Science.gov

Sample records for frequency reactive magnetron

  1. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  2. ZnO thin film synthesis by reactive radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Aydoğmuş, Tuna; Elmas, Saliha; Özen, Soner; Ekem, Naci; Balbağ, M. Zafer

    2014-11-01

    In this study, ZnO thin films were deposited on glass substrates by reactive RF magnetron sputtering method at argon-oxygen gas mixing (1:1) atmosphere. Some properties of the synthesized films were investigated by interferometry, UV-vis spectrophotometer, atomic force microscopy, and tensiometer. Tauc method was adopted to estimate the optical band gaps. The band gaps of the deposited films were affected by film thickness. We concluded that the surface composition plays a substantial role in the values of the band gaps. Nanocrystalline structures were detected in all produced samples.

  3. Development of mid-frequency AC reactive magnetron sputtering for fast deposition of Y2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Xiong, Jie; Xia, Yudong; Xue, Yan; Zhang, Fei; Guo, Pei; Zhao, Xiaohui; Tao, Bowan

    2014-02-01

    A reel-to-reel magnetron sputtering system with mid-frequency alternating current (AC) power supply was used to deposit double-sided Y2O3 seed layer on biaxially textured Ni-5 at.%W tape for YBa2Cu3O7-δ coated conductors. A reactive sputtering process was carried out using two opposite symmetrical sputtering guns with metallic yttrium targets and water vapor for oxidizing the sputtered metallic atoms. The voltage control mode of the power supply was used and the influence of the cathode voltage and ArH2 pressure were systematically investigated. Subsequently yttrium-stabilized zirconia (YSZ) barrier and CeO2 cap layers were deposited on the Y2O3 buffered substrates in sequence, indicating high quality and uniform double-sided structure and surface morphology of such the architecture.

  4. Microstructure evolution of Al-doped zinc oxide films prepared by in-line reactive mid-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, R. J.; Jiang, X.

    2006-07-01

    Aluminium-doped zinc oxide (ZnO:Al or AZO) thin films were deposited on glass substrates by reactive mid-frequency (MF) magnetron sputtering from Zn/Al metallic targets. Strong (002) preferred orientation was detected by X-ray diffraction (XRD). It was observed by plan-view transmission electron microscopy (TEM) that an AZO film deposited at low substrate temperature was composed of irregular large grains; but the film prepared at high temperature was composed of moderate sized grains with a regular shape. A secondary phase of ZnO2 was also observed for the film deposited at low substrate temperature. The cross-sectional TEM study of the AZO film showed that prior to the well-aligned columnar growth an initial interfacial zone with nano crystallites were formed. The nano crystallites formed initially with a large tilt angle normal to the substrate surface and during the growth of the transition zone, the tilt angle decreased until it vanished. The evolution of the film structure is discussed in terms of evolutionary selection model and the dynamic deposition process.

  5. The characterization of Cu-doped ZnO thin films prepared by using radio-frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Chaoqun; Zhang, Hongqiang; Xie, Jun; Ma, Ligang

    2017-05-01

    Textured zinc-oxide (ZnO) thin films and Cu-doped ZnO (ZnO:Cu) thin films are deposited on glass substrates by using radio-frequency reactive magnetron sputtering. The effect of Cu-doping concentration on the crystallization behavior, surface morphology, transmission spectrum, and luminescence properties of the ZnO thin films are systematically investigated by using X-ray diffraction, scanning probe microscopy and photoluminescence spectra. The results indicate that the crystallization quality, morphology, transmission, and luminescence of the ZnO films is affected by Cu-element doping. A stronger preferred orientation toward the c-axis is obtained after Cu doping at an appropriate concentration (3%). The transmittance rate gradually decreases with increasing Cu doping concentration. In the photoluminescence spectra of the samples measured at room temperature, four main emission peaks are observed: a violet peak located at about 390 nm, two blue peaks, one located at about 445 nm and the other at about 485 nm, and a green peak located at about 527 nm. The origins of these emissions are discussed in detail.

  6. Reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Magnus, F.; Tryggvason, T. K.; Sveinsson, O. B.; Olafsson, S.

    2012-10-01

    Here we discuss reactive high power impulse magnetron sputtering sputtering (HiPIMS) [1] of Ti target in an Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage. The discharge current increases with decreasing frequency or voltage. This we attribute to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as nitride [2] or oxide [3] forms on the target. We also discuss the growth of TiN films on SiO2 at temperatures of 22-600 ^oC. The HiPIMS process produces denser films at lower growth temperature and the surface is much smoother and have a significantly lower resistivity than dc magnetron sputtered films on SiO2 at all growth temperatures due to reduced grain boundary scattering [4].[4pt] [1] J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A, 30 030801 (2012)[0pt] [2] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, J. Appl. Phys., 110 083306 (2011)[0pt] [3] F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, J. Vac. Sci. Technol., submitted 2012[0pt] [4] F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, IEEE Elec. Dev. Lett., accepted 2012

  7. Formation of dielectric silicon compounds by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Veselov, D. S.; Voronov, Yu A.

    2016-09-01

    The paper is devoted to the study of reactive magnetron sputtering of the silicon target in the ambient of inert argon gas with reactive gas, nitrogen or oxygen. The magnetron was powered by two mid-frequency generators of a rectangular pulse of opposite polarity. The negative polarity pulse provides the sputtering of the target. The positive polarity pulse provides removal of accumulated charge from the surface of the target. This method does not require any special devices of resistances matching and provides continuous sputtering of the target.

  8. Modeling of the Reactive High Power Impulse Magnetron Sputtering (HiPIMS) process

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Raadu, Michael; Brenning, Nils; Minea, Tiberiu

    2015-09-01

    Reactive high power impulse magnetron sputtering (HiPIMS) provides both a high ionization fraction of the sputtered material and a high dissociation fraction of the molecular gas. We demonstrate this through an ionization region model (IRM) of the reactive Ar/O2 HiPIMS discharge with a titanium target. We explore the influence of oxygen dilution on the discharge properties such as electron density, the ionization fraction of the sputtered vapor and the oxygen dissociation fraction. We discuss the important processes and challenges for more detailed modeling of the reactive HiPIMS discharge. Furthermore, we discuss experimental observations during reactive high power impulse magnetron sputtering sputtering (HiPIMS) of Ti target in Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on the reactive gas flow rate, pulse repetition frequency and discharge voltage. The discharge current increases with decreasing repetition frequency and increasing flowrate of the reactive gas.

  9. Reactive pulsed magnetron-sputtered tantalum oxide thin films

    NASA Astrophysics Data System (ADS)

    Nielsen, Matthew Christian

    Current high speed, advanced packaging applications require the use of integrated capacitors. Tantalum oxide is one material currently being considered for use in the capacitors; however, the deposition technique used to make the thin film dielectric can alter its performance. Pulsed magnetron reactive sputtering was investigated in this thesis as it offers a robust, clean, and low temperature deposition alternative. This is a new deposition technique created to control the negative effects of target poisoning; however, to understand the relationships between the deposition variables and the resultant film properties a thorough investigation is needed. The instantaneous voltage at the target was captured using a high speed digital oscilloscope. Three target oxidation states were imaged and identified to be that of the metallic and oxidized states with an abrupt transition region separating the two. Using high resolution X-ray photoelectron spectroscopy the bonding present in the deposited films was correlated to the oxidation state of the target. While operating the target in the metallic mode, a mix of oxidized, sub-oxide and metallic states were discovered. Alternatively, the bonding present in the films deposited when the target was in the oxidized state were that of fully oxidized tantalum pentoxide. The films deposited above the critical partial pressure demonstrated excellent leakage current densities. The exact magnitude of the leakage current density inversely scaled to the relative amount of oxygen included into the sputtering atmosphere. Detailed plot analysis showed that there were two different conduction mechanisms controlling the current flow in the capacitors. High frequency test vehicles were measured up to 10 GHz in order to determine the frequency response of the dielectric material. A circuit equivalent model describing the testing system and samples was created and utilized to fit the collected data. Overall, the technique of pulsed magnetron

  10. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, M.; Johnson, R.P.; Popovic, M.; Moretti, A.; /Fermilab

    2009-05-01

    Magnetrons are low-cost highly-efficient microwave sources, but they have several limitations, primarily centered about the phase and frequency stability of their output. When the stability requirements are low, such as for medical accelerators or kitchen ovens, magnetrons are the very efficient power source of choice. But for high energy accelerators, because of the need for frequency and phase stability - proton accelerators need 1-2 degrees source phase stability, and electron accelerators need .1-.2 degrees of phase stability - they have rarely been used. We describe a novel variable frequency cavity technique which will be utilized to phase and frequency lock magnetrons.

  11. Lateral variation of target poisoning during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Güttler, D.; Grötzschel, R.; Möller, W.

    2007-06-01

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar /N2 atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  12. Reactive high power impulse magnetron sputtering: combining simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kozak, Tomas; Vlcek, Jaroslav

    2016-09-01

    Reactive high-power impulse magnetron sputtering (HiPIMS) has recently been used for preparation of various oxide films with high application potential, such as TiO2, ZrO2, Ta2O5, HfO2, VO2. Using our patented method of pulsed reactive gas flow control with an optimized reactive gas inlet, we achieved significantly higher deposition rates compared to typical continuous dc magnetron depositions. We have developed a time-dependent model of the reactive HiPIMS. The model includes a depth-resolved description of the sputtered target (featuring sputtering, implantation and knock-on implantation processes) and a parametric description of the discharge plasma (dissociation of reactive gas, ionization and return of sputtered atoms and gas rarefaction). The model uses a combination of experimental and simulation data as input. We have calculated the composition of the target and substrate for several deposition conditions. The simulations predict a reduced compound coverage of the target in HiPIMS compared to the continuous dc sputtering regime which explains the increased deposition rate. The simulations show that an increased dissociation of oxygen in a HiPIMS discharge is beneficial to achieve stoichiometric films on the substrate at high deposition rates.

  13. Elementary surface processes during reactive magnetron sputtering of chromium

    SciTech Connect

    Monje, Sascha; Corbella, Carles Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  14. Elementary surface processes during reactive magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Monje, Sascha; Corbella, Carles; von Keudell, Achim

    2015-10-01

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400-800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O2 of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  15. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, Michael; Johnson, Rolland

    2014-09-12

    There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of

  16. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    NASA Astrophysics Data System (ADS)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  17. Hysteresis behavior during reactive magnetron sputtering of Al{sub 2}O{sub 3} using a rotating cylindrical magnetron

    SciTech Connect

    Depla, D.; Haemers, J.; Buyle, G.; Gryse, R. de

    2006-07-15

    Rotating cylindrical magnetrons are used intensively on industrial scale. A rotating cylindrical magnetron on laboratory scale makes it possible to study this deposition technique in detail and under well controlled conditions. Therefore, a small scale rotating cylindrical magnetron was designed and used to study the influence of the rotation speed on the hysteresis behavior during reactive magnetron sputtering of aluminum in Ar/O{sub 2} in dc mode. This study reveals that the hysteresis shifts towards lower oxygen flows when the rotation speed of the target is increased, i.e., target poisoning occurs more readily when the rotation speed is increased. The shift is more pronounced for the lower branch of the hysteresis loop than for the upper branch of the hysteresis. This behavior can be understood qualitatively. The results also show that the oxidation mechanism inside the race track is different from the oxidation mechanism outside the race track. Indeed, outside the race track the oxidation mechanism is only defined by chemisorption while inside the race track reactive ion implantation will also influence the oxidation mechanism.

  18. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Angarita, G.; Palacio, C.; Trujillo, M.; Arroyave, M.

    2017-06-01

    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 ºC in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings.

  19. A frequency tunable relativistic magnetron with a wide operation regime

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Du, Guang-Xing

    2017-02-01

    A frequency tunable relativistic magnetron (RM) with a wide operation regime is proposed. With the all cavity-magnetron axial extraction technique, the RM can output TEM mode with the operating frequency of 4.3 GHz, which is demonstrated as the dominating output mode by theoretical analysis, cold simulations and hot simulations respectively, corresponding to the output power of 466 MW and the power conversion efficiency of 56.4 %. It also can achieve a wide frequency tuning with the bandwidth of 0.96 GHz and the relative bandwidth of 20.8 %, corresponding to the output power of above 400 MW and the power conversion efficiency of above 40 %. Further simulation results show that the RM has strong performance robustness to the perturbations of the electrical parameters and almost all structural parameters except the cathode radius, anode radius and cavity radius, however two methods proposed in this paper can be taken to further improve the RM performance. The performance robustness enables the RM to operate with a wide parameter regime while keeping a good performance. In addition, a GW-level RM with the power conversion efficiency of 55.9 % also can be obtained.

  20. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Model

    NASA Astrophysics Data System (ADS)

    Kadlec, Stanislav; Čapek, Jiří

    2017-05-01

    A tendency to disappearing hysteresis in reactive High Power Impulse Magnetron Sputtering (HiPIMS) has been reported previously without full physical explanation. An analytical model of reactive pulsed sputtering including HiPIMS is presented. The model combines a Berg-type model of reactive sputtering with the global HiPIMS model of Christie-Vlček. Both time and area averaging is used to describe the macroscopic steady state, especially the reactive gas balance in the reactor. The most important effect in the presented model is covering of reacted parts of target by the returning ionized metal, effectively lowering the target coverage by reaction product at a given partial pressure. The return probability of ionized sputtered metal has been selected as a parameter to quantify the degree of HiPIMS effects. The model explains the reasons for reduced hysteresis in HiPIMS. The critical pumping speed was up to a factor of 7 lower in reactive HiPIMS compared to the mid-frequency magnetron sputtering. The model predicts reduced hysteresis in HiPIMS due to less negative slope of metal flux to substrates and of reactive gas sorption as functions of reactive gas partial pressure. Higher deposition rate of reactive HiPIMS compared to standard reactive sputtering is predicted for some parameter combinations. Comparison of the model with experiment exhibits good qualitative and quantitative agreement for three material combinations, namely, Ti-O2, Al-O2, and Ti-N2.

  1. A kind of magnetron cavity used in rubidium atomic frequency standards

    NASA Astrophysics Data System (ADS)

    Shiyu, Yang; Jingzhong, Cui; Jianhui, Tu; Yaoting, Liang

    2011-12-01

    Research on the magnetron cavity used in the rubidium atomic frequency standards is developed, through which the main characteristic parameters of the magnetron cavity are studied, mainly including the resonant frequency, quality factor and oscillation mode. The resonant frequency and quality factor of the magnetron cavity were calculated, and the test results of the resonant frequency agreed well with the calculation theory. The test results also show that the resonant frequency of the magnetron cavity can be attenuated to 6.835 GHz, which is the resonant frequency of the rubidium atoms, and the Q-factor can be attenuated to 500-1000. The oscillation mode is a typical TE011 mode and is the correct mode needed for the rubidium atomic frequency standard. Therefore these derivative magnetron cavities meet the requirements of the rubidium atomic frequency standards well.

  2. Current-voltage-time characteristics of the reactive Ar/N{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Magnus, F.; Sveinsson, O. B.; Olafsson, S.; Gudmundsson, J. T.

    2011-10-15

    The discharge current and voltage waveforms have been measured in a reactive high power impulse magnetron sputtering (HiPIMS) Ar/N{sub 2} discharge with a Ti target for 400 {mu}s long pulses. We observe that the current waveform in the reactive Ar/N{sub 2} HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike the non-reactive Ar discharge. The current is found to increase significantly as the frequency is lowered. This is attributed to an increase in the secondary electron emission yield during the self-sputtering phase, when the nitride forms on the target at low frequencies. In addition, self-sputtering runaway occurs at lower discharge voltages when nitrogen is added to the discharge. This illustrates the crucial role of self-sputtering in the behavior of the reactive HiPIMS discharge.

  3. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE PAGES

    Anders, André

    2017-03-21

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron

  4. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  5. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Experiment

    NASA Astrophysics Data System (ADS)

    Čapek, Jiří; Kadlec, Stanislav

    2017-05-01

    Titanium and aluminum targets have been reactively sputtered in Ar +O2 or Ar +N2 gas mixtures in order to systematically investigate the effect of reduced hysteresis in reactive high power impulse magnetron sputtering (HiPIMS) as compared to other sputtering techniques utilizing low discharge target power density (e.g., direct current or pulsed direct current mid-frequency magnetron sputtering) operated at the same average discharge power. We found that the negative slope of the flow rate of the reactive gas gettered by the sputtered target material as a function of the reactive gas partial pressure is clearly lower in the case of HiPIMS. This results in a lower critical pumping speed, which implies a reduced hysteresis. We argue that the most important effect explaining the observed behavior is covering of the reacted areas of the target by the returning ionized metal, effectively lowering the target coverage at a given partial pressure. This explanation is supported by a calculation using an analytical model of reactive HiPIMS with time and space averaging (developed by us).

  6. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Shayestehaminzadeh, Seyedmohammad E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.; Olafsson, Sveinn

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  7. Time resolved ion energy distribution functions of non-reactive and reactive high power impulse magnetron sputtering of titanium

    NASA Astrophysics Data System (ADS)

    Grosse, Katharina; Breilmann, Wolfgang; Maszl, Christian; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique for thin film deposition and can be operated in reactive and non-reactive mode. The growth rate of HiPIMS in non-reactive mode reduces to 30% compared to direct current magnetron sputtering (dcMS) at same average power. However, the quality of the coatings produced with HiPIMS is excellent which makes these plasmas highly appealing. In reactive mode target poisoning is occurring which changes the plasma dynamics. An advantage of reactive HiPIMS is that it can be operated hysteresis-free which can result in a higher growth rate compared to dcMS. In this work thin films are deposited by a HiPIMS plasma which is generated by short pulses of 100 μs with high power densities in the range of 1 kW/cm2. Ar and Ar/N2 admixtures are used as a working gas to sputter a 2'' titanium target. The particle transport is analysed with time resolved ion energy distribution functions which are measured by a mass spectrometer with a temporal resolution of 2 μs. Phase resolved optical emission spectroscopy is executed to investigate the particle dynamics of different species. The time and energy resolved particle fluxes in non-reactive and reactive mode are compared and implications on the sputter process are discussed.

  8. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Corbella, C.; Maszl, C.; Breilmann, W.; von Keudell, A.

    2017-05-01

    Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

  9. Origin of particles during reactive sputtering of oxides using planar and cylindrical magnetrons.

    PubMed

    Rademacher, Daniel; Fritz, Benjamin; Vergöhl, Michael

    2012-03-01

    Particles generated during reactive magnetron sputtering cause defects in optical thin films, which may lead to losses in optical performance, pinholes, loss of adhesion, decreased laser-induced damage thresholds and many more negative effects. Therefore, it is important to reduce the particle contamination during the manufacturing process. In the present paper, the origin of particles during the deposition of various oxide films by midfrequency pulsed reactive magnetron sputtering was investigated. Several steps have been undertaken to decrease the particle contamination during the complete substrate handling procedure. It was found that conditioning of the vacuum chamber can help to decrease the defect level significantly. This level remains low for several hours of sputtering and increases after 100 hours of process time. Particle densities of SiO(2) films deposited with cylindrical and planar dual magnetrons at different process parameters as well as different positions underneath the target were compared. It was observed that the process power influences the particle density significantly in case of planar targets while cylindrical targets have no such strong dependence. In addition, the particle contamination caused by different cylindrical target materials was analyzed. No major differences in particle contamination of different cylindrical target types and materials were found.

  10. Titania, silicon dioxide, and tantalum pentoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing.

    PubMed

    Rabady, Rabi; Avrutsky, Ivan

    2005-01-20

    Mixing dielectric materials in solid-thin-film deposition allows the engineering of thin films' optical constants to meet specific thin-film-device requirements, which can be significantly useful for optoelectronics devices and photonics technologies in general. In principle, by use of radio-frequency (rf) magnetron sputtering, it would be possible to mix any two, or more, materials at different molar ratios as long as the mixed materials are not chemically reactive in the mixture. This freedom in material mixing by use of magnetron sputtering has an advantage by providing a wide range of the material optical constants, which eventually enables the photonic-device designer to have the flexibility to achieve optimal device performance. We deposited three combinations from three different oxides by using rf magnetron sputtering and later investigated them for their optical constants. Each two-oxide mixture was done at different molar ratio levels. Moreover, postdeposition annealing was investigated and was shown to reduce the optical losses and to stabilize the film composition against environmental effects such as aging and humidity exposure. These investigations were supported by the fabricated planar waveguides and optical resonant filters.

  11. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  12. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Villamayor, M.; Lundin, D.; Helmersson, U.

    2016-02-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar-N2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf-N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail.

  13. Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons

    NASA Astrophysics Data System (ADS)

    Yue, Song; Gao, Dong-ping; Zhang, Zhao-chuan; Wang, Wei-long

    2016-11-01

    The frequency characteristics of free oscillation magnetron (FOM) and injection-locked magnetron (ILM) are theoretically investigated. By using the equal power voltage obtained from the experiment data, expressions of the frequency and radio frequency (RF) voltage of FOM and ILM, as well as the locking bandwidth, on the anode voltage and magnetic field are derived. With the increase of the anode voltage and the decrease of the magnetic field, the power and its growth rate increase, while the frequency increases and its growth rate decreases. The theoretical frequency and power of FOM agree with the particle-in-cell (PIC) simulation results. Besides, the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results, which verifies the accuracy of the theory. The theory provides a novel calculation method of frequency characteristics. It can approximately analyze the power and frequency of both FOM and ILM, which promotes the industrial applications of magnetron and microwave energy. Project supported by the National Basic Research Program of China (Grant No. 2013CB328901) and the National Natural Science Foundation of China (Grant No. 11305177).

  14. Modeling of plasma-target interaction during reactive magnetron sputtering of TiN

    NASA Astrophysics Data System (ADS)

    Möller, W.; Güttler, D.

    2007-11-01

    The nitrogen incorporation at the target during reactive magnetron sputtering of TiN is described by a simple stationary global model of the magnetron plasma, in combination with an analytical two-layer stationary surface model or dynamic collisional computer simulation (TRIDYN) of the surface processes. Results are shown for different nitrogen gas additions in Ar /N2 and Xe /N2 gas mixtures at a total pressure of 0.3Pa and a magnetron current of 0.3A. The nitrogen incorporation predicted by the analytical model is significantly less than obtained from computer simulation. The computer simulation yields nitrogen depth profiles which extend to about 2.5nm, exhibiting a quasirectangular shape in case of stoichiometric saturation with an integrated nitrogen areal density of ˜1.25×1016N/cm2. The stationary-state nitrogen incorporation results from the balance of surface adsorption in connection with recoil implantation, direct ion implantation, and resputtering. The most relevant species are nitrogen gas molecules for adsorption, molecular nitrogen ions for implantation, and inert gas ions for recoil implantation and sputtering. The model results are in good agreement with experiment provided that nonzero sticking of nitrogen gas molecules is assumed on the unsaturated surface. The analytical surface model is preferable, which favors the picture of a continuous transition to bulk and surface saturation rather than discrete local saturation which is inherent in TRIDYN. Also the relative nitrogen incorporation for Xe /N2 versus Ar /N2 gas mixtures is well described.

  15. Nanoscale and macroscale aluminum nitride deposition via reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghai

    The growth of group III nitrides is receiving a great deal of attention due to their potential as materials for optoelectronic devices in the blue to ultraviolet spectral range. This dissertation is primarily focused on deposition of aluminum nitride thin films on both nanofibers and macroscale silicon substrates via reactive magnetron sputtering. The objectives include investigating the feasibility of coating nanofibers to prepare high quality (smooth and crystalline) nanotubes, nanofiber hetero structures and using buffer layers to improve the quality of macroscale AlN thin films. To satisfy the need of nanoscale semiconductor materials, deposition of AlN on poly (meta-phenylene isophthalamide) MPD-I nano-fiber (template) was investigated via reactive magnetron sputtering. The electrospun high-temperature nanofibers with uniform dimensions were heated up to 300°C or higher. The coatings on the fibers were continuous and their morphology and crystal structure (either hexagonal wurtzite structure or cubic zinc-blende structure) were controlled by changing the deposition conditions. After removing the fiber core with organic solvent or by pyrolysis, AlN nanotubes (hollow structures) with inner diameter of 50--100 nm were achieved. As the nanoscale building blocks, nanoscale semiconductor heterostructures with modulated composition can facilitate the generation of devices with various functions. In this work, SiO2-AlN core-shell nanofiber heterostructures with SiO2 core and AlN shell were created by electro-spinning and reactive magnetron sputtering methods. Also the AlN coating (shell) was designed with different morphologies and crystalline properties by controlling the deposition conditions. The critical operating parameters for the formation of different morphologies of AlN shells were investigated. In practice, AlN thin film materials are still widely used for microelectronic and optoelectronic devices. To investigate and develop semiconducting AlN films, the

  16. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?

    NASA Astrophysics Data System (ADS)

    Strijckmans, K.; Moens, F.; Depla, D.

    2017-02-01

    This paper discusses a few mechanisms that can assist to answer the title question. The initial approach is to use an established model for DC magnetron sputter deposition, i.e., RSD2013. Based on this model, the impact on the hysteresis behaviour of some typical HiPIMS conditions is investigated. From this first study, it becomes clear that the probability to observe hysteresis is much lower as compared to DC magnetron sputtering. The high current pulses cannot explain the hysteresis reduction. Total pressure and material choice make the abrupt changes less pronounced, but the implantation of ionized metal atoms that return to the target seems to be the major cause. To further substantiate these results, the analytical reactive sputtering model is coupled with a published global plasma model. The effect of metal ion implantation is confirmed. Another suggested mechanism, i.e., gas rarefaction, can be ruled out to explain the hysteresis reduction. But perhaps the major conclusion is that at present, there are too little experimental data available to make fully sound conclusions.

  17. Optical and electrical properties of thin NiO films deposited by reactive magnetron sputtering and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Parkhomenko, H. P.; Solovan, M. N.; Mostovoi, A. I.; Orletskii, I. G.; Parfenyuk, O. A.; Maryanchuk, P. D.

    2017-06-01

    Thin NiO films are deposited by reactive magnetron sputtering and spray pyrolysis. The main optical constants, i.e., refractive index n(λ), absorption coefficient α(λ), extinction coefficient k(λ), and thickness d, are determined. The temperature dependence of the resistance of thin films is found, and the activation energy of films deposited by different methods is determined.

  18. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2016-11-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  19. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  20. Charge Build-Up in Magnetron-Enhanced Reactive Ion Etching

    NASA Astrophysics Data System (ADS)

    Hoga, Hiroshi; Orita, Toshiyuki; Yokoyama, Takashi; Hayashi, Toshio

    1991-11-01

    Charge build-up in magnetron-enhanced reactive ion etching (MERIE) was evaluated with metal nitride oxide semiconductor (MNOS) capacitors. In static magnetic field, negative flat band voltage (Vfb) shifts of more than -1.5 V were observed in the area under high-density plasma, and more than 2-V Vfb shifts were observed at the edge of the wafer near the N and S poles. This distributed Vfb shift was considered to result from nonuniform plasma potential caused by secondary electron E× B drift motion. In rotated magnetic field, Vfb shifts were reduced. No significant Vfb shifts were observed when the magnet was rotated at 120 rpm. The Vfb shift reduction in rotated magnetic field was supposed to result from charge neutralization by alternate charge build-up.

  1. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  2. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G. H.

    2015-09-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  3. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering

    PubMed Central

    Faudoa-Arzate, A.; Arteaga-Durán, A.; Saenz-Hernández, R.J.; Botello-Zubiate, M.E.; Realyvazquez-Guevara, P.R.; Matutes-Aquino, J.A.

    2017-01-01

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM. PMID:28772559

  4. Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-11-08

    Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

  5. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering.

    PubMed

    Faudoa-Arzate, A; Arteaga-Durán, A; Saenz-Hernández, R J; Botello-Zubiate, M E; Realyvazquez-Guevara, P R; Matutes-Aquino, J A

    2017-02-17

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM.

  6. Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Guojia; Lin, Guoqiang; Sun, Gang; Zhang, Huafang; Wu, Hongchen

    The purpose of this paper is to investigate metal doping effects on micro-structural, mechanical and corrosive behavior of the DLC film. Ti and Zr doped DLC films were prepared on NiTi alloys by reactive magnetron sputtering combined with plasma source ion implantation (PSII) technology used to improve the coherent strength, respectively. The mechanical properties of the doped DLC films were investigated by means of nano-indentation technique, microscratch and frictional wear testing. The potentiodynamic polarization measurement was employed to value the corrosion resistance of DLC with Ti and Zr films in Hank's simulated body fluid. It was found that Ti-doped DLC films embraced higher nano-hardness, somewhat lower coefficient of friction and better corrosion resistance than Zr-doped DLC films.

  7. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    SciTech Connect

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  8. Studies on optoelectronic properties of DC reactive magnetron sputtered chromium doped CdO thin films

    SciTech Connect

    Hymavathi, B. Rao, T. Subba; Kumar, B. Rajesh

    2014-10-15

    Cr doped CdO thin films were deposited on glass substrates by DC reactive magnetron sputtering method and subsequently annealed from 200 °C to 500 °C. X-ray diffraction analysis showed that the films exhibit (1 1 1) preferred orientation. The optical transmittance of the films increases from 64% to 88% with increasing annealing temperature. The optical band gap values were found to be decreased from 2.77 to 2.65 eV with the increase of annealing temperature. The decrease in optical band gap energy with increasing annealing temperature can be attributed to improvement in the crystallinity of the films and may also be due to quantum confinement effect. A minimum resistivity of 2.23 × 10{sup −4} Ω.cm and sheet resistance of 6.3 Ω/sq is obtained for Cr doped CdO film annealed at 500 °C.

  9. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-01

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al2O3, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  10. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering

    SciTech Connect

    Belkerk, B. E.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-10-08

    This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1} K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.

  11. Manufacturing of HfOxNy films using reactive magnetron sputtering for ISFET application

    NASA Astrophysics Data System (ADS)

    Firek, Piotr; Wysokiński, Piotr

    2016-12-01

    Hafnium Oxide-Nitride films were deposited using reactive magnetron sputtering in O2/N2/Ar gas mixture. Deposition was planned according to Taguchi optimization method. Morphology of fabricated layers was tested using AFM technique (Ra=0.2÷1,0 nm). Thickness of HfOXNY films was measured using spectroscopic ellipsometry (t=45÷54 nm). Afterwards MIS structures were created by Al metallization process then layers were electrically characterised using I-V and C-V measurements. This allowed to calculate the electrical parameters of layers such as: flat-band voltage UFB, dielectric constant Ki, interface state trap density Dit and effective charge Qeff. Subsequently, deposited HfOxNy layers were annealed in PDA process (40 min 400 °C 100% N2) after which the electrical characterization was performed again.

  12. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  13. Reactive DC magnetron sputtered zirconium nitride (ZrN) thin film and its characterization

    NASA Astrophysics Data System (ADS)

    Subramanian, B.; Ashok, K.; Sanjeeviraja, C.; Kuppusami, P.; Jayachandran, M.

    2008-05-01

    Zirconium nitride (ZrN) thin films were prepared by using reactive direct current (DC) magnetron sputtering onto different substrates. A good polycrystalline nature with face centered cubic structure was observed from X-ray Diffraction for ZrN thin films. The observed 'd' values from the X-ray Diffraction pattern were found to be in good agreement with the standard 'd' values (JCPDS-89-5269). An emission peak is observed at 587nm from Photoluminescence studies for the excitation at 430nm. The resistivity value (ρ) of 2.1798 (μΩ cm) was observed. ZrN has high wear resistance and low coefficient of friction. A less negative value of Ecorr and lower value of Icorr observed for ZrN / Mild Steel (MS) clearly confirm the better corrosion resistance than the bare substrate. Also the higher Rct value and lower Cdl value was observed for ZrN / MS from Nyquist - plot.

  14. Synthesizing mixed phase titania nanocomposites with enhanced photoactivity and redshifted photoresponse by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Le

    Recent work points out the importance of the solid-solid interface in explaining the high photoactivity of mixed phase TiO2 catalysts. The goal of this research was to probe the synthesis-structure-function relationships of the solid-solid interfaces created by the reactive direct current (DC) magnetron sputtering of titanium dioxide. I hypothesize that the reactive DC magnetron sputtering is a useful method for synthesizing photo-catalysts with unique structure including solid-solid interfaces and surface defects that are associated with enhanced photoreactivity as well as a photoresponse shifted to longer wavelengths of light. I showed that sputter deposition provides excellent control of the phase and interface formation as well as the stoichiometry of the films. I explored the effects exerted by the process parameters of pressure, oxygen partial pressure, target power, substrate bias (RF), deposition incidence angle, and post annealing treatment on the structural and functional characteristics of the catalysts. I have successfully made pure and mixed phase TiO2 films. These films were characterized with UV-Vis, XPS, AFM, SEM, TEM, XRD and EPR, to determine optical properties, elemental stoichiometry, surface morphology, phase distribution and chemical coordination. Bundles of anatase-rutile nano-columns having high densities of dual-scale of interfaces among and within the columns are fabricated. Photocatalytic performance of the sputtered films as measured by the oxidation of the pollutant, acetaldehyde, and the reduction of CO2 for fuel (CH4) production was compared (normalized for surface area) to that of mixed phase TiO2 fabricated by other methods, including flame hydrolysis powders, and solgel deposited TiO 2 films. The sputtered mixed phase materials were far superior to the commercial standard (Degussa P25) and solgel TiO2 based on gas phase reaction of acetaldehyde oxidation under UV light and CO2 reduction under both UV and visible illuminations. The

  15. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  16. Post Magnetron Sputter And Reactive Sputter Coating Of Contoured Glass, Acrylic And Polycarbonate Substrates

    NASA Astrophysics Data System (ADS)

    Wright, Michael P.

