop characteristics, they may provide new solutions to specialty inductor applications.
Selective Impairment in Frequency Discrimination in a Mouse Model of Tinnitus
Mwilambwe-Tshilobo, Laetitia; Davis, Andrew J. O.; Aizenberg, Mark; Geffen, Maria N.
2015-01-01
Tinnitus is an auditory disorder, which affects millions of Americans, including active duty service members and veterans. It is manifested by a phantom sound that is commonly restricted to a specific frequency range. Because tinnitus is associated with hearing deficits, understanding how tinnitus affects hearing perception is important for guiding therapies to improve the quality of life in this vast group of patients. In a rodent model of tinnitus, prolonged exposure to a tone leads to a selective decrease in gap detection in specific frequency bands. However, whether and how hearing acuity is affected for sounds within and outside those frequency bands is not well understood. We induced tinnitus in mice by prolonged exposure to a loud mid-range tone, and behaviorally assayed whether mice exhibited a change in frequency discrimination acuity for tones embedded within the mid-frequency range and high-frequency range at 1, 4, and 8 weeks post-exposure. A subset of tone-exposed mice exhibited tinnitus-like symptoms, as demonstrated by selective deficits in gap detection, which were restricted to the high frequency range. These mice exhibited impaired frequency discrimination both for tones in the mid-frequency range and high-frequency range. The remaining tone exposed mice, which did not demonstrate behavioral evidence of tinnitus, showed temporary deficits in frequency discrimination for tones in the mid-frequency range, while control mice remained unimpaired. Our findings reveal that the high frequency-specific deficits in gap detection, indicative of tinnitus, are associated with impairments in frequency discrimination at the frequency of the presumed tinnitus. PMID:26352864
Coordinated control strategy for improving the two drops of the wind storage combined system
NASA Astrophysics Data System (ADS)
Qian, Zhou; Chenggen, Wang; Jing, Bu
2018-05-01
In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.
Clamped seismic metamaterials: ultra-low frequency stop bands
NASA Astrophysics Data System (ADS)
Achaoui, Y.; Antonakakis, T.; Brûlé, S.; Craster, R. V.; Enoch, S.; Guenneau, S.
2017-06-01
The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1-10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0-30 Hz.
Variable frequency iteration MPPT for resonant power converters
Zhang, Qian; Bataresh, Issa; Chen, Lin
2015-06-30
A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.
Chen, Hsiao-Ping; Liao, Hui-Ju; Huang, Chih-Min; Wang, Shau-Chun; Yu, Sung-Nien
2010-04-23
This paper employs one chemometric technique to modify the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram between two consecutive wavelet-based low-pass filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. Although similar techniques of using other sets of low-pass procedures such as matched filters have been published, the procedures developed in this work are able to avoid peak broadening disadvantages inherent in matched filters. In addition, unlike Fourier transform-based low-pass filters, wavelet-based filters efficiently reject noises in the chromatograms directly in the time domain without distorting the original signals. In this work, the low-pass filtering procedures sequentially convolve the original chromatograms against each set of low pass filters to result in approximation coefficients, representing the low-frequency wavelets, of the first five resolution levels. The tedious trials of setting threshold values to properly shrink each wavelet are therefore no longer required. This noise modification technique is to multiply one wavelet-based low-pass filtered LC-MS/MS chromatogram with another artificial chromatogram added with thermal noises prior to the other wavelet-based low-pass filter. Because low-pass filter cannot eliminate frequency components below its cut-off frequency, more efficient peak S/N ratio improvement cannot be accomplished using consecutive low-pass filter procedures to process LC-MS/MS chromatograms. In contrast, when the low-pass filtered LC-MS/MS chromatogram is conditioned with the multiplication alteration prior to the other low-pass filter, much better ratio improvement is achieved. The noise frequency spectrum of low-pass filtered chromatogram, which originally contains frequency components below the filter cut-off frequency, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the high frequency regimes, the other low-pass filter is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS/MS chromatograms, of which typically less than 6-fold peak S/N ratio improvement achieved with two consecutive wavelet-based low-pass filters remains the same S/N ratio improvement using one-step wavelet-based low-pass filter, are improved to accomplish much better ratio enhancement 25-folds to 40-folds typically when the noise frequency spectrum is modified between two low-pass filters. The linear standard curves using the filtered LC-MS/MS signals are validated. The filtered LC-MS/MS signals are also reproducible. The more accurate determinations of very low concentration samples (S/N ratio about 7-9) are obtained using the filtered signals than the determinations using the original signals. Copyright 2010 Elsevier B.V. All rights reserved.
A first demonstration of audio-frequency optical coherence elastography of tissue
NASA Astrophysics Data System (ADS)
Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.
2008-12-01
Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.
Long distance measurement with a femtosecond laser based frequency comb
NASA Astrophysics Data System (ADS)
Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.
2017-11-01
Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.
NASA Astrophysics Data System (ADS)
Gubin, M.; Kovalchuk, E.; Petrukhin, E.; Shelkovnikov, A.; Tyurikov, D.; Gamidov, R.; Erdogan, C.; Sahin, E.; Felder, R.; Gill, P.; Lea, S. N.; Kramer, G.; Lipphardt, B.
2002-04-01
The accumulated results of absolute frequency measurements (AFM) carried out in 1997-2000 with transportable double-mode He-Ne/CH4 optical frequency standards (λ = 3 .39μm) in a collaboration of several laboratories are presented. The performance of this secondary optical frequency standard is estimated on the level of 10-13 (in repeatability), and 1 × 10-14/s (in stability). The next steps towards He-Ne/CH4 standards with one order of magnitude better performance, including devices based on monolithic zerodur resonators, are discussed. Important applications of transportable He-Ne/CH4 optical frequency standards have appeared now due to dramatic progress in the field of optical frequency measurements. Used to stabilize the repetition rate of a Ti:Sa fs laser, these compact secondary standards can transfer their performance into the whole optical range covered by a fs comb. Thus they can play the role of a narrow spectrum interrogative oscillator for super-accurate optical or microwave frequency standards substituting in some tasks a H-maser or oscillators based on cryogenic sapphire resonators.
An improved fast acquisition phase frequency detector for high speed phase-locked loops
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang
2018-04-01
Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.
Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems
NASA Astrophysics Data System (ADS)
Yang, Le; Wang, Shuo; Feng, Jianghua
2017-11-01
Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.
SRB combustion dynamics analysis computer program (CDA-1)
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A two-dimensional numerical model is developed for the unsteady oscillatory combustion of the solid propellant flame zone. Variations of pressure with low and high frequency responses across the long flame, such as in the double-base propellants, are accommodated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition for the gaseous phase with no condensed phase reaction. Numerical calculations are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The numerical results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.
Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter
NASA Astrophysics Data System (ADS)
Kurokawa, Fujio; Okamatsu, Masashi
This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4ms with the IIR filter method. In this case, the switching frequency is 100kHz and the step change of the load R is from 50 Ω to 10 Ω. Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.
Near millimeter wave bandpass filters
NASA Technical Reports Server (NTRS)
Timusk, T.; Richards, P. L.
1981-01-01
The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.
NASA Astrophysics Data System (ADS)
Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.
2017-12-01
High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we will report the initial results based on the datasets obtained since January 2017 focusing on the analyses of plasmasphere evolution by semi-automatic identification of UHR frequency, and AKR from the both hemisphere based on polarization measurement.
On prediction of crack in different orientations in pipe using frequency based approach
NASA Astrophysics Data System (ADS)
Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.
2008-04-01
A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.
Sanada, Akira; Tanaka, Nobuo
2012-08-01
This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.
Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Faxiang; Jiang, Shaodong; Min, Li; Li, Ming; Peng, Gangding; Ni, Jiasheng; Wang, Chang
2017-12-01
A short cavity distributed feedback (DFB) fiber laser is used for low frequency acoustic signal detection. Three DFB fiber lasers with different central wavelengths are chained together to make three-element vector hydrophone with proper sensitivity enhancement design, which has extensive and significant applications to underwater acoustic monitoring for the national defense, oil, gas exploration, and so on. By wavelength-phase demodulation, the lasing wavelength changes under different frequency signals can be interpreted, and the sensitivity is tested about 33 dB re pm/g. The frequency response range is rather flat from 5 Hz to 300 Hz.
NASA Astrophysics Data System (ADS)
Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi
2015-11-01
An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Power-Amplifier Module for 145 to 165 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Peralta, Alejandro
2007-01-01
A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.
NASA Astrophysics Data System (ADS)
Ege, Kerem; Roozen, N. B.; Leclère, Quentin; Rinaldi, Renaud G.
2018-07-01
In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach.
Madsen, P T; Johnson, M; Miller, P J O; Aguilar Soto, N; Lynch, J; Tyack, P
2006-10-01
The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.
Low-frequency quantitative ultrasound imaging of cell death in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.
Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicatedmore » significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.« less
NASA Astrophysics Data System (ADS)
McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.
2017-12-01
Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.
Broadband Sources in the 1-3 THz Range
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Ward, John; Maestrini, Alain; Chattopadhyay, Goutam; Schlecht, Erich; Thomas, Bertrand; Lin, Robert; Lee, Choonsup; Gill, John
2009-01-01
Broadband electronically tunable sources in the terahertz range are a critical technology for enabling space-borne as well as ground-based applications. By power-combining MMIC amplifier and frequency tripler chips, we have recently demonstrated >1 mW of output power at 900 GHz. This source provides a stepping stone to enable sources in the 2-3 THz range than can sufficiently pump multi-pixel imaging arrays.
Photonic instantaneous frequency measurement of wideband microwave signals.
Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang
2017-01-01
We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.
Compensation based on linearized analysis for a six degree of freedom motion simulator
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Martin, D. J., Jr.; Copeland, J. L.
1973-01-01
The inertial response characteristics of a synergistic, six-degree-of-freedom motion base are presented in terms of amplitude ratio and phase lag as functions of frequency data for the frequency range of interest (0 to 2 Hz) in real time, digital, flight simulators. The notch filters which smooth the digital-drive signals to continuous drive signals are presented, and appropriate compensation, based on the inertial response data, is suggested. The existence of an inverse transformation that converts actuator extensions into inertial positions makes it possible to gather the response data in the inertial axis system.
A wide-range 22-GHz LC-based CMOS voltage-controlled oscillator
NASA Astrophysics Data System (ADS)
Gharbieh, Karam; Ranneh, Mohammed; Abugharbieh, Khaldoon
2018-06-01
This work presents a novel voltage-controlled oscillator (VCO) design and simulations that combine a varactor bank with a transformer in the LC tank to achieve a high-frequency range. While the varactor bank is responsible for changing the capacitance in the LC tank, the transformer acts as a means to change the value of the inductance, hence allowing tune-ability in the two main components of the VCO. A control mechanism utilises a mixed-mode circuit consisting of comparators and a state machine. It allows efficient tuning of the VCO by controlling the capacitance and transformer in the LC tank. The VCO has a 10.75-22.43 GHz frequency range and the VCO gain, KVCO, is kept at a low value ranging from 98.6 to 175.7 MHz/V. The simulated phase noise is -111 dBc/Hz at 1 MHz offset from the 10.75 GHz oscillation frequency. The circuit is designed and simulated in 28 nm CMOS technology and uses a 1 V supply drawing a typical power of 14.74 mW.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
Miceli, Stéphanie
2017-01-01
Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5–500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings. PMID:28197543
Miceli, Stéphanie; Ness, Torbjørn V; Einevoll, Gaute T; Schubert, Dirk
2017-01-01
Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5-500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings.
Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor
NASA Astrophysics Data System (ADS)
Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.
2017-12-01
Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar
Rheological properties of ice cream mixes and frozen ice creams containing fat and fat replacers.
Adapa, S; Dingeldein, H; Schmidt, K A; Herald, T J
2000-10-01
Ice cream mixes and frozen ice creams at milk fat levels of 12%, 8%, 6%, 6% plus a protein-based fat replacer, and 6% plus a carbohydrate-based fat replacer were evaluated for viscoelastic properties by dynamic testing with sinusoidal oscillatory tests at various frequencies. The storage modulus (G'), loss modulus (G"), and tan delta (G"/G') were calculated for all the treatments to determine changes in the viscous and elastic properties of the mixes and frozen ice creams due to fat content. In ice cream mixes, G' and G" exhibited a strong frequency dependence. The G" was higher than G' throughout the frequency range (1 to 8 Hz) examined, without any crossover, except for the 12% mix. Elastic properties of the ice cream mixes decreased as fat content decreased. Tan delta values indicated that fat replacers did not enhance the elastic properties of the ice cream mixes. In all frozen ice creams, G' and G" again showed a frequency dependence throughout the range tested (0.5 to 10 Hz). The amount of fat in ice creams and the degree of fat destabilization affected the elasticity in the frozen product. Even though the ice creams did not have significant elastic properties, when compared as a group the samples with higher fat content had higher elastic properties. The addition of protein-based and carbohydrate-based fat replacers did not enhance the elastic properties of the ice creams but did increase the viscous properties.
Terahertz polarizing beam splitter based on copper grating on polyimide substrate
NASA Astrophysics Data System (ADS)
Zhang, Mengen; Li, Xiangjun; Wang, Wentao; Liu, Jianjun; Hong, Zhi
2012-12-01
A terahertz polarizing beam splitter, based on a copper grating on polyimide (PI) substrate, was fabricated by the way of laser induced and non-electrolytic plating. The good polarization characteristics of the splitter in the range of 0°-180°polarization are verified experimentally using backward wave oscillator at fixed frequency of 300GHz, and the insertion losses of 0.13dB and 0.32dB are measured for the transmitted and reflected beams, respectively. The broadband transmission of TM wave of the splitter was also measured by terahertz time-domain spectroscopy, and the extinction ratio larger than 22dB is obtained in the frequency range of 0.2-1.5THz. The experiment results are in good agreement with finite element simulation results.
Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V
2015-09-01
A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
Amezquita-Sanchez, Juan P.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.; Garcia-Perez, Arturo
2014-01-01
This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals. PMID:24683346
Camarena-Martinez, David; Amezquita-Sanchez, Juan P; Valtierra-Rodriguez, Martin; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Garcia-Perez, Arturo
2014-01-01
This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.
Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-03-15
As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
Calculating Permittivity and Dielectric Loss Frequency Spectra for Aqueous Electrolyte Solutions
NASA Astrophysics Data System (ADS)
Odinaev, S.; Makhmadbegov, R. S.
2018-01-01
Analytic expressions for dielectric permittivity factor ɛ1(ω) and dielectric dissipation factor ɛ2(ω) of electrolyte solutions are obtained, based on the ratio between complex factors of dielectric permittivity and specific conductivity. The range of frequency dispersion of dynamic factors ɛ1(ω) and ɛ2(ω) for aqueous solutions of LiCl, NaCl, KCl, and CsCl is considered. Numerical calculations are performed for friction coefficients β a and β b ; relaxation times τ a , τ b , and τ ab ; and factors ɛ1(ω) and ɛ2(ω) in a wide range of variation for ρ; concentration c; temperature T; and frequencies ω. The resulting theoretically calculated ɛ1(ω) and ɛ2(ω) values and the Cole-Cole diagram are in quantitative agreement with experimental data.
Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor
NASA Astrophysics Data System (ADS)
Bartsch, S. T.; Rusu, A.; Ionescu, A. M.
2012-10-01
We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.
Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.
Herbst, Christian T; Hertegard, Stellan; Zangger-Borch, Daniel; Lindestad, Per-Åke
2017-04-01
Freddie Mercury was one of the twentieth century's best-known singers of commercial contemporary music. This study presents an acoustical analysis of his voice production and singing style, based on perceptual and quantitative analysis of publicly available sound recordings. Analysis of six interviews revealed a median speaking fundamental frequency of 117.3 Hz, which is typically found for a baritone voice. Analysis of voice tracks isolated from full band recordings suggested that the singing voice range was 37 semitones within the pitch range of F#2 (about 92.2 Hz) to G5 (about 784 Hz). Evidence for higher phonations up to a fundamental frequency of 1,347 Hz was not deemed reliable. Analysis of 240 sustained notes from 21 a-cappella recordings revealed a surprisingly high mean fundamental frequency modulation rate (vibrato) of 7.0 Hz, reaching the range of vocal tremor. Quantitative analysis utilizing a newly introduced parameter to assess the regularity of vocal vibrato corroborated its perceptually irregular nature, suggesting that vibrato (ir)regularity is a distinctive feature of the singing voice. Imitation of subharmonic phonation samples by a professional rock singer, documented by endoscopic high-speed video at 4,132 frames per second, revealed a 3:1 frequency locked vibratory pattern of vocal folds and ventricular folds.
NASA Astrophysics Data System (ADS)
Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis
2003-02-01
The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.
670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)
2014-01-01
A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.
Huang, Jiyan; Zhang, Ying; Luo, Shan
2017-12-15
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars
Zhang, Ying; Luo, Shan
2017-01-01
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727
NASA Astrophysics Data System (ADS)
Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.
2014-05-01
The Army Research Laboratory (ARL) has developed an impulse-based vehicle-mounted forward-looking ultra- wideband (UWB) radar for imaging buried landmines and improvised explosive devices (IEDs). However, there is no control of the radiated spectrum in this system. As part of ARL's Partnerships in Research Transition (PIRT) program, the above deficiency is addressed by the design of a Stepped-Frequency Radar (SFR) which allows for precise control over the radiated spectrum, while still maintaining an effective ultra-wide bandwidth. The SFR utilizes a frequency synthesizer which can be configured to excise prohibited and interfering frequency bands and also implement frequency-hopping capabilities. The SFR is designed to be a forward-looking ground- penetrating (FLGPR) Radar utilizing a uniform linear array of sixteen (16) Vivaldi notch receive antennas and two (2) Quad-ridge horn transmit antennas. While a preliminary SFR consisting of four (4) receive channels has been designed, this paper describes major improvements to the system, and an analysis of expected system performance. The 4-channel system will be used to validate the SFR design which will eventually be augmented in to the full 16-channel system. The SFR has an operating frequency band which ranges from 300 - 2000 MHz, and a minimum frequency step-size of 1 MHz. The radar system is capable of illuminating range swaths that have maximum extents of 30 to 150 meters (programmable). The transmitter has the ability to produce approximately -2 dBm/MHz average power over the entire operating frequency range. The SFR will be used to determine the practicality of detecting and classifying buried and concealed landmines and IEDs from safe stand-off distances.
Wave optics-based LEO-LEO radio occultation retrieval
NASA Astrophysics Data System (ADS)
Benzon, Hans-Henrik; Høeg, Per
2016-06-01
This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium-Range Weather Forecasts analysis model. This model is used in a forward propagator that simulates the electromagnetic field amplitudes and phases at the receiver on board the LEO satellite. LEO-LEO cross-link radio occultations using high frequencies are a relatively new technique, and the possibilities and advantages of the technique still need to be investigated. The retrieval of this type of radio occultations is considerably more complicated than standard GPS to LEO radio occultations, because the attenuation of the probing radio waves is used in the retrieval and the atmospheric parameters are found using a least squares solver. The best algorithms and the number of probing frequencies that is economically viable must also be determined. This paper intends to answer some of these questions using end-to-end simulations.
Pressure spectra from single-snapshot tomographic PIV
NASA Astrophysics Data System (ADS)
Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio
2018-03-01
The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV and the microphone reference data. The VIC-based approach, on the other hand, returns results on the order of the reference.
Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs
NASA Astrophysics Data System (ADS)
Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi
2018-02-01
We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui
2015-04-01
Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.
NASA Astrophysics Data System (ADS)
Gu, Yu; Li, Qiang; Xu, Bao-Jun; Zhao, Zhe
2014-01-01
We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance (QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fsp of 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fsp was found and subsequently became one of the most important parameters in the new sensor design.
Design and Processing of a Novel Chaos-Based Stepped Frequency Synthesized Wideband Radar Signal.
Zeng, Tao; Chang, Shaoqiang; Fan, Huayu; Liu, Quanhua
2018-03-26
The linear stepped frequency and linear frequency shift keying (FSK) signal has been widely used in radar systems. However, such linear modulation signals suffer from the range-Doppler coupling that degrades radar multi-target resolution. Moreover, the fixed frequency-hopping or frequency-coded sequence can be easily predicted by the interception receiver in the electronic countermeasures (ECM) environments, which limits radar anti-jamming performance. In addition, the single FSK modulation reduces the radar low probability of intercept (LPI) performance, for it cannot achieve a large time-bandwidth product. To solve such problems, we propose a novel chaos-based stepped frequency (CSF) synthesized wideband signal in this paper. The signal introduces chaotic frequency hopping between the coherent stepped frequency pulses, and adopts a chaotic frequency shift keying (CFSK) and phase shift keying (PSK) composited coded modulation in a subpulse, called CSF-CFSK/PSK. Correspondingly, the processing method for the signal has been proposed. According to our theoretical analyses and the simulations, the proposed signal and processing method achieve better multi-target resolution and LPI performance. Furthermore, flexible modulation is able to increase the robustness against identification of the interception receiver and improve the anti-jamming performance of the radar.
Bernstein, Leslie R; Trahiotis, Constantine
2014-02-01
Sensitivity to ongoing interaural temporal disparities (ITDs) was measured using bandpass-filtered pulse trains centered at 4600, 6500, or 9200 Hz. Save for minor differences in the exact center frequencies, those target stimuli were those employed by Majdak and Laback [J. Acoust. Soc. Am. 125, 3903-3913 (2009)]. At each center frequency, threshold ITD was measured for pulse repetition rates ranging from 64 to 609 Hz. The results and quantitative predictions by a cross-correlation-based model indicated that (1) at most pulse repetition rates, threshold ITD increased with center frequency, (2) the cutoff frequency of the putative envelope low-pass filter that determines sensitivity to ITD at high envelope rates appears to be inversely related to center frequency, and (3) both outcomes were accounted for by assuming that, independent of the center frequency, the listeners' decision variable was a constant criterion change in interaural correlation of the stimuli as processed internally. The finding of an inverse relation between center frequency and the envelope rate limitation, while consistent with much prior literature, runs counter to the conclusion reached by Majdak and Laback.
Method and device for identifying different species of honeybees
Kerr, Howard T.; Buchanan, Michael E.; Valentine, Kenneth H.
1989-01-01
A method and device have been provided for distinguishing Africanized honeybees from European honeybees. The method is based on the discovery of a distinct difference in the acoustical signatures of these two species of honeybees in flight. The European honeybee signature has a fundamental power peak in the 210 to 240 Hz range while the Africanized honeybee signature has a fundamental power peak in the 260 to 290 Hz range. The acoustic signal produced by honeybees is analyzed by means of a detecting device to quickly determine the honeybee species through the detection of the presence of frequencies in one of these distinct ranges. The device includes a microphone for acoustical signal detection which feeds the detected signal into a frequency analyzer which is designed to detect the presence of either of the known fundamental wingbeat frequencies unique to the acoustical signatures of these species as an indication of the identity of the species and indicate the species identity on a readout device.
AC conduction of Ba1-xCaxTiO3 and BZT-BCTx
NASA Astrophysics Data System (ADS)
Khien, Nguyen Van; Huy, Than Trong; Hong, Le Van
2018-03-01
Ba1-xCaxTiO3 (BCTx), (x =0.0-0.3) and Ba0.8Zr0.2TiO3-Ba1-xCaxTiO3 (BZT-BCTx), (x=0.15-0.35) were fabricated by the solid state reaction method. Phase structure of the material samples was identified by X-ray diffraction. The impedance versus frequency in a range of 100 Hz to 2.5 MHz was measured for all the samples at room temperature. AC conductivity versus frequency of the BCTx and BZT-BCTx was evaluated and fitted by using the extended Universal Dielectric Response (UDR) equations. The fitting results were discussed in detail and shown that the localized reorientation polarization-based mechanism is most contributed in BCTx matrial samples. Basically both two the hopping polaron and polarization mechanisms play roles in BZT-BCTx material samples. In contrary the short-range polaron hopping is dominated in ac conductivity of BZT-BCTx material samples in low frequency range.