    1985-12-01

    A Post Magnetron Sputter concept employing a cylindrical internally cooled target (cathode) is described. The use of an internal, rotating, permanent magnetic field resulting in 360° utilisation of the target material is outlined. Computer controlled horizontal and vertical movement of the cathode assembly facilitates the coating of contoured substrates which may be glass, acrylic or polycarbonate. Deposition of different metals is easily achieved by changing the cathode or covering it with a suitable sheath material. The design of the cathode results in economic utilisation of the target material, which is particularly important when sputtering expensive metals such as gold. In addition to the deposition of metallic films, such as stainless steel or chrome, reactive sputtering may be undertaken by the introduction of a reactive gas into the vacuum chamber. In this way metal oxide, sulphide or nitride layers may be deposited according to the requirements of the layer structure. Specific optically-active oxides such as indium tin oxide are easily deposited in a uniform film and the formation of multilayer coatings for sun protective and heat rejecting applications is practicable. Indeed, a complete process may be undertaken without removing the substrate from the chamber; merely by adding or changing the reactive gas present.

  17. Development of Dual-Frequency Gyrotron with Triode Magnetron Injection Gun

    NASA Astrophysics Data System (ADS)

    Kajiwara, Ken; Oda, Yasuhisa; Kasugai, Atsushi; Takahashi, Koji; Sakamoto, Keishi

    2011-12-01

    A high power dual-frequency gyrotron is designed and tested. The design is based on a 170 GHz single-frequency gyrotron with a triode magnetron injection gun (MIG). The triode MIG enables to choose variety of oscillation modes for different frequencies with suitable pitch factor, which is the great advantage for a multi-frequency gyrotron. Another frequency of 137 GHz is selected in order to use a 1.853-mm-thick single-disk output window. Cavity modes are TE31,11 and TE25,9 for 170 and 137 GHz, respectively, which have high mode conversion efficiency to the RF beam mode with similar radiation angles. In short-pulse experiments, the maximum power of more than 1.3 MW is achieved with high-efficiency for both frequencies.

  18. Antibacterial Cr-Cu-O films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Musil, J.; Blažek, J.; Fajfrlík, K.; Čerstvý, R.; Prokšová, Š.

    2013-07-01

    The paper reports on the effect of Cu content in the Cr-Cu-O film and its structure on its antibacterial activity and mechanical properties. The Cr-Cu-O films were prepared by reactive magnetron sputtering from composed Cr/Cu targets using a dual magnetron. The antibacterial activity of Cr-Cu-O films was tested on the killing of Escheria coli bacteria. Correlations between the structure of the Cr-Cu-O film, the content of Cu in the film and its (i) antibacterial efficiency and (ii) mechanical properties were investigated in detail. It was found that the 100% efficiency of the killing of E. coli bacteria on the surface of the Cr-Cu-O film is achieved if (1) the Cu content in the film is ≥15 at.% and (2) the film is either X-ray amorphous or crystalline with the CuCrO2 delafossite structure. These Cr-Cu-O films need no excitation and very effectively kill E. coli bacteria in the daylight as well as in the dark. The X-ray amorphous Cr-Cu-O films with ~20 at.% Cu exhibit a higher (i) hardness H ≈ 4 GPa, (ii) effective Young's modulus E* ≈ 72 GPa and (iii) elastic recovery We ≈ 37% compared with the crystalline Cr-Cu-O film with the CuCrO2 delafossite structure exhibiting H ≈ 1.2 GPa, E* ≈ 21 GPa and We ≈ 21%. Both films very effectively kill the E. coli bacteria, however, exhibit a low ratio H/E* < 0.1.

  19. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  20. Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kubart, T.; Aijaz, A.

    2017-05-01

    The interaction between pulsed plasmas and surfaces undergoing chemical changes complicates physics of reactive High Power Impulse Magnetron Sputtering (HiPIMS). In this study, we determine the dynamics of formation and removal of a compound on a titanium surface from the evolution of discharge characteristics in an argon atmosphere with nitrogen and oxygen. We show that the time response of a reactive process is dominated by surface processes. The thickness of the compound layer is several nm and its removal by sputtering requires ion fluence in the order of 1016 cm-2, much larger than the ion fluence in a single HiPIMS pulse. Formation of the nitride or oxide layer is significantly slower in HiPIMS than in dc sputtering under identical conditions. Further, we explain very high discharge currents in HiPIMS by the formation of a truly stoichiometric compound during the discharge off-time. The compound has a very high secondary electron emission coefficient and leads to a large increase in the discharge current upon target poisoning.

  1. Formation of hydrogenated amorphous carbon films by reactive high power impulse magnetron sputtering containing C2H2 gas

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2015-09-01

    Diamond-like carbon (DLC) films have attracted interest for material industries, because they have unique properties. Hydrogenated amorphous carbon films are prepared by reactive high power impulse magnetron sputtering (HiPIMS) containing C2H2 gas and the properties of the films produced in Ar/C2H2 and Ne/C2H2 HiPIMS are compared. Production of hydrocarbon radicals and their ions strongly depends on both electron temperature and electron density in HiPIMS. Therefore, the influence of the difference in buffer gas (Ar and Ne) on the film properties is also valuable to investigate. The film preparation is performed at an average power of 60 W and a repetition frequency of 110 Hz. Total pressure ranges between 0.3 and 2 Pa. The maximum of instantaneous power is about 20-25 kW, and the magnitude of the current is 35 A. A negative pulse voltage is applied to the substrates for about 15 μs after the target voltage changed from about -500 V to 0 V. Hardness of the films prepared by Ar/C2H2 HiPIMS monotonically decreases with increasing the total pressure, whereas that of the films prepared by Ne/C2H2 HiPIMS does not strongly depend on the total pressure. This work is partially supported by JSPS KAKENHI Grant Number 26420230.

  2. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    SciTech Connect

    Bazlov, N. Pilipenko, N. Vyvenko, O.; Petrov, Yu.; Mikhailovskii, V.; Ubyivovk, E.; Kotina, I.; Zharinov, V.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained traps of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.

  3. High-frequency magnetic properties of Zn ferrite films deposited by magnetron sputtering

    SciTech Connect

    Guo Dangwei; Zhu Jingyi; Yang Yuancai; Fan Xiaolong; Chai Guozhi; Sui Wenbo; Zhang Zhengmei; Xue Desheng

    2010-02-15

    The effect of thermal annealing on structural and magnetic properties has been investigated for Zn ferrite films deposited on Si (111) substrates using radio frequency magnetron sputtering. The saturation magnetization at room temperature was enhanced upto 303 emu/cm{sup 3} by annealing at relatively low temperature of 200 deg. C and decreased at higher temperatures. The complex permeability {mu}={mu}{sup '}-i{mu}{sup ''} values of the ferrite films as-deposited and annealed at 200 and 400 deg. C were measured at frequency upto 5 GHz. These films exhibited better high-frequency properties, especially, the film annealed at 200 deg. C had a large {mu}{sup '} of 19.5 and high resonance frequency f{sub r} of 1.61 GHz. And the reason was investigated preliminarily based on the bianisotropy model.

  4. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  5. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  6. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  7. Influence of substrate temperature on growth of nanocrystalline silicon carbide by reactive magnetron sputtering

    SciTech Connect

    Colder, H.; Rizk, R.; Morales, M.; Marie, P.; Vicens, J.; Vickridge, I.

    2005-07-15

    Hydrogenated nanocrystalline silicon carbide were grown at various deposition temperatures T{sub d} from 200 to 600 deg. C by means of reactive magnetron sputtering in a plasma of 80% H{sub 2} and 20% Ar mixture. A detailed investigation of the structural, compositional, phase nature, and morphology was carried out by complementary sophisticated techniques, such as Fourier transform infrared spectroscopy, x-ray diffraction (XRD), Rutherford backscattering, nuclear reaction, and elastic recoil detection analysis techniques, in addition to conventional and high-resolution transmission electron microscopy (HRTEM) observations. A crystallization onset with a fraction of 35% was observed for T{sub d}=300 deg. C, which improved to 80% for T{sub d}=600 deg. C, reflected by an increasing density of the SiC nanocrystals which kept an average size of about 5 nm. The observed fiber textures present <102> and <11l> texture components, with l larger than 2, while SiC nanocrystals elongated along the [111] direction are also evidenced. These latter are supported by the careful analyses of the HRTEM images which show evidence of faulted growing cubic SiC, as the origin of the very close hexagonal 6H-SiC structure taken into account in the XRD refinement. These various features were found quite consistent with the optical properties of the layers, and, in particular, the evolutions of both optical gap and static refractive index.

  8. Nanocharacterization of titanium nitride thin films obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Pustan, M. S.; Bîrleanu, C.; Negrea, G.

    2014-08-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-microelectromechanical systems (Bio-MEMS) and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, the obtaining was realized when the substrates were at room temperature, and second, the obtaining was realized when the substrates were previously heated at 250 °C. The elaborated samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, roughness, friction force are some of the determined characteristics. The results marked out that the substrate which was previously heated at 250 °C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature.

  9. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering.

    PubMed

    Ratova, Marina; Kelly, Peter J; West, Glen T; Xia, Xiaohong; Gao, Yun

    2016-01-22

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

  10. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    PubMed Central

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Xia, Xiaohong; Gao, Yun

    2016-01-01

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating. PMID:28787867

  11. Nanocharacterization of Titanium Nitride Thin Films Obtained by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Merie, Violeta Valentina; Pustan, Marius Sorin; Bîrleanu, Corina; Negrea, Gavril

    2015-05-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants, etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-micro-electromechanical systems, and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by the reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, when the substrates were at room temperature, and second, when the substrates were previously heated at 250°C. The temperature of 250°C was kept constant during the deposition of the films. The samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, Young's modulus, roughness, and friction force were some of the determined characteristics. The results demonstrated that the substrate which was previously heated at 250°C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature. The preheating of both substrates determined the decrease of thin films roughness. The friction force, nanohardness and Young's modulus of the tested samples increased when the substrates were preheated at 250°C.

  12. Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-06-05

    Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

  13. Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Wu, Y. Z.; Mu, B.; Qiao, L.; Li, W. X.; Li, J. J.; Wang, P.

    2017-03-01

    Tungsten sub-nitride thin films deposited on silicon samples by reactive magnetron sputtering were used as a model system to study the phase stability and microstructural evolution during thermal treatments. XRD, SEM&FIB, XPS, RBS and TDS were applied to investigate the stability of tungsten nitride films after heating up to 1473 K in vacuum. At the given experimental parameters a 920 nm thick crystalline film with a tungsten and nitrogen stoichiometry of 2:1 were achieved. The results showed that no phase and microstructure change occurred due to W2N film annealing in vacuum up to 973 K. Heating up to 1073 K led to a partial decomposition of the W2N phase and the formation of a W enrichment layer at the surface. Increasing the annealing time at the same temperature, the further decomposition of the W2N phase was negligible. The complete decomposition of W2N film happened as the temperature reached up to 1473 K.

  14. Synthesis of copper nitride films doped with Fe, Co, or Ni by reactive magnetron sputtering

    SciTech Connect

    Yang, Jianbo; Huang, Saijia; Wang, Zhijiao; Hou, Yuxuan; Shi, Yuyu; Zhang, Jian; Yang, Jianping Li, Xing'ao

    2014-09-01

    Copper nitride (Cu{sub 3}N) and Fe-, Co-, and Ni-doped Cu{sub 3}N films were prepared by reactive magnetron sputtering. The films were deposited on silicon substrates at room temperature using pure Cu target and metal chips. The molar ratio of Cu to N atoms in the as-prepared Cu{sub 3}N film was 2.7:1, which is comparable with the stoichiometry ratio 3:1. X-ray diffraction measurements showed that the films were composed of Cu{sub 3}N crystallites with anti-ReO{sub 3} structure and adopted different preferred orientations. The reflectance of the four samples decreased in the wavelength range of 400–830 nm, but increased rapidly within wavelength range of 830–1200 nm. Compared with the Cu{sub 3}N films, the resistivity of the doped Cu{sub 3}N films decreased by three orders of magnitude. These changes have great application potential in optical and electrical devices based on Cu{sub 3}N films.

  15. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  16. A Complementary Type of Electrochromic Device by Radio Frequency Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change their optical properties reversibly in the visible region (400-800 nm) upon charge insertion/extraction reactions according to the applied voltage. A complementary type of EC device composes of two electrochromic layers, which is separated by an ionic conduction layer (electrolyte). In this work, the EC device was fabricated using vanadium oxide (V2O5) and titanium doped tungsten oxide (WO3-TiO2) electrodes. The EC electrodes were deposited as thin film structures by a reactive RF magnetron sputtering system in a medium of gas mixture of argon and oxygen. surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical property and durability of the EC device was investigated by a potentiostat system. Optical measurement was examined under applied voltages of +/- 2.5 V by a computer-controlled system, constantly.

  17. Study of transparent conducting ZnO:Al films deposited on organic substrate by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Z. Y.

    2009-03-01

    A Zn-Al metallic target (Al 2 wt.%)has been used to prepare conductive and transparent aluminium-doped Zinc oxide(ZnOAl) films on PI substrate by direct current reactive magnetron sputtering.The structure, crystallinity, optical properties, electrical properties and adhesion were investigated using a range of techniques, including AFM, XRD, spectrophotometry, four-point probe and adhesion tester.The optimal films were prepared with a substrate temperature of 150°C, O2/Ar ration of 2:38 and sputtering power of 80W.The infrared emission properties of films and the feasibility for military application were also discussed in this paper. All the results to date demonstrate that magnetron sputtering is a cost-effective and easy to fabricating technique.

  18. Origin of stress in radio frequency magnetron sputtered zinc oxide thin films

    SciTech Connect

    Menon, Rashmi; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2011-03-15

    Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O{sub 2}) mixture. The as-grown films were found to be stressed over a wide range from -1 x 10{sup 11} to -2 x 10{sup 8} dyne/cm{sup 2} that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film.

  19. DC reactive magnetron sputtering, annealing, and characterization of CuAlO{sub 2} thin films

    SciTech Connect

    Stevens, Blake L.; Hoel, Cathleen A.; Swanborg, Carolyn; Tang Yang; Zhou Chuanle; Grayson, Matthew; Poeppelmeier, Kenneth R.; Barnett, Scott A.

    2011-01-15

    CuAlO{sub x} thin films were prepared at three substrate temperatures (T{sub S}=60, 300, and 600 deg. C) and two oxygen partial pressures (P{sub O{sub 2}}=0.5 and 2 mTorr) via dc reactive magnetron sputtering from Cu-Al 50-50 at. % alloy targets and subsequent annealing. As-deposited films with P{sub O{sub 2}}=0.5 mTorr were oxygen deficient; although the delafossite structure formed upon annealing, electrical properties were poor. Films deposited with P{sub O{sub 2}}=2 mTorr transformed into the delafossite structure and exhibited p-type conductivity after annealing under N{sub 2} at temperatures T{sub A}{>=}750 deg. C. Conductivity generally increased with increasing T{sub S} and decreasing T{sub A}. A special case of P{sub O{sub 2}}=2 mTorr and low T{sub S} (60 deg. C) resulted in a partially crystalline oxide phase that transformed into the delafossite structure at T{sub A}=700 deg. C and yielded the highest conductivity of 1.8 S cm{sup -1}. In general, a T{sub A} near the phase formation boundary led to an increase in conductivity. Low-temperature hydrothermal annealing was also investigated and shown to produce mixed phase films exhibiting the delafossite structure along with CuO, AlOOH, and Al{sub 2}O{sub 3}.

  20. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect

    Kumar, B. Rajesh; Hymavathi, B.; Rao, T. Subba

    2014-01-28

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature.

  1. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  2. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2013-08-01

    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar + O2) flow rate ratio Γ between 0% and 100%. With increasing oxygen flow ratio a substoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable dc glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. In contrast, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable dc glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at Γ = 100% either a high target current (Im ⩾ 1 A) or a low magnetic field strength (B ⩽ 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films.

  3. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Yan, Rong; Chen, Junling; Chen, Longwei; Ding, Rui; Zhu, Dahuan

    2014-12-01

    The stainless steel (SS) first mirror pre-exposed in the deposition-dominated environment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.

  4. Hydroxyapatite coatings on nanotubular titanium dioxide thin films prepared by radio frequency magnetron sputtering.

    PubMed

    Shin, Jinho; Lee, Kwangmin; Koh, Jeongtae; Son, Hyeju; Kim, Hyunseung; Lim, Hyun-Pil; Yun, Kwidug; Oh, Gyejeong; Lee, Seokwoo; Oh, Heekyun; Lee, Kyungku; Hwang, Gabwoon; Park, Sang-Won

    2013-08-01

    In this study, hydroxyapatite (HA) was coated on anodized titanium (Ti) surfaces through radio frequency magnetron sputtering in order to improve biological response of the titanium surface. All the samples were blasted with resorbable blasting media (RBM). RBM-blasted Ti surface, anodized Ti surface, as-sputtered HA coating on the anodized Ti surface, and heat-treated HA coating on the anodized Ti surface were prepared. The samples were characterized using scanning electron microscopy and X-ray photoemission spectroscopy, and biologic responses were evaluated. The top of the TiO2 nanotubes was not closed by HA particles when the coating time is less than 15 minutes. It was demonstrated that the heat-treated HA was well-crystallized and this enhanced the cell attachment of the anodized Ti surface.

  5. Metal negative ion production by a planar magnetron sputter type radio frequency ion source

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Kanda, S.; Kasuya, T.; Wada, M.

    2017-08-01

    A planar magnetron sputter type ion source has been operated to investigate metal negative ion production. Radio frequency power at 13.56 MHz was directly supplied to the planar target made of 2 mm thick Cu disk to maintain plasma discharge and induce DC self-bias to the target for sputtering. Beam profile was obtained and the peak of negative ion beam profile was shifted to 6 mm as the beam traversed the 32 mT magnetic field in the region of the plasma grid. Extraction of Cu- beam was performed and the Cu- beam current was found consisted of two components: Cu-(surface) and Cu-(volume). Negative ion spectra were observed to measure the ratio of the surface component to the volume component. The surface component of Cu- occupied 67% of the total beam at the maximum, while it decreased the fraction down to about 50% as the source pressure was increased.

  6. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering.

    PubMed

    Lee, Jang-Hoon; Lee, Seung-Hyu; Yoo, Kwang-Lim; Kim, Nam-Young; Hwangbo, Chang Kwon

    2002-06-01

    We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2[Ti]Ag] TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 ohms/square (where square stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR.

  7. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect

    Fan, J. C.; Zhu, C. Y.; Fung, S.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Skorupa, W.; Anwand, W.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above approx400 deg. C, the films changed from n type to p type. Hole concentration and mobility of approx6x10{sup 17} cm{sup -3} and approx6 cm{sup 2} V{sup -1} s{sup -1} were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the As{sub Zn}-2V{sub Zn} shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  8. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  9. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.

    PubMed

    Bürgi, J; Neuenschwander, R; Kellermann, G; García Molleja, J; Craievich, A F; Feugeas, J

    2013-01-01

    The purpose of the designed reactor is (i) to obtain polycrystalline and∕or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, θ-2θ scanning, fixed α-2θ scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  10. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Oezer, D.; Sanjines, R.; Ramirez, G.; Rodil, S. E.

    2012-12-01

    The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and

  11. Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering

    SciTech Connect

    Mei, A. B.; Zhang, C.; Sardela, M.; Eckstein, J. N.; Rockett, A.; Howe, B. M.; Hultman, L.; Petrov, I.; Greene, J. E.

    2013-11-15

    Single-crystal ZrN films, 830 nm thick, are grown on MgO(001) at 450 °C by magnetically unbalanced reactive magnetron sputtering. The combination of high-resolution x-ray diffraction reciprocal lattice maps, high-resolution cross-sectional transmission electron microscopy, and selected-area electron diffraction shows that ZrN grows epitaxially on MgO(001) with a cube-on-cube orientational relationship, (001){sub ZrN}‖(001){sub MgO} and [100]{sub ZrN}‖[100]{sub MgO}. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm, in good agreement with reported results for bulk ZrN crystals. X-ray reflectivity results reveal that the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based on temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity ρ{sub 300K} of 12.0 μΩ-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6 × 10{sup −8}Ω-cm K{sup −1}, a residual resistivity ρ{sub o} below 30 K of 0.78 μΩ-cm (corresponding to a residual resistivity ratio ρ{sub 300Κ}/ρ{sub 15K} = 15), and the layers exhibit a superconducting transition temperature of 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, ξ{sub ‖} = 18 nm and ξ{sub ⊥} = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7 ± 1.7 and 450 ± 25 GPa.

  12. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  13. Control of growth and structure of Ag films by the driving frequency of magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Peifang, YANG; Chao, YE; Xiangying, WANG; Jiamin, GUO; Su, ZHANG

    2017-08-01

    The growth and structural properties of Ag films prepared by radio-frequency (2, 13.56 and 27.12 MHz) and very-high-frequency (40.68 and 60 MHz) magnetron sputtering were investigated. Using 2 MHz sputtering, the Ag film has a high deposition rate, a uniform and smooth surface and a good fcc structure. Using 13.56 and 27.12 MHz sputtering, the Ag films still have a high deposition rate and a good fcc structure, but a non-uniform and coarse surface. Using 40.68 MHz sputtering, the Ag film has a moderate deposition rate and a good fcc structure, but a less smooth surface. Using 60 MHz sputtering, the Ag film has a uniform and smooth surface, but a low deposition rate and a poor fcc structure. The growth and structural properties of Ag films are related to the ions’ energy and flux density. Therefore, changing the driving frequency is a good way to control the growth and structure of the Ag films.

  14. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  15. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wang, Yubao; Du, Jinfang; Yang, Hua; Hao, Junying

    2016-08-01

    The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp3 carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10-7 mm3/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  16. BiVO{sub 4} photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    SciTech Connect

    Gong, Haibo; Freudenberg, Norman; Nie, Man; Krol, Roel van de; Ellmer, Klaus

    2016-04-15

    Photoactive bismuth vanadate (BiVO{sub 4}) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO{sub 4} films were investigated. Phase-pure monoclinic BiVO{sub 4} films, which are more photoactive than the tetragonal BiVO{sub 4} phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO{sub 4} films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO{sub 4} film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm{sup 2} at a potential of 1.23 V{sub RHE} under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO{sub 4} films opens new possibilities for the fabrication of large-scale devices for water splitting.

  17. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Freudenberg, Norman; Nie, Man; van de Krol, Roel; Ellmer, Klaus

    2016-04-01

    Photoactive bismuth vanadate (BiVO4) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  18. () preferential orientation of polycrystalline AlN grown on SiO2/Si wafers by reactive sputter magnetron technique

    NASA Astrophysics Data System (ADS)

    Bürgi, Juan; García Molleja, Javier; Bolmaro, Raúl; Piccoli, Mattia; Bemporad, Edoardo; Craievich, Aldo; Feugeas, Jorge

    2016-04-01

    Aluminum nitride (AlN) is a ceramic compound that could be used as a processing material for semiconductor industry. However, the AlN crystalline structure plays a crucial role in its performance. In this paper, polycrystalline AlN films have been grown onto Si(1 1 1) and Si(1 0 0) (with an oxide native coverage of SiO2) wafers by RSM (reactive sputter magnetron) technique using a small (5 L) reactor. The development of polycrystalline AlN films with a good texture along () planes, i.e., semi-polar structure, was shown. Analyses were done using X-ray diffraction in the Bragg-Brentano mode and in the GIXRD (grazing incidence X-ray diffraction) one, and the texture was determined through pole figures. The structure and composition of these films were also studied by TEM and EDS techniques. Nevertheless, the mapping of the magnetic field between the magnetron and the substrate has shown a lack of symmetry at the region near the substrate. This lack of symmetry can be attributable to the small dimensions of the chamber, and the present paper suggests that this phenomenon is the responsible for the unusual () texture developed.

  19. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  20. Morphology of TiN thin films grown on MgO(001) by reactive dc magnetron sputtering

    SciTech Connect

    Ingason, A. S.; Magnus, F.; Olafsson, S.; Gudmundsson, J. T.

    2010-07-15

    Thin TiN films were grown by reactive dc magnetron sputtering on single-crystalline MgO(001) substrates at a range of temperatures from room temperature to 600 deg. C. Structural characterization was carried out using x-ray diffraction and reflection methods. TiN films grow epitaxially on the MgO substrates at growth temperatures of 200 deg. C and above. The crystal coherence length determined from Laue oscillations and the Scherrer method agrees with x-ray reflection thickness measurements to 6% and within 3% for growth temperatures of 200 and 600 deg. C, respectively. For lower growth temperatures the films are polycrystalline but highly textured and porous.

  1. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2011-06-01

    Thin films of copper oxides were prepared by reactive magnetron sputtering and structural, morphological, chemical, and electronic properties were analyzed using x-ray diffraction, atomic force microscopy, in situ photoelectron spectroscopy, and electrical resistance measurements. The deposition conditions for preparation of Cu(I)-oxide (Cu2O) are identified. In addition, the interface formation between Cu2O and Sn-doped In2O3 (ITO) was studied by stepwise deposition of Cu2O onto ITO and vice versa. A type II (staggered) band alignment with a valence band offset ΔEVB = 2.1-2.6 eV depending on interface preparation is observed. The band alignment explains the nonrectifying behavior of p-Cu2O/n-ITO junctions, which have been investigated for thin film solar cells.

  2. Native target chemistry during reactive dc magnetron sputtering studied by ex-situ x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2017-07-01

    We report x-ray photoelectron spectroscopy (XPS) analysis of native Ti target surface chemistry during magnetron sputtering in an Ar/N2 atmosphere. To avoid air exposure, the target is capped immediately after sputtering with a few-nm-thick Al overlayers; hence, information about the chemical state of target elements as a function of N2 partial pressure pN2 is preserved. Contrary to previous reports, which assume stoichiometric TiN formation, we present direct evidence, based on core-level XPS spectra and TRIDYN simulations, that the target surface is covered by TiNx with x varying in a wide range, from 0.27 to 1.18, depending on pN2. This has far-reaching consequences both for modelling of the reactive sputtering process and for everyday thin film growth where detailed knowledge of the target state is crucial.

  3. Bimodal substrate biasing to control γ-Al{sub 2}O{sub 3} deposition during reactive magnetron sputtering

    SciTech Connect

    Prenzel, Marina; Kortmann, Annika; Stein, Adrian; Keudell, Achim von; Nahif, Farwah; Schneider, Jochen M.

    2013-09-21

    Al{sub 2}O{sub 3} thin films have been deposited at substrate temperatures between 500 °C and 600 °C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.8 dpa for a substrate temperature of 500 °C. This threshold shifts to 0.6 dpa for films grown at 550 °C.

  4. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Brenning, Nils; Raadu, Michel A.; Huo, Chunqing; Minea, Tiberiu

    2016-09-01

    A reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with titanium target. We compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we find that when the discharge is operated in the metal mode Ar+ and Ti+-ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+-ions contribute most significantly to the discharge current while the contribution of O+-ions and secondary electron emission is much smaller. Furthermore, we find that recycling of ionized atoms coming from the target are required for the current generation in both modes of operation. In the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates, and it is concluded that the dominating type of recycling determines the discharge current waveform.

  5. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings.

    PubMed

    Takahashi, K; van den Beucken, J J J P; Wolke, J G C; Hayakawa, T; Nishiyama, N; Jansen, J A

    2008-03-01

    The objective of this study was to characterize the physicochemical, dissolution, and osteogenic properties of radio frequency magnetron sputtered dicalcium pyrophosphate/tricalciumphosphate (Pyro/TCP) and hydroxylapatite (HA) coatings. Therefore Pyro/TCP and HA coatings were deposited on grit-blasted titanium discs. The results showed that the deposited coatings were amorphous and changed into a crystalline structure after IR heat-treatment of 550 degrees C for HA and 650 degrees C for Pyro/TCP. Heat-treated HA coatings appeared to be stable during immersion in simulated body fluid (SBF), that is no changes in the XRD pattern were observed. Also, no dissolution of the coating was observed by scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) revealed that the Ca/P ratio of the HA coatings remained constant during SBF immersion. On the other hand, the heat-treated Pyro/TCP coatings showed a surface reaction of calcium pyrophosphate into a beta-tricalcium phosphate phase during SBF immersion. This was confirmed by EDS analysis. Rat bone marrow-derived osteoblast-like cells cultured on the heat-treated substrates showed that cell proliferation and differentiation occurred on both types of bioceramic coatings. No significant differences for proliferation and early differentiation were observed between cells cultured on heat-treated Pyro/TCP and HA at individual time points. However, osteocalcin expression, a late marker for osteoblast-like cell differentiation, was significantly increased after 12 days of culture on HA-coatings. These results were confirmed by SEM observations and suggest increased osteogenic properties for HA-coatings over Pyro/TCP-coatings. Additional research is necessary to obtain conclusive evidence on the in vivo osteogenic capacity of Pyro/TCP coatings.

  6. Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system

    SciTech Connect

    Liu, D.-S.; Sheu, C.-S.; Lee, C.-T.

    2007-08-01

    Al-N codoped zinc oxide films were prepared using a radio-frequency magnetron cosputtering system at room temperature. AlN and ZnO materials were employed as the cosputtered targets. The as-deposited cosputtered films at various theoretical atomic ratios [Al/(Al+Zn) at. %] showed n-type conductive behavior in spite of the N atoms exceeding that of the Al dopants, indicating that the N-related acceptors were still inactive. The crystalline structure was obviously correlated with the cosputtered AlN contents and eventually evolved into an amorphous structure for the Al-N codoped ZnO film at a theoretical Al doping level reaching 60%. With an adequate postannealing treatment, the N-related acceptors were effectively activated and the p-type ZnO conductive behavior achieved. The appearance of the Zn{sub 3}N{sub 2} phase in the x-ray diffraction pattern of the annealed Al-N codoped ZnO film provided evidence of the nitrification of zinc ions. The redshift of the shallow level transition and the apparent suppression of the oxygen-related deep level emission investigated from the photoluminescence spectrum measured at room temperature were concluded to be influenced by the activated N-related acceptors. In addition, the activation of the N acceptors denoted as N-Zn bond and the chemical bond related to the Zn{sub 3}N{sub 2} crystalline structure were also observed from the associated x-ray photoelectron spectroscopy spectra.

  7. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  8. Comparison of Y2O3:Bi3+ phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    NASA Astrophysics Data System (ADS)

    Jafer, R. M.; Yousif, A.; Kumar, Vinod; Pathak, Trilok Kumar; Purohit, L. P.; Swart, H. C.; Coetsee, E.

    2016-09-01

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y2-xO3:Bix=0.5% phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi3+ ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the 3P1-1S0 transition of the Bi3+ ion situated in the two different sites of the Y2O3 matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the 3P1-1S0 transition of the Bi3+ ion situated in one of the Y2O3 matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y2O3:Bi3+ phosphor thin films.

  9. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  10. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  11. Influence of the composition of BCN films deposited by reactive magnetron sputtering on their properties.

    PubMed

    Martínez, C; Kyrsta, S; Cremer, R; Neuschütz, D

    2002-10-01

    Compounds of the B--C--N system are very promising to produce superhard coatings with good tribological, chemical, and thermal properties. To investigate the influence of the composition of BCN films on their properties, films with five different compositions at nearly constant nitrogen content were deposited on silicon wafers by magnetron sputtering from hexagonal boron nitride and graphite targets operated in RF and DC mode, respectively. The compositions and binding states of the films were determined by XPS. The nitrogen content was found to be almost constant for all films at about a 40 at-%, whereas boron and carbon compositions ranged between 15-35 and 25-50 at-%, respectively. The electronic and bonding structure of the coatings were analyzed by REELS using three different electron beam energies to obtain information at different depths. An increase of the carbon content of the films resulted in a significant shift of the pi-pi* interband transition with respect to the energy loss corresponding to h-BN. The absence of the pi-pi* transition in the energy loss spectra acquired at a beam energy of 1900 eV indicates the existence of a very thin overlayer mostly sp(2) bonded and probably with a distorted hexagonal structure. The position of the bulk plasmon losses corresponded to the hexagonal phase for the overlayer and presented a shift of more than 1.5 eV to the higher energy loss direction for the spectra obtained at 1900 eV beam energy. This shift and the absence of the sp(2)-bond fingerprint induced the possibility of an underlying disordered structure with a majority of sp(3) bonds.

  12. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    SciTech Connect

    Borges, Joel Vaz, Filipe; Marques, Luis; Martin, Nicolas

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  13. Influence of temperature and hydrogen rate on silicon incorporation in silica films by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Chausserie, S.; Khalfaoui, N.; Dufour, C.; Vicens, J.; Marie, P.; Gourbilleau, F.

    2005-02-01

    Silicon-rich silicon oxide layers were deposited by reactive magnetron sputtering of a pure silica target. The main purpose was to understand how the different deposition parameters affect the silicon incorporation, in order to control the fabrication of efficient light emitting Si/SiO 2 multilayers. The silicon excess incorporated in the films was monitored by two main parameters: (i) the hydrogen partial pressure ( PH) introduced in the plasma, owing to the ability of hydrogen to reduce the oxygen released by the sputtered silica target, and (ii) the substrate temperature ( TS). The silicon excess estimated from the refractive index contrast with respect to silica, as determined by spectroscopic ellipsometry and optical transmission, was found to increase from 2.1 to 3.1 when TS and PH are increased. The evolution of the infrared absorption spectroscopy spectra reflects the incorporation of silicon excess, while microstructural studies allowed the determination of the nature (crystalline or amorphous) of Si aggregates. Studies using atomic force microscopy on tapping mode revealed that the surface roughness deteriorate for high PH, leading to the adoption of low values of hydrogen partial pressure for the fabrication of efficiently luminescent multilayers.