Steube, Natalie; Nowotny, Manuela; Pilz, Peter K. D.; Gaese, Bernhard H.
2016-01-01
The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An interaction of temporal and spectral influences, finally, resulted in higher inhibition for 500 ms gaps than for 75 ms gaps at all frequencies tested. Improved prepulse paradigms based on these results are well suited to quantify the consequences of central processing disorders. PMID:27445728
Microresonator-Based Optical Frequency Combs: A Time Domain Perspective
2016-04-19
optics; ultrafast optics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a...generation at frequency spacings down to 25 GHz, in the range where convenient electronic detection is possible. (c) Our best Purdue microrings had...time domain measurements of the generated combs, leading to observation of novel, ultrafast dark pulse waveforms, have introduced new structures such
Joint Bearing and Range Estimation of Multiple Objects from Time-Frequency Analysis.
Liu, Jeng-Cheng; Cheng, Yuang-Tung; Hung, Hsien-Sen
2018-01-19
Direction-of-arrival (DOA) and range estimation is an important issue of sonar signal processing. In this paper, a novel approach using Hilbert-Huang transform (HHT) is proposed for joint bearing and range estimation of multiple targets based on a uniform linear array (ULA) of hydrophones. The structure of this ULA based on micro-electro-mechanical systems (MEMS) technology, and thus has attractive features of small size, high sensitivity and low cost, and is suitable for Autonomous Underwater Vehicle (AUV) operations. This proposed target localization method has the following advantages: only a single snapshot of data is needed and real-time processing is feasible. The proposed algorithm transforms a very complicated nonlinear estimation problem to a simple nearly linear one via time-frequency distribution (TFD) theory and is verified with HHT. Theoretical discussions of resolution issue are also provided to facilitate the design of a MEMS sensor with high sensitivity. Simulation results are shown to verify the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han
2016-12-01
In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.
Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study
NASA Astrophysics Data System (ADS)
Suo, Dingjie; Guo, Sijia; Lin, Weili; Jiang, Xiaoning; Jing, Yun
2015-09-01
High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2-4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency.
Sonza, Anelise; Völkel, Nina; Zaro, Milton A; Achaval, Matilde; Hennig, Ewald M
2015-07-01
Whole-body vibration (WBV) training has become popular in recent years. However, WBV may be harmful to the human body. The goal of this study was to determine the acceleration magnitudes at different body segments for different frequencies of WBV. Additionally, vibration sensation ratings by subjects served to create perception vibration magnitude and discomfort maps of the human body. In the first of two experiments, 65 young adults mean (± SD) age range of 23 (± 3.0) years, participated in WBV severity perception ratings, based on a Borg scale. Measurements were performed at 12 different frequencies, two intensities (3 and 5 mm amplitudes) of rotational mode WBV. On a separate day, a second experiment (n = 40) included vertical accelerometry of the head, hip and lower leg with the same WBV settings. The highest lower limb vibration magnitude perception based on the Borg scale was extremely intense for the frequencies between 21 and 25 Hz; somewhat hard for the trunk region (11-25 Hz) and fairly light for the head (13-25 Hz). The highest vertical accelerations were found at a frequency of 23 Hz at the tibia, 9 Hz at the hip and 13 Hz at the head. At 5 mm amplitude, 61.5% of the subjects reported discomfort in the foot region (21-25 Hz), 46.2% for the lower back (17, 19 and 21 Hz) and 23% for the abdominal region (9-13 Hz). The range of 3-7 Hz represents the safest frequency range with magnitudes less than 1 g(*)sec for all studied regions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.
Jeong, In Cheol; Finkelstein, Joseph
2014-01-01
Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui
2018-05-01
A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.
Proposal for a broadband THz refractive-index sensor based on quantum-cascade laser arrays.
Zhao, Le; Khanal, Sudeep; Wu, Chongzhao; Kumar, Sushil
2015-02-23
Many molecules have strong and characteristic rotational and vibrational transitions at terahertz (THz) frequencies, which makes this frequency range unique for applications in spectroscopic sensing of chemical and biological species. Here, we propose a broadband THz sensor based on arrays of single-mode QCLs, which could be utilized for sensing of the refractive-index of solids or liquids in reflection geometry. The proposed scheme does not require expensive THz detectors and consists of no movable parts. A recently developed antenna-feedback geometry is utilized to enhance optical coupling between two single-mode QCLs, which facilitates optical downconversion of the THz frequency signal to microwave regime. Arrays of THz QCLs emitting at discrete frequencies could be utilized to provide more than 2 THz of spectral coverage to realize a broadband, low-cost, and portable THz sensor.
Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan
2016-06-15
We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less
Advanced Digital Signal Processing for Hybrid Lidar FY 2014
2014-10-30
processing steps on raw data, with a PC miming Lab VIEW performing the fmal calculations to obtain range measurements . A MATLAB- based system...regarding the object and it reduces the image contrast and resolution as well as the object ranging measurement accuracy. There have been various...frequency (>100MHz) approach that uses high speed modulation to help suppress backscatter while also providing an unambiguous range measurement . In general
NASA Astrophysics Data System (ADS)
Ma, Qian; Liu, Yu; Xiang, Yuanjiang
2018-07-01
Due to its merits of flexible bandwidth allocation and robustness towards fiber transmission impairments, coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology draws a lot of attention for passive optical networks (PON). However, a CO-OFDM system is vulnerable to frequency offsets between modulated optical signals and optical local oscillators (OLO). This is particularly serious for low cost PONs where low cost lasers are used. Thus, it is of great interest to develop efficient algorithms for frequency synchronization in CO-OFDM systems. Usually frequency synchronization proposed in CO-OFDM systems are done by detecting the phase shift in time domain. In such a way, there is a trade-off between estimation accuracy and range. Considering that the integer frequency offset (IFO) contributes to the major frequency offset, a more efficient method to estimate IFO is of demand. By detecting IFO induced circular channel rotation (CCR), the frequency offset can be directly estimated after fast Fourier transforming (FFT). In this paper, circular acquisition offset frequency and timing synchronization (CAO-FTS) scheme is proposed. A specially-designed frequency domain pseudo noise (PN) sequence is used for CCR detection and timing synchronization. Full-range frequency offset compensation and non-plateau timing synchronization are experimentally demonstrated in presence of fiber dispersion. Based on CAO-FTS, 16.9 Gb/s CO-OFDM signal is successfully delivered over a span of 80-km single mode fiber.
Audio-frequency analysis of inductive voltage dividers based on structural models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramov, S.; Oldham, N.M.; Koffman, A.D.
1994-12-31
A Binary Inductive Voltage Divider (BIVD) is compared with a Decade Inductive Voltage Divider (DIVD) in an automatic IVD bridge. New detection and injection circuitry was designed and used to evaluate the IVDs with either the input or output tied to ground potential. In the audio frequency range the DIVD and BIVD error patterns are characterized for both in-phase and quadrature components. Differences between results obtained using a new error decomposition scheme based on structural modeling, and measurements using conventional IVD standards are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yueqiang; Sabbagh, S. A.; Chapman, I. T.
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number)more » noise level is 10 4 to 10 5 G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. As a result, these basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.« less
Liu, Yueqiang; Sabbagh, S. A.; Chapman, I. T.; ...
2017-03-27
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number)more » noise level is 10 4 to 10 5 G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. As a result, these basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.« less
47 CFR 15.202 - Certified operating frequency range.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a master...
NASA Astrophysics Data System (ADS)
You, Weilong; Pei, Binbin; Sun, Ke; Zhang, Lei; Yang, Heng; Li, Xinxin
2017-10-01
This paper presents an oven controlled N++ [1 0 0] length-extensional mode silicon resonator, with a lookup-table based control algorithm. The temperature coefficient of resonant frequency (TCF) of the N++ doped resonator is nonlinear, and there is a turnover temperature point at which the TCF is equal to zero. The resonator is maintained at the turnover point by Joule heating; this temperature is a little higher than the upper limit of the industrial temperature range. It is demonstrated that the control algorithm based on the thermoresistor on the substrate and the lookup table for heating voltage versus chip temperature is sufficiently accurate to achieve a frequency stability of ±0.5 ppm over the industrial temperature range. Because only two leads are required for electrical heating and piezoresistive sensing, the power required for heating of this resonator can be potentially lower than that of the oscillators with closed-loop oven control algorithm. It is also shown that the phase noise can be suppressed at the turnover temperature because of the very low value of the TCF, which justifies the usage of the heating voltage as the excitation voltage of the Wheatstone half-bridge.
Discovering Semantic Patterns in Bibliographically Coupled Documents.
ERIC Educational Resources Information Center
Qin, Jian
1999-01-01
An example of semantic pattern analysis, based on keywords selected from documents grouped by bibliographical coupling, is used to demonstrate the methodological aspects of knowledge discovery in bibliographic databases. Frequency distribution patterns suggest the existence of a common intellectual base with a wide range of specialties and…
Wireless zoned particulate matter filter regeneration control system
Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA
2011-10-04
An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.
The impact of the microphone position on the frequency analysis of snoring sounds.
Herzog, Michael; Kühnel, Thomas; Bremert, Thomas; Herzog, Beatrice; Hosemann, Werner; Kaftan, Holger
2009-08-01
Frequency analysis of snoring sounds has been reported as a diagnostic tool to differentiate between different sources of snoring. Several studies have been published presenting diverging results of the frequency analyses of snoring sounds. Depending on the position of the used microphones, the results of the frequency analysis of snoring sounds vary. The present study investigated the influence of different microphone positions on the outcome of the frequency analysis of snoring sounds. Nocturnal snoring was recorded simultaneously at six positions (air-coupled: 30 cm middle, 100 cm middle, 30 cm lateral to both sides of the patients' head; body contact: neck and parasternal) in five patients. The used microphones had a flat frequency response and a similar frequency range (10/40 Hz-18 kHz). Frequency analysis was performed by fast Fourier transformation and frequency bands as well as peak intensities (Peaks 1-5) were detected. Air-coupled microphones presented a wider frequency range (60 Hz-10 kHz) compared to contact microphones. The contact microphone at cervical position presented a cut off at frequencies above 300 Hz, whereas the contact microphone at parasternal position revealed a cut off above 100 Hz. On an exemplary base, the study demonstrates that frequencies above 1,000 Hz do appear in complex snoring patterns, and it is emphasised that high frequencies are imported for the interpretation of snoring sounds with respect to the identification of the source of snoring. Contact microphones might be used in screening devices, but for a natural analysis of snoring sounds the use of air-coupled microphones is indispensable.
A second-order frequency-aided digital phase-locked loop for Doppler rate tracking
NASA Astrophysics Data System (ADS)
Chie, C. M.
1980-08-01
A second-order digital phase-locked loop (DPLL) has a finite lock range which is a function of the frequency of the incoming signal to be tracked. For this reason, it is not capable of tracking an input with Doppler rate for an indefinite period of time. In this correspondence, an analytical expression for the hold-in time is derived. In addition, an all-digital scheme to alleviate this problem is proposed based on the information obtained from estimating the input signal frequency.
Audio frequency in vivo optical coherence elastography
NASA Astrophysics Data System (ADS)
Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.
2009-05-01
We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowska, Monika; Ozimek, Filip; Fita, Piotr
2009-08-15
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
NASA Astrophysics Data System (ADS)
Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław
2009-08-01
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.
Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D
2006-03-15
We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.
80-GHz MMIC HEMT Voltage-Controlled Oscillator
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi
2003-01-01
A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz
Edelen, J. P.; Edelen, A. L.; Bowring, D.; ...