  14. Effects of Ti addiction in WO 3 thin film ammonia gas sensor prepared by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Yong, Cholyun; Feng, Youcai; Lv, Yuqiang; Han, Lei; Liang, Jiran; Wang, Haopeng

    2006-11-01

    WO 3 sensing films (1500 Å) were deposited using dc reactive magnetron sputtering method on alumina substrate on which patterned interdigital Pt electrodes were previously formed. The additive Ti was sputtered with different thickness (100-500 Å) onto WO 3 thin films and then the films as-deposited were annealed at 400°C in air for 3h. The crystal structure and chemical composition of the films were characterized by XRD and XPS analysis. The effect of Ti addition on sensitive properties of WO 3 thin film to the NH 3 gas was then discussed. WO 3 thin films added Ti revealed excellent sensitivity and response characteristics in the presence of low concentration of NH 3 (5-400 ppm) gas in air at 200°C operating temperature. Especially,in case 300 Å thickness of additive Ti, WO 3 thin films have a promotional effect on the response speed to NH 3 and selectivity enhanced with respect to other gases (CO, C IIH 5OH, CH 4). The influence of different substrates, including alumina, silicon and glass, on sensitivity to NH 3 gas has also been investigated.

  15. AlN thin films deposited by DC reactive magnetron sputtering: effect of oxygen on film growth

    NASA Astrophysics Data System (ADS)

    García Molleja, Javier; José Gómez, Bernardo; Ferrón, Julio; Gautron, Eric; Bürgi, Juan; Abdallah, Bassam; Abdou Djouadi, Mohamed; Feugeas, Jorge; Jouan, Pierre-Yves

    2013-11-01

    Aluminum nitride is a ceramic compound with many technological applications in many fields, for example optics, electronics and resonators. Contaminants play a crucial role in the AlN performance. This paper focuses mainly in the effect of oxygen when AlN, with O impurities in its structure, is grown on oxidized layers. In this study, AlN thin films have been deposited at room temperature and low residual vacuum on SiO2/Si (1 0 0) substrates. AlN films were grown by DC reactive magnetron sputtering (aluminum target) and atmosphere composed by an argon/nitrogen mixture. Working pressure was 3 mTorr. Film characterization was performed by AES, XRD, SEM, EDS, FTIR, HRTEM, SAED and band-bending method. Our results show that oxidized interlayer imposes compressive stresses to AlN layer, developing a polycrystalline deposition. Indeed, when film thickness is over 900 nm, influence of oxidized interlayer diminishes and crystallographic orientation changes to the (0 0 0 2) one, i.e., columnar structure, and stress relief is induced (there is a transition from compressive to tensile stress). Also, we propose a growth scenario to explain this behaviour.

  16. Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hellgren, Niklas; Johansson, Mats P.; Broitman, Esteban; Hultman, Lars; Sundgren, Jan-Eric

    1999-02-01

    Carbon nitride films, deposited by reactive dc magnetron sputtering in Ar/N2 discharges, were studied with respect to composition, structure, and mechanical properties. CNx films, with 0<=x<=0.35, were grown onto Si (001) substrates at temperatures between 100 and 550 °C. The total pressure was kept constant at 3.0 mTorr with the N2 fraction varied from 0 to 1. As-deposited films were studied by Rutherford-backscattering spectroscopy, x-ray photoelectron spectroscopy, electron-energy loss spectroscopy, Raman and Fourier transform infrared spectroscopy, and nanoindentation. Three characteristic film structures could be identified: For temperatures below ~150 °C, an amorphous phase forms, the properties of which are essentially unaffected by the nitrogen concentration. For temperatures above ~200 °C, a transition from a graphitelike phase to a ``fullerenelike'' phase is observed when the nitrogen concentration increases from ~5 to ~15 at. %. This fullerenelike phase exhibits high hardness values and extreme elasticity, as measured by nanoindentation. A ``defected-graphite'' model, where nitrogen atoms goes into substitutional graphite sites, is suggested for explaining this structural transformation. When a sufficient number of nitrogen atoms is incorporated, formation of pentagons is promoted, leading to curving of the basal planes. This facilitates cross-linking between the planes and a distortion of the graphitic structure, and a strong three-dimensional covalently bonded network is formed.

  17. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Alemón, B.; Flores, M.; Canto, C.; Andrade, E.; de Lucio, O. G.; Rocha, M. F.; Broitman, E.

    2014-07-01

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  18. Electrical and optical properties of CNx(0<=x<=0.25) films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Broitman, E.; Hellgren, N.; Järrendahl, K.; Johansson, M. P.; Olafsson, S.; Radnóczi, G.; Sundgren, J.-E.; Hultman, L.

    2001-01-01

    The electrical and optical properties of carbon-nitride CNx films (0⩽x⩽0.25) deposited by unbalanced reactive magnetron sputtering from a graphite target in mixed Ar/N2 discharges at a substrate temperature of 350 °C have been investigated. Pure C films exhibit a dark conductivity at room temperature of 25 Ω-1 cm-1, which grows up to 250 Ω-1 cm-1 for CNx films with N content of 20%. For CNx films, temperature-dependent conductivity measurements suggest that two electron conduction processes exist in the investigated temperature range 130

  19. The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core.

    PubMed

    Külünk, Tolga; Külünk, Safak; Baba, Seniha; Oztürk, Ozgür; Danişman, Sengül; Savaş, Soner

    2013-11-01

    Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 µm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 µm Al2O3 + Al coating and air particle abrasion with 50 µm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (α=.05). The highest bond strengths were obtained by air abrasion with 50 µm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.

  20. The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

    PubMed Central

    Külünk, Şafak; Baba, Seniha; Öztürk, Özgür; Danişman, Şengül; Savaş, Soner

    2013-01-01

    PURPOSE Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 µm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 µm Al2O3 + Al coating and air particle abrasion with 50 µm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (α=.05). RESULTS The highest bond strengths were obtained by air abrasion with 50 µm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core. PMID:24353874

  1. Reactive dc magnetron sputtering of (GeO{sub x}-SiO{sub 2}) superlattices for Ge nanocrystal formation

    SciTech Connect

    Zschintzsch, M.; Jeutter, N. M.; Borany, J. von; Krause, M.; Muecklich, A.

    2010-02-15

    The motivation of this work is the tailored growth of Ge nanocrystals for photovoltaic applications. The use of superlattices provides a reliable method to control the Ge nanocrystal size after phase separation. In this paper, we report on the deposition of (GeO{sub x}-SiO{sub 2}) superlattices via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation during subsequent annealing. Attention is directed mainly to define proper deposition conditions for tuning the GeO{sub x} composition between elemental Ge (x=0) and GeO{sub 2} (x=2) by the variation in the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows sequential GeO{sub x}-SiO{sub 2} deposition without changing the oxygen partial pressure during deposition. The phase separation and Ge nanocrystal formation after subsequent annealing were investigated with in situ x-ray scattering, Raman spectroscopy, and electron microscopy. By these methods the existence of 2-5 nm Ge nanocrystals at annealing temperatures of 600-750 deg. C has been confirmed which is within the superlattice stability range. The technique used allows the fabrication of superlattice stacks with very smooth interfaces (roughness<1 nm); thus the Ge nanocrystal layers could be separated by very thin SiO{sub 2} films (d<3 nm) which offers interesting possibilities for charge transport via direct tunneling.

  2. Structure and mechanical properties of Ti-Si-N films deposited by combined DC/RF reactive unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, X. Z.; Zeng, X. T.; Liu, Y. C.; Yang, Q.; Zhao, L. R.

    2004-11-01

    Ti-Si-N nanocomposite films with Si content between 0 and 13.5 at. % were deposited by combined DC/RF reactive unbalanced magnetron sputtering. The composition, structure, and mechanical properties of the as-deposited Ti-Si-N films were measured by energy dispersive analysis of x rays, x-ray diffraction (XRD), and nanoindentation experiments, respectively. All of the Ti-Si-N films exhibited a higher hardness than pure TiN films deposited under similar conditions. The highest hardness (~41 GPa) was obtained in the film with Si content of about 8 at. %. Ti-Si-N films also exhibited a higher resistance to plastic deformation (i.e., higher ratio H3/E*2) than pure TiN. XRD patterns revealed that the as-deposited films were composed of cubic TiN crystallites with a preferential orientation of (111). With increase of RF power applied to the Si targets, the TiN (111) peak intensity or TiN crystallite size increased in the lower RF power range but decreased in the higher RF power range, showing a maximum at an RF power of 500 W (power density ~1.14 W/cm2), corresponding to a Si content of about 5 at. % in the film.

  3. Effect of duty cycle on the electrical and optical properties of VOx film deposited by pulsed reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Xu, Xiangdong; Wei, Xiongbang; Jiang, Yadong

    2013-12-01

    Vanadium oxide (VOx) films were deposited onto well cleaned glass substrates by bipolar pulsed reactive magnetron sputtering at room temperature. Dependence of the structure, composition, optical and electrical properties of the films on the pulsed power's duty cycle has been investigated. The results from the X-ray diffraction (XRD) analysis show that there was no remarkable change in the amorphous structure in the films with duty cycle can be observed. But chemical analysis of the surface evaluated with x-ray photoelectron spectroscopy (XPS) indicates that decrease the duty cycle favors to enhance the oxidation of the vanadium. The optical and electrical properties of the films were characterized by spectroscopic ellipsometry and temperature dependent resistivity measurements, respectively. The evolution of the transmittance, optical band gap, optical constants, resistivity and temperature coefficient of resistance (TCR) of the deposited films with duty cycle was analyzed and discussed. In comparison with conventional DC sputtering, under the same discharge atmosphere and power level, these parameters of the VOx films can be modified over a broad range by duty cycle. Therefore adjusting the duty cycle during deposition, which is an effective way to control and optimize the performances of the VOx film for various optoelectronic devices applications.

  4. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  5. Fabrication of porous noble metal thin-film electrode by reactive magnetron sputtering.

    PubMed

    Cho, Tae-Shin; Choi, Heonjin; Kim, Joosun

    2013-06-01

    Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.

  6. Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering.

    PubMed

    Stuart, Bryan W; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M

    2015-12-16

    Quinternary phosphate-based glasses of up to 2.67 μm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching.

  7. Process-structure-property correlations in pulsed dc reactive magnetron sputtered vanadium oxide thin films

    SciTech Connect

    Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Drawl, William R.; Allara, David L.; Ashok, S.; Horn, Mark W.; Bharadwaja, S. S. N.

    2011-11-15

    Cathode hysteresis in the reactive pulsed dc sputtering of a vanadium metal target was investigated to correlate the structural and electrical properties of the resultant vanadium oxide thin films within the framework of Berg's model [Berg et al., J. Vac. Sci. Technol. A 5, 202 (1987)]. The process hysteresis during reactive pulsed dc sputtering of a vanadium metal target was monitored by measuring the cathode (target) current under different total gas flow rates and oxygen-to-argon ratios for a power density of {approx}6.6.W/cm{sup 2}. Approximately 20%-25% hysteretic change in the cathode current was noticed between the metallic and oxidized states of the V-metal target. The extent of the hysteresis varied with changes in the mass flow of oxygen as predicted by Berg's model. The corresponding microstructure of the films changed from columnar to equiaxed grain structure with increased oxygen flow rates. Micro-Raman spectroscopy indicates subtle changes in the film structure as a function of processing conditions. The resistivity, temperature coefficient of resistance, and charge transport mechanism, obeying the Meyer-Neldel relation [Meyer and Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937)], were correlated with the cathode current hysteric behavior.

  8. Pulsed dc self-sustained magnetron sputtering

    SciTech Connect

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-09-15

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of {approx}0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of {approx}560 W/cm{sup 2}. The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range

  9. In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds.

    PubMed

    Saino, Enrica; Maliardi, Valentina; Quartarone, Eliana; Fassina, Lorenzo; Benedetti, Laura; De Angelis, Maria Gabriella Cusella; Mustarelli, Piercarlo; Facchini, Alessandro; Visai, Livia

    2010-03-01

    In bone tissue engineering, bioglass coating of titanium (Ti) scaffolds has drawn attention as a method to improve osteointegration and implant fixation. In this in vitro study, bioactive glass layers with an approximate thickness of 1 microm were deposited at 200 degrees C onto a three-dimensional Ti-6Al-4V scaffold using a radio frequency (r.f.) magnetron sputtering system. After incubation with SAOS-2 human osteoblasts, in comparison with the uncoated scaffolds, the bioglass-coated scaffolds showed a twofold increase in cell proliferation (p < 0.05) up to 68.4 x 10(6), and enhanced the deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p < 0.05). Calcium deposition was twofold greater on the bioglass-coated scaffolds (p < 0.05). The immunofluorescence related to the preceding bone matrix proteins and calcium showed their colocalization to the cell-rich areas. Alkaline phosphatase activity increased twofold (p < 0.001) and its protein content was threefold higher with respect to the uncoated sample. Quantitative reverse transcriptase-polymerase chain reaction analysis revealed upregulated transcription specific for type-I collagen and osteopontin (p < 0.001). All together, these results demonstrate that the bioglass coating of the three-dimensional Ti scaffolds by the r.f. magnetron sputtering technique determines an in vitro increase of the bone matrix elaboration and may potentially have a clinical benefit.

  10. Magnetron theory

    NASA Astrophysics Data System (ADS)

    Riyopoulos, Spilios

    1996-03-01

    A guiding center fluid theory is applied to model steady-state, single mode, high-power magnetron operation. A hub of uniform, prescribed density, feeds the current spokes. The spoke charge follows from the continuity equation and the incompressibility of the guiding center flow. Included are the spoke self-fields (DC and AC), obtained by an expansion around the unperturbed (zero-spoke charge) flow in powers of ν/V1, ν, and V1 being the effective charge density and AC amplitude. The spoke current is obtained as a nonlinear function of the detuning from the synchronous (Buneman-Hartree, BH) voltage Vs; the spoke charge is included in the self-consistent definition of Vs. It is shown that there is a DC voltage region of width ‖V-Vs‖˜V1, where the spoke width is constant and the spoke current is simply proportional to the AC voltage. The magnetron characteristic curves are ``flat'' in that range, and are approximated by a linear expansion around Vs. The derived formulas differ from earlier results [J. F. Hull, in Cross Field Microwave Devices, edited by E. Okress (Academic, New York, 1961), pp. 496-527] in (a) there is no current cutoff at synchronism; the tube operates well below as well above the BH voltage; (b) the characteristics are single valued within the synchronous voltage range; (c) the hub top is not treated as virtual cathode; and (d) the hub density is not equal to the Brillouin density; comparisons with tube measurements show the best agreement for hub density near half the Brillouin density. It is also shown that at low space charge and low power the gain curve is symmetric relative to the voltage (frequency) detuning. While symmetry is broken at high-power/high space charge magnetron operation, the BH voltage remains between the current cutoff voltages.

  11. SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Hänninen, T.; Wissting, J.; Hultman, L.; Goebbels, N.; Santana, A.; Tobler, M.; Högberg, H.

    2017-05-01

    The residual coating stress and its control is of key importance for the performance and reliability of silicon nitride (SiNx) coatings for biomedical applications. This study explores the most important deposition process parameters to tailor the residual coating stress and hence improve the adhesion of SiNx coatings deposited by reactive high power impulse magnetron sputtering (rHiPIMS). Reactive sputter deposition and plasma characterization were conducted in an industrial deposition chamber equipped with pure Si targets in N2/Ar ambient. Reactive HiPIMS processes using N2-to-Ar flow ratios of 0 and 0.28-0.3 were studied with time averaged positive ion mass spectrometry. The coatings were deposited to thicknesses of 2 μm on Si(001) and to 5 μm on polished CoCrMo disks. The residual stress of the X-ray amorphous coatings was determined from the curvature of the Si substrates as obtained by X-ray diffraction. The coatings were further characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and nanoindentation in order to study their elemental composition, morphology, and hardness, respectively. The adhesion of the 5 μm thick coatings deposited on CoCrMo disks was assessed using the Rockwell C test. The deposition of SiNx coatings by rHiPIMS using N2-to-Ar flow ratios of 0.28 yield dense and hard SiNx coatings with Si/N ratios <1. The compressive residual stress of up to 2.1 GPa can be reduced to 0.2 GPa using a comparatively high deposition pressure of 600 mPa, substrate temperatures below 200 °C, low pulse energies of <2.5 Ws, and moderate negative bias voltages of up to 100 V. These process parameters resulted in excellent coating adhesion (ISO 0, HF1) and a low surface roughness of 14 nm for coatings deposited on CoCrMo.

  12. High-rate reactive magnetron sputtering of zirconia films for laser optics applications

    NASA Astrophysics Data System (ADS)

    Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškėnas, R.; Matthews, A.; Leyland, A.

    2014-09-01

    ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05-2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10-4 and 4.8 × 10-3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.

  13. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    SciTech Connect

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.; Tolmachova, G. N.; Debelle, A.; Sauvage, T.; Villechaise, P.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

  14. Microstructural Properties of NC-Si/SiO2 Films IN SITU Grown by Reactive Magnetron Co-Sputtering

    NASA Astrophysics Data System (ADS)

    Lu, Wanbing; Guo, Shaogang; Wang, Jiantao; Li, Yun; Wang, Xinzhan; Yu, Gengxi; Fan, Shanshan; Fu, Guangsheng

    2012-01-01

    Nanocrystalline silicon embedded in silicon oxide (nc-Si/SiO2) films have been in situ grown at a low substrate temperature of 300°C by reactive magnetron co-sputtering of Si and SiO2 targets in a mixed Ar/H2 discharge. The influences of H2 flow rate (FH) on the microstructural properties of the deposited nc-Si/SiO2 films were investigated. The results of XRD and the deposition rate of nc-Si/SiO2 films show that the introduction of H2 contributes to the growth of nc-Si grains in silicon oxide matrix. With further increasing FH, the average size of nc-Si grains increases and the deposition rate of nc-Si/SiO2 films decreases gradually. Fourier transform infrared spectra analyses reveal that introduction of hydrogen contributes to the phase separation of nc-Si and SiOx in the deposited films. Moreover, the Si-O4-nSin(n = 0, 1) concentration of the deposited nc-Si/SiO2 films reduces with the increase of FH, while that of Si-O4-nSin(n = 2, 3) concentration increases. These results can be explained by that active hydrogen atoms increase the probability of reducing oxygen from precursor in the plasma and prompting oxygen desorption from the growing surface. This low-temperature procedure for preparing nc-Si/SiO2 films opens up the possibility of fabricating the silicon-based thin-film solar cells onto low-cost glass substrates using nc-Si/SiO2 films.

  15. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  16. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kuschel, Thomas; von Keudell, Achim

    2010-05-01

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with this microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.

  17. Process- and optoelectronic-control of NiOx thin films deposited by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Keraudy, Julien; Delfour-Peyrethon, Brice; Ferrec, Axel; Garcia Molleja, Javier; Richard-Plouet, Mireille; Payen, Christophe; Hamon, Jonathan; Corraze, Benoît; Goullet, Antoine; Jouan, Pierre-Yves

    2017-05-01

    In this contribution, based on the analyses of the discharge behavior as well as final properties of the deposited Ni-O films during reactive high power impulse magnetron sputtering discharge, we have demonstrated that monitoring the oxygen flow rate leads to 4 different regimes of discharge. Tuning the oxygen partial pressure allows deposition of a large range of chemical compositions from pure nickel to nickel-deficient NiOx (x > 1) in the poisoned mode. Investigation of the plasma dynamics by time-resolved optical emission spectroscopy suggests that the discharge behavior in the poisoned mode principally comes from the higher contribution of both oxygen and argon ions in the total ionic current, leading to a change in the ion induced secondary electron emission coefficient. Additionally, material characterizations have revealed that optoelectronic properties of NiOx films can be easily tuned by adjusting the O/Ni ratio, which is influenced by the change of the oxygen flow rate. Stoichiometric NiO films (O/Ni ratio ˜ 1) are transparent in the visible range with a transmittance ˜80% and insulating as expected with an electrical resistivity ˜106 Ω cm. On the other hand, increasing the O/Ni > 1 leads to the deposition of more conductive coating (ρ ˜ 10 Ω cm) films with a lower transmittance ˜ 50%. These optoelectronic evolutions are accompanied by a band-gap narrowing 3.65 to 3.37 eV originating from the introduction of acceptor states between the Fermi level and the valence band maximum. In addition, our analysis has demonstrated that nickel vacancies are homogeneously distributed over the film thickness, explaining the p-type of the films.

  18. Microstructural properties of phosphorus-doped p-type ZnO grown by radio-frequency magnetron sputtering

    SciTech Connect

    Oh, Min-Suk; Hwang, Dae-Kue; Choi, Yong-Seok; Kang, Jang-Won; Park, Seong-Ju; Hwang, Chi-Sun; Cho, Kyoung Ik

    2008-09-15

    Phosphorus (P)-doped ZnO thin films were grown by radio-frequency magnetron sputtering to study the microstructural properties of p-type ZnO. As-grown P-doped ZnO, a semi-insulator, was converted to p-type ZnO after being annealed at 800 deg. C in an N{sub 2} ambient. X-ray diffraction, secondary-ion-mass spectrometry, and Hall effect measurements indicated that P{sub 2}O{sub 5} phases in as-grown P-doped ZnO disappeared after thermal annealing to form a substitutional P at an O lattice site, which acts as an acceptor in P-doped ZnO. Transmission electron microscopy showed that the formation of stacking faults was facilitated to release the strain in P-doped ZnO during post-thermal annealing.

  19. p-type Zn1-xMgxO films with Sb doping by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Nuofu; Yin, Zhigang; Dai, Ruixuan; Bai, Yiming

    2006-11-01

    Sb-doped Zn1-xMgxO films were grown on c-plane sapphire substrates by radio-frequency magnetron sputtering. The p-type conduction of the films (0.05⩽x⩽0.13) was confirmed by Hall measurements, revealing a hole concentration of 1015-1016cm-3 and a mobility of 0.6-4.5cm2/Vs. A p-n homojunction comprising an undoped ZnO layer and an Sb-doped Zn0.95Mg0.05O layer shows a typical rectifying characteristic. Sb-doped p-type Zn1-xMgxO films also exhibit a changeable wider band gap as a function of x, implying that they can probably be used for fabrication of ZnO-based quantum wells and ultraviolet optoelectronic devices.

  20. Formation of Nanoparticles by Control of Electron Temperature in Hollow-Typed Magnetron Radio Frequency CH4/H2 Plasma

    NASA Astrophysics Data System (ADS)

    Emi, Junichi; Kato, Kohgi; Abe, Toshimi; Iizuka, Satoru

    2006-10-01

    In this study, we investigate the effects of electron temperature Te on the production of nanoparticles by using the grid-biasing method in hollow-typed magnetron radio frequency (RF) CH4/H2 plasma. We find that nanoparticles are produced in low-Te plasma. On the other hand, thin film depositions, such as nanowalls, are mainly observed and almost no nanoparticles are created in high-Te plasma. This implies that a reduction in the CH2/CH3 radical ratio is important for producing nanoparticles, together with a reduction in sheath potential in front of the substrate. The change in electron temperature in plasma has a marked effect on film quality.

  1. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jian, Sheng-Rui; Chang, Huang-Wei; Tseng, Yu-Chin; Chen, Ping-Han; Juang, Jenh-Yih

    2013-06-01

    The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall-Petch equation.

  2. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering.

    PubMed

    Jian, Sheng-Rui; Chang, Huang-Wei; Tseng, Yu-Chin; Chen, Ping-Han; Juang, Jenh-Yih

    2013-06-25

    The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall-Petch equation.

  3. Characteristic corrosion resistance of nanocrystalline TiN films prepared by high density plasma reactive magnetron sputtering.

    PubMed

    Kim, J H; Kang, C G; Kim, Y T; Cheong, W S; Song, P K

    2013-07-01

    Nanocytalline TiN films were deposited on non-alkali glass and Al substrates by reactive DC magnetron sputtering (DCMS) with an electromagnetic field system (EMF). The microstructure and corrosion resistance of the TiN-coated Al substrates were estimated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. All the TiN films shows that they have a (111) preferred orientation at room temperature. TiN films deposited on Al substrate using only DCMS 400 W showed a sheet resistance of 3.22 x 10-1 omega/symbol see texts (resistivity, 3.22 x 10-5 omegacm). On the other hand, a relatively low sheet resistance of 1.91 x 10-1 omega/symbol see text (1.91 x 10-5 omegacm) was obtained for the dense nanocrystalline TiN film deposited on Al substrate using DCMS 375 W+ EMF 25 W, indicating that the introduction of an EMF system enhanced the electrical properties of the TiN film. TiN films deposited on Al substrate at 400 degreesC had a (200) preferred orientation with the lowest sheet resistance of 1.28x10-1 omega/symbol see texts (1.28 x 10-5 omegacm) which was attributed to reduced nano size defects and an improvement of the crystallinity. Potentiostatic and Potentiodynamic tests with a TiN-coated Al showed good corrosion resistance (l/corr, = 2.03 microA/cm2, Ecorr = -348 mV) compared to the uncoated Al substrate (/corr = 4.45 microA/cm2, Ecorr = -650 mV). Furthermore, EMF system showed that corrosion resistance of the TiN film also was enhanced compared to DCMS only. For the TiN film deposited on Al substrate at 400 degreesC, corrosion current and potential was 0.63 micro/cm2 and -1.5 mV, respectively. This improved corrosion resistance of the TiN film could be attributed to the densification of the film caused by enhancement of nitrification with increasing high reactive nitrogen radicals.

  4. Dynamics of processes during the deposition of ZrO2 films by controlled reactive high-power impulse magnetron sputtering: A modelling study

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš; Vlček, Jaroslav

    2017-07-01

    A time-dependent parametric model was applied to controlled reactive high-power impulse magnetron sputtering (HiPIMS) depositions of stoichiometric ZrO2 films, carried out in our laboratories, (i) to clarify the complicated dynamics of the processes on the target and substrate surfaces during voltage pulses, and (ii) to corroborate the importance of the O2 inlet configuration (position and direction) which strongly affects the O2 dissociation in the discharge and the chemisorption flux of oxygen atoms and molecules onto the substrate. The repetition frequency was 500 Hz at the deposition-averaged target power densities of 25 Wcm-2, being close to a target power density applicable in industrial HiPIMS systems, and 50 Wcm-2 with a pulse-averaged target power density up to 2 kWcm-2. The pulse duration was 50 μs. For the experimental conditions with the to-substrate O2 inlets, the deposition-averaged target power density of 50 Wcm-2, and the oxygen partial pressure of 0.05 Pa (being close to the mean value during controlled depositions), our model predicts a low compound fraction, changing between 8% and 12%, in the target surface layer at an almost constant high compound fraction, changing between 92% and 93%, in the substrate surface layer during the pulse period (2000 μs). The calculated deposition rate of 89 nm/min for these films is in good agreement with the measured value of 80 nm/min achieved for optically transparent stoichiometric ZrO2 films prepared under these conditions.

  5. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  6. Highly oriented {delta}-Bi{sub 2}O{sub 3} thin films stable at room temperature synthesized by reactive magnetron sputtering

    SciTech Connect

    Lunca Popa, P.; Kerdsongpanya, S.; Lu, J.; Eklund, P.; Sonderby, S.; Bonanos, N.

    2013-01-28

    We report the synthesis by reactive magnetron sputtering and structural characterization of highly (111)-oriented thin films of {delta}-Bi{sub 2}O{sub 3}. This phase is obtained at a substrate temperature of 150-200 Degree-Sign C in a narrow window of O{sub 2}/Ar ratio in the sputtering gas (18%-20%). Transmission electron microscopy and x-ray diffraction reveal a polycrystalline columnar structure with (111) texture. The films are stable from room temperature up to 250 Degree-Sign C in vacuum and 350 Degree-Sign C in ambient air.

  7. Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zehnder, T.; Schwaller, P.; Munnik, F.; Mikhailov, S.; Patscheider, J.

    2004-04-01

    Thin films of nc-TiC/a-C:H nanocomposite have been deposited by reactive magnetron sputtering at substrate bias values of -240 and -91 V. The grain size and grain separation, which together define the nanostructure, are correlated to the amount of the amorphous phase. From the size of the TiC grains measured by x-ray diffraction and the amorphous hydrogenated carbon (a-C:H) phase content determined by x-ray photoelectron spectroscopy, the mean grain separation is estimated using a simple model for the nanostructure. Films deposited at -240 V show a hardness enhancement for a-C:H phase contents in the range 10% to 30% with TiC grain sizes around 5 nm. The mean grain separation for such films was estimated to be 0.3 nm. Films with higher a-C:H phase contents still have 5 nm small grains, but their mean grain separation is larger than 0.5 nm; their hardness is thus determined by the properties of the amorphous matrix. A less pronounced hardness enhancement is observed for films deposited at -91 V. They have larger grains and larger mean gain separations and show smaller hardness values. The hardness of the films, among other mechanical properties, is controlled by the nanostructure. Raman measurements have shown that a-C:H is present in films with mean grain separation down to 0.2 nm. Coefficients of friction against steel lower than 0.3, independent of the substrate bias, are found for films with mean grain separations as low as 0.15 nm. Self-lubrication due to a-C:H can explain the observed friction behavior, although the presence of a-C:H cannot be proved by Raman spectroscopy for films with mean grain separations smaller than 0.2 nm. It is shown that the substrate bias is crucial in obtaining increased hardness of nc-TiC/a-C:H nanocomposite thin films. In contrast to the hardness of the coatings, their friction behavior is not affected by the substrate bias.

  8. Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering

    SciTech Connect

    Tu, M.-L.; Su, Y.-K.; Ma, C.-Y.

    2006-09-01

    Wide band gap nitrogen-doped p-type ZnO films are prepared by radio-frequency magnetron sputtering from a 99.99% purity ZnO target. The sputtering gas is Ar mixed with various flow rates of nitrogen gas. Hole concentrations increase from 1.89x10{sup 15} to 2.11x10{sup 19} cm{sup -3} as the N{sub 2} flow rate decreases from 15 to 6 SCCM (SCCM denotes cubic centimeter per minute at STP), i.e., increasing N{sub 2} flow rate above 6 SCCM decreases the p-type carrier concentration. Microphotoluminescence (PL) spectra peaks are in the near-UV range and change from 384 nm (3.23 eV) to 374 nm (3.32 eV) with increasing N{sub 2} flow rate. The PL peaks agree with the band gap of bulk ZnO, which comes from the recombination of free excitons. Raman spectra show six peaks: 436 (E{sub 2} high-frequency phonon mode for undoped ZnO film), 581 [A{sub 1} (LO) mode in ZnO:N film], 275, 508, 640, and 854 cm{sup -1} (local vibrational modes of Raman features in N-doped ZnO film)

  9. Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering

    PubMed Central

    Samavati, Alireza; Othaman, Zulkafli; Ghoshal, Sib Krishna; Dousti, Mohammad Reza; Kadir, Mohammed Rafiq Abdul

    2012-01-01

    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeOx manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices. PMID:23202927

  10. Substrate temperature dependent surface morphology and photoluminescence of germanium quantum dots grown by radio frequency magnetron sputtering.

    PubMed

    Samavati, Alireza; Othaman, Zulkafli; Ghoshal, Sib Krishna; Dousti, Mohammad Reza; Kadir, Mohammed Rafiq Abdul

    2012-10-09

    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeO(x) manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices.

  11. Self-cleaning and antifogging effects of TiO2 films prepared by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zeman, P.; Takabayashi, S.

    2002-03-01

    The article reports on the correlation between the structure, the surface morphology, and the photocatalytic behavior of transparent TiO2 films prepared at different total pressures and oxygen partial pressures. The reactive deposition process was conducted in a mixture of Ar and O2 on unheated glass substrate using a rf magnetron sputtering system. The film structure and the surface morphology were investigated by x-ray diffraction and scanning electron microscopy, respectively. The photocatalytic behavior was studied by the measurement of the decomposition of methylene blue and the reduction of the contact angle between water and TiO2 under ultraviolet irradiation. The experiments showed that the photocatalytic properties accompany the changes in the structure and the surface morphology. The phase conversion from the rutile to the anatase TiO2 film leads to an increase in the photocatalytic activity. The rutile films prepared at lower total pressures are characterized by a very low decomposition efficiency and a contact angle about 42° after irradiation. On the contrary, the anatase films with the best photocatalytic behavior are prepared at higher total pressures (>1.50 Pa) and characterized by a high decomposition efficiency, a contact angle about 10° after irradiation, and a good stability in darkness. Such anatase films possess the surface morphology of a lower density, a higher surface roughness, and a larger surface area. Moreover, the TiO2 films deposited in the transition sputtering mode showed a lower decomposition efficiency. The TiO2 films prepared in the reactive mode at the same total pressure exhibited the similar photocatalytic behavior with small variations only.

  12. Reactive magnetron sputtering of highly (001)-textured WS2-x films: Influence of Ne+, Ar+ and Xe+ ion bombardment on the film growth

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Seeger, S.; Sieber, I.; Bohne, W.; Röhrich, J.; Strub, E.; Mientus, R.

    2006-02-01

    Tungsten disulfide WS2 is a layer-type semi-conductor with an energy band gap and an absorption coefficient making it suitable as an absorber for thin film solar cells. In the article [1] WS2-x films were pre-pared by reactive magnetron sputtering from a metallic tungsten target in Ar-H2S atmospheres.The cover figure shows in situ energy-dispersive X-ray diffraction patterns for films deposited at different substrate potentials, i.e. for deposition conditions with ion assistance at different ion energies. These spectra and the corresponding SEM photographs of the film morphology show the strong influence of the ion energy on the film growth. The crystallographic struc-ture of WS2-x is shown between the two SEM pictures.The first author, Klaus Ellmer, is working at the Hahn-Meitner-Institut Berlin, Dept. of Solar Energy Research. His research fields are thin film deposition by reactive magnetron sputtering for solar cells, plasma characterization, in situ energy-dispersive X-ray diffraction and electronic transport in transpar-ent conductive oxides.

  13. The influence of the magnetron frequency, the servo settings and the gantry angle on the flatness and the dose calibration of a linear accelerator.

    PubMed

    Blad, B; Jacobsson, L; Wendel, P

    1998-01-01

    For the Philips SL75/5, we have noticed that the performance of the beam (e.g. the hump) varies with the settings of the magnetron frequency and the gantry angle. This study investigated these changes and the optimum magnetron frequency setting was determined. The relation between the relative absorbed dose measured by the accelerator and the relative absorbed dose measured for different amounts of the hump in the centre of the beam was found. Results from a model and from measured values were compared. The beam was studied for different gantry angles and for different adjustments of the beam servo systems. The profiles obtained showed some variations, but were reduced when optimal adjustments of the servos were performed.

  14. Structure and magnetic properties of hcp and fcc nanocrystalline thin Ni films and nanoparticles produced by radio frequency magnetron sputtering.

    PubMed

    Kapaklis, Vassilios; Pappas, Spiridon D; Poulopoulos, Panagiotis; Trachylis, Dimitrios; Schweiss, Peter; Politis, Constantin

    2010-09-01

    We report on the growth of thin Ni films by radio frequency magnetron sputtering in Ar-plasma. The growth temperature was about 350 K and the films were deposited on various substrates such as glass, silicon, sapphire and alumina. The thickness of the thinnest films was estimated by the appearance of Kiessig fringes up to about 2theta = 8 degrees in the small-angle X-ray diffraction pattern, as expected for high-quality atomically-flat thin films. With the help of this, a quartz balance system was calibrated and used for measuring the thickness of thicker samples with an accuracy of better than 5%. Structural characterization via X-ray diffraction and high resolution transmission electron microscopy revealed an Ar-gas pressure window, where single phase hcp Ni films may be grown. The magnetic response of the Ni films was checked at room temperature via a newly established and fully automatic polar magneto-optic Kerr effect magnetometer. The hcp films show no magnetic response. Interestingly, the magnetic saturation field of fcc films deposited at low Ar pressure is comparable to the one of bulk Ni, while the one of fcc films deposited at high Ar pressures is decreased, revealing the presence of residual strain in the films. Finally, it is shown that it is possible to form films which contain magnetic Ni fcc nanoparticles in a non-magnetic hcp matrix, i.e., a system interesting for technological applications demanding a single Ni target for its production.

  15. Low-temperature growth of InxGa1-xN films by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shi, X. J.; Zhu, J.

    2013-01-01

    The low-temperature growth of InxGa1-xN films on quartz glass substrates utilizing radio-frequency magnetron sputtering is investigated. In the InxGa1-xN films prepared using an In-Ga alloy target, grazing incidence X-ray diffraction (GIXRD) peaks corresponding to wurtzite structure were observed. X-ray photoelectron spectroscopy (XPS) was applied to study the extent of oxygen contamination and chemical states, and secondary ion mass spectrometry (SIMS) was used to evaluate the distribution profiles of oxygen impurity in the as-grown InxGa1-xN thin films. XPS and SIMS analysis indicate that the entire thin films have oxide phases. However, no evidence of In2O3, Ga2O3, or indium oxynitride phases was shown in XRD studies. It may be predicted that the oxygen impurities formed amorphous oxide phases embedded in InxGa1-xN matrix. According to our findings, indium is a major phase in the InxGa1-xN thin films which suggests that a significant amount of indium remains un-reacted with N2. The optical transmittance spectra of the as-grown films show interference fringe patterns. The indium fraction x of the as-deposited InxGa1-xN thin films can be calculated out by the transmittance data.

  16. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-03

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  17. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  18. Fabrication and properties of Sb-doped ZnO thin films grown by radio frequency (RF) magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Nuofu; Yin, Zhigang; Yang, Fei; Peng, Changtao

    2006-04-01

    Sb-doped and undoped ZnO thin films were deposited on Si (1 0 0) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting ( ρ˜1-10 Ω cm). Annealing in a nitrogen ambient at 400 °C for 1 h made both samples highly resistive ( ρ>10 3 Ω cm). Increasing the annealing temperature up to 800 °C, the resistivity of the undoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 °C became semi-insulating with a resistivity of 10 4 Ω cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed.

  19. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  20. Improved electrochemical performance of LiCoO₂ electrodes with ZnO coating by radio frequency magnetron sputtering.

    PubMed

    Dai, Xinyi; Wang, Liping; Xu, Jin; Wang, Ying; Zhou, Aijun; Li, Jingze

    2014-09-24

    Surface modification of LiCoO2 is an effective method to improve its energy density and elongate its cycle life in an extended operation voltage window. In this study, ZnO was directly coated on as-prepared LiCoO2 composite electrodes via radio frequency (RF) magnetron sputtering. ZnO is not only coated on the electrode as thin film but also diffuses through the whole electrode due to the intrinsic porosity of the composite electrode and the high diffusivity of the deposited species. It was found that ZnO coating can significantly improve the cycling performance and the rate capability of the LiCoO2 electrodes in the voltage range of 3.0-4.5 V. The sample with an optimum coating thickness of 17 nm exhibits an initial discharge capacity of 191 mAh g(-1) at 0.2 C, and the capacity retention is 81% after 200 cycles. It also delivers superior rate performance with a reversible capacity of 106 mAh g(-1) at 10 C. The enhanced cycling performance and rate capability are attributed to the stabilized phase structure and improved lithium ion diffusion coefficient induced by ZnO coating as evidenced by X-ray diffraction, cyclic voltammetry, respectively.

  1. Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2012-03-01

    We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.

  2. The properties of ZnO films obtained by high-frequency magnetron deposition with subsequent vacuum annealing and plasma treatment

    NASA Astrophysics Data System (ADS)

    Redka, D. N.; Elanskaia, K. G.; Bakhchova, L. D.

    2017-07-01

    The method of high-frequency magnetron sputtering allows to obtain thin films of zinc oxide with nanostructured surface morphology and, consequently, with unique optical characteristics. Such coating can provide an increase in the number of particles penetrating the photovoltaic structure and the length of their optical path. Vacuum-plasma processing of ZnO films allows to change the morphology of their surface, and annealing largely influences the optical transmission.

  3. Growth of fullerene-like carbon nitride thin solid films by reactive magnetron sputtering; role of low-energy ion irradiation in determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Neidhardt, J.; Czigány, Zs.; Brunell, I. F.; Hultman, L.

    2003-03-01

    Fullerene-like (FL) carbon nitride (CNx) films were deposited on Si (100) substrates by dc reactive, unbalanced, magnetron sputtering in a N2/Ar mixture from a high-purity pyrolythic graphite cathode in a dual-magnetron system with coupled magnetic fields. The N2 fraction in the discharge gas (0%-100%) and substrate bias (-25 V; -40 V) was varied, while the total pressure (0.4 Pa) and substrate temperature (450 °C) was kept constant. The coupled configuration of the magnetrons resulted in a reduced ion flux density, leading to a much lower average energy per incorporated particle, due to a less focused plasma as compared to a single magnetron. This enabled the evolution of a pronounced FL microstructure. The nitrogen concentration in the films saturated rapidly at 14-18 at. %, as determined by elastic recoil analysis, with a minor dependence on the discharge conditions. No correlations were detected between the photoelectron N1s core level spectra and the different microstructures, as observed by high-resolution electron microscopy. A variety of distinct FL structures were obtained, ranging from structures with elongated and aligned nitrogen-containing graphitic sheets to disordered structures, however, not exclusively linked to the total N concentration in the films. The microstructure evolution has rather to be seen as in equilibrium between the two competing processes of adsorption and desorption of nitrogen-containing species at the substrate. This balance is shifted by the energy and number of arriving species as well as by the substrate temperature. The most exceptional structure, for lower N2 fractions, consists of well-aligned, multi-layered circular features (nano-onions) with an inner diameter of approximately 0.7 nm and successive shells at a distance of ˜0.35 nm up to a diameter of 5 nm. It is shown that the intrinsic stress formation is closely linked with the evolution and accommodation of the heavily bent fullerene-like sheets. The FL CNx

  4. Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Kaczmarek, Danuta; Prociow, Eugeniusz; Domaradzki, Jaroslaw; Wojcieszak, Damian; Bocheński, Jakub

    2014-09-01

    In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10-2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

  5. Influence of oxygen flow rate on structural, optical and electrical properties of copper oxide thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gaewdang, Thitinai; Wongcharoen, Ngamnit

    2017-06-01

    In this research, copper oxide thin films were prepared by reactive dc magnetron sputtering method on glass substrates with oxygen flow rate in the range of 1-10 sccm. From XRD patterns, formation of Cu2O cubic structure or CuO monoclinic structure was controlled by adjusting oxygen flow rate. Nanocrystallite size of the as-grown films was observed by AFM. From transmittance spectra, direct energy gap varied between 1.97 and 2.55 eV. Electrical conductivity and Hall effect measurements were performed on the films with van der Pauw configuration. The positive sign of the Hall coefficient confirmed the p-type conductivity in all studied films. Important electrical parameters of films as a function of oxygen flow rate were observed. With low resistivity and high mobility values, the films prepared at oxygen flow rate of 8 sccm are identified as suitable candidates for fabrication as absorber layer in solar cell devices.

  6. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  7. Structure and properties of Al-doped ZnO transparent conductive thin-films prepared by asymmetric bipolar pulsed DC reactive magnetron sputtering.

    PubMed

    Hsu, Fu-Yung; Chen, Tse-Hao; Peng, Kun-Cheng

    2009-07-01

    Transparent conductive thin-films of aluminum-doped zinc oxide (AZO) were deposited on STN-glass substrates by an asymmetric bipolar pulsed DC (ABPDC) reactive magnetron sputtering system. Two different alloys, Zn-1.6 wt% Al and Zn-3.0 wt% Al, were used as the sputtering targets. The films consist of columnar grains with a preferred orientation of c-axis. Strong crystal distortion and high density stacking faults were observed in high resolution TEM micrographs. The full-width at half-maximum (FWHM) of the (002) rocking curve has a close relationship with the resistivity of the films; the smaller the FWHM, the lower the resistivity. The lowest resistivity of 7.0 x 10(-4) omega-cm was obtained from the film deposited with Zn-1.6 wt% Al target at 200 degrees C.

  8. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tsai, Du-Cheng; Huang, Yen-Lin; Lin, Sheng-Ru; Liang, Shih-Chang; Shieu, Fuh-Sheng

    2010-12-01

    This study reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various N 2-to-total (N 2 + Ar) flow ratio, which is R N. The crystal structures, microstructure, and mechanical properties for different R N were characterized by electron spectroscopy for chemical analysis, X-ray diffraction, atomic force microscopy, field-emission-scanning electron microscopy, transmission electron microscopy, and nanoindentation. The results indicate that the TiVCrZrY alloy and nitride coatings have hexagonal close-packed (hcp)-type and sodium chloride (NaCl)-type solid-solution structures, respectively. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing R N. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when R N = 100%.

  9. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Liang, SONG; Xianping, WANG; Le, WANG; Ying, ZHANG; Wang, LIU; Weibing, JIANG; Tao, ZHANG; Qianfeng, FANG; Changsong, LIU

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (∼17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  10. Effects of pulse frequency on the microstructure, composition and optical properties of pulsed dc reactively sputtered vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Jiang, Yadong; Xu, Xiangdong; Yu, He; Gu, Deen; Wang, Tao

    2014-09-01

    Vanadium oxide (VOx) thin films were prepared on unheated glass substrate by pulsed dc reactive magnetron sputtering using different pulse frequency. Field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE) measurements were made on the deposited VOx films to characterize the microstructure, composition and optical properties, respectively. It was found that under the same discharge power and argon-oxygen atmosphere, with the increase of pulse frequency, the vertical column-like structure in the films will gradually disappear and the ratio of high-valent VOx to low-valent VOx will obviously elevate. Optical parameters of the VOx films have been obtained by fitting the ellipsometric data (Ψ andΔ) using the Tauc-Lorentz dispersion relation and a multilayer model (air/roughness layer/VOx/glass). The results demonstrated that pulse frequency plays a critical role in determining the transmittance, refractive index, extinction coefficient and optical band gap etc. The correlations between the microstructure, composition, optical properties and pulse frequency are also given by our experiment results. And the mechanisms for the evolution of the microstructure, composition and optical properties with pulse frequency have been discussed. Overall, due to the pulse frequency had a great effect not only on the growth characteristics but also on the optical properties of the VOx films, thus through variation of the pulse frequency during deposition which provide a convenient and efficient approach to control and optimize the performances of the VOx films.

  11. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-12

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.

  12. A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model

    NASA Astrophysics Data System (ADS)

    Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.

    2017-05-01

    The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.

  13. Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System

    PubMed Central

    Liu, Fang-Cheng; Li, Jyun-Yong; Chen, Tai-Hong; Chang, Chun-How; Lee, Ching-Ting; Hsiao, Wei-Hua; Liu, Day-Shan

    2017-01-01

    Ag-ZnO co-sputtered films at various atomic ratios of Ag (Ag/(Ag + Zn) at.%) were prepared by a radio frequency magnetron cosputtering system, using the co-sputtered targets of Ag and ZnO. The activation of the Ag acceptors (AgZn) and the formation of the Ag aggregations (Ag0) in the ZnO matrix were investigated from XRD, Raman scattering, and XPS measurements. The Ag-ZnO co-sputtered film behaving like a p-type conduction was achievable after annealing at 350 °C under air ambient for 1 h. PMID:28773159

  14. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  15. Energy fluxes in a radio-frequency magnetron discharge for the deposition of superhard cubic boron nitride coatings

    SciTech Connect

    Bornholdt, S.; Kersten, H.; Ye, J.; Ulrich, S.

    2012-12-15

    Energy flux measurements by a calorimetric probe in a rf-magnetron plasma used for the deposition of super-hard c-BN coatings are presented and discussed. Argon as working gas is used for sputtering a h-BN target. Adding a certain amount of N{sub 2} is essential for the formation of stoichiometric BN films, since a lack of nitrogen will lead to boron rich films. Subsequently, the contributions of different plasma species, surface reactions, and film growth to the resulting variation of the substrate temperature in dependence on nitrogen admixture are estimated and discussed. In addition, SRIM simulations are performed to estimate the energy influx by sputtered neutral atoms. The influence of magnetron target power and oxygen admixture (for comparison with nitrogen) to the process gas on the total energy flux is determined and discussed qualitatively, too. The results indicate that variation of the energy influx due to additional nitrogen flow, which causes a decrease of electron and ion densities, electron temperature and plasma potential, is negligible, while the admixture of oxygen leads to a drastic increase of the energy influx. The typical hysteresis effect which can be observed during magnetron sputtering in oxygen containing gas mixtures has also been confirmed in the energy influx measurements for the investigated system. However, the underlying mechanism is not understood yet, and will be addressed in further investigations.

  16. Energy fluxes in a radio-frequency magnetron discharge for the deposition of superhard cubic boron nitride coatings

    NASA Astrophysics Data System (ADS)

    Bornholdt, S.; Ye, J.; Ulrich, S.; Kersten, H.

    2012-12-01

    Energy flux measurements by a calorimetric probe in a rf-magnetron plasma used for the deposition of super-hard c-BN coatings are presented and discussed. Argon as working gas is used for sputtering a h-BN target. Adding a certain amount of N2 is essential for the formation of stoichiometric BN films, since a lack of nitrogen will lead to boron rich films. Subsequently, the contributions of different plasma species, surface reactions, and film growth to the resulting variation of the substrate temperature in dependence on nitrogen admixture are estimated and discussed. In addition, SRIM simulations are performed to estimate the energy influx by sputtered neutral atoms. The influence of magnetron target power and oxygen admixture (for comparison with nitrogen) to the process gas on the total energy flux is determined and discussed qualitatively, too. The results indicate that variation of the energy influx due to additional nitrogen flow, which causes a decrease of electron and ion densities, electron temperature and plasma potential, is negligible, while the admixture of oxygen leads to a drastic increase of the energy influx. The typical hysteresis effect which can be observed during magnetron sputtering in oxygen containing gas mixtures has also been confirmed in the energy influx measurements for the investigated system. However, the underlying mechanism is not understood yet, and will be addressed in further investigations.

  17. [Effects of Temperature on the Preparation of Al/Zn3N2 Thin Films Using Magnetron Reactive Sputtering].

    PubMed

    Feng, Jun-qin; Chen, Jun-fang

    2015-08-01

    The effects of substrate temperature on the plasma active species were investigated by plasma optical emission spectroscopy. With increasing substrate temperature, the characteristic spectroscopy intensity of the first positive series of N2* (B(3)Πg-->A(3)Σu(+)), the second positive N2* (C(3)Πu-->B(3)Πg), the first negative series N2(+)* (B(2)Σu(+)-->X(2)Σg(+)) and Zn* are increased. Due to the substrate temperature, each ion kinetic energy is increased and the collision ionization intensified in the chamber. That leading to plasma ion density increase. These phenomenons's show that the substrate temperature raises in a certain range was conducive to zinc nitride thin films growth. Zn3N2 thin films were prepared on Al films using ion sources-assisted magnetron sputtering deposition method. The degree of crystalline of the films was examined with X-ray diffraction (XRD). The results show that has a dominant peak located at 34.359° in room temperature, which was corresponding to the (321) plane of cubic anti-bixbyite zinc nitride structure (JCPDS Card No35-0762). When the substrate temperature was 100 °C, in addition to the (321) reflection, more diffraction peaks appeared corresponding to the (222), (400) and (600) planes, which were located at 31.756°, 36.620° and 56.612° respectively. When the substrate temperature was 200 °C, in addition to the (321), (222), (400) and (600) reflection, more new diffraction peaks also appeared corresponding to the (411), (332), (431) and (622) planes, which were located at 39.070, 43.179°, 47.004° and 62.561° respectively. These results show the film crystalline increased gradually with raise the substrate temperature. XP-1 profilometer were used to analyze the thickness of the Zn3N2 films. The Zn3N2 films deposited on Al films in mixture gas plasma had a deposition rate of 2.0, 2.2, and 2.7 nm · min(-1). These results indicate that the deposition rate was gradually enhanced as substrate temperature increased

  18. Transparent conductive F-doped SnO2 films prepared by RF reactive magnetron sputtering at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Zhu, B. L.; Yang, Y. T.; Hu, W. C.; Wu, J.; Gan, Z. H.; Liu, J.; Zeng, D. W.; Xie, C. S.

    2017-04-01

    To obtain highly transparent conductive F-doped SnO2 films by magnetron sputtering at low substrate temperatures, a new method of sputtering high-density SnF2-Sn target in Ar + O2 atmosphere was adopted in the present study. The structural, electrical, and optical properties of the films prepared were investigated as a function of O2 flux. The results indicate that the films shows SnO2 phase only at O2 flux above a critical value (0.8 sccm), and the crystallinity of SnO2 phase is improved with increasing O2 flux. The resistivity of the films steeply decreases once O2 flux is above the critical value, but it greatly increases as O2 flux is too high. Only in intermediate range of O2 flux, the films with low resistivity can be obtained. As O2 flux is above the critical value, both the transmittances in visible light range and E g of the films show steeply increase, and the PL spectra of the film show distinct emission characteristics. Furthermore, the position and intensity of PL emission peaks are similar when O2 flux is above the critical value, and the emission mechanism can be attributed to electron transitions mediated by defect levels in the bandgap, such as V O and F O. Just because of formation of SnO2 phase in the films and existence of relatively larger amount of V O and F O, the films show low resistivity and high transmittance at suitable O2 fluxes.

  19. In-situ x-ray studies of compositional control during synthesis of LaGaO3 by radio frequency-magnetron sputtering

    DOE PAGES

    Highland, Matthew J.; Fong, Dillon D.; Ju, Guangxu; ...

    2015-08-28

    In-situ synchrotron x-ray scattering has been used to monitor and control the synthesis of LaGaO3 epitaxial thin films by 90° off-axis RF-magnetron sputtering. We compared films deposited from a single LaGaO3 source with those prepared by alternating deposition from separate La2O3 and Ga2O3 sources. The conditions for growth of stoichiometric films were determined by real-time monitoring of secondary phase formation as well as from features in the diffuse scatter from island formation during synthesis. Our results provide atomic-scale insight into the mechanisms taking place during reactive epitaxial growth and demonstrate how in-situ techniques can be utilized to achieve stoichiometric controlmore » in ultrathin films.« less

  20. In-situ x-ray studies of compositional control during synthesis of LaGaO3 by radio frequency-magnetron sputtering

    SciTech Connect

    Highland, Matthew J.; Fong, Dillon D.; Ju, Guangxu; Thompson, Carol; Baldo, Peter M.; Fuoss, Paul H.; Eastman, Jeffrey A.

    2015-08-28

    In-situ synchrotron x-ray scattering has been used to monitor and control the synthesis of LaGaO3 epitaxial thin films by 90° off-axis RF-magnetron sputtering. We compared films deposited from a single LaGaO3 source with those prepared by alternating deposition from separate La2O3 and Ga2O3 sources. The conditions for growth of stoichiometric films were determined by real-time monitoring of secondary phase formation as well as from features in the diffuse scatter from island formation during synthesis. Our results provide atomic-scale insight into the mechanisms taking place during reactive epitaxial growth and demonstrate how in-situ techniques can be utilized to achieve stoichiometric control in ultrathin films.

  1. Structure Evolution and Electric Properties of TaN Films Deposited on Al2O3-BASED Ceramic and Glass Substrates by Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Zhou, Yan Ming; Ma, Yang Zhao; Xie, Zhong; He, Ming Zhi

    2014-03-01

    Structure evolution and electric properties of tantalum nitride (TaN) films deposited on Al2O3-based ceramic and glass substrates by magnetron reactive sputtering were carried out as a function of the N2-to-Ar flow ratio. The TaN thin films on Al2O3-based ceramic substrates grow with micronclusters composed of numerous nanocrystallites, contains from single-phase of Ta2N grains to TaN, and exhibits high defect density, sheet resistance and negative TCR as the N2-to-Ar flow ratio continuously increases. However, the films on the glass substrates grow in the way of sandwich close-stack, contains from single-phase of Ta2N grains to TaN and Ta3N5 phases with the increase of N2-to-Ar flow ratio. These results indicate that the N2-to-Ar flow ratio and surface characteristic difference of substrates play a dominant effect on the structure and composition of the TaN films, resulting in different electrical properties for the films on Al2O3-based ceramic and the samples on glass substrates.

  2. Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Masłyk, M.; Borysiewicz, M. A.; Wzorek, M.; Wojciechowski, T.; Kwoka, M.; Kamińska, E.

    2016-12-01

    In the present work we analyze the growth mechanism of Zn/ZnO nanostructured thin films obtained by DC reactive magnetron sputtering with variable absolute gas flow values. Zn target was sputtered at 80 W DC power with variable absolute Ar:O2 flow values at a set ratio, in sccm: 3:0.3, 6:0.6, 8:0.8, 10:1, 15:1.5, 20:2 and 30:3. We obtained unique Zn/ZnO nanoflowers with morphology and properties changing as a function of gas flow values from dendritic/nanopetal structures for low flow to dense porous films for high flow. Zn core/ZnO shell composition results from surface oxidation of Zn crystallites to 4 nm thick ZnO after exposure to atmospheric air that causes an increase in resistivity especially for denser, more porous films. Taking into account that the plasma properties measures using the Langmuir probe and optical emission spectroscopy remain constant as a function of gas flow values, we put forward that the structural evolution of films is influenced by oxygen incorporating into the film surface acting as an inhibitor - incorporating into the films and decreasing crystallite sizes and amorphizing the film structure.

  3. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge.

    PubMed

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K; Rosen, Johanna

    2017-05-17

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ([Formula: see text]). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased [Formula: see text] leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  4. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering.

    PubMed

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-06-15

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu(2+) and Eu(3+) into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn(2+) as Eu(2+) into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu(2)O(3) oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the (5)D(0)-->(7)F(2) Eu(3+) transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu(3+) ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films.

  5. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  6. Effect of annealing treatment on the photocatalytic activity of TiO2 thin films deposited by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Arias, L. M. Franco; Arias Duran, A.; Cardona, D.; Camps, E.; Gómez, M. E.; Zambrano, G.

    2015-07-01

    Titanium dioxide (TiO2) thin films have been deposited by DC reactive magnetron sputtering on silicon and quartz substrates with different Ar/O2 ratios in the gas mixture. Substrate temperature was kept constant at 400 °C during the deposition process, and the TiO2 thin films were later annealed at 700 °C for 3 h. The effect of the Ar/O2 ratio in the gas flow and the annealing treatment on the phase composition, deposition rate, crystallinity, surface morphology and the resulting photocatalytic properties were investigated. For photocatalytic measurements, the variation of the concentration of the methylene blue (MB) dye under UV irradiation was followed by a change in the intensity of the characteristic MB band in the UV- Vis transmittance spectra. We report here that the as-grown TiO2 films showed only the anatase phase, whereas after annealing, the samples exhibited both the anatase and rutile phases in proportions that varied with the Ar/O2 ratio in the mixture of gases used during growth. In particular, the annealed TiO2 thin film deposited at a 50/50 ratio of Ar/O2, composed of both anatase (80%) and rutile phases (20%), exhibited the highest photocatalytic activity (30% of MB degradation) compared with the samples without annealing and composed of only the anatase phase.

  7. Effect of various nitrogen flow ratios on the optical properties of (Hf:N)-DLC films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Meng; Xiao, Jianrong; Cheng, Yong; Wang, Zhiyong; Jiang, Aihua; Guo, Yafang; Tao, Zengren

    2017-08-01

    Hf and N co-doped diamond-like carbon [(Hf:N)-DLC] films were deposited on 316L stainless steel and glass substrates through reactive magnetron sputtering of hafnium and carbon targets at various nitrogen flow ratios (R=N2/[N2+CH4+Ar]). The effects of chemical composition and crystal structure on the optical properties of the (Hf:N)-DLC films were studied. The obtained films consist of uniform HfN nanocrystallines embedded into the DLC matrix. The size of the graphite clusters with sp2 bonds (La) and the ID/IG ratio increase to 2.47 nm and 3.37, respectively, with increasing R. The optical band gap of the films decreases from 2.01 eV to 1.84 eV with increasing R. This finding is consistent with the trends of structural transformations and could be related to the increase in the density of π-bonds due to nitrogen incorporation. This paper reports the influence of nitrogen flow ratio on the correlation among the chemical composition, crystal structure, and optical properties of (Hf:N)-DLC films.

  8. Influence of film thickness on the morphological and electrical properties of epitaxial TiC films deposited by reactive magnetron sputtering on MgO substrates

    NASA Astrophysics Data System (ADS)

    Zoita, N. C.; Braic, V.; Danila, M.; Vlaicu, A. M.; Logofatu, C.; Grigorescu, C. E. A.; Braic, M.

    2014-03-01

    Epitaxial TiC films were deposited on MgO (001) by DC magnetron sputtering in a reactive atmosphere of Ar and CH4 at 800 °C. The films elemental composition and chemical bonding was investigated by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The crystallographic structure, investigated by X-ray diffraction, exhibited an increased degree of (001) orientation with the film thickness, with a cube-on-cube epitaxial relationship with the substrate. The films morphology and electrical properties were determined by atomic force microscopy (AFM) and Hall measurements in Van der Pauw geometry. The influences of the film thickness (57-545 nm) on the morphological and electrical properties were investigated. The thinnest film presented the lowest resistivity, 160 μΩ cm, showing an atomically flat surface, while higher values were obtained for the thicker films, explained by their different morphology dominated by low aspect ratio nanoislands/nanocolumns.

  9. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)-Six-N coatings by reactive RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cheng, Keng-Hao; Tsai, Che-Wei; Lin, Su-Jien; Yeh, Jien-Wei

    2011-05-01

    Multi-component (AlCrTaTiZr)-Six-N films were deposited on silicon wafers by reactive RF magnetron co-sputtering. The effect of silicon content on the structure, morphology and mechanical properties of the nitride films was investigated. Nitride films with lower silicon content remained as a simple NaCl-type face-centred cubic (FCC) structure. As the silicon content reached 7.9 at%, thermodynamically driven phase separation occurred, leading to a nanocomposite structure consisting of an FCC solid-solution nitride and an amorphous SiNx phase. These nitride films exhibited a high hardness of 34 GPa and remained at a constant level up to 7.9 at% Si. The reduced hardness at a silicon content of 10.2 at% was attributed to the appreciable amounts of softer amorphous segregation. The silicon incorporation significantly improved the oxidation resistance of (AlCrTaTiZr)N films. The film containing 7.9 at% Si annealed at 1000 °C for 2 h in air only had a 330 nm-thick oxide layer. The optimum Si content is 7.9 at% since it gives the best combination of hardness and oxidation resistance.

  10. Optimization of the optical properties of Er-doped Si-rich SiO 2/SiO 2 multilayers obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gourbilleau, F.; Dufour, C.; Madelon, R.; Rizk, R.

    2006-05-01

    The effects of annealing time and of Si nanocluster (Si-nc) size on the coupling rate to Er ions were investigated through studies made on multilayers (MLs) consisting in about 20 periods of Er-doped Si-rich SiO 2/SiO 2. These MLs were deposited by reactive magnetron sputtering at 650 °C and subsequently annealed at 900 °C. A steep increase of the PL emission is observed for short annealing time while a trend of some saturation occurs for longer treatment time. Besides, the Er lifetime continuously increases with the annealing time. For Si-rich layer thickness or Si-nc larger than about 5 nm, the rate of energy transfer is lowered because of the weak confinement of carriers and the loss of resonant excitation of Er through the upper levels (second, third, etc.). The latter is liable to prevent the energy back transfer process, while the weak confinement reduces strongly the probability of no phonon radiative recombination that governs the transfer excitation rate from Si-nc to Er ions.

  11. The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods - comparative studies

    NASA Astrophysics Data System (ADS)

    Kądzioła, Kinga; Piwoński, Ireneusz; Kisielewska, Aneta; Szczukocki, Dominik; Krawczyk, Barbara; Sielski, Jan

    2014-01-01

    Titanium dioxide coatings were deposited on silicon substrates using two different methods: sol-gel dip-coating (SG) and reactive magnetron sputtering (MS). In order to obtain anatase phase, as-prepared coatings were calcined at 500 °C in air. Subsequently, silver nanoparticles (AgNPs) were grown on the surface of TiO2 coatings by photoreduction of silver ions, initiated by illumination of the UV lamp operated at λ = 365 nm. The concentrations of silver ions were 0.1 mmol dm-3 and 1.0 mmol dm-3. Coatings immersed in these solutions were illuminated during 5 min and 30 min. The coating thicknesses, evaluated by ellipsometry, were 118 nm and 147 nm for SG and MS methods, respectively. Atomic force microscopy (AFM) imaging revealed that the surface roughness of TiO2 coating prepared by MS is about 6 times larger as compared to coatings prepared by SG method. The size of AgNPs deposited on SG and MS coatings were in the range of 17-132 nm and 54-103 nm respectively. The photoactivity of AgNPs/TiO2 coatings was determined by the measurement of the decomposition rate of bisphenol A (BPA). The concentration of BPA before and after illumination under UV light (λ = 365 nm) was monitored by high-performance liquid chromatography (HPLC). It was found that AgNPs enhance the photoactivity of the TiO2 coatings.

  12. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge

    NASA Astrophysics Data System (ADS)

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K.; Rosen, Johanna

    2017-05-01

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ({{P}\\text{S{{\\text{F}}\\text{6}}}} ). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased {{P}\\text{S{{\\text{F}}\\text{6}}}} leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  13. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2016-05-01

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  14. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    SciTech Connect

    Prakash, Ravi; Kaur, Davinder

    2016-05-06

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  15. Transmission photocathodes based on stainless steel mesh and quartz glass coated with N-doped DLC thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Arbet, J.

    2016-03-01

    The influence was investigated of N-doped diamond-like carbon (DLC) films properties on the quantum efficiency of a prepared transmission photocathode. N-doped DLC thin films were deposited on a silicon substrate, a stainless steel mesh and quartz glass (coated with 5 nm thick Cr adhesion film) by reactive magnetron sputtering using a carbon target and gas mixture Ar, 90%N2+10%H2. The elements' concentration in the films was determined by RBS and ERD. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. For the study of the vectorial photoelectric effect, the quartz type photocathode was irradiated by intensive laser pulses to form pin-holes in the DLC film. The quantum efficiency (QE), calculated at a laser energy of 0.4 mJ, rose as the nitrogen concentration in the DLC films was increased and rose dramatically after the micron-size perforation in the quartz type photocathodes.

  16. Exclusive examples of high-performance thin-film optical filters for fluorescence spectroscopy made by plasma-assisted reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, M.; Schallenberg, U.; Jakobs, S.