2016-12-23
In this study we develop an a priori method for simulating dynamic resonant frequency and temperature responses in a radio frequency quadrupole (RFQ) and its associated water-based cooling system respectively. Our model provides a computationally efficient means to evaluate the transient response of the RFQ over a large range of system parameters. The model was constructed prior to the delivery of the PIP-II Injector Test RFQ and was used to aid in the design of the water-based cooling system, data acquisition system, and resonance control system. Now that the model has been validated with experimental data, it can confidently bemore » used to aid in the design of future RFQ resonance controllers and their associated water-based cooling systems. Finally, without any empirical fitting, it has demonstrated the ability to predict absolute temperature and frequency changes to 11% accuracy on average, and relative changes to 7% accuracy.« less
Lucas, Kathleen M; Windmill, James F C; Robert, Daniel; Yack, Jayne E
2009-11-01
The ears of insects exhibit a broad functional diversity with the ability to detect sounds across a wide range of frequencies and intensities. In tympanal ears, the membrane is a crucial step in the transduction of the acoustic stimulus into a neural signal. The tropical butterfly Morpho peleides has an oval-shaped membrane at the base of the forewing with an unusual dome in the middle of the structure. We are testing the hypothesis that this unconventional anatomical arrangement determines the mechanical tuning properties of this butterfly ear. Using microscanning laser Doppler vibrometry to measure the vibrational characteristics of this novel tympanum, the membrane was found to vibrate in two distinct modes, depending on the frequency range: at lower frequencies (1-5 kHz) the vibration was focused at the proximal half of the posterior side of the outer membrane, while at higher frequencies (5-20 kHz) the entire membrane contributed to the vibration. The maximum deflection points of the two vibrational modes correspond to the locations of the associated chordotonal organs, suggesting that M. peleides has the capacity for frequency partitioning because of the different vibrational properties of the two membrane components. Extracellular nerve recordings confirm that the innervating chordotonal organs respond to the same frequency range of 1-20 kHz, and are most sensitive between 2 and 4 kHz, although distinct frequency discrimination was not observed. We suggest that this remarkable variation in structure is associated with function that provides a selective advantage, particularly in predator detection.
Synchronization of EEG activity in patients with bipolar disorder
NASA Astrophysics Data System (ADS)
Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu
2015-12-01
In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.
Displacement sensor based on intra-cavity tuning of dual-frequency gas laser
NASA Astrophysics Data System (ADS)
Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang
2018-01-01
A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.
Broadband active electrically small superconductor antennas
NASA Astrophysics Data System (ADS)
Kornev, V. K.; Kolotinskiy, N. V.; Sharafiev, A. V.; Soloviev, I. I.; Mukhanov, O. A.
2017-10-01
A new type of broadband active electrically small antenna (ESA) based on superconducting quantum arrays (SQAs) has been proposed and developed. These antennas are capable of providing both sensing and amplification of broadband electromagnetic signals with a very high spurious-free dynamic range (SFDR)—up to 100 dB (and even more)—with high sensitivity. The frequency band can range up to tens of gigahertz, depending on Josephson junction characteristic frequency, set by fabrication. In this paper we review theoretical and experimental studies of SQAs and SQA-based antenna prototypes of both transformer and transformer-less types. The ESA prototypes evaluated were fabricated using a standard Nb process with critical current density 4.5 kA cm-2. Measured device characteristics, design issues and comparative analysis of various ESA types, as well as requirements for interfaces, are reviewed and discussed.
Wu, Xiaoming; Dong, Xiuzhen; Qin, Mingxin; Fu, Feng; Wang, Yuemin; You, Fusheng; Xiang, Haiyan; Liu, Ruigang; Shi, Xuetao
2003-03-01
The in vivo measurements of rabbit brain tissue impedance were taken under both normal and ischemic conditions by using two-electrode measurement method in the frequency range from 0.1 Hz to 1 MHz. The dynamic images about the resistivity of cerebral ischemia were reconstructed based on a 16-electrode system. The results of in vivo measurement showed that the ratio of impedance increased can be as high as 75% at frequencies lower than 10 Hz. In the range from 1 KHz to 1 MHz, the ratio showed a constant value of 15%. The electrical impedance tomography (EIT) images obtained suggested that the regions of impedance changes highly correspond to the position of ischemia. It is confirmed that the brain function changes caused by local deficiency of blood can be detected and imaged by EIT method.
A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Haijun; Yang, Wenhai; Li, Zhixiu
2014-01-15
We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearitiesmore » for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.« less
NASA Astrophysics Data System (ADS)
Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.
2014-08-01
Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.
Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt
Liew, Chiam–Wen; Durairaj, R.; Ramesh, S.
2014-01-01
In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA–PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of and is absent. Linear viscoelastic (LVE) range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases. PMID:25051241
Study of dielectric relaxation and AC conductivity of InP:S single crystal
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.
2012-07-01
The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.
NASA Astrophysics Data System (ADS)
Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier
2016-09-01
We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.
Radar response to vegetation. [soil moisture mapping via microwave backscattering
NASA Technical Reports Server (NTRS)
Ulaby, F. T.
1975-01-01
Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.
a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.
NASA Astrophysics Data System (ADS)
Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick
2015-06-01
We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014
Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser
NASA Astrophysics Data System (ADS)
Fukuoka, D.; Muro, K.; Noda, K.
2016-02-01
A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.
The study of microstrip antenna arrays and related problems
NASA Technical Reports Server (NTRS)
Lo, R. Q.
1984-01-01
The work on rectangular microstrip antennas for dual frequency operation is reported on. The principle of this approach is based on the excitation of a patch for two or more different modes which correspond to different frequencies. However, for a given geometry, the modal frequencies have a fixed relationship; therefore, the usefulness of such a design is greatly limited. In this study three different methods have been contrived to control the frequency ratio over a wide range. First, as found prevously, if shorting pins are inserted at certain locations in the patch, the low frequency can be raised substantially. Second, if slots are cut in the patch, the high frequency can be lowered considerably. By using both techniques, the two frequency ratio can be varied approximately from 3 to 1.3. After that, the addition of more pins or slots becomes ineffective.
Algorithms for Efficient Computation of Transfer Functions for Large Order Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Giesy, Daniel P.
1998-01-01
An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, still-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open- and closed-loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, the present method was up to two orders of magnitude faster than a traditional method. The present method generally showed good to excellent accuracy throughout the range of test frequencies, while traditional methods gave adequate accuracy for lower frequencies, but generally deteriorated in performance at higher frequencies with worst case errors being many orders of magnitude times the correct values.
NASA Astrophysics Data System (ADS)
Masson, Y. J.; Pride, S. R.
2007-03-01
Seismic attenuation and dispersion are numerically determined for computer-generated porous materials that contain arbitrary amounts of mesoscopic-scale heterogeneity in the porous continuum properties. The local equations used to determine the poroelastic response within such materials are those of Biot (1962). Upon applying a step change in stress to samples containing mesoscopic-scale heterogeneity, the poroelastic response is determined using finite difference modeling, and the average strain throughout the sample computed, along with the effective complex and frequency-dependent elastic moduli of the sample. The ratio of the imaginary and real parts of these moduli determines the attenuation as a function of frequency associated with the modes of applied stress (pure compression and pure shear). By having a wide range of heterogeneity present, there exists a wide range of relaxation frequencies in the response with the result that the curves of attenuation as a function of frequency are broader than in existing analytical theories based on a single relaxation frequency. Analytical explanations are given for the various high-frequency and low-frequency asymptotic behavior observed in the numerical simulations. It is also shown that the overall level of attenuation of a given sample is proportional to the square of the incompressibility contrasts locally present.
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S
2016-03-15
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.
Longitudinal spread of mechanical excitation through tectorial membrane traveling waves
Sellon, Jonathan B.; Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.
2015-01-01
The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity. PMID:26438861
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.
2016-01-01
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199
Zadoff-Chu sequence-based hitless ranging scheme for OFDMA-PON configured 5G fronthaul uplinks
NASA Astrophysics Data System (ADS)
Reza, Ahmed Galib; Rhee, June-Koo Kevin
2017-05-01
A Zadoff-Chu (ZC) sequence-based low-complexity hitless upstream time synchronization scheme is proposed for an orthogonal frequency division multiple access passive optical network configured cloud radio access network fronthaul. The algorithm is based on gradual loading of the ZC sequences, where the phase discontinuity due to the cyclic prefix is alleviated by a frequency domain phase precoder, eliminating the requirements of guard bands to mitigate intersymbol interference and inter-carrier interference. Simulation results for uncontrolled-wavelength asynchronous transmissions from four concurrent transmitting optical network units are presented to demonstrate the effectiveness of the proposed scheme.
Evaluation of image quality in terahertz pulsed imaging using test objects.
Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M
2002-11-07
As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.
Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M
2013-10-21
We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.
Tunable optical filters with wide wavelength range based on porous multilayers
NASA Astrophysics Data System (ADS)
Mescheder, Ulrich; Khazi, Isman; Kovacs, Andras; Ivanov, Alexey
2014-08-01
A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis.
Tunable optical filters with wide wavelength range based on porous multilayers.
Mescheder, Ulrich; Khazi, Isman; Kovacs, Andras; Ivanov, Alexey
2014-01-01
A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis.
Tunable optical filters with wide wavelength range based on porous multilayers
2014-01-01
A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis. PMID:25232293
A low jitter PLL clock used for phase change memory
NASA Astrophysics Data System (ADS)
Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li
2013-02-01
A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
Hansen, Michael G; Magoulakis, Evangelos; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan
2015-05-15
We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of 1×10(-13). The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability <1×10(-13) and inaccuracy 5×10(-13), using a frequency comb phase stabilized to an independent ultra-stable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth.
Hornsby, Benjamin W. Y.; Johnson, Earl E.; Picou, Erin
2011-01-01
Objectives The purpose of this study was to examine the effects of degree and configuration of hearing loss on the use of, and benefit from, information in amplified high- and low-frequency speech presented in background noise. Design Sixty-two adults with a wide range of high- and low-frequency sensorineural hearing loss (5–115+ dB HL) participated. To examine the contribution of speech information in different frequency regions, speech understanding in noise was assessed in multiple low- and high-pass filter conditions, as well as a band-pass (713–3534 Hz) and wideband (143–8976 Hz) condition. To increase audibility over a wide frequency range, speech and noise were amplified based on each individual’s hearing loss. A stepwise multiple linear regression approach was used to examine the contribution of several factors to 1) absolute performance in each filter condition and 2) the change in performance with the addition of amplified high- and low-frequency speech components. Results Results from the regression analysis showed that degree of hearing loss was the strongest predictor of absolute performance for low- and high-pass filtered speech materials. In addition, configuration of hearing loss affected both absolute performance for severely low-pass filtered speech and benefit from extending high-frequency (3534–8976 Hz) bandwidth. Specifically, individuals with steeply sloping high-frequency losses made better use of low-pass filtered speech information than individuals with similar low-frequency thresholds but less high-frequency loss. In contrast, given similar high-frequency thresholds, individuals with flat hearing losses received more benefit from extending high-frequency bandwidth than individuals with more sloping losses. Conclusions Consistent with previous work, benefit from speech information in a given frequency region generally decreases as degree of hearing loss in that frequency region increases. However, given a similar degree of loss, the configuration of hearing loss also affects the ability to use speech information in different frequency regions. Except for individuals with steeply sloping high-frequency losses, providing high-frequency amplification (3534–8976 Hz) had either a beneficial effect on, or did not significantly degrade, speech understanding. These findings highlight the importance of extended high-frequency amplification for listeners with a wide range of high-frequency hearing losses, when seeking to maximize intelligibility. PMID:21336138
Multitarget detection algorithm for automotive FMCW radar
NASA Astrophysics Data System (ADS)
Hyun, Eugin; Oh, Woo-Jin; Lee, Jong-Hun
2012-06-01
Today, 77 GHz FMCW (Frequency Modulation Continuous Wave) radar has strong advantages of range and velocity detection for automotive applications. However, FMCW radar brings out ghost targets and missed targets in multi-target situations. In this paper, in order to resolve these limitations, we propose an effective pairing algorithm, which consists of two steps. In the proposed method, a waveform with different slopes in two periods is used. In the 1st pairing processing, all combinations of range and velocity are obtained in each of two wave periods. In the 2nd pairing step, using the results of the 1st pairing processing, fine range and velocity are detected. In that case, we propose the range-velocity windowing technique in order to compensate for the non-ideal beat-frequency characteristic that arises due to the non-linearity of the RF module. Based on experimental results, the performance of the proposed algorithm is improved compared with that of the typical method.
Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID
2010-09-07
A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.
Frequency Selection for Multi-frequency Acoustic Measurement of Suspended Sediment
NASA Astrophysics Data System (ADS)
Chen, X.; HO, H.; Fu, X.
2017-12-01
Multi-frequency acoustic measurement of suspended sediment has found successful applications in marine and fluvial environments. Difficult challenges remain in regard to improving its effectiveness and efficiency when applied to high concentrations and wide size distributions in rivers. We performed a multi-frequency acoustic scattering experiment in a cylindrical tank with a suspension of natural sands. The sands range from 50 to 600 μm in diameter with a lognormal size distribution. The bulk concentration of suspended sediment varied from 1.0 to 12.0 g/L. We found that the commonly used linear relationship between the intensity of acoustic backscatter and suspended sediment concentration holds only at sufficiently low concentrations, for instance below 3.0 g/L. It fails at a critical value of concentration that depends on measurement frequency and the distance between the transducer and the target point. Instead, an exponential relationship was found to work satisfactorily throughout the entire range of concentration. The coefficient and exponent of the exponential function changed, however, with the measuring frequency and distance. Considering the increased complexity of inverting the concentration values when an exponential relationship prevails, we further analyzed the relationship between measurement error and measuring frequency. It was also found that the inversion error may be effectively controlled within 5% if the frequency is properly set. Compared with concentration, grain size was found to heavily affect the selection of optimum frequency. A regression relationship for optimum frequency versus grain size was developed based on the experimental results.
A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity
NASA Astrophysics Data System (ADS)
Sun, Xiankai; Zhang, Xufeng; Poot, Menno; Xiong, Chi; Tang, Hong X.
2012-11-01
We develop an all-integrated optoelectromechanical system that operates in the superhigh frequency band. This system is based on an ultrahigh-Q slotted photonic crystal (PhC) nanocavity formed by two PhC membranes, one of which is patterned with electrode and capacitively driven. The strong simultaneous electromechanical and optomechanical interactions yield efficient electrical excitation and sensitive optical transduction of the bulk acoustic modes of the PhC membrane. These modes are identified up to a frequency of 4.20 GHz, with their mechanical Q factors ranging from 240 to 1730. Directly linking signals in microwave and optical domains, such optoelectromechanical systems will find applications in microwave photonics in addition to those that utilize the electromechanical and optomechanical interactions separately.
NASA Astrophysics Data System (ADS)
Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.
1999-02-01
Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Haifeng; Nanjing Artillery Academy, Nanjing 211132; Liu Shaobin
2012-11-15
In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonicmore » band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.« less
Bleeker, H J; Lewin, P A
2000-01-01
A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-09-01
In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.
FinFET-based Miller encoder for UHF and SHF RFID application
NASA Astrophysics Data System (ADS)
Srinivasulu, Avireni; Sravanthi, G.; Sarada, M.; Pal, Dipankar
2018-01-01
This paper proposes a T-flip-flop and a Miller encoder design for ultra-high frequency and super high frequency, radio-frequency identification (RFID) application using FinFETs. Miller encoder is used in magnetic recording, in optical domain and also in RFID. Performance of the proposed circuit was examined by installing the model parameters of 20-nm FinFET (obtained from open source) on Cadence platform with +0.4 V supply rail at frequencies of 1, 2 and 10 GHz. Simulation results have confirmed that proposed Miller encoder offers a simpler design with reduced transistor count and gives lower power dissipation, higher frequency range of operation at lower supply rail as compared to other candidate designs. Proposed design also promises less propagation delay.
Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.
2016-01-01
Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040
NASA Astrophysics Data System (ADS)
Hikosaka, Tomoyuki; Miyamoto, Masahiro; Yamada, Mamoru; Morita, Tadashi
1993-05-01
It is very important to obtain saturated magnetic properties from reverse saturation (full B-H curve) of ferromagnetic cores to design magnetic switches which are used in high power pulse generators. The magnetic switch is excited in the high frequency range (˜MHz). But, it is extremely difficult to measure full B-H curve of large toroidal cores of which diameter is some hundreds of mm, using the conventional ac excitation method at high frequency. The main reason is poor output ability of power source for core excitation. Therefore we have developed pulse excitation method to get high frequency magnetic properties. The measurement circuit has two sections. One is excitation part composed by charge transfer circuit. The others is reset part for adjustment initial point on direct B-H curve. The sample core is excited by sinusoidal voltage pulse expressed as 1-cos(2π ft). Excitation frequency f is decided by the constants of the elements of the charge transfer circuit. The change of magnetic flux density ΔB and magnetic field H are calculated, respectively, by measuring the induced voltage of search coil and magnetizing current. ΔB-H characteristics from reverse saturation of four different kinds of large cores were measured in frequency range from 50 kHz to 1 MHz. Core loss increases in proportion to Nth powers of the frequency, where the index N depends on each of cores. N is about 0.5 in case of winding ribbon cores, such as Fe-based amorphous, Co-based amorphous, and Finemet, but N is about 0.2 in case of the Ni-Zn ferrite.
Development of lead-free single-element ultrahigh frequency (170 – 320 MHz) ultrasonic transducers
Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K. Kirk
2013-01-01
This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320 MHz. The center frequency of > 300 MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured −6 dB bandwidth of the transducers ranged from 35 to 64 %. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from −50 to −60 dB. In addition to the pulse-echo measurement, a 6-μm tungsten wire phantom was also imaged with a 205 MHz transducer to demonstrate the imaging capability. The measured −6 dB axial and lateral resolutions were found to be 12 μm and 50 μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher. PMID:23485349
Asynchronous signal-dependent non-uniform sampler
NASA Astrophysics Data System (ADS)
Can-Cimino, Azime; Chaparro, Luis F.; Sejdić, Ervin
2014-05-01
Analog sparse signals resulting from biomedical and sensing network applications are typically non-stationary with frequency-varying spectra. By ignoring that the maximum frequency of their spectra is changing, uniform sampling of sparse signals collects unnecessary samples in quiescent segments of the signal. A more appropriate sampling approach would be signal-dependent. Moreover, in many of these applications power consumption and analog processing are issues of great importance that need to be considered. In this paper we present a signal dependent non-uniform sampler that uses a Modified Asynchronous Sigma Delta Modulator which consumes low-power and can be processed using analog procedures. Using Prolate Spheroidal Wave Functions (PSWF) interpolation of the original signal is performed, thus giving an asynchronous analog to digital and digital to analog conversion. Stable solutions are obtained by using modulated PSWFs functions. The advantage of the adapted asynchronous sampler is that range of frequencies of the sparse signal is taken into account avoiding aliasing. Moreover, it requires saving only the zero-crossing times of the non-uniform samples, or their differences, and the reconstruction can be done using their quantized values and a PSWF-based interpolation. The range of frequencies analyzed can be changed and the sampler can be implemented as a bank of filters for unknown range of frequencies. The performance of the proposed algorithm is illustrated with an electroencephalogram (EEG) signal.
Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.
Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2013-02-11
In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.
Latitudinal beaming of Jupiter's low frequency radio emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, J.K.; Desch, M.D.; Kaiser, M.L.
1979-09-01
By comparing Rae 1 and Imp 6 satelite measurements of Jupiter's radio emissions near 1 MHz with recent Voyager 1 and 2 observations in the same frequency range it is now possible to study the properties of the low frequency radiation pattern over a 10/sup 0/ range of latitudes with respect to the Jovian rotation equator. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspect of earlier ground-based measurements that have been used to infer a sharp beaming pattern for the decameter wavelength emissions. We find marked, systematic changes inmore » the statistical occurrence probability distributions with system III central meridian longitude as the Jovigraphic latitude of the observer changes over this range. Moreover, simultaneous observations by the two Voyager spacecraft, which are separated by up to 3/sup 0/ in Jovigraphic latitude, suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet.« less
Autonomous and driven dynamics of spin torque nano-oscillators
NASA Astrophysics Data System (ADS)
Urazhdin, Sergei
2012-02-01
Understanding the dynamical properties of autonomous spin torque nano-oscillators (STNO) and their response to external perturbations is important for their applications as nanoscale microwave sources. We used spectroscopic measurements to study the dynamical characteristics of nanopillar- and point contact-based STNOs incorporating a microstrip in close proximity to the active magnetic layer. By applying microwave current at frequency fext to the microstrip, we were able to generate large microwave fields of more than 30 Oe rms at the location of STNO. We demonstrate that for a wide range of fext, STNO exhibits multiple synchronization regimes with integer and non-integer rational ratios between fext and the oscillation frequency f. We show that the synchronization ranges are determined by the symmetry of the oscillation orbit and the orientation of the driving field relative to the symmetry axis of the orbit. We observe synchronization hysteresis, i.e. a dependence of the synchronization limits on the dynamical history caused by the nonlinearity of STNO. We also show that the oscillation can be parametrically excited in the subcritical regime of STNO by a microwave field at twice the frequency of the oscillation. By measuring the threshold and the frequency range of parametric excitation, we determine damping, spin-polarization efficiency, and coupling to the microwave signal. In addition, by measuring the frequency range of parametric synchronization in the auto-oscillation regime, we determine the dynamic nonlinearity of the nanomagnet. Thus, analysis of the driven oscillations provides complete information about the dynamical characteristics of STNO. Finally, we discuss several unusual dynamical behaviors of STNO caused by their strong nonlinearity.
NASA Astrophysics Data System (ADS)
Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo
2017-10-01
We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.
A contact vibration measurement sensor based on a distributed Bragg reflector fiber laser
NASA Astrophysics Data System (ADS)
Jin, Jie; Fang, Gan; Lyu, Chengang; Zhang, Shuai
2017-12-01
A new contact method to measure vibrations with a frequency range of about 30-110 Hz by a distributed Bragg reflector (DBR) fiber laser sensor, based on a beat frequency modulation, has been proposed. In order to demonstrate the plausibility for a DBR fiber sensor to detect vibrations lower than 110 Hz without any complex structures, it is encapsulated in a rectangular slice composed of an epoxy resin glue, with a Young’s modulus of about 2.9 GPa. In experiments, the packaged DBR fiber sensor is placed on a vibration platform to sense the vibration, with a commercial magnet-electrical vibration velocity transducer as a reference. Experimental results indicate that the single DBR fiber laser is able to measure the low-frequency vibration with a few tens of Hertz and several microns of amplitude, offering potential for a low-frequency vibration measurement.
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Lee, André; Voget, Jakob; Furuya, Shinichi; Morise, Masanori; Altenmüller, Eckart
2016-05-01
Task-specific tremor in musicians is an involuntary oscillating muscular activity mostly of the hand or the embouchure, which predominantly occurs while playing the instrument. In contrast to arm or hand tremors, which have been examined and objectified based on movement kinematics and muscular activity, embouchure tremor has not yet been investigated. To quantify and describe embouchure tremor we analysed sound production and investigated the fluctuation of the time-varying fundamental frequency of sustained notes. A comparison between patients with embouchure tremor and healthy controls showed a significantly higher fluctuation of the fundamental frequency for the patients in the high pitch with a tremor frequency range between 3 and 8 Hz. The present findings firstly provide further information about a scarcely described movement disorder and secondly further evaluate a new quantification method for embouchure tremor, which has recently been established for embouchure dystonia.
A new viscosupplement based on partially hydrophobic hyaluronic acid: a comparative study.
Finelli, Ivana; Chiessi, Ester; Galesso, Devis; Renier, Davide; Paradossi, Gaio
2011-01-01
A novel partially hydrophobized derivative of hyaluronic acid (HYADD® 4), containing a low number of C16 side-chains per polysaccharide backbone, provides injectable hydrogels stabilized by side-chain hydrophobic interactions. The rheological properties of Hymovis®, a physical hydrogel based on the hyaluronic acid derivative HYADD® 4, were evaluated using as reference a solution of the parent natural polysaccharide, hyaluronic acid. The rheological measurements were performed both in flow and oscillation regimes at the physiological frequency values of the knee, typically spanning the range from 0.5 Hz (walking frequency) to 3 Hz (running frequency). Moreover, the viscoelastic features of Hymovis® were compared with the market-available viscosupplementation products in view of its use in joint diseases.The different behavior of the investigated materials in crossover frequency measurements and in structure recovery experiments can be explained on the basis of the structural and dynamic properties of the polymeric systems.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
Volosyak, Ivan; Valbuena, Diana; Lüth, Thorsten; Malechka, Tatsiana; Gräser, Axel
2011-06-01
Brain-computer interface (BCI) systems use brain activity as an input signal and enable communication without movement. This study is a successor of our previous study (BCI demographics I) and examines correlations among BCI performance, personal preferences, and different subject factors such as age or gender for two sets of steady-state visual evoked potential (SSVEP) stimuli: one in the medium frequency range (13, 14, 15 and 16 Hz) and another in the high-frequency range (34, 36, 38, 40 Hz). High-frequency SSVEPs (above 30 Hz) diminish user fatigue and risk of photosensitive epileptic seizures. Results showed that most people, despite having no prior BCI experience, could use the SSVEP-based Bremen-BCI system in a very noisy field setting at a fair. Results showed that demographic parameters as well as handedness, tiredness, alcohol and caffeine consumption, etc., have no significant effect on the performance of SSVEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only five out of total 86 participants indicated change in fatigue during the experiment. 84 subjects performed with a mean information transfer rate of 17.24 ±6.99 bit/min and an accuracy of 92.26 ±7.82% with the medium frequency set, whereas only 56 subjects performed with a mean information transfer rate of 12.10 ±7.31 bit/min and accuracy of 89.16 ±9.29% with the high-frequency set. These and other demographic analyses may help identify the best BCI for each user.
NASA Astrophysics Data System (ADS)
Vodopyanov, Konstantin
2014-05-01
I will present a new technique for extending frequency combs to the highly desirable yet difficult-to-achieve mid-IR spectral range. The technique is based on subharmonic optical parametric oscillation (OPO) that can be considered as a reverse of the second harmonic generation process. The frequency comb of a pump laser is transposed to half of its central frequency and simultaneously spectrally augmented, thanks to an enormous gain bandwidth of the OPO near degeneracy, as well as due to massive cross-coupling between the laser and the OPO frequency comb components. Using ultrafast erbium (1.56 microns) or thulium (2 microns)-based fiber lasers as a pump and using thin, sub-mm-long, quasi phase-matched lithium niobate or gallium arsenide crystals, we produce frequency combs centered correspondingly at 3.1 or 4 micron subharmonic of the pump frequency. With the properly managed OPO cavity group velocity dispersion, octave-wide frequency combs spanning 2.5 - 6 micron range were achieved. Due to the doubly-resonant operation, the threshold of such a system is low (typically 10 mW) and by several experiments including measuring frequency beats between the OPO comb teeth and a narrow-linewidth CW laser and by interfering the outputs of two identical but distinct OPOs pumped by the same laser, we established that the frequency comb from a subharmonic OPO is phase-locked to that of the pump laser. Pulse duration measurements show that for the optimal intracavity dispersion conditions, we generate sub 5-cycle pulses at the subharmonic of the pump. I will also talk about applications of our mid-IR frequency combs to trace gas detection, where part-per-billion sensitivity of molecular detection is achieved as well as about Fourier spectroscopy using a dual-comb system consisting of two phase-locked lasers. I thank NASA, Office of Naval Research, Air Force Office of Scientific Research, Agilent Technologies, Sanofi- Aventis, Stanford University Bio-X, Stanford Medical School, and Stanford Woods Institute for their financial support.
Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor
Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan
2016-01-01
In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety. PMID:27304958
Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.
Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan
2016-06-13
In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.
NASA Astrophysics Data System (ADS)
Gu, Changgui; Yang, Huijie
2017-06-01
The rhythms of physiological and behavioral activities in mammals, which are regulated by the main clock suprachiasmatic nucleus (SCN) in the brain, can not be only synchronized to the natural 24 h light-dark cycle, but also to cycles with artificial periods. The range of the artificial periods that the animal can be synchronized to is called entrainment range. In the absence of the light-dark cycle, the animal can also maintain the circadian rhythm with an endogenous period close to 24 h. Experiments found that the entrainment range is not symmetrical with respect to the endogenous period. In the present study, an explanation is given for the asymmetry based on a Kuramoto model which describes the neuronal network of the SCN. Our numerical simulations and theoretical analysis show that the asymmetry results from the difference in the intrinsic frequencies between two subgroups of the SCN, as well as the entrainment range is affected by the difference.
Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator
Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca
2015-01-01
The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900
A 0.8-4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications
NASA Astrophysics Data System (ADS)
Yuanxin, Zhao; Yuanpei, Gao; Wei, Li; Ning, Li; Junyan, Ren
2015-01-01
A 0.8-4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications is successfully realized by the 130 nm CMOS process. A series of novel methods are proposed in this paper. Two band DCOs with high frequency resolution are utilized to cover the frequency band of interest, which is as wide as 2.5 to 5 GHz. An overflow counter is proposed to prevent the “pulse-swallowing” phenomenon so as to significantly reduce the locking time. A NTW-clamp digital module is also proposed to prevent the overflow of the loop control word. A modified programmable divider is presented to prevent the failure operation at the boundary. The measurement results show that the output frequency range of this frequency synthesizer is 0.8-4.2 GHz. The locking time achieves a reduction of 84% at 2.68 GHz. The best in-band and out-band phase noise performances have reached -100 dBc/Hz, and -125 dBc/Hz respectively. The lowest reference spur is -58 dBc.
Analysis of Scattering from Archival Pulsar Data using a CLEAN-based Method
NASA Astrophysics Data System (ADS)
Tsai, -Wei, Jr.; Simonetti, John H.; Kavic, Michael
2017-02-01
In this work, we adopted a CLEAN-based method to determine the scatter time, τ, from archived pulsar profiles under both the thin screen and uniform medium scattering models and to calculate the scatter time frequency scale index α, where τ \\propto {ν }α . The value of α is -4.4, if a Kolmogorov spectrum of the interstellar medium turbulence is assumed. We deconvolved 1342 profiles from 347 pulsars over a broad range of frequencies and dispersion measures. In our survey, in the majority of cases the scattering effect was not significant compared to pulse profile widths. For a subset of 21 pulsars scattering at the lowest frequencies was large enough to be measured. Because reliable scatter time measurements were determined only for the lowest frequency, we were limited to using upper limits on scatter times at higher frequencies for the purpose of our scatter time frequency slope estimation. We scaled the deconvolved scatter time to 1 GHz assuming α =-4.4 and considered our results in the context of other observations which yielded a broad relation between scatter time and dispersion measure.
A physically based analytical model of flood frequency curves
NASA Astrophysics Data System (ADS)
Basso, S.; Schirmer, M.; Botter, G.
2016-09-01
Predicting magnitude and frequency of floods is a key issue in hydrology, with implications in many fields ranging from river science and geomorphology to the insurance industry. In this paper, a novel physically based approach is proposed to estimate the recurrence intervals of seasonal flow maxima. The method links the extremal distribution of streamflows to the stochastic dynamics of daily discharge, providing an analytical expression of the seasonal flood frequency curve. The parameters involved in the formulation embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is linked to the antecedent wetness condition in the watershed, needs to be calibrated on the observed maxima. The performance of the method is discussed through a set of applications in four rivers featuring heterogeneous daily flow regimes. The model provides reliable estimates of seasonal maximum flows in different climatic settings and is able to capture diverse shapes of flood frequency curves emerging in erratic and persistent flow regimes. The proposed method exploits experimental information on the full range of discharges experienced by rivers. As a consequence, model performances do not deteriorate when the magnitude of events with return times longer than the available sample size is estimated. The approach provides a framework for the prediction of floods based on short data series of rainfall and daily streamflows that may be especially valuable in data scarce regions of the world.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong
2016-12-01
Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.
Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan
2016-05-05
Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.
Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung
2016-12-13
Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64-0.82 THz and 0.96-1.3 THz with an insertion loss ranging from -3.9 to -10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves.
Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung
2016-01-01
Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64–0.82 THz and 0.96–1.3 THz with an insertion loss ranging from −3.9 to −10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves. PMID:27958358
Resolution of Forces and Strain Measurements from an Acoustic Ground Test
NASA Technical Reports Server (NTRS)
Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.
2013-01-01
The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.
The LWA1 Low Frequency Sky Survey
NASA Astrophysics Data System (ADS)
Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration
2015-01-01
The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.
Schmuziger, Nicolas; Probst, Rudolf; Smurzynski, Jacek
2004-04-01
The purposes of the study were: (1) To evaluate the intrasession test-retest reliability of pure-tone thresholds measured in the 0.5-16 kHz frequency range for a group of otologically healthy subjects using Sennheiser HDA 200 circumaural and Etymotic Research ER-2 insert earphones and (2) to compare the data with existing criteria of significant threshold shifts related to ototoxicity and noise-induced hearing loss. Auditory thresholds in the frequency range from 0.5 to 6 kHz and in the extended high-frequency range from 8 to 16 kHz were measured in one ear of 138 otologically healthy subjects (77 women, 61 men; mean age, 24.4 yr; range, 12-51 yr) using HDA 200 and ER-2 earphones. For each subject, measurements of thresholds were obtained twice for both transducers during the same test session. For analysis, the extended high-frequency range from 8 to 16 kHz was subdivided into 8 to 12.5 and 14 to 16 kHz ranges. Data for each frequency and frequency range were analyzed separately. There were no significant differences in repeatability for the two transducer types for all frequency ranges. The intrasession variability increased slightly, but significantly, as frequency increased with the greatest amount of variability in the 14 to 16 kHz range. Analyzing each individual frequency, variability was increased particularly at 16 kHz. At each individual frequency and for both transducer types, intrasession test-retest repeatability from 0.5 to 6 kHz and 8 to 16 kHz was within 10 dB for >99% and >94% of measurements, respectively. The results indicated a false-positive rate of <3% in reference to the criteria for cochleotoxicity for both transducer types. In reference to the Occupational Safety and Health Administration Standard Threshold Shift criteria for noise-induced hazards, the results showed a minor false-positive rate of <1% for the HDA 200. Repeatability was similar for both transducer types. Intrasession test-retest repeatability from 0.5 to 12.5 kHz at each individual frequency including the frequency range susceptible to noise-induced hearing loss was excellent for both transducers. Repeatability was slightly, but significantly poorer in the frequency range from 14 to 16 kHz compared with the frequency ranges from 0.5 to 6 or 8 to 12.5 kHz. Measurements in the extended high-frequency range from 8 to 14 kHz, but not up to 16 kHz, may be recommended for monitoring purposes.
Effects of spatial frequency bands on perceptual decision: it is not the stimuli but the comparison.
Rotshtein, Pia; Schofield, Andrew; Funes, María J; Humphreys, Glyn W
2010-08-24
Observers performed three between- and two within-category perceptual decisions with hybrid stimuli comprising low and high spatial frequency (SF) images. We manipulated (a) attention to, and (b) congruency of information in the two SF bands. Processing difficulty of the different SF bands varied across different categorization tasks: house-flower, face-house, and valence decisions were easier when based on high SF bands, while flower-face and gender categorizations were easier when based on low SF bands. Larger interference also arose from response relevant distracters that were presented in the "preferred" SF range of the task. Low SF effects were facilitated by short exposure durations. The results demonstrate that decisions are affected by an interaction of task and SF range and that the information from the non-attended SF range interfered at the decision level. A further analysis revealed that overall differences in the statistics of image features, in particular differences of orientation information between two categories, were associated with decision difficulty. We concluded that the advantage of using information from one SF range over another depends on the specific task requirements that built on the differences of the statistical properties between the compared categories.
Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic
NASA Astrophysics Data System (ADS)
Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.
2018-02-01
Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.
Coherent dual-frequency lidar system design for distance and speed measurements
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi
2018-01-01
Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.
Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.
2011-01-01
We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068
New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke
2010-12-01
A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.
Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M.
2013-01-01
Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs. PMID:24688703
Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M
2013-01-01
Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs.
Vaxenburg, Roman; Wyche, Isis; Svoboda, Karel; Efros, Alexander L.
2018-01-01
Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks. PMID:29584719
Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H
2010-08-01
A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.
NASA Astrophysics Data System (ADS)
Cheng, Yong-Zhi; Nie, Yan; Gong, Rong-Zhou
2013-10-01
We present the design of a wide-band metamaterial absorber, based on fractal frequency selective surface and resistive films. The total thickness is only 0.8 mm and shows a polarization-insensitive and wide-angle strong absorption. Due to the multiband resonance properties of the Minkowski fractal loop structure and Ohmic loss properties of resistive films, a strongly absorptive bandwidth of about 19 GHz is demonstrated numerically in the range 6.51-25.42 GHz. This design provides an effective and feasible way to construct a broad-band absorber in stealth technology.
Modeling and simulation of soft sensor design for real-time speed and position estimation of PMSM.
Omrane, Ines; Etien, Erik; Dib, Wissam; Bachelier, Olivier
2015-07-01
This paper deals with the design of a speed soft sensor for permanent magnet synchronous motor. At high speed, model-based soft sensor is used and it gives excellent results. However, it fails to deliver satisfactory performance at zero or very low speed. High-frequency soft sensor is used at low speed. We suggest to use a model-based soft sensor together with the high-frequency soft sensor to overcome the limitations of the first one at low speed range. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meyer, Martin H. F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Jürgen; Keusgen, Michael
2007-04-01
A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP ® polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4-10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.
NASA Astrophysics Data System (ADS)
Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E.
2017-03-01
We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4-20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, Christa; Agner, Josef A.; Merkt, Frederic
2013-06-28
A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4{sup Prime }-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated inmore » a study of 33f Leftwards-Arrow nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of {approx}3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of {sup 129}Xe and {sup 131}Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.« less
Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-06-15
An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.
ERIC Educational Resources Information Center
Porritt, Laura L.; Zinser, Michael C.; Bachorowski, Jo-Anne; Kaplan, Peter S.
2014-01-01
F[subscript 0]-based acoustic measures were extracted from a brief, sentence-final target word spoken during structured play interactions between mothers and their 3- to 14-month-old infants and were analyzed based on demographic variables and DSM-IV Axis-I clinical diagnoses and their common modifiers. F[subscript 0] range (?F[subscript 0]) was…
NASA Astrophysics Data System (ADS)
Sun, Q. M.; Melnikov, A.; Mandelis, A.
2015-06-01
Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorpe, J. I.; Livas, J.; Maghami, P.
Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priorimore » knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.« less
NASA Astrophysics Data System (ADS)
Punge, H. J.; Bedka, K. M.; Kunz, M.; Reinbold, A.
2017-12-01
This article presents a hail frequency estimation based on the detection of cold overshooting cloud tops (OTs) from the Meteosat Second Generation (MSG) operational weather satellites, in combination with a hail-specific filter derived from the ERA-INTERIM reanalysis. This filter has been designed based on the atmospheric properties in the vicinity of hail reports registered in the European Severe Weather Database (ESWD). These include Convective Available Potential Energy (CAPE), 0-6-km bulk wind shear and freezing level height, evaluated at the nearest time step and interpolated from the reanalysis grid to the location of the hail report. Regions highly exposed to hail events include Northern Italy, followed by South-Eastern Austria and Eastern Spain. Pronounced hail frequency is also found in large parts of Eastern Europe, around the Alps, the Czech Republic, Southern Germany, Southern and Eastern France, and in the Iberic and Apennine mountain ranges.
Highly efficient X-range AlGaN/GaN power amplifier
NASA Astrophysics Data System (ADS)
Tural'chuk, P. A.; Kirillov, V. V.; Osipov, P. E.; Vendik, I. B.; Vendik, O. G.; Parnes, M. D.
2017-09-01
The development of microwave power amplifiers (PAs) based on transistors with an AlGaN/GaN heterojunction are discussed in terms of the possible enhancement of their efficiency. The main focus is on the synthesis of the transforming circuits, which ensure the reactive load at the second- and third-harmonic frequencies and complex impedance at the fundamental frequency. This makes it possible to optimize the complex operation mode of a PA; i.e., to reduce the scattering power and enhance the efficiency. A microwave PA based on the Schottky-barrier-gate field-effect transistor with 80 electrodes based on the GaN pHEMT transistor with a gate length of 0.25 nm and a gate width of 125 nm is experimentally investigated. The amplifier has a pulse output power of 35 W and a power-added efficiency of at least 50% at a working frequency of 9 GHz.
On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers
NASA Technical Reports Server (NTRS)
Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)
2015-01-01
A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
NASA Astrophysics Data System (ADS)
Henning, G. Bruce
2004-04-01
A modification and extension of Kortum and Geisler's model [Vision Res. 35, 1595 (1995)] of early visual nonlinearities that incorporates an expansive nonlinearity (consistent with neurophysiological findings [Vision Res. 35, 2725 (1995)], a normalization based on a local average retinal illumination, similar to Mach's proposal [F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, Calif., 1965)], and a subsequent compression suggested by Henning et al. [J. Opt. Soc. Am A 17, 1147 (2000)] captures a range of hitherto unexplained interactions between a sinusoidal grating of low spatial frequency and a contrast-modulated grating 2 octaves higher in spatial frequency.
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
Photonic measurement of microwave frequency based on phase modulation.
Zhou, Junqiang; Fu, Songnian; Shum, Perry Ping; Aditya, Sheel; Xia, Li; Li, Jianqiang; Sun, Xiaoqiang; Xu, Kun
2009-04-27
A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than +/-0.07 GHz.
2009-04-16
the transmitted waveform, then spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response represented...400 Frequence (MHz) Figure 5.4: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response...600 Frequence (MHz) Figure 5.7: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response
Probe-Independent EEG Assessment of Mental Workload in Pilots
2015-05-18
Teager Energy Operator - Frequency Modulated Component - z- score 10.94 17.46 10 Hurst Exponent - Discrete Second Order Derivative 7.02 17.06 D. Best...Teager Energy Operator– Frequency Modulated Component – Z-score 45. Line Length – Time Series 46. Line Length – Time Series – Z-score 47. Hurst Exponent ...Discrete Second Order Derivative 48. Hurst Exponent – Wavelet Based Adaptation 49. Hurst Exponent – Rescaled Range 50. Hurst Exponent – Discrete
A broadband damper design inspired by cartilage-like relaxation mechanisms
NASA Astrophysics Data System (ADS)
Liu, Lejie; Usta, Ahmet D.; Eriten, Melih
2017-10-01
In this study, we introduce a broadband damper design inspired by the cartilage-like relaxation mechanisms. In particular, we study broadband (static to 10 kHz) dissipative properties of model cartilage systems by probe-based static and dynamic indentation, and validate that fractional Zener models can simulate the empirical data up to a desirable accuracy within the frequency range of interest. Utilizing these observations, we design a composite damper design where a poroelastic layer is sandwiched between two hard materials, and load transfer occurs across interfaces with multiple length scales. Modeling those interfaces with fractional Zener elements in parallel configuration, and manipulating the distribution of the Zener elements across different peak relaxation frequencies, we obtain a relatively constant loss factor within an unprecedented frequency range (3-3 kHz). We also discuss how these findings can be employed in a practical damping design.
Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes
NASA Astrophysics Data System (ADS)
Ibrahim, Suriani; Mohd Yasin, Siti Mariah; Nee, Ng Meng; Ahmad, Roslina; Johan, Mohd Rafie
2012-03-01
In this research, thin films of poly(ethylene oxide) (PEO) blend with lithium hexafluorophosphate (LiPF) salt and ethylene carbonate (EC) as plasticiser and carbon nanotube (CNT) as filler, are prepared using solution casting method. The conductivity and dielectric response of the nanocomposite polymer electrolyte systems are studied within the broad frequency range of 5 Hz-5 MHz and within a temperature range of 298-373 K. The conductivity-temperature plots are observed to be of Arrhenius nature. The dielectric behaviour is analysed using the dielectric permittivity (ɛr and ɛi), loss tangent (tanδ) and electric modulus (Mi and Mr) of the samples. It is observed that the dielectric permittivity rises sharply towards low frequencies due to electrode polarisation effects. The maxima of the loss tangent (tanδ) shifts towards higher frequencies and the height of the peak increases with increasing temperature.
Drew, R; Sapir, S
1995-06-01
Nineteen trained soprano singers aged 18-30 years vocalized tasks designed to assess average speaking fundamental frequency (SFF) during spontaneous speaking and reading. Vocal range and perceptual characteristics while singing with low intensity and high frequency were also assessed, and subjects completed a survey of vocal habits/symptoms. Recorded signals were digitized prior to being analyzed for SFF using the Kay Computerized Speech Lab program. Subjects were assigned to a normal voice or impaired voice group based on ratings of perceptual tasks and survey results. Data analysis showed group differences in mean SFF, no differences in vocal range, higher mean SFF values for reading than speaking, and 58% ability to perceive speaking in low pitch. The role of speaking in too low pitch as causal for vocal symptoms and need for voice classification differentiation in vocal performance studies are discussed.
New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers
Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong
2015-01-01
According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046
NASA Astrophysics Data System (ADS)
Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry
2018-03-01
The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.
Ultrasonic Leak Detection System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)
1998-01-01
A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.
Methods for estimating magnitude and frequency of floods in Montana based on data through 1983
Omang, R.J.; Parrett, Charles; Hull, J.A.
1986-01-01
Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Cento, Michele; Scrocca, Roberto; Coppola, Michele; Rossi, Maurizio; Di Giuseppe, Riccardo; Battisti, Corrado; Luiselli, Luca; Amori, Giovanni
2018-05-01
Although occurrence-based listing methods could provide reliable lists of species composition for a site, the effective reliability of this method to provide more detailed information about species frequency (and abundance) has been rarely tested. In this paper, we compared the species frequencies obtained for the same set of species-rich sites (wetlands of central Italy) from two different methods: McKinnon lists and line transects. In all sites we observed: (i) rapid cumulating curves of line transect abundance frequencies toward the asymptote represented by the maximum value in McKinnon occurrence frequency; (ii) a large amount of species having a low frequency with line transect method showing a high range of variation in frequency obtained by McKinnon lists; (iii) a set of species having a subdominant (>0.02-<0.05) and dominant species (>0.05) frequency with line transect showed all the highest value in McKinnon frequency. McKinnon lists provides only a coarse-grained proxy of species frequency of individuals distinguishing only between common species (having the highest values of McKinnon frequency) and rare species (all the other species). Although McKinnon lists have some points of strength, this method does not discriminate the frequencies inside the subset of common species (sub-dominant and dominant species). Therefore, we suggest a cautionary approach when McKinnon frequencies should be used to obtain complex univariate metrics of diversity.
Electric field responsive origami structures using electrostriction-based active materials
NASA Astrophysics Data System (ADS)
Ahmed, Saad; Arrojado, Erika; Sigamani, Nirmal; Ounaies, Zoubeida
2015-04-01
The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.