    2011-09-01

    For more than four decades band-pass filters are important components of microscopes used for the fluorescence spectroscopy. During all the time this special field of application has been one of the main drivers for research and development in thin-film optics, particularly for the thin-film design software and the coating technology. With a shortwave pass filter, a multi-notch filter, and a classical band-pass filter as examples of such filters provided for the latest generation of fluorescence microscopes we present the state-of-the-art in coating design and technology. Manufacturing these filters is a great challenge because the required spectral characteristics need necessarily multilayers with up to 300 layers and overall thicknesses up to 30 μm. In addition, the designs require also 3 to 5 nm as thinnest layers and all the layers are completely of non-quarterwave type. The filters were manufactured in a rapid-prototyping regime by a Leybold Helios plant using plasma-assisted reactive magnetron sputtering of thin films of different metal oxides. Designed and real spectra are compared and differences are discussed. Measurement results of other optical and non-optical characteristics as film stress, total integrated scattering, and micro roughness are presented.

  17. The influence of substrate temperature on the electrical and optical properties of titanium oxide thin films prepared by d.c. reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Yongfeng; Wu, Zhiming; Qiu, Yonglong; Li, Lin; Jiang, Yadong

    2010-10-01

    In this investigation, a novel heat-sensitive material titanium oxide (TiOx) thin film was deposited on well cleaned K9 glass substrates by d.c. reactive magnetron sputtering from a metallic titanium target in an Ar + O2 gas mixture. In order to obtain proper TiOx thin films, deposition parameters should be properly controlled. In our system, TiOx thin films were obtained at different substrate temperature while total pressure and oxygen partial pressure were kept at 1 Pa and 0.6 Pa, d.c. power of 100 W, and the deposition time was adjusted in order to deposit thin films with a constant thickness close to 200 nm. The crystalline structure was characterized by X-ray diffraction (XRD) analysis and the results show that all the deposited films have an amorphous structure. In this paper, we have mainly investigated the dependence of electrical and optical properties of the reactively sputtered TiOx thin films on the different substrate temperature during the sputtering process, i.e., as the K9 glass substrate temperature increases from 100 °C to 250°C, the sheet resistance Rs of TiOx thin films is ranged from 305 kΩ/square to 36 kΩ/square, temperature coefficient of resistance (TCR) value up to -2.12 %/K is obtained, optical band gap decreases from 3.34 eV to 3.28 eV. Through the analysis and discussion of the above experimental data, we could obtain the conclusion that the variation in substrate temperature during the sputtering deposition plays a considerable important role in the electrical and optical properties of all the deposited films.

  18. Measurement and modeling of plasma parameters in reactive high-power impulse magnetron sputtering of Ti in Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Čada, M.; Lundin, D.; Hubička, Z.

    2017-05-01

    A reactive high-power impulse magnetron sputtering (HiPIMS) process using a titanium target in a mixture of Ar/O2 has been investigated for different modes of operation including pure argon, metallic, transition, and compound mode. The trends and changes in the plasma density ne and the effective electron temperature Teff, have been measured by the time-resolved Langmuir probe technique. The same experimental process conditions have also been studied using a recently developed reactive ionization region model (R-IRM), making it possible to compare the acquired experimental results with the model results. It was found that trends in the plasma density and mean electron energy as measured by the Langmuir probe are in good agreement with the results obtained from the R-IRM model for different pulse discharge current densities. The effective electron temperature generally increases with an increasing oxygen flow rate. It is likely due to a reduction of sputtered Ti, due to compound formation on the target, which forces the discharge to increase the electron energy to increase the ionization rate of the process gas (Ar/O2) to maintain a high HiPIMS discharge current. Small variations in the plasma density were detected between the middle part of the plasma pulse as compared to the end of the plasma pulse, when transitioning from the metal mode to the poisoned mode. It is found that the time-evolution of the electron density is rather well correlated with the discharge current waveform. On the other hand, the mean electron energy did not change significantly between the middle and the end of the plasma pulse. For the lower pulse discharge current, both the model and experimental data have shown a slight increase in the plasma density with increasing O2 mass flow rate.

  19. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  20. Fabrication of Multiferroic Co-Substituted BiFeO₃ Epitaxial Films on SrTiO₃ (100) Substrates by Radio Frequency Magnetron Sputtering.

    PubMed

    Begum, Husne Ara; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo

    2011-06-09

    The 10 at.% Co-substituted BiFeO₃ films (of thickness 50 nm) were successfully prepared by radio frequency (r.f.) magnetron sputtering on SrTiO₃ (100) substrates with epitaxial relationships of [001](001)Co-BiFeO₃//[001](001)SrTiO₃. In this study, a single phase Co-substituted BiFeO₃ epitaxial film was fabricated by r.f. magnetron sputtering. Sputtering conditions such as Ar, O₂ gas pressure, annealing temperature, annealing atmosphere, and sputtering power were systematically changed. It was observed that a low Ar gas pressure and low sputtering power is necessary to suppress the formation of the secondary phases of BiOx. The Co-substituted BiFeO₃ films were crystalized with post-annealing at 600 °C in air. The process window for single phase films is narrower than that for pure BiFeO₃ epitaxial films. By substituting Fe with Co in BiFeO₃, the magnetization at room temperature increased to 20 emu/cm³. This result suggests that Co-substituted BiFeO₃ films can be used in spin-filter devices.

  1. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  2. Potential for reactive pulsed-dc magnetron sputtering of nanocomposite VO{sub x} microbolometer thin films

    SciTech Connect

    Jin, Yao O. Ozcelik, Adem; Horn, Mark W.; Jackson, Thomas N.

    2014-11-01

    Vanadium oxide (VO{sub x}) thin films were deposited by reactive pulsed-dc sputtering a metallic vanadium target in argon/oxygen mixtures with substrate bias. Hysteretic oxidation of the vanadium target surface was assessed by measuring the average cathode current during deposition. Nonuniform oxidization of the target surface was analyzed by Raman spectroscopy. The VO{sub x} film deposition rate, resistivity, and temperature coefficient of resistance were correlated to oxygen to argon ratio, processing pressure, target-to-substrate distance, and oxygen inlet positions. To deposit VO{sub x} in the resistivity range of 0.1–10 Ω-cm with good uniformity and process control, lower processing pressure, larger target-to-substrate distance, and oxygen inlet near the substrate are useful.

  3. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  4. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    SciTech Connect

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  5. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface oxidation of vanadium dioxide films prepared by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Jin; Liang, Chun-Jun; Guan, Kang-Ping; Li, De-Hua; Nie, Yu-Xin; Zhu, Shi-Oiu; Huang, Feng; Zhang, Wei-Wei; Cheng, Zheng-Wei

    2008-09-01

    This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were characterized with several different techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and Raman, when they were fresh from sputter chamber and aged after years, respectively, in order to determine their structure and composition. It finds that a small amount of sodium occurred on the surface of vanadium dioxide films, which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature. It also finds that aging for years significantly affected the nonstoichiometry of vanadium dioxide films, thus inducing much change in Raman modes.

  6. Heteroepitaxial growth of Cu{sub 2}ZnSnS{sub 4} thin film on sapphire substrate by radio frequency magnetron sputtering

    SciTech Connect

    Song, Ning E-mail: n.song@student.unsw.edu.au; Huang, Yidan; Li, Wei; Huang, Shujuan; Hao, Xiaojing E-mail: n.song@student.unsw.edu.au; Wang, Yu; Hu, Yicong

    2014-03-03

    The heteroepitaxy of tetragonal Cu2ZnSnS4 (CZTS) thin films on hexagonal sapphire (0001) single crystal substrates is successfully obtained by radio frequency magnetron sputtering. The sputtered CZTS film has a mirror-like smooth surface with a root mean square roughness of about 5.44 nm. X-ray θ-2θ scans confirm that CZTS film is (112) oriented on sapphire with an out of plane arrangement of CZTS (112) ‖ sapphire (0001). X-ray Phi scan further illustrates an in plane ordering of CZTS [201{sup ¯}] ‖ sapphire [21{sup ¯}1{sup ¯}0]. The high resolution transmission electron microscopy image of the interface region clearly shows that the CZTS thin film epitaxially grows on the sapphire (0001) substrate. The band gap of the film is found to be approximately 1.51 eV.

  7. [Study of luminescence properties of nano-size ZnO embedded in SiO2 layer grown by radio-frequency magnetron sputtering].

    PubMed

    Shang, Hong-kai; Zhang, Xi-qing; Yao, Zhi-gang; Teng, Xiao-ying; Wang, Yong-sheng; Huang, Shi-hua

    2006-03-01

    Nano-size ZnO embedded in SiO2 layers were grown by radio-frequency magnetron sputtering. Absorption spectra and PL spectra were employed to study the optical character of the samples at room temperature. Absorption spectra blue-shifted when the size of nano-meter ZnO decreased, which indicated that quantum size effect became stronger with decreasing the size of ZnO. PL spectra show two peaks at about 387 and 441 nm, respectively. It was concluded that the UV emission originates from the radiative recombination of free-exciton, and the blue emission is due to the electron transition from donor levels of oxygen vacancies to the top of valence band. The origin of the two peaks is demonstrated by time-resolved spectra and luminescence decay curve.

  8. The effect of sputtering gas pressure on the structure and optical properties of MgNiO films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Xie, Wuze; Jiao, Shujie; Wang, Dongbo; Gao, Shiyong; Wang, Jinzhong; Yu, Qingjiang; Li, Hongtao

    2017-05-01

    In this study, MgNiO thin films were grown on quartz substrates by radio frequency (RF) magnetron sputtering. The influence of different sputtering pressures on the crystalline and optical properties of MgNiO thin films has been studied. X-ray diffraction measurement indicates that the MgNiO films are cubic structure with (200) preferred orientation. UV-vis transmission spectra show that all the MgNiO thin films show more than 75% transmission at visible region, and the absorption edges of all thin films locate at solar-blind region (220 nm-280 nm). The lattice constant and Mg content of MgNiO samples were calculated using X-ray diffraction and transmission spectra data. The phase separation is observed both in the X-ray diffraction patterns and transmission spectra, and the phase separation is studied in detail based on the crystal growth theory and sputtering process.

  9. Determination of the optical bandgap and disorder energies of thin amorphous SiC and AlN films produced by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guerra, J. A.; Montañez, L.; Erlenbach, O.; Galvez, G.; De Zela, F.; Winnacker, A.; Weingärtner, R.

    2011-01-01

    Amorphous aluminum nitrite and silicon carbide (a-AlN and a-SiC) thin films were prepared by radio frequency magnetron sputtering. Due to the deposition method and production conditions the deposited films grown in amorphous state. We systematically measure the optical bandgap through optical transmission spectroscopy and its change with a cumulative thermal annealing. The results show a linear relation between the Tauc-gap and the Tauc-slope for both AlN and SiC films, which can be explained analytically from the existence of an Urbach focus, and therefore can be used to determine the Urbach focus or to ensure the correct usage of the bandgap determination methods.

  10. Fast response ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Liu, Feng-Juan; Huang, Hai-Qin; Zhao, Jian-Wei; Hu, Zuo-Fu; Zhang, Xi-Qing; Wang, Yong-Sheng

    2010-11-01

    A metal-semiconductor-metal photoconductive detector was fabricated on c-axis preferred oriented Ga-doped ZnO (ZnO:Ga) thin film prepared on quartz by radio-frequency magnetron sputtering. With a 10 V bias, a responsivity of about 2.6 A/W at 370 nm was obtained in the ultraviolet region. The photocurrent increases linearly with incident power density for more than two orders of magnitude. The transient response measurement revealed photoresponse with a rise time of 10 ns and a fall time of 960 ns, respectively. The results are much faster than those reported in photoconductive detectors based on unintentionally doped n-type ZnO films.

  11. Effect of N doping on hole density of Cu2O:N films prepared by the reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Li, B. B.; Lin, L.; Shen, H. L.; Boafo, F. E.; Chen, Z. F.; Liu, B.; Zhang, R.

    2012-05-01

    N-doped Cu2O thin films have been deposited on glass substrate by reactive magnetron sputtering method under various N2/O2 flow ratios from 0 to 1.0. The structural and electronic properties of Cu2O:N films were investigated by X-ray diffraction (XRD), four-point probe and Hall effect measurements. XRD pattern showed that crystalline structures of all the samples retained single phase of Cu2O with the increase of N2/O2 flow ratio from 0 to 1.0. However, the crystalline quality of Cu2O:N films reduced with the increase of the N2/O2 flow ratio. The phenomenon of peak shift of Cu2O(1 1 1) implied that N atoms have been doped into Cu2O film. The square resistance of Cu2O:N films linearly decreased from 28.1 to 1.5 (104 Ω/☐) with the increase of N2/O2 flow ratio from 0.2 to 0.6 initially, and then it changed slowly with the increase of N2/O2 flow ratio from 0.8 to 1.0. Hole density of Cu2O:N films with various N2/O2 flow ratios from 0 to 0.6 was measured using the Van der Pauw method. All the samples are p-type, and the hole density of Cu2O:N films was enhanced from 1.2 × 1016 cm-3 to 3.1 × 1019 cm-3 with the increase of N2/O2 flow ratio from 0 to 0.6. The experimental results demonstrated that N doping was an effective method to enhance hole density of p-type Cu2O film.

  12. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  13. The effect of the oxygen ratio control of DC reactive magnetron sputtering on as-deposited non stoichiometric NiO thin films

    NASA Astrophysics Data System (ADS)

    Wang, Mengying; Thimont, Yohann; Presmanes, Lionel; Diao, Xungang; Barnabé, Antoine

    2017-10-01

    Non-stoichiometric Ni1-xO thin films were prepared on glass substrate by direct current reactive magnetron sputtering in a large range of oxygen partial pressure (0 ≤ pO2 ≤ 1 Pa). The dependence of the deposited film structure and properties on oxygen stoichiometry were systematically analyzed by X-ray diffraction, X-ray reflectivity, X-ray photoemission spectroscopy, Raman spectroscopy, atomic force microscopy, UV-vis measurements and electrical transport properties measurements. The deposition rates, surface morphology and opto-electrical properties are very sensitive to the oxygen partial pressure lower than 0.05 Pa due to the presence of metallic nickel cluster phase determined by X-ray diffraction, X-ray reflectivity and XPS spectroscopy. Presence of nanocrystallized NiO phase was highlighted even for pO2 = 0 Pa. For pO2 > 0.05 Pa, only the NiO phase was detected. Progressive appearance of Ni3+ species is characterized by a fine increase of the lattice parameter and (111) preferred orientation determined by grazing angle X-ray diffraction, fine increase of the X-ray reflectivity critical angle, displacement of the Ni 2p3/2 signal towards lower energy, significant increase of the electrical conductivity and decrease of the total transmittance. Quantification of Ni3+ by XPS method is discussed. We also showed that the use of Raman spectroscopy was relevant for demonstrating the presence of Ni3+ in the Ni1-xO thin films.

  14. Epitaxial Ti1- xWxN alloys grown on MgO(001) by ultrahigh vacuum reactive magnetron sputtering: Electronic properties and long-range cation ordering

    NASA Astrophysics Data System (ADS)

    Tian, F.; D'Arcy-Gall, J.; Lee, T.-Y.; Sardela, M.; Gall, D.; Petrov, I.; Greene, J. E.

    2003-01-01

    Epitaxial Ti1- xWxN alloys with 0<=x<=0.6 were grown on MgO(001) substrates at 500 °C by ultrahigh vacuum reactive magnetron sputtering from Ti and W targets in pure N2. X-ray diffraction, transmission electron microscopy (TEM), and cross-sectional TEM show that the 0.3-μm-thick Ti1- xWxN(001) alloys are single crystals with the B1-NaCl structure. Rutherford backscattering spectroscopy investigations indicate that alloys with x>=0.05 are slightly overstoichiometric with N/(Ti+W)=1.06+/-0.05. The alloy lattice parameter a⊥ along the film growth direction is 4.251 Å, irrespective of the WN concentration, for x<=0.41 and decreases slightly at higher concentrations. TEM analyses show that Ti0.5W0.5N(001) alloys have long-range CuPt-type atomic ordering on the cation sublattice. The room-temperature resistivity increases linearly from 13 μΩ cm for TiN to 287 μΩ cm for Ti0.42W0.58N due primarily to alloy scattering while the temperature coefficient of resistivity is positive in Ti1- xWxN alloys with x<=0.21 and negative for x>0.21 due to weak charge carrier localization. The superconducting critical temperature Tc of Ti1- xWxN alloys initially increases with x, due to a larger density of states at the Fermi level, consistent with valence band x-ray photoelectron spectroscopy measurements. Tc reaches a maximum of 6.67 K at x=0.21 and decreases for larger x values.

  15. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    SciTech Connect

    Nie, Man Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  16. Nitrogen doping on NiO by reactive magnetron sputtering: A new pathway to dynamically tune the optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Keraudy, Julien; Ferrec, Axel; Richard-Plouet, Mireille; Hamon, Jonathan; Goullet, Antoine; Jouan, Pierre-Yves

    2017-07-01

    N-doped nickel oxide (NiO:N) thin films were deposited on glass and silicon substrates by reactive DC magnetron sputtering in Ar/O2/N2 gas atmosphere with a series of N2/O2 gas ratio ranging from 0 to 80%. X-ray diffraction measurements have revealed that the films are constituted of Ni1-xO grains and showed enhanced polycrystalline features with increasing N-doping concentration. For the first time, we report here that N-doping in the Ni-deficient NiO (Ni1-xO) film leads to a band-gap narrowing from 3.6 to 2.3 eV. X-ray photoelectron spectroscopy (XPS) measurements proved that up to 4 atomic percent (at.%) nitrogen can be incorporated at least at the surface of the NiO:N samples. In addition, XPS valence band spectra and UV-vis transmission measurements have demonstrated that the band-gap narrowing may originates from the contribution of an intermediate band (IB) ∼2.4 eV just above the valence band maximum and the up-shifting of the valence band edge (∼0.3 eV) due to the introduction of occupied N 2p states. Local I-V measurements, carried out by conductive AFM (C-AFM), have revealed that the extrinsic doping of N atoms within the oxide can be a good way to precisely control the electrical conductivity of such p-type materials.

  17. Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering

    SciTech Connect

    Tanner, S. M.; Felmetsger, V. V.

    2010-01-15

    The influence of the surface morphology of a molybdenum underlayer on the crystallinity and etchability of reactively sputtered c-axis oriented aluminum nitride thin films was investigated. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, and defect selective chemical etching were used to characterize the microstructure of the Mo and AlN films. 1000 nm thick films of AlN with a full width at half maximum (FWHM) of the x-ray rocking curve ranging from 1.1 deg. to 1.9 deg. were deposited on 300 nm thick Mo underlayers with a FWHM of around 1.5 deg. The Ar pressure during the Mo deposition had a critical effect on the Mo film surface morphology, affecting the structure of the subsequently deposited AlN films and, hence, their wet etching characteristics. AlN films deposited on Mo sputtered at a relatively high pressure could not be etched completely, while AlN films deposited on low pressure Mo etched more easily. Postdeposition etching of the Mo surface in Ar rf discharge prior to deposition of the AlN film was found to influence the formation of AlN residuals that were difficult to etch. Optimal rf plasma etching conditions were found, which minimized the formation of these residuals.

  18. PIC simulation of reactive radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    Matthias, Paul; Kahnfeld, Daniel; Lueskow, Karl; Bandelow, Gunnar; Schneider, Ralf; Kemnitz, Stefan; Duras, Julia

    2016-10-01

    Reactive plasmas are important for industrial applications. For sputter processes and plasma etching especially asymmetric capacitively coupled plasmas with a radio-frequency modulated voltage are used. The latest experimental results show an unexpected high-energy peak of negative ions at the grounded anode, depending on the cathode material. Here the Particle-in-Cell (PIC) method was used to simulate this experiment. The main mechanism for the effect is identified as the production of negative ions near the surface of the cathode. In a one dimensional simulation the negative ions are trapped inside the plasma because of the symmetric potential. Thus it was shown that these high-energy peaks of negative ions at the anode only appear in asymmetric discharges, due to the self-bias voltage. To reproduce the asymmetry a two dimensional model will be used in the future. German Space Agency DLR Project 50 RS 1510.

  19. Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries

    NASA Astrophysics Data System (ADS)

    Lobe, S.; Dellen, C.; Finsterbusch, M.; Gehrke, H.-G.; Sebold, D.; Tsai, C.-L.; Uhlenbruck, S.; Guillon, O.

    2016-03-01

    Thin film batteries based on solid electrolytes having a garnet-structure like Li7La3Zr2O12 (LLZ) are considered as one option for safer batteries with increased power density. In this work we show the deposition of Ta- and Al-substituted LLZ thin films on stainless steel substrates by r.f. magnetron sputtering. The thin films were characterized by XRD, SEM and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) to determine crystal structure, morphology and element distribution. The substrate temperature was identified to be one important parameter for the formation of cubic garnet-structured LLZ thin films. LLZ formation starts at around 650 °C. Single phase cubic thin films were obtained at substrate temperatures of 700 °C and higher. At these temperatures an interlayer is formed. Combination of SEM, ToF-SIMS and XRD indicated that this layer consists of γ-LiAlO2. The combined total ionic conductivity of the γ-LiAlO2 interlayer and the LLZ thin film (perpendicular to the plane) was determined to be 2.0 × 10-9 S cm-1 for the sample deposited at 700 °C. In-plane measurements showed a room temperature conductivity of 1.2 × 10-4 S cm-1 with an activation energy of 0.47 eV for the LLZ thin film.

  20. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    PubMed

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.

  1. Structural and magnetic properties of NiZn-ferrite thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Liu Yingli; Li Yuanxun; Zhang Huaiwu; Chen Daming; Mu Chunhong

    2011-04-01

    Polycrystalline NiZn-ferrite thin films were deposited on Si(100) substrate by rf magnetron sputtering, using targets with a nominal composition of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}. The effects of substrate condition, sputtering pressure, and postannealing on the structure and magnetic properties of thin films have been investigated. Our results show that the preferred orientation of the NiZn spinel film changed from (311) to (400) with increasing the Ar pressure from 0.8 to 1.6 Pa, meanwhile, the grain size also increased. Atomic force microscopy analysis indicates that perfect surface morphology of the film can be obtained at a relatively lower sputtering pressure of 1.0 Pa. The relative percentage of residual oxygen increases significantly on a condition of lower sputtering pressure, and plays an important role in film structure due to the strong molecular adsorption tendency of oxygen on the film surface during the deposition process. A thin film with a typical thickness of 1 {mu}m, a saturation magnetization of 150 emu/cm{sup 3}, and a coercivity of 8.8 kA/m has been obtained after annealing at 800 deg. C, which has the potential application in magnetic integrated circuits.

  2. Deuterium Retention in the Co-Deposition Carbon Layers Deposited by Radio-Frequency Magnetron Sputtering in D2 Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Yuan; Shi, Li-Qun; Zhang, Bin; Hu, Jian-Sheng

    2014-05-01

    Carbon is deposited on C and Si substrates by rf magnetron plasma sputtering in a D2 atmosphere. The deposited layers are examined with ion beam analysis and thermal desorption spectroscopy (TDS). The growth rates of the layers deposited on Si decrease with increasing substrate temperature, while increase significantly with the increase of D2 pressure. Meanwhile, the deuterium concentrations in the layers deposited on the Si substrates decrease from 30% to 2% and from 31% to 1% on the C substrates, respectively, when the substrate temperature varies from 350K to 900 K. Similarly, the D concentration in the layer on the Si substrates increases from 3.4% to 47%, and from 8% to 35% on the C substrates when the D2 pressure increases from 0.3Pa to 8.0Pa. D desorption characterized by TDS is mainly in the forms of D2, HD, HDO, CD4, and C2D4, and a similar release peak occurs at 645 K. The release peak of D2 molecules at 960K can be attributed to the escaped gas from the thin co-deposited deuterium-rich carbon layer in the form of C-D bonding.

  3. An efficient magnetron transmitter for superconducting accelerators

    DOE PAGES

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  4. An efficient magnetron transmitter for superconducting accelerators

    SciTech Connect

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron power in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.

  5. An efficient magnetron transmitter for superconducting accelerators

    SciTech Connect

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron power in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.

  6. An efficient magnetron transmitter for superconducting accelerators

    NASA Astrophysics Data System (ADS)

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-12-01

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injection-locked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage in free run. This realizes control of the magnetron power in an extended range (up to 10 dB) by control of the magnetron current. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and the required range of power control at a low noise level. An analysis of the kinetics of the drifting charge within the framework of the presented model of phase focusing in magnetrons substantiates the concept and the experimental results.

  7. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    SciTech Connect

    Bakoglidis, Konstantinos D. Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  8. In-situ spectroscopic ellipsometry and structural study of HfO{sub 2} thin films deposited by radio frequency magnetron sputtering

    SciTech Connect

    Cantas, Ayten; Aygun, Gulnur; Basa, Deepak Kumar

    2014-08-28

    We have investigated the reduction of unwanted interfacial SiO{sub 2} layer at HfO{sub 2}/Si interface brought about by the deposition of thin Hf metal buffer layer on Si substrate prior to the deposition of HfO{sub 2} thin films for possible direct contact between HfO{sub 2} thin film and Si substrate, necessary for the future generation devices based on high-κ HfO{sub 2} gate dielectrics. Reactive rf magnetron sputtering system along with the attached in-situ spectroscopic ellipsometry (SE) was used to predeposit Hf metal buffer layer as well as to grow HfO{sub 2} thin films and also to undertake the in-situ characterization of the high-κ HfO{sub 2} thin films deposited on n-type 〈100〉 crystalline silicon substrate. The formation of the unwanted interfacial SiO{sub 2} layer and its reduction due to the predeposited Hf metal buffer layer as well as the depth profiling and also structure of HfO{sub 2} thin films were investigated by in-situ SE, Fourier Transform Infrared spectroscopy, and Grazing Incidence X-ray Diffraction. The study demonstrates that the predeposited Hf metal buffer layer has played a crucial role in eliminating the formation of unwanted interfacial layer and that the deposited high-κ HfO{sub 2} thin films are crystalline although they were deposited at room temperature.

  9. A reactive magnetron sputtering route for attaining a controlled core-rim phase partitioning in Cu2O/CuO thin films with resistive switching potential

    NASA Astrophysics Data System (ADS)

    Ogwu, A. A.; Darma, T. H.

    2013-05-01

    The achievement of a reproducible and controlled deposition of partitioned Cu2O/CuO thin films by techniques compatible with ULSI processing like reactive magnetron sputtering has been reported as an outstanding challenge in the literature. This phase partitioning underlies their performance as reversible resistive memory switching devices in advanced microelectronic applications of the future. They are currently fabricated by thermal oxidation and chemical methods. We have used a combination of an understanding from plasma chemistry, thermo-kinetics of ions, and rf power variation during deposition to successfully identify a processing window for preparing partitioned Cu2O/CuO films. The production of a core rich Cu2O and surface rich Cu2O/CuO mixture necessary for oxygen migration during resistive switching is confirmed by XRD peaks, Fourier transform infra red Cu (I)-O vibrational modes, XPS Cu 2P3/2 and O 1S peak fitting, and a comparison of satellite peak ratio's in Cu 2P3/2 fitted peaks. We are proposing based on the findings reported in this paper that an XPS satellite peak intensity(Is) to main peak intensity ratio (Im) ≤ 0.45 as an indicator of a core rich Cu2O and surface rich Cu2O/CuO formation in our prepared films. CuO is solely responsible for the satellite peaks. This is explained on the basis that plasma dissociation of oxygen will be limited to the predominant formation of Cu2O under certain plasma deposition conditions we have identified in this paper, which also results in a core-rim phase partitioning. The deposited films also followed a Volmer-Weber columnar growth mode, which could facilitate oxygen vacancy migration and conductive filaments at the columnar interfaces. This is further confirmed by optical transmittance and band-gap measurements using spectrophotometry. This development is expected to impact on the early adoption of copper oxide based resistive memory electronic switching devices in advanced electronic devices of the future

  10. Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering

    SciTech Connect

    Ju, Hongbo; Xu, Junhua

    2015-09-15

    Composite Nb–V–Si–N films with various V contents (3.7–13.2 at.%) were deposited by reactive magnetron sputtering and the effects of V content on the microstructure, mechanical and tribological properties of Nb–V–Si–N films were investigated. The results revealed that a three-phase structure, consisting of face-centered cubic (fcc) Nb–V–Si–N, hexagonal close-packed (hcp) Nb–V–Si–N and amorphous Si{sub 3}N{sub 4}, co-exists in the Nb–V–Si–N films and the cubic phase is dominant. The hardness and critical load (L{sub c}) of Nb–V–Si–N films initially increased gradually and reached a summit, then decreased with the increasing V content in the films and the maximum values were 35 GPa and 9.8 N, respectively, at 6.4 at.% V. The combination of V into Nb–Si–N film led to the fracture toughness linearly increasing from 1.11 MPa·m{sup 1/2} at 3.7 at.% V to 1.67 MPa·m{sup 1/2} at 13.2 at.% V. At room temperature (RT), the average friction coefficient decreased from 0.80 at 3.7 at.% V to 0.55 at 13.2 at.% V for the Nb–V–Si–N films. The wear rate of Nb–V–Si–N films initially decreased and then increased after reaching a minimum value of about 6.35 × 10{sup −} {sup 7} mm{sup 3}/N·mm at 6.4 at.% V. As the rise of testing temperature from 200 °C to 600 °C, the average friction coefficient of Nb–V–Si–N films decreased with the increase of the testing temperature regardless of V content. However, the wear rate gradually increased for all films. The average friction coefficient and wear rate at RT and elevated temperatures were mainly influenced by the vanadium oxides with weakly bonded lattice planes. - Highlight: • Fcc-Nb–V–Si–N, hcp-Nb–V–Si–N and amorphous Si{sub 3}N{sub 4} co-existed in the films. • The amount of Si{sub 3}N{sub 4} decreased with increasing V content in the films. • Hardness of Nb–V–Si–N film (6.4 at.%) reached a maximum value of 35 GPa. • Addition of V led to the

  11. Effect of radio-frequency electric power applied to a boron nitride unbalanced magnetron sputter target on the deposition of cubic boron nitride thin film

    NASA Astrophysics Data System (ADS)

    Ko, Ji-Sun; Park, Jong-Keuk; Lee, Wook-Seong; Huh, Joo-Youl; Baik, Young-Joon

    2013-11-01

    Cubic boron nitride (c-BN) films were deposited by an unbalanced magnetron sputtering method. A (100) Si wafer with a nanocrystalline diamond thin film as a surface coating layer or that without it was used as a substrate. The target power was varied from 100 to 400 W. A boron nitride target was used, which was connected to a radio frequency power supply. High frequency power connected to a substrate holder was used for self-biasing. The deposition pressure was 0.27 MPa with a flow of Ar (18 sccm) — N2 (2 sccm) mixed gas. The existence of threshold bias voltages for c-BN formation and resputtering were observed irrespective of target power. The bias voltage window for c-BN formation broadened with increased target power. The deposition rate decreased with enhanced bias voltage and decreased target power. Residual stresses of the films did not vary noticeably with target power within the target power range of c-BN formation. A parameter space for c-BN formation according to the target power and the bias voltage, as two variables, was suggested.

  12. Characteristics of Carrier Transport and Crystallographic Orientation Distribution of Transparent Conductive Al-Doped ZnO Polycrystalline Films Deposited by Radio-Frequency, Direct-Current, and Radio-Frequency-Superimposed Direct-Current Magnetron Sputtering

    PubMed Central

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Watanabe, Takeshi; Makino, Hisao; Yamamoto, Tetsuya

    2017-01-01

    We investigated the characteristics of carrier transport and crystallographic orientation distribution in 500-nm-thick Al-doped ZnO (AZO) polycrystalline films to achieve high-Hall-mobility AZO films. The AZO films were deposited on glass substrates at 200 °C by direct-current, radio-frequency, or radio-frequency-superimposed direct-current magnetron sputtering at various power ratios. We used sintered AZO targets with an Al2O3 content of 2.0 wt. %. The analysis of the data obtained by X-ray diffraction, Hall-effect, and optical measurements of AZO films at various power ratios showed that the complex orientation texture depending on the growth process enhanced the contribution of grain boundary scattering to carrier transport and of carrier sinks on net carrier concentration, resulting in the reduction in the Hall mobility of polycrystalline AZO films. PMID:28792439

  13. Characteristics of Carrier Transport and Crystallographic Orientation Distribution of Transparent Conductive Al-Doped ZnO Polycrystalline Films Deposited by Radio-Frequency, Direct-Current, and Radio-Frequency-Superimposed Direct-Current Magnetron Sputtering.

    PubMed

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Watanabe, Takeshi; Makino, Hisao; Yamamoto, Tetsuya

    2017-08-09

    We investigated the characteristics of carrier transport and crystallographic orientation distribution in 500-nm-thick Al-doped ZnO (AZO) polycrystalline films to achieve high-Hall-mobility AZO films. The AZO films were deposited on glass substrates at 200 °C by direct-current, radio-frequency, or radio-frequency-superimposed direct-current magnetron sputtering at various power ratios. We used sintered AZO targets with an Al₂O₃ content of 2.0 wt. %. The analysis of the data obtained by X-ray diffraction, Hall-effect, and optical measurements of AZO films at various power ratios showed that the complex orientation texture depending on the growth process enhanced the contribution of grain boundary scattering to carrier transport and of carrier sinks on net carrier concentration, resulting in the reduction in the Hall mobility of polycrystalline AZO films.