Properties of Silica-Based Aerogel Substrates and Application to C-Band Circular Patch Antenna
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Mohamed; Haraz, Osama M.; Ashraf, Nadeem; Zia, Muhammad Fakhar; Khaled, Usama; Elsahfiey, Ibrahim; Alshebeili, Saleh; Sebak, Abdel Razik
2018-03-01
Silica aerogel is a lightweight and low-permittivity dielectric material that possesses attractive features for use as an antenna substrate. In this paper, we characterize the radio frequency and microwave dielectric permittivity properties of substrates composed of silica aerogel encapsulated in polymer aerogel in the frequency range from 10 MHz to 8.5 GHz. Characterized silica-based aerogel substrates show relative permittivity values varying between 1.055 and 1.25 and loss tangent values ranging from 5.08 × 10-4 to 0.0206. Silica-based aerogel substrates thus have the potential of use in designing antennas with high gain and large bandwidth. Validation is presented by characterizing the performance of a manufactured C-band circular patch antenna on silica-based aerogel substrate. The performance is also compared to a design that uses Rogers Duroid RT5880 substrate. The results reveal that the silica aerogel substrate antenna at 7.2 GHz provides 1.5 dB increase in gain, 88% enhancement in bandwidth and 68.5% reduction in mass, in comparison with the antenna on RT5880 substrate.
Magnetic sensor for building structural vibrations.
García, Alfonso; Morón, Carlos; Tremps, Enrique
2014-02-05
This paper shows a new displacement-to-frequency transducer based on the variation of a coil inductance when a magnetic core is partially or completely inserted inside. This transducer is based on a Colpitts oscillator due its low manufacturing price, behavior and immunity to noise. A tank circuit with a configuration in parallel was used because it can be employed at lower frequencies and it enables it to make a direct analysis. The sensor has a dynamic range equal to the length of the coil. The cores can exchange sensors (coils with its ferromagnetic core) using the same electronic measuring system. In this way, with only an electronic circuit, the core sensor determines the measurement range. The obtained resolution is higher than 1/100,000, and the sensor also allows the measurement and knowing in real time the effect of vibration, thermal expansion, referred overload movements, etc.., that can occur in the structural elements of a building.
Phase-synchroniser based on gm-C all-pass filter chain with sliding mode control
NASA Astrophysics Data System (ADS)
Mitić, Darko B.; Jovanović, Goran S.; Stojčev, Mile K.; Antić, Dragan S.
2015-03-01
Phase-synchronisers have many applications in VLSI circuit designs. They are used in CMOS RF circuits including phase (de)modulators, phase recovery circuits, multiphase synthesis, etc. In this article, a phase-synchroniser based on gm-C all-pass filter chain with sliding mode control is presented. The filter chain provides good controllable delay characteristics over the full range of phase and frequency regulation, without deterioration of input signal amplitude and waveform, while the sliding mode control enables us to achieve fast and predetermined finite locking time. IHP 0.25 µm SiGe BiCMOS technology has been used in design and verification processes. The circuit operates in the frequency range from 33 MHz up to 150 MHz. Simulation results indicate that it is possible to achieve very fast synchronisation time period, which is approximately four time intervals of the input signal during normal operation, and 20 time intervals during power-on.
Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide
NASA Astrophysics Data System (ADS)
Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu
2018-05-01
A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.
Magnetic Sensor for Building Structural Vibrations
García, Alfonso; Morón, Carlos; Tremps, Enrique
2014-01-01
This paper shows a new displacement-to-frequency transducer based on the variation of a coil inductance when a magnetic core is partially or completely inserted inside. This transducer is based on a Colpitts oscillator due its low manufacturing price, behavior and immunity to noise. A tank circuit with a configuration in parallel was used because it can be employed at lower frequencies and it enables it to make a direct analysis. The sensor has a dynamic range equal to the length of the coil. The cores can exchange sensors (coils with its ferromagnetic core) using the same electronic measuring system. In this way, with only an electronic circuit, the core sensor determines the measurement range. The obtained resolution is higher than 1/100,000, and the sensor also allows the measurement and knowing in real time the effect of vibration, thermal expansion, referred overload movements, etc.., that can occur in the structural elements of a building. PMID:24504104
Code of Federal Regulations, 2013 CFR
2013-10-01
... intended for communications with space stations or with other Earth stations by means of one or more other...) FAA. Federal Aviation Administration. (21) FCC. Federal Communications Commission. (22) Frequency... (extremely high frequency). The frequency range 30-300 GHz. (2) HF (high frequency). The frequency range 3-30...
Code of Federal Regulations, 2011 CFR
2011-10-01
... intended for communications with space stations or with other Earth stations by means of one or more other...) FAA. Federal Aviation Administration. (21) FCC. Federal Communications Commission. (22) Frequency... (extremely high frequency). The frequency range 30-300 GHz. (2) HF (high frequency). The frequency range 3-30...
Code of Federal Regulations, 2014 CFR
2014-10-01
... intended for communications with space stations or with other Earth stations by means of one or more other...) FAA. Federal Aviation Administration. (21) FCC. Federal Communications Commission. (22) Frequency... (extremely high frequency). The frequency range 30-300 GHz. (2) HF (high frequency). The frequency range 3-30...
Code of Federal Regulations, 2012 CFR
2012-10-01
... intended for communications with space stations or with other Earth stations by means of one or more other...) FAA. Federal Aviation Administration. (21) FCC. Federal Communications Commission. (22) Frequency... (extremely high frequency). The frequency range 30-300 GHz. (2) HF (high frequency). The frequency range 3-30...
Measurement Of Trailing Edge Noise using Directional Array and Coherent Output Power Methods
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.
2002-01-01
The use of a directional array of microphones for the measurement of trailing edge (TE) noise is described. The capabilities of this method are evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on the cross spectral analysis of output signals from a pair of microphones (COP method). Advantages and limitations of both methods are examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.
High resolution CMOS capacitance-frequency converter for biosensor applications
NASA Astrophysics Data System (ADS)
Ghoor, I. S.; Land, K.; Joubert, T.-H.
2016-02-01
This paper presents the design of a low-complexity, linear and sub-pF CMOS capacitance-frequency converter for reading out a capacitive bacterial bio/sensors with the endeavour of creating a universal bio/sensor readout module. Therefore the priority design objectives are a high resolution as well as an extensive dynamic range. The circuit is based on a method which outputs a digital frequency signal directly from a differential capacitance by the accumulation of charges produced by repetitive charge integration and charge preservation1. A prototype has been designed for manufacture in the 0.35 μm, 3.3V ams CMOS technology. At a 1MHz clock speed, the most pertinent results obtained for the designed converter are: (i) power consumption of 1.37mW; (ii) a resolution of at least 5 fF for sensitive capacitive transduction; and (iii) an input dynamic range of at least 43.5 dB from a measurable capacitance value range of 5 - 750 fF (iv) and a Pearson's coefficient of linearity of 0.99.
NASA Astrophysics Data System (ADS)
Cruz, Wellington; Szpigel, Sérgio; Kaufmann, Pierre; Raulin, Jean-Pierre; Klopf, Michael
2017-10-01
Recent observations of solar flares at high-frequencies have provided evidence of a new spectral component with fluxes increasing with frequency in the sub-THz to THz range. This new component occurs simultaneously but is separated from the well-known microwave spectral component that maximizes at frequencies of a few to tens of GHz. The aim of this work is to study in detail a mechanism recently suggested to describe the double-spectrum feature observed in solar flares based on the physical process known as microbunching instability, which occurs with high-energy electron beams in laboratory accelerators.
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
NASA Technical Reports Server (NTRS)
Hughes, Vernon W.
1959-01-01
The use of a rotational state transition as observed by the molecular beam electric resonance method is discussed as a possible frequency standard particularly in the millimeter wavelength range. As a promising example the 100 kMc transition between the J = 0 and J = 1 rotational states of Li 6F19 is considered. The relative insensitivity of the transition frequency to external electric and magnetic fields and the low microwave power requirements appear favorable; the small fraction of the molecular beam that is in a single rotational state is a limiting factor.
NASA Astrophysics Data System (ADS)
Wang, Ding; Ding, Pin-bo; Ba, Jing
2018-03-01
In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.
Sensorless battery temperature measurements based on electrochemical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.
2014-02-01
A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.
High-Performance Optical Frequency References for Space
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus
2016-06-01
A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.
NASA Technical Reports Server (NTRS)
Pan, Jianqiang
1992-01-01
Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.
Chan, R W; Titze, I R
2000-01-01
The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [Chan and Titze, J. Acoust. Soc. Am. 106, 2008-2021 (1999)], but data were obtained only in a frequency range of 0.01-15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Fung, Biomechanics (Springer-Verlag, New York, 1993), pp. 277-292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [Zhu et al., J. Biomech. 24, 1007-1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
Frequency-tuned microwave photon counter based on a superconductive quantum interferometer
NASA Astrophysics Data System (ADS)
Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.
2018-03-01
Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.
Huang, Yixing; Yuan, Xujin; Wang, Changxian; Chen, Mingji; Tang, Liqun; Fang, Daining
2018-06-15
Microwave absorber with broadband absorption and thin thickness is one of the main research interests in this field. A flexible ultrathin and broadband microwave absorber comprising multiwall carbon nanotubes, spherical carbonyl iron, and silicone rubber is fabricated in a newly proposed pyramidal spatial periodic structure (SPS). The SPS with equivalent thickness of 3.73 mm covers the -10 dB and -15 dB absorption bandwidth in the frequency range 2-40 GHz and 10-40 GHz, respectively. The excellent absorption performance is achieved by concentration and dissipation of the electromagnetic field inside different parts of the magnetic-dielectric lossy protrusions in different frequency ranges.
NASA Astrophysics Data System (ADS)
Thakor, Sanketsinh; Rana, V. A.; Vankar, H. P.
2017-05-01
In present work, Bisphenol A-(epichlorhydrin); epoxy resin with hardener N(3-dimethylaminopropyl)-1,3-propylenediamine were used to determine the dielectric properties. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction. SiO2 and ZnO nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured in the frequency range of 20 Hz to 2 MHz using precision LCR meter at room temperature. The charismatic change in dielectric behavior based on type and concentration of nanoparticle are discussed in detail.
Achieving comb formation over the entire lasing range of quantum cascade lasers.
Yang, Yang; Burghoff, David; Reno, John; Hu, Qing
2017-10-01
Frequency combs based on quantum cascade lasers (QCLs) are finding promising applications in high-speed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints." To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias, even above the threshold, and this reduces the dynamic range of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max , which greatly expands the operation range of the frequency combs.
Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species
Titze, Ingo; Riede, Tobias; Mau, Ted
2016-01-01
Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations. PMID:27309543
NASA Astrophysics Data System (ADS)
Pal, P.; Ghosh, A.
2017-07-01
We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.
Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations
NASA Astrophysics Data System (ADS)
Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.
2018-05-01
We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.
Noise in the passenger cars of high-speed trains.
Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong
2015-12-01
The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.
A study on the prenatal zone of ultrasonic guided waves in plates
NASA Astrophysics Data System (ADS)
Thomas, Tibin; Balasubramaniam, Krishnan
2017-02-01
Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.
On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip
Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun; ...
2017-03-27
A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less
Mode Matching for Optical Antennas
NASA Astrophysics Data System (ADS)
Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert
2017-11-01
The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.
On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun
A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less
NASA Astrophysics Data System (ADS)
Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.
2017-12-01
In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.
Single-Event Upset Characterization of Common First- and Second-Order All-Digital Phase-Locked Loops
NASA Astrophysics Data System (ADS)
Chen, Y. P.; Massengill, L. W.; Kauppila, J. S.; Bhuva, B. L.; Holman, W. T.; Loveless, T. D.
2017-08-01
The single-event upset (SEU) vulnerability of common first- and second-order all-digital-phase-locked loops (ADPLLs) is investigated through field-programmable gate array-based fault injection experiments. SEUs in the highest order pole of the loop filter and fraction-based phase detectors (PDs) may result in the worst case error response, i.e., limit cycle errors, often requiring system restart. SEUs in integer-based linear PDs may result in loss-of-lock errors, while SEUs in bang-bang PDs only result in temporary-frequency errors. ADPLLs with the same frequency tuning range but fewer bits in the control word exhibit better overall SEU performance.