  14. Peer-to-Peer Magnetron Locking

    NASA Astrophysics Data System (ADS)

    Cruz, Edward Jeffrey

    The viability of coherent power combination of multiple high-efficiency, moderate power magnetrons requires a thorough understanding of frequency and phase control. Injection locking of conventional magnetrons, and other types of oscillators, employing a master-to-slave configuration has been studied theoretically and experimentally. This dissertation focuses on the peer-to-peer locking, where each oscillator acts as a master of and slave to all others, between two conventional magnetrons, where the general condition for locking was recently derived. The experiments performed on peer-to-peer locking of two 1-kW magnetrons verify the recently developed theory on the condition under which the two nonlinear oscillators may be locked to a common frequency and relative phase. This condition reduces to Adler's classical locking condition (master-slave) if the coupling is one way. Dependent on the degree of coupling, the frequency of oscillation when locking occurs was found to not necessarily lie between the two magnetrons' free running frequencies. Likewise, when the locking condition was violated, the beat of the spectrum was not necessarily found to be equal to the difference between the free running frequencies. The frequency of oscillation and relative phase between the two magnetrons when locking did occur were found to correspond to one of two solution modes given by the recent theory. The accessibility of the two possible modes is yet to be determined. This work was supported by ONR, AFRL, AFOSR, L-3 Communications Electron Devices Division and Northrop-Grumman Corporation.

  15. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering

    SciTech Connect

    To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S.

    2011-12-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 deg. C. Post-growth annealing in air was carried out up to a temperature of 1000 deg. C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 deg. C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 x 10{sup 17} cm{sup -3} at the annealing temperature of 600 deg. C. The origin of the p-type conductivity was consistent with the As{sub Zn}(V{sub Zn}){sub 2} shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the As{sub Zn}(V{sub Zn}){sub 2} acceptor and the creation of the deep level defect giving rise to the green luminescence.

  16. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Wei; Xu, Bo; Li, Ying-Ai; Li, Hong-Dong; Gu, Guang-Rui; Yin, Hong

    2016-10-01

    The excellent physical and chemical properties of cubic boron nitride (c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon (100) substrates by radio frequency (RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of H2 gas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51572105, 61504046, and 51272224), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Development and Reform Commission of Jilin Province, China (Grant No. 2015Y050), and the Scientific Research Foundation for the Returned Overseas of Jilin Province, China.

  17. Morphology and structure evolution of tin-doped indium oxide thin films deposited by radio-frequency magnetron sputtering: The role of the sputtering atmosphere

    SciTech Connect

    Nie, Man Mete, Tayfun; Ellmer, Klaus

    2014-04-21

    The microstructure and morphology evolution of tin-doped indium oxide (ITO) thin films deposited by radio-frequency magnetron sputtering in different sputtering atmospheres were investigated by X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The surface roughness w increases with increasing film thickness d{sub f}, and exhibits a power law behavior w ∼ d{sub f}{sup β}. The roughness decreases with increasing O{sub 2} flow, while it increases with increasing H{sub 2} flow. The growth exponent β is found to be 0.35, 0.75, and 0.98 for depositions in Ar/10%O{sub 2}, pure Ar, and Ar/10%H{sub 2} atmospheres, respectively. The correlation length ξ increases with film thickness also with a power law according to ξ ∼ d{sub f}{sup z} with exponents z = 0.36, 0.44, and 0.57 for these three different gas atmospheres, respectively. A combination of local and non-local growth modes in 2 + 1 dimensions is discussed for the ITO growth in this work.

  18. Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Seo, Seon Hee; Kang, Hyon Chol

    2013-11-01

    This paper reports the growth behavior of Ga-doped ZnO (ZnO:Ga) thin films deposited on Au/SiN/Si(001) substrates by radio-frequency magnetron sputtering. The microstructures of the overgrown ZnO:Ga thin films were investigated by performing X-ray diffraction, scanning electron microcopy, and transmission electron microscopy analyses. It was confirmed that the growth process proceeds through three stages. In the first stage, nano-scale ZnO:Ga islands were grown on the SiN layer, while a fairly continuous flat structure was formed on the Au nanoparticles (NPs). In the second stage of the growth process, ZnO:Ga domains with different growth orientations, depending strongly on the crystalline planes of the host Au NPs, were nucleated. These domains then grew at different rates, resulting in a change in the morphology from the initial shape reflecting that of the Au NPs to a sunflower-type shape. In the final stage, columnar growth with a preferred (0002) orientation along the surface normal direction became dominant.

  19. Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nulhakim, Lukman; Makino, Hisao

    2016-06-01

    This study examines the change of carrier scattering mechanism and defects states in Ga-doped ZnO (GZO) thin films deposited by radio-frequency magnetron sputtering as a function of the substrate temperature (Ts) during deposition. The GZO films deposited at room temperature exhibited a high defect density that resulted in a lower carrier concentration, lower Hall mobility, and optical absorption in visible wavelength range. Such defects were created by ion bombardment and were eliminated by increasing the Ts. The defects related to the optical absorption disappeared at a Ts of 125 °C. The defects responsible for the suppression of the carrier concentration gradually decreased with increasing Ts up to 200 °C. As a result, the carrier concentration and in-grain carrier mobility gradually increased. The Hall mobility was also influenced by film structural properties depending on the Ts. In addition to the c-axis preferred orientation, other oriented grains such as the (10 1 ¯ 1 ) plane parallel to the substrate surface appeared below 150 °C. This orientation of the (10 1 ¯ 1 ) plane significantly reduced the Hall mobility via grain boundary scattering. The films deposited at a Ts higher than 175 °C exhibited perfect c-axis orientation and grain boundary scattering was thus negligible in these films. The appearance of the 10 1 ¯ 1 peak in x-ray diffraction profile was correlated with the contribution of grain boundary scattering in heavily doped GZO films.

  20. Comprehensive study of the p-type conductivity formation in radio frequency magnetron sputtered arsenic-doped ZnO film

    SciTech Connect

    Fan, J. C.; Zhu, C. Y.; Yang, B.; Fung, S.; Beling, C. D.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Wong, K. S.; Zhong, Y. C.; Xie, Z.; Ling, C. C.

    2011-05-15

    Arsenic doped ZnO and ZnMgO films were deposited on SiO{sub 2} using radio frequency magnetron sputtering and ZnO-Zn{sub 3}As{sub 2} and ZnO-Zn{sub 3}As{sub 2}-MgO targets, respectively. It was found that thermal activation is required to activate the formation of p-type conductivity. Hall measurements showed that p-type films with a hole concentration of {approx}10{sup 17} cm{sup -3} and mobility of {approx}8 cm{sup 2} V{sup -1} s{sup -1} were obtained at substrate temperatures of 400-500 deg. C The shallow acceptor formation mechanism was investigated using x-ray photoelectron spectroscopy, positron annihilation, low temperature photoluminescence, and nuclear reaction analysis. The authors suggest that the thermal annealing activates the formation of the As{sub Zn}-2V{sub Zn} shallow acceptor complex and removes the compensating hydrogen center.

  1. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-14

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (T{sub s}). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10{sup −3} Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at T{sub s} of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein–Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ∼110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  2. Biaxial stress and optoelectronic properties of Al-doped ZnO thin films deposited on flexible substrates by radio frequency magnetron sputtering.

    PubMed

    Chen, Hsi-Chao; Cheng, Po-Wei; Huang, Kuo-Ting

    2017-02-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited on polyethylene terephthalate (PET) and polycarbonate (PC) substrates using radio frequency (RF) magnetron sputtering. The biaxial stress was measured with a double beam shadow moiré interferometer, and x-ray diffraction (XRD) was used to investigate the crystal orientation of ZnO. The substrate temperature was varied from room temperature to 150°C in steps of 25°C. The experimental results showed that the residual and shearing stresses increased with the increase in substrate temperature. The residual stress can be separated into principle and shearing stresses by Mohr's circle rule, and the shearing stress (tensile stress) was different from the compressive stress of the residual stress. However, the optimal substrate temperatures for PET and PC were 75°C and 100°C, and the shearing stresses were 424.82 and 543.68 MPa, respectively. AZO/PET and AZO/PC thin films cracked at substrate temperatures of 75°C and 100°C, respectively. AZO/PET thin film at a substrate temperature of 100°C had a resistivity low to the order of 10-3  Ω-cm.

  3. Influence of Oxygen Gas Ratio on the Properties of Aluminum-Doped Zinc Oxide Films Prepared by Radio Frequency Magnetron Sputtering.

    PubMed

    Kim, Minha; Jang, Yong-Jun; Jung, Ho-Sung; Song, Woochang; Kang, Hyunil; Kim, Eung Kwon; Kim, Donguk; Yi, Junsin; Lee, Jaehyeong

    2016-05-01

    Aluminum-doped zinc oxide (AZO) thin films were deposited on glass and polyimide substrates using radio frequency magnetron sputtering. We investigated the effects of the oxygen gas ratio on the properties of the AZO films for Cu(In,Ga)Se2 thin-film solar cell applications. The structural and optical properties of the AZO thin films were measured using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and UV-Visible-NIR spectrophotometry. The oxygen gas ratio played a crucial role in controlling the optical as well as electrical properties of the films. When oxygen gas was added into the film, the surface AZO thin films became smoother and the grains were enlarged while the preferred orientation changed from (0 0 2) to (1 0 0) plane direction of the hexagonal phase. An improvement in the transmittance of the AZO thin films was achieved with the addition of 2.5-% oxygen gas. The electrical resistivity was highly increased even for a small amount of the oxygen gas addition.

  4. Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication

    NASA Astrophysics Data System (ADS)

    Muchuweni, E.; Sathiaraj, T. S.; Nyakotyo, H.

    2016-12-01

    Gallium and aluminium co-doped zinc oxide (GAZO) thin films were prepared on glass substrates at low temperatures by radio frequency (rf) magnetron sputtering and their physical properties were investigated. All films possessed a hexagonal wurtzite crystal structure with a strong growth orientation along the (0 0 2) c-axis. The (0 0 2) peak intensity and mean crystallite size increased with substrate temperature from room temperature (RT) to 75 °C and then decreased at 100 °C, indicating an improvement in crystallinity up to 75 °C and its deterioration at 100 °C. Scanning electron microscopy (SEM) micrographs revealed the strong dependency of surface morphology on substrate temperature and energy dispersive spectroscopy (EDS) confirmed the incorporation of Ga and Al into the ZnO films. All films exhibited excellent transmittances between 85 and 90% in the visible region and their optical band gap increased from 3.22 eV to 3.28 eV with substrate temperature. The Urbach energy decreased from 194 meV to 168 meV with increasing substrate temperature, indicating a decrease in structural disorders which was consistent with X-ray Diffraction (XRD) analysis. Films deposited at 75 °C exhibited the lowest electrical resistivity (2.4 Ωcm) and highest figure of merit (7.5 × 10-5 Ω-1), proving their potential as candidates for transparent electrode fabrication.

  5. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-01

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (Ts). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10-3 Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at Ts of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ˜110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  6. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S.

    2011-12-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 °C. Post-growth annealing in air was carried out up to a temperature of 1000 °C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 °C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 × 1017 cm-3 at the annealing temperature of 600 °C. The origin of the p-type conductivity was consistent with the AsZn(VZn)2 shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the AsZn(VZn)2 acceptor and the creation of the deep level defect giving rise to the green luminescence.

  7. Effects of Mg doping content and annealing temperature on the structural properties of Zn1- x Mg x O thin films prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Du, Wen-han; Yang, Jing-jing; Zhao, Yu; Xiong, Chao

    2017-01-01

    The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn1- x Mg x O thin films. Here, using radio-frequency magnetron sputtering method, we prepared Zn1- x Mg x O thin films on single crystalline Si(100) substrates with a series of x values. By means of X-ray diffraction (XRD) and scanning electron microscope (SEM), the crystalline structure and morphology of Zn1- x Mg x O thin films with different x values are investigated. The crystalline structure of Zn1- x Mg x O thin film is single phase with x<0.3, while there is phase separation phenomenon with x>0.3, and hexagonal and cubic structures will coexist in Zn1- x Mg x O thin films with higher x values. Especially with lower x values, a shoulder peak of 35.1° appearing in the XRD pattern indicates a double-crystalline structure of Zn1- x Mg x O thin film. The crystalline quality has been improved and the inner stress has been released, after the Zn1- x Mg x O thin films were annealed at 600 °C in vacuum condition.

  8. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    PubMed

    Surmeneva, M A; Tyurin, A I; Mukhametkaliyev, T M; Pirozhkova, T S; Shuvarin, I A; Syrtanov, M S; Surmenev, R A

    2015-06-01

    The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias applied during the deposition of the HA coating resulted in a decrease in the grain and crystallite size of the film having a crucial role in enhancing the mechanical properties of the fabricated biocomposites. A maximum hardness of 9.04 GPa was found for the HA coating, which was prepared using a bias of -50 V. The hardness of the HA film deposited on the grounded substrate (GS) was found to be 4.9 GPa. The elastic strain to failure (H/E) and the plastic deformation resistance (H(3)/E(2)) for an indentation depth of 50 nm for the HA coating fabricated at a bias of -50 V was found to increase by ~30% and ~74%, respectively, compared with the coating deposited at the GS holder. The nanoindentation tests demonstrated that all of the HA coatings increased the surface hardness on both the microscale and the nanoscale. Therefore, the results revealed that the films deposited on the surface of the AZ31 magnesium alloy at a negative substrate bias can significantly enhance the wear resistance of this resorbable alloy.

  9. Review of Magnetron Developments

    NASA Astrophysics Data System (ADS)

    Vyas, Sandeep Kumar; Verma, Rajendra Kumar; Maurya, Shivendra; Singh, V. V. P.

    2016-09-01

    Magnetrons have been the most efficient high power microwave sources for decades. In the twenty-first century, many of the development works are headed towards the performance improvement of CW industrial magnetrons. In this review article, the development works and techniques, used on different types of magnetrons, for the performance enhancement in the past two decades have been discussed. The article focuses on the state of the art of CW magnetron and the direction it will take in foreseeable future. In addition it also glimpses some of the major variants of magnetron which have further opened up scope in mm-THz spectrum of electromagnetism.

  10. Effect of radio frequency magnetron sputtering power on structural and optical properties of Ti6Al4A thin films

    NASA Astrophysics Data System (ADS)

    Khalaf, Mohammed K.; Al-Taay, H. F.; Ali, Dawood S.

    2017-03-01

    In this research, the effects of target sputtering power on the structure and optical properties of radio frequency (RF) sputtered Ti6Al4V films were investigated. Different sputtering RF powers were used to produce different thicknesses of Ti6Al4V thin films. From the X-ray diffraction, it was found that the Ti6A14V films had polycrystalline cubic and hexagonal structures and increased films crystallinity and crystalline size with increasing the sputtering power. Atomic forces microscopy (AFM) gave us a nanometric film character, films homogeneity, and surfaces roughness. A higher degree of roughness and average grain size with increasing RF power was exhibited. Band gap and refractive index of Ti6Al4V thin films varied with sputtering RF powers.

  11. Preparation of high-quality AIN films by two-step method of radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-qing; Chen, Xi-ming; Li, Fu-long; Li, Xiao-wei; Yang, Bao-he

    2013-09-01

    The preparation of nanometer aluminum nitrogen (AlN) films with uniform lattice arrangement is of great significance for the manufacture of high-frequency surface acoustic wave (SAW) device. We put forward the two-step growth method and the annealing treatment method for the deposition of (100) AlN thin films. The results show that when the sputtering pressure is 1.2 Pa and the ratio between N2 and Ar is 12:8, the influence of lattice thermal mismatch and anti-phase is the smallest during the nucleation growth at low-temperature stage of (100) AlN/(100) Si films. The root-mean-square (RMS) surface roughness of AlN prepared by the two-step method is reduced from 6.4 nm to 2.1 nm compared with that by common deposition process.

  12. A study of Ta xC 1 -x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; Wang, B. L.; Li, L.; Zheng, Y. F.

    2010-11-01

    In this paper, Ta xC 1 -x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures ( Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of Ta xC 1 -x coatings. When Ts was <150 °C, the Ta xC 1 -x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm ( Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the Ta xC 1 -x coatings decreased. The nano-indentation experiments indicated that the Ta xC 1 -x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that Ta xC 1 -x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that Ta xC 1 -x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited Ta xC 1 -x coatings. The platelet adhesion test results indicated that the Ta xC 1 -x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the Ta xC 1 -x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  13. An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering.

    PubMed

    Daouahi, Mohsen; Omri, Mourad; Kerm, Abdul Ghani Yousseph; Al-Agel, Faisal Abdulaziz; Rekik, Najeh

    2015-02-05

    The aim of the study reported in this paper is to investigate the role of the high partial pressure of hydrogen introduced during the growth of nanocrystalline silicon carbide thin films (nc-SiC:H). For this purpose, we report the preparation as well as spectroscopic studies of four series of nc-SiC:H obtained by radio-frequency magnetron sputtering at high partial pressure of hydrogen by varying the percentage of H2 in the gas mixture from 70% to 100% at common substrate temperature (TS=500°C). The effects of the dilution on the structural changes and the chemical bonding of the different series have been studied using Fourier transform infrared and Raman spectroscopy. For this range of hydrogen dilution, two groups of films were obtained. The first group is characterized by the dominance of the crystalline phase and the second by a dominance of the amorphous phase. This result confirms the multiphase structure of the grown nc-SiC:H thin films by the coexistence of the SiC network, carbon-like and silicon-like clusters. Furthermore, infrared results show that the SiC bond is the dominant absorption peak and the carbon atom is preferentially bonded to silicon. The maximum value obtained of the crystalline fraction is about 77%, which is relatively important compared to other results obtained by other techniques. In addition, the concentration of CHn bonds was found to be lower than that of SiHn for all series. Raman measurements revealed that the crystallization occurs in all series even at 100% H2 dilution suggesting that high partial pressure of hydrogen favors the formation of silicon nanocrystallites (nc-Si). The absence of both the longitudinal acoustic band and the transverse optical band indicate that the crystalline phase is dominant.

  14. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  15. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  16. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices preparedby reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Dongmei; Wang, Wenwen; Dong, Guobo; Zhang, Fan; He, Yingchun; Yu, Hang; Liu, Famin; Wang, Mei; Diao, Xungang

    2016-10-01

    Nickel oxide (NiOx) thin films were deposited by direct current magnetron sputtering technique onto flexible substrates with various oxygen (O2) partial pressures. The influence of O2 contents during deposition process on film structure, morphology, composition, optical and electrochromic (EC) characteristics of the films were investigated. The EC response for nonstoichiometric NiOx films shows a strong dependence on grain size variations and surface morphology. Finally, the multiple-layer stacks ITO/NiOx/Ta2O5:H/WO3/ITO were sequentially vacuum deposited over flexible polyethylene terephthalate plates based on the optimization of NiOx single layers. A large optical contrast up to 60% and a good durability are obtained for full device. To perform preliminary research on the mechanical properties within flexible devices, we introduced nontrivial changes to the interfacial properties by replacing the glass with flexible polymers. The effects were studied through static bending and the nano-scratch test.

  17. Time and frequency dependent rheology of reactive silica gels.

    PubMed

    Wang, Miao; Winter, H Henning; Auernhammer, Günter K

    2014-01-01

    In a mixture of sodium silicate and low concentrated sulfuric acid, nano-sized silica particles grow and may aggregate to a system spanning gel network. We studied the influence of the finite solubility of silica at high pH on the mechanical properties of the gel with classical and piezo-rheometers. Direct preparation of the gel sample in the rheometer cell avoided any pre-shear of the gel structure during the filling of the rheometer. The storage modulus of the gel grew logarithmically with time with two distinct growth laws. The system passes the gel point very quickly but still shows relaxation at low frequency, typically below 6 rad/s. We attribute this as a sign of structural rearrangements due to the finite solubility of silica at high pH. The reaction equilibrium between bond formation and dissolution maintains a relatively large bond dissolution rate, which leads to a finite life time of the bonds and behavior similar to physical gels. This interpretation is also compatible with the logarithmic time dependence of the storage modulus. The frequency dependence was more pronounced for lower water concentrations, higher temperatures and shorter reaction times. With two relaxation models (the modified Cole-Cole model and the empirical Baumgaertel-Schausberger-Winter model) we deduced characteristic times from the experimental data. Both models approximately described the data and resulted in similar relaxation times.

  18. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  19. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  20. Effect of Al content, substrate temperature and nitrogen flow on the reactive magnetron co-sputtered nanostructure in TiAlN thin films intended for use as barrier material in DRAMs

    NASA Astrophysics Data System (ADS)

    Jalali, Reza; Parhizkar, Mojtaba; Bidadi, Hasan; Naghshara, Hamid; Hosseini, Seyd Reza; Jafari, Majid

    2015-03-01

    TiAlN thin films were deposited by using the reactive magnetron co-sputtering method whit individual Ti and Al targets, where the Ti and the Al targets were simultaneously powered by using DC and RF sources, respectively. the electrical resistivity and the structural and microstructural properties of the deposited TiAlN thin films and the effects of Al content, substrate temperature and nitrogen gas flow rate on those properties were investigated. At a low flow rate of nitrogen gas (0.51 sccm), the electrical resistivity of the films was found to increase with increasing AC power, but at a high flow rate of nitrogen gas, it was found to decrease. The structural and microstructural analyses performed by using X-ray diffraction and scanning electron microscopy (SEM) showed that with increasing substrate temperature from room temperature to 400 ℃, the films prepared at 400 ℃ have a crystalline structure while those prepared at room temperature had an amorphous nature. Also, the SEM analysis revealed that with decreasing AC power and increasing nitrogen flow rate, the size of the grains in the prepared films become larger.

  1. Electronic-grade GaN(0001)/Al{sub 2}O{sub 3}(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target

    SciTech Connect

    Junaid, M.; Hsiao, C.-L.; Palisaitis, J.; Jensen, J.; Persson, P. O. A.; Hultman, L.; Birch, J.

    2011-04-04

    Electronic-grade GaN (0001) epilayers have been grown directly on Al{sub 2}O{sub 3} (0001) substrates by reactive direct-current-magnetron sputter epitaxy (MSE) using a liquid Ga sputtering target in an Ar/N{sub 2} atmosphere. The as-grown GaN epitaxial films exhibit low threading dislocation density on the order of {<=}10{sup 10} cm{sup -2} determined by transmission electron microscopy and modified Williamson-Hall plot. X-ray rocking curve shows narrow full-width at half maximum (FWHM) of 1054 arc sec of the 0002 reflection. A sharp 4 K photoluminescence peak at 3.474 eV with a FWHM of 6.3 meV is attributed to intrinsic GaN band edge emission. The high structural and optical qualities indicate that MSE-grown GaN epilayers can be used for fabricating high-performance devices without the need of any buffer layer.

  2. The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jalali, Reza; Parhizkar, Mojtaba; Bidadi, Hassan; Naghshara, Hamid; Hosseini, Seyd Reza; Jafari, Majid

    2016-11-01

    In the present work, TiAlN thin films were prepared by using a dual reactive magnetron sputtering system on fused quartz substrates kept at room temperature and 400 °C; keeping nitrogen flow at 0.51 and 2.78 sccm, various DC and RF powers and the effect of these factors have been studied on the optical properties of the layers. The optical properties including absorption and transmission were studied by a UV-Visible spectrophotometer in the wavelength region (200-1100) nm. By plotting ( αhν)2 and ( αhν)1/2 versus the photon energy hυ, the optical band gap was evaluated. Experimental results show that layers with high percentage of aluminum and nitrogen have higher gap with respect to layers having high titanium percentage. TiAlN thin films deposited with 2.78 sccm nitrogen flow rate possess optical direct band gap in the range of 3.8-5.1 eV and optical indirect band gap in the range of 1.1-3.4 eV. The variation of optical band gap of the films that deposited on the substrate with 400 °C and nitrogen flow rate of 2.78 sccm was different from other layers.

  3. Study on mixed vanadium oxide thin film deposited by RF magnetron sputtering and its application

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Jianhui, Tu; Hao, Feng; Jingzhong, Cui

    Vanadium oxide (VOx) thin films were deposited on fused quartz using a pure metal vanadium target by RF reactive magnetron sputtering technique. Film microstructure, valence state, optical transmittance properties were studied. The mixed valence VOx thin films deposited with different thickness were found to be amorphous. And the optical transmittance curves are flatness in certain wavelength region. These films can be used to control the relative light intensity of the rubidium light beam between the rubidium lamp and the vapor cell, in order to optimize the working parameters of the rubidium frequency standard (RAFS).

  4. Fabrication of P-Type ZnO:N Film by Radio-Frequency Magnetron Sputtering for Extremely Thin Absorber Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Hu; Li, Rong-Bin; Fan, Dong-Hua

    2013-03-01

    We successfully fabricate p-type ZnO:N films by using rf magnetron sputtering and in situ annealing in O2 atmosphere. These p-type ZnO:N films can be used as p-type window materials for extremely thin absorber (ETA) solar cells composed of quartz glass/p-ZnO:N/i-ZnO/CdSe/i-ZnO/n-ZnO:Al. The short-circuit photocurrent density, open circuit voltage, fill factor and conversion efficiency of the ETA solar cells can be determined to be 8.549 mA/cm2, 0.702V, 0.437 and 2.623%, respectively, through measurements of photovoltaic properties under illumination with a 100mW/cm2 at air-mass (AM) 1.5.

  5. Optical properties of SrTiO3 thin films deposited by radio-frequency magnetron sputtering at various substrate temperatures

    NASA Astrophysics Data System (ADS)

    Ma, J. H.; Huang, Z. M.; Meng, X. J.; Liu, S. J.; Zhang, X. D.; Sun, J. L.; Xue, J. Q.; Chu, J. H.; Li, J.

    2006-02-01

    SrTiO3 thin films were deposited on vitreous silica substrates at various substrate temperatures (300-700 °C) by rf magnetron sputtering technique. The transition from amorphous phase to polycrystalline phase for the films occurred at the substrate temperatures of 300-400 °C. Their optical properties were investigated by transmittance measurements. The fitting method was used to calculate the refractive index and the film thickness from the transparent region of the transmittance spectra. The refractive index increased and the film thickness decreased with the substrate temperatures increasing. The dispersion of the refractive index was studied by considering a single electronic oscillator model. The band gaps of the films were estimated from Tauc's law and showed a decreasing tendency to that of the bulk SrTiO3 with the substrate temperatures increasing. These results provide some useful references for the potential application of SrTiO3 films in integrated optics devices.

  6. A flexible active and reactive power control strategy for a variable speed constant frequency generating system

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-07-01

    Variable-speed constant-frequency generating systems are used in wind power, hydro power, aerospace, and naval power generations to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising of doubly excited induction machine or doubly excited brushless reluctance machine and PWM converters with a dc link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network has also been minimized. In this manner, the system can function as both a high-efficient power generator and a flexible reactive power compensator.

  7. Compact Relativistic Magnetron with Output Mode Converter

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey; Fuks, Mikhail; Schamiloglu, Edl

    2003-10-01

    We consider a relativistic magnetron in which all of the resonators of the anode block are smoothly continued onto a conical antenna up to the radius corresponding to the cutoff frequency of the radiated wave in a cylindrical waveguide. Such a magnetron is capable of high output power, is compact, has a high resistance to microwave breakdown, is able to work with extremely high currents, and has the possibility of forming desirable output radiation patterns. The magnetic field can be provided by a small solenoid over the resonant system, which is a much smaller volume than is required for the Helmholtz coils used in traditional relativistic magnetrons. The maximum size of this magnetron is the aperture of the horn antenna. The unique aspect of such a design is the possibility of using the horn antenna for conversion of the operating mode to lower order modes, including the TE_11 mode, which is radiated as a narrow wave beam. For a magnetron operating in π-mode, the mode converter comprises a continuation of the resonantor blocks onto the horn for those resonators that correspond to the symmetry of the output mode. For example, in order to provide Gaussian mode output only two diametrically opposite resonators of even-numbered resonators must be continued onto the horn. In this case the aperture of the horn antenna can be close to the cut-off diameter for the TE_11 mode, and the output power is limited only by breakdown of the output window. In this presentation results of preliminary calculations of the magnetron with output mode converters are presented.

  8. Modeling and experimental studies of a side band power re-injection locked magnetron

    NASA Astrophysics Data System (ADS)

    Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang

    2016-12-01

    A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

  9. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    PubMed Central

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia. PMID:24820225

  10. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity.

    PubMed

    Franco, O S; Paulitsch, F S; Pereira, A P C; Teixeira, A O; Martins, C N; Silva, A M V; Plentz, R D M; Irigoyen, M C; Signori, L U

    2014-05-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

  11. Magnetron injection gun scaling

    SciTech Connect

    Lawson, W.

    1988-04-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations.

  12. Solid oxide fuel cells with (La,Sr)(Ga,Mg)O3-δ electrolyte film deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Lu, His-Chuan; Hsu, Yung-Fu; Hu, Yi-Xuan

    2015-05-01

    In this study, solid oxide fuel cells (SOFCs) containing a high quality La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) film deposited on anode supported substrate using RF magnetron sputtering are successfully prepared. The anode substrate is composed of two functional NiO/Sm0.2Ce0.8O2-δ (SDC) composite layers with ratios of 60/40 wt% and 50/50 wt% and a current collector layer of pure NiO. The as-deposited LSGM film appears to be amorphous in nature. After post-annealing at 1000 °C, a uniform and dense polycrystalline film with a composition of La0.87Sr0.13Ga0.85Mg0.15O3-δ and a thickness of 3.8 μm is obtained, which was well adhered to the anode substrate. A composite LSGM/La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) layer, with a ratio of 30/70 wt%, is used as the cathode. The SOFC prepared reveals a good mechanical integrity with no sign of cracking, delamination, or discontinuity among the interfaces. The total cell resistance of a single cell with LSGM electrolyte film declines from 0.60 to 0.10 Ω cm2 as the temperature escalates from 600 to 800 °C and the open circuit voltage (OCV) ranges from 0.85 to 0.95 V. The maximum power density (MPD) of the single cell is reported as 0.65, 1.02, 1.30, 1.42, and 1.38 W cm-2 at 600, 650, 700, 750, and 800 °C, respectively. The good cell performance leads to the conclusion that RF magnetron sputtering is a feasible deposition method for preparing good quality LSGM films in SOFCs.

  13. BN coatings deposition by magnetron sputtering of B and BN targets in electron beam generated plasma

    NASA Astrophysics Data System (ADS)

    Kamenetskikh, A. S.; Gavrilov, N. V.; Koryakova, O. V.; Cholakh, S. O.

    2017-05-01

    Boron nitride coatings were deposited by reactive pulsed magnetron sputtering of B and BN targets (50 kHz, 10 µs for B; 13.56 MHz for BN) at 2-20 mA/cm2 ion current density on the substrate. The effect of electron beam generated plasma on characteristics of magnetron discharge and phase composition of coatings was studied.

  14. Electrochemical properties of Sn-substituted LiMn2O4 thin films prepared by radio-frequency magnetron sputtering.

    PubMed

    Kong, Woo Yeon; Yim, Haena; Yoon, Seok-Jin; Nahm, Sahn; Choi, Ji-Won

    2013-05-01

    The LiMn2O4 and LiSn0.0125Mn1975O4 thin films were grown on Pt/Ti/SiO2/Si (100) substrate by RF magnetron sputtering. To obtain the structural stability and good cycle performance, deposition parameters, namely working pressure, sputtering gas ratio of Ar and O2, post-annealing temperature were established. The structure and surface morphology of thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical properties were estimated by two electrode half-cell test with WBCS 3000 (Wonatech, Korea) at constant current rate of 1 C-rate. The Sn substituted LiMn2O4 thin film deposited at 10 mtorr with mixture of argon and oxygen (Ar/O2 = 3/1) and then annealed at 500 degrees C in O2 atmosphere showed good cycle performance. The Sn substituted LiMn2O4 thin films showed larger capacity of -30 microAh/microm-cm2 and higher cyclability than LiMn2O4 thin films.

  15. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  16. Derivation and generalization of the dispersion relation of rising-sun magnetron with sectorial and rectangular cavities

    SciTech Connect

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei

    2013-12-15

    Field analysis method is used to derive the dispersion relation of rising-sun magnetron with sectorial and rectangular cavities. This dispersion relation is then extended to the general case in which the rising-sun magnetron can be with multi-group cavities of different shapes and sizes, and from which the dispersion relations of conventional magnetron, rising-sun magnetron, and magnetron-like device can be obtained directly. The results show that the relative errors between the theoretical and simulation values of the dispersion relation are less than 3%, the relative errors between the theoretical and simulation values of the cutoff frequencies of π mode are less than 2%. In addition, the influences of each structure parameter of the magnetron on the cutoff frequency of π mode and on the mode separation are investigated qualitatively and quantitatively, which may be of great interest to designing a frequency tuning magnetron.

  17. A regulated magnetron pulser

    SciTech Connect

    Rose, C.R.

    1997-09-01

    This paper describes and analysis of a 4.5-kV, 500-mA, regulated current pulser used to drive a Hitachi ZM130 magnetron in a particle-accelerator injector. In this application, precise beam from the injector. A high-voltage triode vacuum tube with active feedback is used to control the magnetron current. Current regulation and accuracy is better than 1%. The pulse width may be varied from as little as 5 {mu}m to cw by varying the width of a gate pulse. The current level can be programmed between 10 and 500 mA. Design of the pulser including circuit simulations, power calculations, and high-voltage issues are discussed.

  18. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  19. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  20. Magnetron injection gun scaling

    NASA Astrophysics Data System (ADS)

    Lawson, W.

    1988-04-01

    A set of tradeoff equations was simplified to obtain scaling laws for magnetron injection guns (MIGs). The constraints are chosen to examine the maximum-peak-power capabilities of MIGs. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations in which each MIG is designed to double the beam power of an existing design by adjusting one of the four fundamental parameters.

  1. Single frequency sound propagation in flat waveguides with locally reactive impedance boundaries.

    PubMed

    Min, Hequn; Chen, Weisong; Qiu, Xiaojun

    2011-08-01

    A coherent image source method is presented for evaluating single frequency sound propagation from a point source in a flat waveguide with two infinite and parallel locally reactive boundaries. The method starts from formulating reflections of the spherical sound radiation into integrals of plane wave expansion, and the analytical evaluation of the integrals is simplified by introducing a physically plausible assumption that wave front shapes remain the same before and after each reflection on a reflective boundary. The proposed model can determine coherently the sound fields at arbitrary receiver locations in a flat waveguide, even when one boundary is highly sound absorptive. Being compared with the classical wave theory and the existing coherent ray-based methods, it is shown that the proposed method provides considerable accuracy and advantages to predict sound propagation in flat waveguides with a sound absorptive ceiling and a reflective floor over a broad frequency range, particularly at large distances from the source where the existing methods are problematic.

  2. A reactive magnetron sputtering route for attaining a controlled core-rim phase partitioning in Cu{sub 2}O/CuO thin films with resistive switching potential

    SciTech Connect

    Ogwu, A. A.; Darma, T. H.

    2013-05-14

    The achievement of a reproducible and controlled deposition of partitioned Cu{sub 2}O/CuO thin films by techniques compatible with ULSI processing like reactive magnetron sputtering has been reported as an outstanding challenge in the literature. This phase partitioning underlies their performance as reversible resistive memory switching devices in advanced microelectronic applications of the future. They are currently fabricated by thermal oxidation and chemical methods. We have used a combination of an understanding from plasma chemistry, thermo-kinetics of ions, and rf power variation during deposition to successfully identify a processing window for preparing partitioned Cu{sub 2}O/CuO films. The production of a core rich Cu{sub 2}O and surface rich Cu{sub 2}O/CuO mixture necessary for oxygen migration during resistive switching is confirmed by XRD peaks, Fourier transform infra red Cu (I)-O vibrational modes, XPS Cu 2P{sub 3/2} and O 1S peak fitting, and a comparison of satellite peak ratio's in Cu 2P{sub 3/2} fitted peaks. We are proposing based on the findings reported in this paper that an XPS satellite peak intensity(I{sub s}) to main peak intensity ratio (I{sub m}) {<=} 0.45 as an indicator of a core rich Cu{sub 2}O and surface rich Cu{sub 2}O/CuO formation in our prepared films. CuO is solely responsible for the satellite peaks. This is explained on the basis that plasma dissociation of oxygen will be limited to the predominant formation of Cu{sub 2}O under certain plasma deposition conditions we have identified in this paper, which also results in a core-rim phase partitioning. The deposited films also followed a Volmer-Weber columnar growth mode, which could facilitate oxygen vacancy migration and conductive filaments at the columnar interfaces. This is further confirmed by optical transmittance and band-gap measurements using spectrophotometry. This development is expected to impact on the early adoption of copper oxide based resistive memory

  3. The effects of vibration on explosive and reactive strength when applying individualized vibration frequencies.

    PubMed

    Di Giminiani, Riccardo; Tihanyi, Jozsef; Safar, Sandor; Scrimaglio, Renato

    2009-01-15

    The aim of this study was to assess the effects of 8 weeks of whole-body vibrations on explosive and reactive leg strength. Thirty-three physically active students took part in the study and were randomly assigned to an individualized-vibration group, a fixed-vibration group or a control group. The frequency of vibration was set to 30 Hz for the fixed-vibration group, whereas the frequency for the individualized-vibration group was determined by monitoring the participants' EMGrms activity. The participants in the two vibration groups were exposed three times a week for 8 weeks to a series of 10 x 1-min whole-body vibrations with a 1-min pause between series of vibrations and a 4-min pause after the first five series of vibrations. Jump height in the squat jump increased significantly in all three groups (by 11% for the individualized-vibration group, p=0.001; by 3% for the fixed-vibration group, p=0.011; and by 2% for the control group, p=0.006), but countermovement jump height was not affected. In continuous rebound jumps by the individualized-vibration group, jumping height increased by 22% (p=0.006) and power increased by 18% (p=0.002). The results of this study suggest that the use of an individualized vibration frequency produces a greater response from the neuromuscular system and is more beneficial than vibrations at a fixed pre-selected frequency.

  4. Oleophobic optical coating deposited by magnetron PVD

    NASA Astrophysics Data System (ADS)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  5. Magic-T-Coupled Magnetrons

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1985-01-01

    Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.

  6. Magic-T-Coupled Magnetrons

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1985-01-01

    Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.

  7. Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method.

    PubMed

    Kikuchi, Hisashi; Kitano, Masaaki; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu; Kamat, Prashant V

    2006-03-23

    TiO(2) thin films prepared by a radio frequency magnetron sputtering (RF-MS) deposition method were found to show an enhanced photoelectrochemical response in the visible light region. By controlling the temperature and the gaseous medium during the deposition step, it was possible to control the properties of these films. The photoelectrochemical behavior of the sputtered TiO(2) thin films was compared with that of a commercial TiO(2) sample, and the sputtered films showed higher incident photon to the charge carrier generation efficiency (IPCE of 12.6% at 350 nm) as well as power conversion efficiency (0.33% at 1.84 mW/cm(2)) than the commercial TiO(2) sample. Femtosecond transient absorption spectroscopy experiments have revealed that a major fraction of photogenerated electrons and holes recombine within a few picoseconds, thus limiting photocurrent generation efficiency. The mechanistic insights obtained in the present study should aid in designing semiconductor nanostructures that will maximize the charge separation efficiency and extend the response of the large band gap semiconductor TiO(2) into visible light regions.

  8. Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness.

    PubMed

    Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Ruby, Perrine

    2014-05-01

    The neurophysiological correlates of dreaming remain unclear. According to the "arousal-retrieval" model, dream encoding depends on intrasleep wakefulness. Consistent with this model, subjects with high and low dream recall frequency (DRF) report differences in intrasleep awakenings. This suggests a possible neurophysiological trait difference between the 2 groups. To test this hypothesis, we compared the brain reactivity (evoked potentials) of subjects with high (HR, N = 18) and low (LR, N = 18) DRF during wakefulness and sleep. During data acquisition, the subjects were presented with sounds to be ignored (first names randomly presented among pure tones) while they were watching a silent movie or sleeping. Brain responses to first names dramatically differed between the 2 groups during both sleep and wakefulness. During wakefulness, the attention-orienting brain response (P3a) and a late parietal response were larger in HR than in LR. During sleep, we also observed between-group differences at the latency of the P3a during N2 and at later latencies during all sleep stages. Our results demonstrate differences in the brain reactivity of HR and LR during both sleep and wakefulness. These results suggest that the ability to recall dreaming is associated with a particular cerebral functional organization, regardless of the state of vigilance.

  9. Second order elasticity at hypersonic frequencies of reactive polyurethanes as seen by generalized Cauchy relations.

    PubMed

    Philipp, M; Vergnat, C; Müller, U; Sanctuary, R; Baller, J; Possart, W; Alnot, P; Krüger, J K

    2009-01-21

    The non-equilibrium process of polymerization of reactive polymers can be accompanied by transition phenomena like gelation or the chemical glass transition. The sensitivity of the mechanical properties at hypersonic frequencies-including the generalized Cauchy relation-to these transition phenomena is studied for three different polyurethanes using Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true for the non-equilibrium polymerization process and for the temperature dependence of polyurethanes. Neither the sol-gel transition nor the chemical and thermal glass transitions are visible in the representation of the generalized Cauchy relation. Taking into account the new results and combining them with general considerations about the elastic properties of the isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed.

  10. rf mode switching in a relativistic magnetron with diffraction output

    SciTech Connect

    Liu Meiqin; Michel, Cedric; Prasad, Sarita; Fuks, Mikhail I.; Schamiloglu, Edl; Liu Chunliang

    2010-12-20

    The relativistic magnetron with diffraction output (RMDO) has demonstrated nearly 70% efficiency in recent simulations. This letter reports a rapid mode switching technique in the RMDO using a low power, short-pulse, external single frequency signal. The MAGIC electromagnetic finite-difference-time-domain particle-in-cell code used in simulations demonstrated that an input signal of 300 kW is sufficient to switch neighboring modes in a gigawatt output power A6 RMDO with a transparent cathode, whereas for the original A6 magnetron configuration with radial extraction driven by a transparent cathode 30 MW is required. This frequency agility adds additional versatility to this high power microwave source.

  11. The dislocation density and twin-boundary frequency determined by X-ray peak profile analysis in cold rolled magnetron-sputter deposited nanotwinned copper

    SciTech Connect

    Csiszar, Gabor; Ungar, Tamas; Balogh, Levente; Misra, Amit; Zhang Xinghang

    2011-08-15

    The dislocation density and the average twin boundary frequency is determined quantitatively in as-deposited and cold-rolled nanotwinned Cu thin films by high-resolution X-ray line profile analysis. After cold-rolling the dislocation density increases considerably, whereas the twin boundary frequency decreases only slightly. The physical parameters of the substructure provided by the quantitative X-ray analysis are in agreement with earlier transmission electron microscopy observations. The flow stress of the as-deposited and the cold-rolled films is directly correlated with the average thickness of twin lamellae and the dislocation density by taking into account the Hall-Petch and Taylor type strengthening mechanisms.

  12. Recirculating planar magnetrons: simulations and experiment

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; French, David; Lau, Y.Y.; Simon, David; Hoff, Brad; Luginsland, John W.

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventional magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.

  13. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2•−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2•− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2•− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2•− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2•− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  14. The evaluation of increase in hemodialysis frequency on C-reactive protein levels and nutritional status.

    PubMed

    Rashidi, Ali Akbar; Soleimani, Ali Reza; Nikoueinejad, Hassan; Sarbolouki, Shokooh

    2013-03-16

    Malnutrition and inflammation are the most important causes of cardiovascular disease in hemodialysis patients. This study was conducted to evaluate the effect of increase in hemodialysis frequency on C-reactive protein (CRP) level and nutritional markers in contrast to previous routine method. 18 hemodialysis patients with a mean age of 53±16 years were randomly selected in this before-and-after clinical trial. The patients under a standard hemodialysis of 3 times/4 h per week were converted to 4 times/4 h for a period of 6 weeks. The CRP, albumin, triglyceride, total cholesterol, LDL, HDL serum levels, anthropometric indices and 24-h diet recall intake was assessed before and after of the period. The data were analyzed using paired t-test, and P-value less than 0.05 was considered significant. All patients completed the study. Mean weight, body mass index and serum albumin increased while serum CRP level decreased significantly after the intervention (P<0.03). Triglyceride, total cholesterol, LDL, HDL, as well as energy, protein and fat intake had no significant change before and after the study. Increase in dialysis frequency decreased systemic inflammation and improved the nutritional state of hemodialysis patients. Therefore, it may decrease the risk of cardiovascular events in these patients.

  15. Nonsputtering impulse magnetron discharge

    SciTech Connect

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  16. Simulation and Experimental Studies of a 2.45GHz Magnetron Source for an SRF Cavity with Field Amplitude and Phase Controls

    SciTech Connect

    Wang, Haipeng; Plawski, Tomasz E.; Rimmer, Robert A.; Dudas, A.; Neubauer, M. L.

    2016-06-01

    Phase lock to an SRF cavity by using injection signal through output waveguide of a magnetron has been demonstrated [1, 3]. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using MATLAB/Simulink simulations [2]. Based on these, we are planning to use an FPGA based digital LLRF system, which allows applying various types of control algorithms in order to achieve the required accelerating field stability. Since the 1497 MHz magnetron is still in the design stage, the proof of principle measurements of a commercial 2450 MHz magnetron are carried out to characterize the anode I-V curve, output power (the tube electronic efficiency), frequency dependence on the anode current (frequency pushing) and the Rieke diagram (frequency pulling by the reactive load). Based on early Simulink simulation, experimental data and extension of the Adler equation governing injection phase stability by Chen’s model, the specification of the new LLRF control chassis for both 2450 and 1497MHz systems are presented in this paper.

  17. Frequency of mentally stimulating activities modifies the relationship between cardiovascular reactivity and executive function in old age.

    PubMed

    Lin, Feng; Heffner, Kathi; Mapstone, Mark; Chen, Ding-Geng Din; Porsteisson, Anton

    2014-11-01

    Recent evidence suggests that younger and middle-age adults who show greater cardiovascular reactivity (CVR) to acute mental stress demonstrate better reasoning and memory skills. The purpose of this study was to examine whether older adults would exhibit a similar positive association between CVR and executive function and whether regular engagement in mentally stimulating activities (MSA) would moderate this association. Secondary cross-sectional analysis. Three clinical research centers in the Midwest and on the West Coast and East Coast. A total of 487 older adults participating in an ongoing national survey. Heart rate (HR) and low-frequency (LF) and high-frequency (HF) domains of heart rate variability (HRV) were measured at baseline and in response to standard mental stress tasks (Stroop color word task and mental arithmetic). Executive function was measured separately from the stress tasks by using five neuropsychological tests. MSA was measured by self-reported frequency of six common MSA. Higher HR reactivity was associated with better executive function after controlling for demographic and health characteristics and baseline HR, and the interaction between HR reactivity and MSA was significant for executive function. Higher LF-HRV reactivity was also associated with executive function, but subsequent analyses indicated that frequency of MSA was the strongest predictor of executive function in models that included LF-HRV or HF-HRV. Higher HR reactivity to acute psychological stress is related to better executive function in older adults. For those with lower HR reactivity, engaging frequently in MSA produced compensatory benefits for executive function. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    NASA Astrophysics Data System (ADS)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  19. Frequency of Mentally Stimulating Activities Modifies the Relationship between Cardiovascular Reactivity and Executive Function in Old Age

    PubMed Central

    Lin, Feng; Heffner, Kathi; Mapstone, Mark; Chen, Ding-Geng (Din); Porsteisson, Anton

    2013-01-01

    Objective Recent evidence suggests that younger- and middle-age adults who show greater cardiovascular reactivity (CVR) to acute mental stress demonstrate better reasoning and memory skills. The purpose of this study was to examine whether older adults would show a similar positive association between CVR and executive function, and whether regular engagement in mentally stimulating activities (MSA) would moderate this association. Design Secondary cross-sectional analysis. Setting Three general clinical research centers located in the West Coast, Midwest, and East Coast. Participants 487 older adults participating in an on-going national survey. Measurements Heart rate (HR) and low (LF) and high frequency (HF) domains of heart rate variability (HRV) were measured at baseline and in response to standard mental stress tasks (Stroop color word task and mental arithmetic). Executive function was measured separately from the stress tasks using five neuropsychological tests. MSA was measured by self-report frequency of six common mentally stimulating activities. Results Higher HR reactivity was associated with better executive function after controlling for demographic and health variables and baseline HR activity and the interaction between HR reactivity and MSA was significant for executive function. Higher LF-HRV reactivity was also associated with executive function, but subsequent analyses indicated that frequency of MSA was the strongest predictor of executive function in models that included LF- or HF-HRV. Conclusions Higher HR reactivity to acute psychological stress is related to better executive function in older adults. For those with lower HR reactivity, engaging frequently in MSA showed significant compensatory benefits for executive function. PMID:23891367

  20. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  1. Sensitization to reactive diluents and hardeners in epoxy resin systems. IVDK data 2002-2011. Part I: reaction frequencies.

    PubMed

    Geier, Johannes; Lessmann, Holger; Hillen, Uwe; Skudlik, Christoph; Jappe, Uta

    2016-02-01

    Epoxy resin systems (ERSs), consisting of resins, reactive diluents, and hardeners, are indispensable in many branches of industry. In order to develop less sensitizing ERS formulations, knowledge of the sensitizing properties of single components is mandatory. To analyse the frequency of sensitization in the patients concerned, as one integral part of a research project on the sensitizing potency of epoxy resin compounds (FP-0324). A retrospective analysis of data from the Information Network of Departments of Dermatology (IVDK), 2002-2011, and a comparison of reaction frequencies with (surrogate) exposure data, were performed. Almost half of the patients sensitized to epoxy resin were additionally sensitized to reactive diluents or hardeners. Among the reactive diluents, 1,6-hexanediol diglycidyl ether was the most frequent allergen, followed by 1,4-butanediol diglycidyl ether, phenyl glycidyl ether, and p-tert-butylphenyl glycidyl ether. Among the hardeners, m-xylylene diamine (MXDA) and isophorone diamine (IPDA) were the most frequent allergens. According to the calculated exposure-related frequency of sensitization, MXDA seems to be a far more important sensitizer than IPDA. Up to 60% of the patients sensitized to hardeners and 15-20% of those sensitized to reactive diluents do not react to epoxy resin. In cases of suspected contact allergy to an ERS, a complete epoxy resin series must be patch tested from the start. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. id="content" class="area">

    < Previous Issue | Next Issue >

    Volume 201, Issue14 (November 2004)

    Articles in the Current Issue:

    Rapid Research Note

    Highly (001)-textured WS2-x films prepared by reactive radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Seeger, S.; Weiß, V.

    2004-11-01

    Highly (001)-oriented WS2-x films were grown onto oxidized silicon substrates by reactive magnetron sputtering from a metallic tungsten target in argon-hydrogen sulfide mixtures. The best films with respect to the van-der-Waals orientation, i.e. with the (001) planes parallel to the substrate surface, were grown by excitation of the plasma with radio frequency of 27.12 MHz. These films exhibit the largest grains and the lowest film strain. It is shown that this effect is not due to the lower deposition rate at this high excitation frequency. Instead it was found that the lower DC voltage at the sputtering target is advantageous for the film growth since the bombardment of the growing film by highly energetic particles is avoided by this type of plasma excitation.

  3. Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature.

    PubMed

    Stan, G E; Pasuk, I; Husanu, M A; Enculescu, I; Pina, S; Lemos, A F; Tulyaganov, D U; El Mabrouk, K; Ferreira, J M F

    2011-12-01

    Thin (380-510 nm) films of a low silica content bioglass with MgO, B(2)O(3), and CaF(2) as additives were deposited at low-temperature (150°C) by radio-frequency magnetron sputtering onto titanium substrates. The influence of sputtering conditions on morphology, structure, composition, bonding strength and in vitro bioactivity of sputtered bioglass films was investigated. Excellent pull-out adherence (~73 MPa) was obtained when using a 0.3 Pa argon sputtering pressure (BG-a). The adherence declined (~46 MPa) upon increasing the working pressure to 0.4 Pa (BG-b) or when using a reactive gas mixture (~50 MPa). The SBF tests clearly demonstrated strong biomineralization features for all bioglass sputtered films. The biomineralization rate increased from BG-a to BG-b, and yet more for BG-c. A well-crystallized calcium hydrogen phosphate-like phase was observed after 3 and 15 days of immersion in SBF in all bioglass layers, which transformed monotonously into hydroxyapatite under prolonged SBF immersion. Alkali and alkali-earth salts (NaCl, KCl and CaCO(3)) were also found at the surface of samples soaked in SBF for 30 days. The study indicated that features such as composition, structure, adherence and bioactivity of bioglass films can be tailored simply by altering the magnetron sputtering working conditions, proving that this less explored technique is a promising alternative for preparing implant-type coatings.

  4. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  5. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry.

    PubMed

    Jertz, Roland; Friedrich, Jochen; Kriete, Claudia; Nikolaev, Evgeny N; Baykut, Gökhan

    2015-08-01

    In Fourier transform ion cyclotron resonance spectrometry (FT-ICR MS) the ion magnetron motion is not usually directly measured, yet its contribution to the performance of the FT-ICR cell is important. Its presence is manifested primarily by the appearance of even-numbered harmonics in the spectra. In this work, the relationship between the ion magnetron motion in the ICR cell and the intensities of the second harmonic signal and its sideband peak in the FT-ICR spectrum is studied. Ion motion simulations show that during a cyclotron motion excitation of ions which are offset to the cell axis, a position-dependent radial drift of the cyclotron center takes place. This radial drift can be directed outwards if the ion is initially offset towards one of the detection electrodes, or it can be directed inwards if the ion is initially offset towards one of the excitation electrodes. Consequently, a magnetron orbit diameter can increase or decrease during a resonant cyclotron excitation. A method has been developed to study this behavior of the magnetron motion by acquiring a series of FT-ICR spectra using varied post-capture delay (PCD) time intervals. PCD is the delay time after the capture of the ions in the cell before the cyclotron excitation of the ion is started. Plotting the relative intensity of the second harmonic sideband peak versus the PCD in each mass spectrum leads to an oscillating "PCD curve". The position and height of minima and maxima of this curve can be used to interpret the size and the position of the magnetron orbit. Ion motion simulations show that an off-axis magnetron orbit generates even-numbered harmonic peaks with sidebands at a distance of one magnetron frequency and multiples of it. This magnetron offset is due to a radial offset of the electric field axis versus the geometric cell axis. In this work, we also show how this offset of the radial electric field center can be corrected by applying appropriate DC correction voltages to the

  6. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    PubMed

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Alpha reactivity to first names differs in subjects with high and low dream recall frequency.

    PubMed

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000-1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high and

  8. Alpha reactivity to first names differs in subjects with high and low dream recall frequency

    PubMed Central

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    Studies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG). We acquired EEG from 21 channels in 36 healthy subjects while they were presented with a passive auditory oddball paradigm (frequent standard tones, rare deviant tones and very rare first names) during wakefulness and sleep (intensity, 50 dB above the subject's hearing level). Subjects were selected as High-recallers (HR, DRF = 4.42 ± 0.25 SEM, dream recalls per week) and Low-recallers (LR, DRF = 0.25 ± 0.02) using a questionnaire and an interview on sleep and dream habits. Despite the disturbing setup, the subjects' quality of sleep was generally preserved. First names induced a more sustained decrease in alpha activity in HR than in LR at Pz (1000–1200 ms) during wakefulness, but no group difference was found in REM sleep. The current dominant hypothesis proposes that alpha rhythms would be involved in the active inhibition of the brain regions not involved in the ongoing brain operation. According to this hypothesis, a more sustained alpha decrease in HR would reflect a longer release of inhibition, suggesting a deeper processing of complex sounds than in LR during wakefulness. A possibility to explain the absence of group difference during sleep is that increase in alpha power in HR may have resulted in awakenings. Our results support this hypothesis since HR experienced more intra sleep wakefulness than LR (30 ± 4 vs. 14 ± 4 min). As a whole our results support the hypothesis of neurophysiological trait differences in high

  9. Theoretical investigation of the dielectric-filled relativistic magnetron

    SciTech Connect

    Wang, Xiaoyu; Fan, Yuwei; Shu, Ting; Shi, Difu

    2016-01-15

    The fundamental mode frequency of a dielectric-filled relativistic magnetron is studied theoretically by the method of the equivalent circuit, and an exact fundamental mode frequency formula is derived. To prove the validity of the theoretical formula, simulation investigation is performed. The simulation results agree well with the theoretical formula, and the relative error does not exceed 3%. The comparative results verify the creditability of the theoretical formula.

  10. Mechanisms of the formation of low spatial frequency LIPSS on Ni/  Ti reactive multilayers

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Cavaleiro, André J.; Morgiel, Jerzy; Vilar, Rui

    2016-09-01

    The present paper aims at investigating the mechanisms of imprinting LIPSS (laser-induced periodic surface structures), arrangements of parallel ripples with a periodicity slightly smaller than the radiation wavelength, on metallic surfaces. To this end, Ni/Ti multi-layered samples produced by magnetron sputtering were textured with LIPSS using a 1030 nm, 560 fs pulse duration laser and pulse frequency of 1 kHz, and the resulting surfaces were investigated by scanning and transmission electron microscopies. The results obtained show that the core of the ripples remains in the solid state during the laser treatment, except for a layer of material about 30 nm thick at the valleys and 65-130 nm thick at the top of the crests, which melts and solidifies forming NiTi with an amorphous structure. A layer of ablation debris composed of amorphous NiTi nanoparticles was redeposited on the LIPSS crests. The results achieved indicate that the periodic variation of the absorbed radiation intensity leads to a variation of the predominant ablation mechanisms and, consequently, of the ablation rate, thus explaining the rippled surface topography. The comparison with theoretical predictions suggests that in the intensity maxima (corresponding to the valleys) the material is removed by liquid spallation, while at its minima (the crests) the predominant material removal mechanism is melting and vaporization. These results support Sipe et al LIPSS formation theory and are in contradiction with the theories that explain the formation of LIPSS by convective fluid flow or self-organized mass transport of a laser-induced instability.

  11. Frequency of hepatitis C viral RNA in anti-hepatitis C virus non- reactive blood donors with normal alanine aminotransferase.

    PubMed

    Ali, Nadir; Moinuddin; Ahmed, Syed Azhar; Chotani, Rashid A; Fisher-Hoch, Susan P

    2010-10-01

    To determine the frequency of HCV RNA in an anti-HCV non-reactive blood donor population with normal ALT, and its cost effectiveness. An observational study. Baqai Institute of Haematology, Baqai Medical University, Karachi, and Combined Military Hospital, Malir Cantt, Karachi, from May 2006 to April 2008. After initial interview and mini-medical examination, demographic data of blood donors was recorded, and anti-HCV, HBsAg and HIV were screened by third generation ELISA. Those reactive to anti-HCV, HbsAg and/or HIV were excluded. Four hundred consecutive donors with ALT within the reference range of 15-41 units/L were included in study. HCV RNA RT-PCR was performed on 5 sample mini-pools using Bio-Rad Real time PCR equipment. All 400 donors were male, with mean age 27 years SD + 6.2. ALT of blood donors varied between 15-41 U/L with mean of 31.5+6.4 U/L, HCV RNA was detected in 2/400 (0.5%) blood donors. Screening one blood bag for HCV RNA costs Rs 4,000.00 equivalent to 50 US dollars, while screening through 5 sample mini-pools was Rs. 800.00 equivalent to approximately 10 US dollars. HCV RNA frequency was 0.5% (2/400) in the studied anti-HCV non-reactive normal ALT blood donors. Screening through mini-pools is more cost-effective.

  12. Carrier mobility of highly transparent conductive Al-doped ZnO polycrystalline films deposited by radio-frequency, direct-current, and radio-frequency-superimposed direct-current magnetron sputtering: Grain boundary effect and scattering in the grain bulk

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2015-01-01

    The effects of using radio-frequency (RF)-superimposed direct-current (DC) magnetron sputtering deposition on the structural, electrical, and optical properties of aluminum-doped ZnO (AZO)-based highly transparent conducting oxide films have been examined. AZO films were deposited on heated non-alkaline glass substrates (200 °C) using ZnO:Al2O3 (2 wt. % Al2O3) ceramic oxide targets with the total power varied from 150 to 300 W, and at various RF to DC power ratios, AZO films deposited by a mixed approach with the RF to the total power ratio of 0.14 showed the lowest resistivity of 2.47 × 10-4 Ω cm with the highest carrier concentration of 6.88 × 1020 cm-3 and the highest Hall mobility (μH) of 36.8 cm2/Vs together with the maximum value of an average transmittance in the visible spectral range from 400 to 700 nm. From the analysis of optical data based on the simple Drude model combined with the Tauc-Lorentz model and the results of Hall effect measurements, the optical mobility (μopt) was determined. A comparison of μopt with μH clarified the effects of the mixed approach not only on the reduction of the grain boundary contribution to the carrier transport but also on retaining high carrier mobility of in-grains for the AZO films.

  13. Numerical simulation of oscillating magnetrons

    NASA Astrophysics Data System (ADS)

    Palevsky, A.; Bekefi, G.; Drobot, A. T.

    1981-08-01

    The temporal evolution of the current, voltage, and RF fields in magnetron-type devices is simulated by a two-dimensional, electromagnetic, fully relativistic particle-in-cell code. The simulation allows for the complete geometry of the anode vane structure, space-charge-limited cathode emission and the external power source, and is applied to a 54-vane inverted relativistic magnetron at a voltage of 300 kV and a magnetic field of 0.17 T. Fields in the RF structure and the anode-cathode gap are solved from Maxwell's equations so that results contain all the two-dimensional resonances of the system, and the numerical solution yields a complete space-time history of the particle momenta. In the presence of strong RF fields, the conventional definition of voltages is found to be inappropriate, and a definition is developed to reduce to the conventional results.

  14. Hollow target magnetron-sputter-type solid material ion source.

    PubMed

    Sasaki, D; Ieki, S; Kasuya, T; Wada, M

    2012-02-01

    A thin-walled aluminum (Al) hollow electrode has been inserted into an ion source to serve as an electrode for a radio frequency magnetron discharge. The produced plasma stabilized by argon (Ar) gas sputters the Al electrode to form a beam of Al(+) and Ar(+) ions. The total beam current extracted through a 3 mm diameter extraction hole has been 50 μA, with the Al(+) ion beam occupying 30% of the total beam current.

  15. Intra- and inter-individual variability of Aspergillus fumigatus reactive T-cell frequencies in healthy volunteers in dependency of mould exposure in residential and working environment.

    PubMed

    Wurster, Sebastian; Weis, Philipp; Page, Lukas; Helm, Johanna; Lazariotou, Maria; Einsele, Hermann; Ullmann, Andrew J

    2017-10-01

    Invasive aspergillosis remains a deadly disease in immunocompromised patients, whereas the combination of an exaggerated immune response and continuous exposure lead to various hyperinflammatory diseases. This pilot study aimed to gain an overview of the intra- and inter-individual variability in Aspergillus fumigatus reactive T-helper cells in healthy adults and the correlation with environmental mould exposure. In this flow cytometric study, the frequencies of CD154(+) A. fumigatus reactive T cells were evaluated in 70 healthy volunteers. All subjects completed a standardised questionnaire addressing their mould exposure. Subjects with intensive mould exposure in their professional or residential surrounding demonstrated considerably higher mean frequencies of A. fumigatus reactive T-helper and T-memory cells. Comparative evaluation of multiple measurements over time demonstrated relatively conserved reactive T-cell frequencies in the absence of major changes to the exposure profile, whereas those frequently exposed in professional environment or with changes to their risk score demonstrated a marked dependency of antigen reactive T-cell frequencies on recent mould exposure. This pilot study was the first to provide data on the intra-individual variability in A. fumigatus reactive T-cell frequencies and its linkage to mould encounter. Fungus reactive T cells are to be considered a valued tool for the assessment of environmental mould exposure. © 2017 Blackwell Verlag GmbH.

  16. Equilibrium and Stability of Brillouin Flow in Planar, Conventional, and Inverted Magnetrons

    NASA Astrophysics Data System (ADS)

    Simon, David Henry

    The Brillouin flow is considered to be the prevalent state in many electron devices that operate with a crossed electric and magnetic field, including magnetrons. An investigation of equilibrium and stability of the Brillouin flow is undertaken in this thesis, motivated by simulations of the novel magnetron device, the Recirculating Planar Magnetron (RPM). These simulations showed faster startup in the inverted configuration when compared to the conventional configuration. This thesis first examines the equilibrium properties of the Brillouin flow for both planar and cylindrical geometries, and discovers new relations between the vector potential, scalar potential and electron velocity that mirror the Buneman-Hartree (B-H) and Hull Cutoff conditions. The B-H condition derived from the Brillouin flow model shows a better match to simulation and experiment of relativistic magnetrons than the single particle model B-H condition. The stability of the equilibrium Brillouin flow is studied by perturbation analysis. The perturbation fields are matched to the vacuum field solution to find the complex eigenvalue frequency. The first focus is on smooth-bore magnetrons. Analysis of a planar magnetron recovers the familiar diocotron-like instability growth. The Brillouin flow instability growth rate is found, for the first time, to be enhanced in the inverted cylindrical magnetron and decreased in the conventional cylindrical magnetron, relative to the planar magnetron. This shows that the negative mass effect on a thin electron beam in a cylindrical crossed-field device is not eliminated by the significant intrinsic velocity spread associated with the velocity shear in the Brillouin flow. A slow-wave structure (SWS) is then added to the anode, introducing a resonance between the wave on the slow-wave circuit and electrons. The space harmonics in the vacuum electromagnetic fields and within the flow are included in the analysis, also for the first time. The result is that the

  17. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    SciTech Connect

    Kazakevich, G.; Johnson, R.; Neubauer, M.; Lebedev, V.; Schappert, W.; Yakovlev, V.

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  18. Dynamic phase-control of a rising sun magnetron using modulated and continuous current

    SciTech Connect

    Fernandez-Gutierrez, Sulmer; Browning, Jim; Lin, Ming-Chieh; Smithe, David N.; Watrous, Jack

    2016-01-28

    Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.

  19. Model for designing planar magnetron cathodes

    SciTech Connect

    Garcia, M.

    1997-09-30

    This report outlines an analytical model of the distribution of plasma in the cathode fall of a planar magnetron cathode. Here I continue commentary on previous work, and introduce an ion sheath model to describe the discharge dark space below the magnetron halo.

  20. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  1. Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

    PubMed Central

    Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    Summary We investigate the effect of the thickness of the silicon nitride (SiNx) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol–gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiNx diffusion barrier. Increasing the thickness of the SiNx diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol–gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiNx barrier diffusion. The SiNx barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed. PMID:26665074

  2. Effect of SiN x diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering.

    PubMed

    Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  3. Frequency of hepatitis C viral RNA in anti-hepatitis C virus non- reactive blood donors with raised alanine aminotransferase.

    PubMed

    Ali, Nadir; Ahmed, Syed Azhar; Moinuddin; Hoch, Susan Fisher; Chotani, Rashid A

    2011-12-01

    The objective of this study was to find out the frequency of HCV RNA in anti-HCV non-reactive blood donors with raised alanine amino transferase (ALT). The study was conducted at Baqai Institute of Haematology, Baqai Medical University, Karachi, in collaboration with Combined Military Hospital, Malir Cantt, Karachi. The demographic data of blood donors was recorded, and anti-HCV, HBsAg and HIV were screened. Four hundred consecutive donors with raised ALT above the reference range were included in study. HCV RNA RT-PCR was performed on 5 sample minipools using Bio-Rad Real time PCR equipment. HCV RNA was detected in 1/400 (0.25%) blood donors. Finding of raised ALT in blood donors warrants further investigations. In case, if raised ALT is unexplained presence of HCV RNA may be suspected.

  4. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    SciTech Connect

    Kang, Sung Kil; Lee, Jae Koo; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Collins, George J.; Mohamed, Abdel-Aleam H.

    2011-04-04

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H{sub 2}O{sub 2} entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state OH generation inside the plasma and relative OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing OH generation and reached a maximum 5-log{sub 10} reduction with 0.6%H{sub 2}O{sub 2} vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H{sub 2}O{sub 2} vapor to the plasma.

  5. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo

    2011-04-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.

  6. Automation of high-frequency sampling of environmental waters for reactive species

    NASA Astrophysics Data System (ADS)

    Kim, H.; Bishop, J. K.; Wood, T.; Fung, I.; Fong, M.

    2011-12-01

    Trace metals, particularly iron and manganese, play a critical role in some ecosystems as a limiting factor to determine primary productivity, in geochemistry, especially redox chemistry as important electron donors and acceptors, and in aquatic environments as carriers of contaminant transport. Dynamics of trace metals are closely related to various hydrologic events such as rainfall. Storm flow triggers dramatic changes of both dissolved and particulate trace metals concentrations and affects other important environmental parameters linked to trace metal behavior such as dissolved organic carbon (DOC). To improve our understanding of behaviors of trace metals and underlying processes, water chemistry information must be collected for an adequately long period of time at higher frequency than conventional manual sampling (e.g. weekly, biweekly). In this study, we developed an automated sampling system to document the dynamics of trace metals, focusing on Fe and Mn, and DOC for a multiple-year high-frequency geochemistry time series in a small catchment, called Rivendell located at Angelo Coast Range Reserve, California. We are sampling ground and streamwater using the automated sampling system in daily-frequency and the condition of the site is substantially variable from season to season. The ranges of pH of ground and streamwater are pH 5 - 7 and pH 7.8 - 8.3, respectively. DOC is usually sub-ppm, but during rain events, it increases by an order of magnitude. The automated sampling system focuses on two aspects- 1) a modified design of sampler to improve sample integrity for trace metals and DOC and 2) remote controlling system to update sampling volume and timing according to hydrological conditions. To maintain sample integrity, the developed method employed gravity filtering using large volume syringes (140mL) and syringe filters connected to a set of polypropylene bottles and a borosilicate bottle via Teflon tubing. Without filtration, in a few days, the

  7. High Frequency Radio Observations of the Reactivated Magnetar PSR J1622-4950

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Majid, Walid A.; Prince, Thomas A.; Horiuchi, Shinji; Kocz, Jonathon; Lazio, T. J. W.; Naudet, Charles J.

    2017-07-01

    Radio emission from the magnetar PSR J1622-4950 was recently reported to have resumed (Camilo et al., ATel #10346). We have carried out Target of Opportunity (ToO) radio observations of PSR J1622-4950 at S-band (2.3 GHz) and X-band (8.4 GHz) using the 70-m diameter Deep Space Network (DSN) radio dish (DSS-43) in Canberra, Australia. We report on our single polarization mode observations of PSR J1622-4950 spanning 5 hours on 23 May 2017 starting at 16:03:32 UTC. Pulsations were detected at a period of 4.327308(1) s. We measure a mean flux density of 3.8(8)/0.41(8) mJy at S/X-band, from which we derive a spectral index of -1.7(2). We note that PSR J1622-4950's spectral behavior is now consistent with the majority of pulsars, which have a mean spectral index of -1.8(2) (Maron et al. (2000)). The result by Maron et al. (2000) is used here because they included more high frequency pulsar spectra than other studies to characterize the underlying spectral index distribution over a wide frequency range. The mean flux density at S-band has now increased by an order of magnitude compared to previous flux density measurements by Scholz et al. (2017) during the magnetar's quiescent state. Furthermore, the spectral index has steepened compared to a nearly flat spectral index from flux density measurements between 1.4 and 24 GHz prior to the disappearance of the radio emission (Levin et al. (2010); Keith et al. (2011); Levin et al. (2012); Anderson et al. (2012); Scholz et al. (2017)). We are continuing to monitor changes in PSR J1622-4950's radio spectrum at both S-band and X-band. We thank the DSN (Deep Space Network) and Canberra Deep Space Communication Complex (CDSCC) teams for scheduling these observations.

  8. Chemical mechanical polishing characteristics of ITO thin film prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Yeon; Choi, Gwon-Woo; Kim, Yong-Jae; Choi, Youn-Ok; Kim, Nam-Oh

    2012-02-01

    Indium-tin-oxide (ITO) thin films have attracted intensive interest because of their unique properties of good conductivity, high optical transmittance over the visible region and easy patterning ability. ITO thin films have found many applications in anti-static coatings, thermal heaters, solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), electroluminescent devices, sensors and organic light-emitting diodes (OLEDs). ITO thin films are generally fabricated by using various methods, such as spraying, chemical vapor deposition (CVD), evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive sputtering. In this research, ITO films were grown on glass substrates by using a radio-frequency (RF) magnetron sputtering method. In order to achieve a high transmittance and a low resistivity, we examined the various film deposition conditions, such as substrate temperature, working pressure, annealing temperature, and deposition time. Next, in order to improve the surface quality of the ITO thin films, we performed a chemical mechanical polishing (CMP) with different process parameters and compared the electrical and the optical properties of the polished ITO thin films. The best CMP conditions with a high removal rate, low nonuniformity, low resistivity and high transmittance were as follows: platen speed, head speed, polishing time, and slurry flow rate of 30 rpm, 30 rpm, 60 sec, and 60 ml/min, respectively.

  9. High frequency of cross-reactive cytotoxic T lymphocytes elicited during the virus-induced polyclonal cytotoxic T lymphocyte response

    PubMed Central

    1993-01-01

    exudate cells (PEC) revealed not only the expected virus-specific CTL clones, but also a high frequency of clones that were cross-reactive with allogeneic and virus-infected syngeneic targets. In addition to the virus cross-reactive allospecific CTL clones, virus-infected PEC also stimulated the generation of some allospecific clones that did not lyse virus-infected fibroblasts. Surprisingly, LCMV-infected PEC were much more efficient at stimulating allospecific CTL clones from day 8 LCMV-infected splenocytes than were allogeneic stimulators. These results indicate that at least part of the polyclonal allospecific CTL response elicited by acute virus infection is a consequence of the selective expansion of many clones of allospecific CTL which cross- react with virus-infected cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8093891

  10. Experimental radiation cooled magnetrons for space

    NASA Technical Reports Server (NTRS)

    Brown, W. C.; Pollock, M.

    1991-01-01

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  11. Experimental radiation cooled magnetrons for space

    NASA Astrophysics Data System (ADS)

    Brown, W. C.; Pollock, M.

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  12. 3-D Printed High Power Microwave Magnetrons

    NASA Astrophysics Data System (ADS)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  13. A Plasma Lens for Magnetron Sputtering

    SciTech Connect

    Anders, Andre; Brown, Jeff

    2010-11-30

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  14. Undoped InOx films deposited by radio frequency plasma enhanced reactive thermal evaporation at room temperature: importance of substrate.

    PubMed

    Parreira, P; Lavareda, G; Valente, J; Nunes, F T; Amaral, A; de Carvalho, C Nunes

    2010-04-01

    Conductive and transparent undoped thin films of indium oxide (InOx ), 120 nm average thick, were deposited by radio frequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium in the presence of oxygen at room temperature. Several substrates were used in order to study their influence on the main properties of these films: alkali free (AF) glass, fused silica, crystalline silicon and polyethylene terephthalate (PET). Surface morphology of the InOx films as a function of the substrates was observed by SEM and showed that the undoped InOx films obtained are nanostructured. For the c-Si substrate, InOx films with increased grain size are obtained, induced by the crystalline substrate. Films deposited on fused silica and AF glass substrates show a nano-grainy surface with similar surface morphologies. The InOx films deposited on AF glass show the highest values of both: electrical conductivity of about 1100 (omega cm)(-1) and visible transmittance of 85%. The substrate has a greater influence on the surface morphology of the films when a polymer (PET) is used. InOx films deposited on PET show a decrease in the electrical conductivity (90 (omega cm)(-1)) and a slight decrease in the average visible transmittance (78%).

  15. Do Productive Activities Reduce Inflammation in Later Life? Multiple Roles, Frequency of Activities, and C-Reactive Protein

    PubMed Central

    Kim, Seoyoun; Ferraro, Kenneth F.

    2014-01-01

    Purpose of the Study: The study investigates whether productive activities by older adults reduce bodily inflammation, as indicated by C-reactive protein (CRP), a biomeasure associated with the risk of cardiovascular diseases. Design and Methods: The study uses a representative survey of adults aged 57–85 from the National Social Life, Health, and Aging Project (N = 1,790). Linear regression models were used to analyze the effects of multiple roles (employment, volunteering, attending meetings, and caregiving) and the frequency of activity within each role on log values of CRP concentration (mg/L) drawn from assayed blood samples. Results: Number of roles for productive activities was associated with lower levels of CRP net of chronic conditions, lifestyle factors, and socioeconomic resources. When specific types of activity were examined, volunteering manifested the strongest association with lower levels of inflammation, particularly in the 70+ group. There was no evidence that frequent engagement in volunteer activity was associated with heightened inflammation. Implications: Productive activities—and frequent volunteering in particular—may protect individuals from inflammation that is associated with increased risk of hypertension and cardiovascular disease. PMID:23969258

  16. Do productive activities reduce inflammation in later life? Multiple roles, frequency of activities, and C-reactive protein.

    PubMed

    Kim, Seoyoun; Ferraro, Kenneth F

    2014-10-01

    The study investigates whether productive activities by older adults reduce bodily inflammation, as indicated by C-reactive protein (CRP), a biomeasure associated with the risk of cardiovascular diseases. The study uses a representative survey of adults aged 57-85 from the National Social Life, Health, and Aging Project (N = 1,790). Linear regression models were used to analyze the effects of multiple roles (employment, volunteering, attending meetings, and caregiving) and the frequency of activity within each role on log values of CRP concentration (mg/L) drawn from assayed blood samples. Number of roles for productive activities was associated with lower levels of CRP net of chronic conditions, lifestyle factors, and socioeconomic resources. When specific types of activity were examined, volunteering manifested the strongest association with lower levels of inflammation, particularly in the 70+ group. There was no evidence that frequent engagement in volunteer activity was associated with heightened inflammation. Productive activities-and frequent volunteering in particular-may protect individuals from inflammation that is associated with increased risk of hypertension and cardiovascular disease. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. EMI shielding using composite materials with two sources magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Jaroszewski, M.; Lewandowski, M.

    2016-02-01

    In this study, the preparation composite materials for electromagnetic shields using two sources magnetron sputtering DC-M is presented. A composite material was prepared by coating a nonwoven polypropylene metallic layer in sputtering process of targets Ti (purity 99%) and brass alloy MO58 (58%Cu, 40%Zn, 2%Pb) and ϕ diameter targets = 50 mm, under argon atmosphere. The system with magnetron sputtering sources was powered using switch-mode power supply DPS (Dora Power System) with a maximum power of 16 kW and a maximum voltage of 1.2 kV with group frequency from 50 Hz to 5 kHz. The influence of sputtering time of individual targets on the value of the EM field attenuation SE [dB] was investigated for the following supply conditions: pressure pp = 2x10-3 Torr, sputtering power P = 750 W, the time of applying a layer t = 5 min, group frequency fg = 2 kHz, the frequency of switching between targets fp = 1 Hz.

  18. High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    SciTech Connect

    Ehiasarian, A. P.; New, R.; Hecimovic, A.; Arcos, T. de los; Schulz-von der Gathen, V.; Boeke, M.; Winter, J.

    2012-03-12

    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in E-vectorxB-vector direction at velocities of {approx}10 km s{sup -1} and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasma conductivity speeds it up.

  19. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE PAGES

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  20. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    SciTech Connect

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; Varghese, Philip

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.

  1. Synthesis of Tantalum-Doped Tin Oxide Thin Films by Magnetron Sputtering for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Minh; Luu, Manh Quynh; Nguyen, Minh Hieu; Nguyen, Duy Thien; Bui, Van Diep; Truong, Thanh Tu; Pham, Van Thanh; Nguyen-Tran, Thuat

    2017-06-01

    Tantalum-doped tin oxide transparent conductive thin films were deposited on glass substrates by radio frequency and direct current reactive magnetron co-sputtering methods in an argon and oxygen environment. Optimization of the thin films for photovoltaic applications was performed using a dimensionless figure of merit by combining electrical and transparency properties. The optimized thin film showed a weight-averaged transmittance of 83%, a band gap value of 3.2 eV, resistivity of 5.2 × 10-3 Ω cm, and bulk carrier concentration of 1.2 × 1020 cm-3. The lowest resistivity among all films was 2.1 × 10-3 Ω cm, corresponding to a weight-averaged transmittance of 62%. The optimized deposition condition was carried out by co-sputtering on heated substrates at 270°C. Thin films deposited under this optimized condition were applied for our perovskite solar cells, and demonstrated promising power conversion efficiency.

  2. Initial deposition of calcium phosphate ceramic on polystyrene and polytetrafluoroethylene by rf magnetron sputtering deposition

    NASA Astrophysics Data System (ADS)

    Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.

    2003-03-01

    Calcium phosphate (CaP) coatings can be applied to improve the biological performance of polymeric medical implants. A strong interfacial bond between ceramic and polymer is required for clinical applications. Because the chemical structure of an interface plays an important role in the adhesion of a coating, we studied the formation of the interface between CaP and polystyrene (PS) and polytetrafluoroethylene (PTFE). The coating was deposited in a radio frequency (rf) magnetron sputtering deposition system. Prior to the deposition, some samples received an oxygen plasma pretreatment. We found that the two substrates show a strongly different reactivity towards CaP. On PS a phosphorus and oxygen enrichment is present at the interface. This is understood from POx complexes that are able to bind to the PS. The effects of the plasma pretreatment are overruled by the deposition process itself. On PTFE, a calcium enrichment and an absence of phosphorus is found at the interface. The former is the result of CaF2-like material being formed at the interface. The latter may be the result of phosphorus reacting with escaping fluorine to a PF3 molecule, which than escapes from the material as a gas molecule. We found that the final structure of the interface is mostly controlled by the bombardment of energetic particles escaping either from the plasma or from the sputtering target. The work described here can be used to understand and improve the adhesion of CaP coatings deposited on medical substrates.

  3. Synthesis of Tantalum-Doped Tin Oxide Thin Films by Magnetron Sputtering for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Minh; Luu, Manh Quynh; Nguyen, Minh Hieu; Nguyen, Duy Thien; Bui, Van Diep; Truong, Thanh Tu; Pham, Van Thanh; Nguyen-Tran, Thuat

    2017-01-01

    Tantalum-doped tin oxide transparent conductive thin films were deposited on glass substrates by radio frequency and direct current reactive magnetron co-sputtering methods in an argon and oxygen environment. Optimization of the thin films for photovoltaic applications was performed using a dimensionless figure of merit by combining electrical and transparency properties. The optimized thin film showed a weight-averaged transmittance of 83%, a band gap value of 3.2 eV, resistivity of 5.2 × 10-3 Ω cm, and bulk carrier concentration of 1.2 × 1020 cm-3. The lowest resistivity among all films was 2.1 × 10-3 Ω cm, corresponding to a weight-averaged transmittance of 62%. The optimized deposition condition was carried out by co-sputtering on heated substrates at 270°C. Thin films deposited under this optimized condition were applied for our perovskite solar cells, and demonstrated promising power conversion efficiency.

  4. The process of growing Cr2O3 thin films on α-Al2O3 substrates at low temperature by r.f. magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gao, Yin; Leiste, Harald; Stueber, Michael; Ulrich, Sven

    2017-01-01

    Cr2O3 thin films with a thickness of 180 nm are grown on c-plane α-Al2O3 (0001) single crystal substrates at a substrate temperature of 320 °C by non-reactive radio frequency magnetron sputtering. Phase formation and composition are characterized by X-ray diffraction (XRD) and Raman spectroscopy analysis. Additional information such as in-plane and out-of-plane lattice parameters, strain relaxation and texture are obtained by reciprocal space mappings (RSMs) and pole figure measurements. Transmission electron microscopy (TEM) has been carried out in order to study the microstructure and further confirm the orientation and epitaxial relationship between films and substrates.

  5. On Tomonaga's theory of split-anode magnetrons

    NASA Astrophysics Data System (ADS)

    Dittrich, Walter

    2016-06-01

    This article offers a review of the history of radar research and its application in the 20th century. After describing the wartime work of Sin-Itiro Tomonaga and his theory of the cavity magnetron, we formulate the equations of motion of an electron in a cavity magnetron using action-angle variables. This means following the electron's path on its way from a cylindrical cathode moving toward a co-axial cylindrical anode in presence of a uniform magnetic field parallel to the common axis. After analyzing the situation without coupling to an external oscillatory electric field, we employ methods of canonical perturbation theory to find the resonance condition between the frequencies of the free theory ωr, ωϕ and the applied perturbing oscillatory frequency ω. A long-time averaging process will then eliminate the periodic terms in the equation for the now time-dependent action-angle variables. The terms that are no longer periodic will cause secular changes so that the canonical action-angle variables (J, δ) change in a way that the path of the electron will deform gradually so that it can reach the anode. How the ensemble of the initially randomly distributed electrons forms spokes and how their energy is conveyed to the cavity-field oscillation is the main focus of this article. Some remarks concerning the importance of results in QED and the invention of radar theory and application conclude the article.

  6. Stability of Brillouin flow in planar, conventional, and inverted magnetrons

    SciTech Connect

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Gilgenbach, R. M.; Hoff, B. W.

    2015-08-15

    The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property in the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions.

  7. Analysis of peer-to-peer locking of magnetrons

    SciTech Connect

    Pengvanich, P.; Lau, Y. Y.; Cruz, E.; Gilgenbach, R. M.; Hoff, B.; Luginsland, J. W.

    2008-10-15

    The condition for mutual, or peer-to-peer, locking of two magnetrons is derived. This condition reduces to Adler's classical phase-locking condition in the limit where one magnetron becomes the 'master' and the other becomes the 'slave.' The formulation is extended to the peer-to-peer locking of N magnetrons, under the assumption that the electromagnetic coupling among the N magnetrons is modeled by an N-port network.

  8. Anisotropies in magnetron sputtered carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Hellgren, Niklas; Johansson, Mats P.; Broitman, Esteban; Hultman, Lars; Sundgren, Jan-Eric

    2001-04-01

    Carbon nitride CNx (0⩽x⩽0.35) thin films, deposited by reactive dc magnetron sputtering in Ar/N2 discharges have been studied with respect to microstructure using electron microscopy, and elastic modulus using nanoindentation and surface acoustic wave analyses. For growth temperature of 100 °C, the films were amorphous, and with an isotropic Young's modulus of ˜170-200 GPa essentially unaffected by the nitrogen fraction. The films grown at elevated temperatures (350-550 °C) show anisotropic mechanical properties due to a textured microstructure with standing basal planes, as observed from measuring the Young's modulus in different directions. The modulus measured in the plane of the film was ˜60-80 GPa, while in the vertical direction the modulus increased considerably from ˜25 to ˜200 GPa as the nitrogen content was increased above ˜15 at. %.

  9. Simulation of sputter deposition in dc magnetrons

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Cluggish, Brian

    2010-11-01

    Material sputter deposition has a multitude of industrial applications. Our goal at FAR-TECH, Inc., is a complete numerical simulation of a dc magnetron device. We intend to modify existing FAR-TECH, Inc. code to include flexible geometry manipulation, the most current atomic physics data, add transport of neutral atoms across the device, and model deposition on the substrate. Currently, dc magnetron simulation codes have limited geometry manipulation capabilities; however, this is important if design optimization is intended. Another uncommon feature in dc magnetron simulation codes is parallel performance. Since PIC simulations may take extremely long times (weeks), we are parallelizing our codes to achieve shorter run times. (Codes based on hybrid models perform faster, but have the disadvantage of having to know accurately the diffusion coefficients of electrons across the magnetic field lines.) We report preliminary results of this effort.

  10. Magnetron surface coil for brain MR imaging.

    PubMed

    Rodríguez, Alfredo O

    2006-08-01

    A resonator surface coil was developed for magnetic resonance imaging of the brain and tested on a clinical imager. This resonator design was based on the cavity magnetron with an 8 slot-and-hole configuration. High-resolution brain images were obtained from a water-filled phantom and from a healthy volunteer brain. To compare coil performance, SNR-vs.-depth plots were computed for a single-loop coil and the magnetron prototype from phantom images. These experimentally acquired profiles show an important improvement in SNR. Thus, the magnetron surface coil can generate brain images with a high resolution and penetration capacity. The high sensitivity of this coil makes it a good candidate to be used in multicoil imaging sequences.

  11. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. III. Correlation between Reactivity Levels, Crossover Frequency and Repair Efficiency

    PubMed Central

    Laurencon, A.; Gay, F.; Ducau, J.; Bregliano, J. C.

    1997-01-01

    We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system. PMID:9258678

  12. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  13. Characterization and optimization of the magnetron directional amplifier

    NASA Astrophysics Data System (ADS)

    Hatfield, Michael Craig

    Many applications of microwave wireless power transmission (WPT) are dependent upon a high-powered electronically-steerable phased array composed of many radiating modules. The phase output from the high-gain amplifier in each module must be accurately controlled if the beam is to be properly steered. A highly reliable, rugged, and inexpensive design is essential for making WPT applications practical. A conventional microwave oven magnetron may be combined with a ferrite circulator and other external circuitry to create such a system. By converting it into a two-port amplifier, the magnetron is capable of delivering at least 30 dB of power gain while remaining phase-locked to the input signal over a wide frequency range. The use of the magnetron in this manner is referred to as a MDA (Magnetron Directional Amplifier). The MDA may be integrated with an inexpensive slotted waveguide array (SWA) antenna to form the Electronically-Steerable Phased Array Module (ESPAM). The ESPAM provides a building block approach to creating phased arrays for WPT. The size and shape of the phased array may be tailored to satisfy a diverse range of applications. This study provided an in depth examination into the capabilities of the MDA/ESPAM. The basic behavior of the MDA was already understood, as well as its potential applicability to WPT. The primary objective of this effort was to quantify how well the MDA could perform in this capacity. Subordinate tasks included characterizing the MDA behavior in terms of its system inputs, optimizing its performance, performing sensitivity analyses, and identifying operating limitations. A secondary portion of this study examined the suitability of the ESPAM in satisfying system requirements for the solar power satellite (SPS). Supporting tasks included an analysis of SPS requirements, modeling of the SWA antenna, and the demonstration of a simplified phased array constructed of ESPAM elements. The MDA/ESPAM is well suited for use as an

  14. Recent Operation of the FNAL Magnetron H- Ion Source

    SciTech Connect

    Karns, Patrick R.; Bollinger, D. S.; Sosa, A.

    2016-09-06

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ~18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  15. Magnetron Sputtered Molybdenum Oxide for Application in Polymers Solar Cells

    NASA Astrophysics Data System (ADS)

    Sendova-Vassileva, M.; Dikov, Hr; Vitanov, P.; Popkirov, G.; Gergova, R.; Grancharov, G.; Gancheva, V.

    2016-10-01

    Thin films of molybdenum oxide were deposited by radio frequency (RF) magnetron sputtering in Ar from a MoO3 target at different deposition power on glass and silicon substrates. The thickness of the films was determined by profilometer measurements and by ellipsometry. The films were annealed in air at temperatures between 200 and 400°C in air. The optical transmission and reflection spectra were measured. The conductivity of the as deposited and annealed films was determined. The crystal structure was probed by Raman spectroscopy. The oxidation state of the surface was studied by X-ray photoelectron spectroscopy (XPS) spectroscopy. The deposition technique described above was used to experiment with MoOx as a hole transport layer (HTL) in polymer solar cells with bulk hetrojunction active layer, deposited by spin coating. The performance of these layers was compared with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which is the standard material used in this role. The measured current-voltage characteristics of solar cells with the structure glass/ITO/HTL/Poly(3-hexyl)thiophene (P3HT):[6,6]-phenyl-C61- butyric acid methyl ester (PCBM)/Al demonstrate that the studied MoOx layer is a good HTL and leads to comparable characteristics to those with PEDOT:PSS. On the other hand the deposition by magnetron sputtering guarantees reliable and repeatable HTLs.

  16. Recent operation of the FNAL magnetron H- ion source

    NASA Astrophysics Data System (ADS)

    Karns, P. R.; Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ˜18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  17. Plasma properties of RF magnetron sputtering system using Zn target

    SciTech Connect

    Nafarizal, N.; Andreas Albert, A. R.; Sharifah Amirah, A. S.; Salwa, O.; Riyaz Ahmad, M. A.

    2012-06-29

    In the present work, we investigate the fundamental properties of magnetron sputtering plasma using Zn target and its deposited Zn thin film. The magnetron sputtering plasma was produced using radio frequency (RF) power supply and Argon (Ar) as ambient gas. A Langmuir probe was used to collect the current from the plasma and from the current intensity, we calculate the electron density and electron temperature. The properties of Zn sputtering plasma at various discharge conditions were studied. At the RF power ranging from 20 to 100 W and gas pressure 5 mTorr, we found that the electron temperature was almost unchanged between 2-2.5 eV. On the other hand, the electron temperature increased drastically from 6 Multiplication-Sign 10{sup 9} to 1 Multiplication-Sign 10{sup 10}cm{sup -3} when the discharge gas pressure increased from 5 to 10 mTorr. The electron microscope images show that the grain size of Zn thin film increase when the discharge power is increased. This may be due to the enhancement of plasma density and sputtered Zn density.

  18. The Development and Application of the Magnetron,

    DTIC Science & Technology

    1982-03-31

    of *medicine. The power of the magnetron used is from several tens of watts to several hundred watts. Microwave physiotherapy has been used in...clinical practice for the fast cure of arthritis , rheumatism and the subsidence of swelling. Therapeutic results have been excellent. In recent years

  19. Power Supply to Drive a Magnetron for PFC Gas Resolution

    NASA Astrophysics Data System (ADS)

    Iwabuki, Hiroyasu; Iwata, Akihiko; Yoshiyasu, Hajimu

    A power supply to drive a magnetron for a PFC gas resolution has been developed. The power supply (ratings 5kV, 1A) is composed of a full bridge inverter and a voltage doubler rectifier circuit. The characteristics of the current and electric power of a magnetron with the non-linear load were analyzed. As a result, it was found that the magnetron power and the magnetron peak current are approximately linear to the pulse width when the reactor, which controls the current of magnetron, was inserted in the inverter output. We constructed a trial power supply to drive magnetron. It was confirmed that the trial power supply could continuously control the magnetron output up to 3.5kW. The PFC gas resolution efficiency with microwave plasma is larger than the silent discharge method. Therefore we can expect the realization of a small, highly efficient gas resolution device using microwave plasma.

  20. Effect of High-Frequency Stimulation of the Perforant Path on Previously Acquired Spatial Memory in Rats: Influence of Memory Strength and Reactivation

    PubMed Central

    Akers, Katherine G.; Hamilton, Derek A.

    2014-01-01

    If memory depends on changes in synaptic strength, then manipulation of synaptic strength after learning should alter memory for what was learned. Here, we examined whether high frequency stimulation of the perforant path in vivo disrupts memory for a previously-learned hidden platform location in the Morris water task as well as whether this effect is modulated by memory strength or memory reactivation. We found that high frequency stimulation affected probe test performance regardless of memory strength or state of memory activation, although the precise nature of this effect differed depending on whether rats received minimal or extensive training prior to high frequency stimulation. These findings suggest that artificial manipulation of synaptic strength between the entorhinal cortex and hippocampus may destabilize memory for a previously-learned spatial location. PMID:24971994

  1. Tumor- and Neoantigen-Reactive T-cell Receptors Can Be Identified Based on Their Frequency in Fresh Tumor.

    PubMed

    Pasetto, Anna; Gros, Alena; Robbins, Paul F; Deniger, Drew C; Prickett, Todd D; Matus-Nicodemos, Rodrigo; Douek, Daniel C; Howie, Bryan; Robins, Harlan; Parkhurst, Maria R; Gartner, Jared; Trebska-McGowan, Katarzyna; Crystal, Jessica S; Rosenberg, Steven A

    2016-09-02

    Adoptive transfer of T cells with engineered T-cell receptor (TCR) genes that target tumor-specific antigens can mediate cancer regression. Accumulating evidence suggests that the clinical success of many immunotherapies is mediated by T cells targeting mutated neoantigens unique to the patient. We hypothesized that the most frequent TCR clonotypes infiltrating the tumor were reactive against tumor antigens. To test this hypothesis, we developed a multistep strategy that involved TCRB deep sequencing of the CD8(+)PD-1(+) T-cell subset, matching of TCRA-TCRB pairs by pairSEQ and single-cell RT-PCR, followed by testing of the TCRs for tumor-antigen specificity. Analysis of 12 fresh metastatic melanomas revealed that in 11 samples, up to 5 tumor-reactive TCRs were present in the 5 most frequently occurring clonotypes, which included reactivity against neoantigens. These data show the feasibility of developing a rapid, personalized TCR-gene therapy approach that targets the unique set of antigens presented by the autologous tumor without the need to identify their immunologic reactivity. Cancer Immunol Res; 4(9); 734-43. ©2016 AACR.

  2. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings.

    PubMed

    Kelly, Peter J; West, Glen T; Ratova, Marina; Fisher, Leanne; Ostovarpour, Soheyla; Verran, Joanna

    2014-10-13

    Titania and doped-titania coatings can be deposited by a wide range of techniques; this paper will concentrate on magnetron sputtering techniques, including "conventional" reactive co-sputtering from multiple metal targets and the recently introduced high power impulse magnetron sputtering (HiPIMS). The latter has been shown to deliver a relatively low thermal flux to the substrate, whilst still allowing the direct deposition of crystalline titania coatings and, therefore, offers the potential to deposit photocatalytically active titania coatings directly onto thermally sensitive substrates. The deposition of coatings via these techniques will be discussed, as will the characterisation of the coatings by XRD, SEM, EDX, optical spectroscopy, etc. The assessment of photocatalytic activity and photoactivity through the decomposition of an organic dye (methylene blue), the inactivation of E. coli microorganisms and the measurement of water contact angles will be described. The impact of different deposition technologies, doping and co-doping strategies on coating structure and activity will be also considered.

  3. Colored and transparent oxide thin films prepared by magnetron sputtering: the glass blower approach.

    PubMed

    Gil-Rostra, Jorge; Chaboy, Jesús; Yubero, Francisco; Vilajoana, Antoni; González-Elipe, Agustín R

    2013-03-01

    This work describes the reactive magnetron sputtering processing at room temperature of several mixed oxide MxSiyOz thin films (M: Fe, Ni, Co, Mo, W, Cu) intended for optical, coloring, and aesthetic applications. Specific colors can be selected by adjusting the plasma gas composition and the Si-M ratio in the magnetron target. The microstructure and chemistry of the films are characterized by a large variety of techniques including X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS), and infrared spectroscopy, while their optical properties are characterized by UV-vis transmission and reflection analysis. Particularly, XAS analysis of the M cations in the amorphous thin films has provided valuable information about their chemical state and local structure. It is concluded that the M cations are randomly distributed within the SiO2 matrix and that both the M concentration and its chemical state are the key parameters to control the final color of the films.

  4. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  5. Bioactivity and hemocompatibility study of amorphous hydrogenated carbon coatings produced by pulsed magnetron discharge.

    PubMed

    Lopez-Santos, C; Colaux, J L; Laloy, J; Fransolet, M; Mullier, F; Michiels, C; Dogné, J-M; Lucas, S

    2013-06-01

    Literature contains very few data about the potential biomedical application of amorphous hydrogenated carbon (a-C:H) thin films deposited by reactive pulsed magnetron discharge even so it is one of the most scalable plasma deposition technique. In this article, we show that such a C2H2 pulsed magnetron plasma produces high quality coating with good hemocompatibility and bioactive response: no effect on hemolysis and hemostasis were observed, and proliferation of various cell types such as endothelial, fibroblast, and osteoblast-like cells was not affected when the deposition conditions were varied. Cell growth on a-C:H coatings is proposed to take place by a two-step process: the initial cell contact is affected by the smooth topography of the a-C:H coatings, whereas the polymeric-like structure, together with a moderate hydrophilicity and a high hydrogen content, directs the posterior cell spreading while preserving the hemocompatible behavior.

  6. [Spectrum diagnostics for optimization of experimental parameters in thin films deposited by magnetron sputtering].

    PubMed

    Guo, Qing-Lin; Cui, Yong-Liang; Chen, Jian-Hui; Zhang, Jin-Ping; Huai, Su-Fang; Liu, Bao-Ting; Chen, Jin-Zhong

    2010-12-01

    The plasma emission spectra generated during the deposition process of Si-based thin films by radio frequency (RF) magnetron sputtering using Cu and Al targets in an argon atmosphere were acquired by the plasma analysis system, which consists of a magnetron sputtering apparatus, an Omni-lambda300 series grating spectrometer, a CCD data acquisition system and an optical fiber transmission system. The variation in Cu and Al plasma emission spectra intensity depending on sputtering conditions, such as sputtering time, sputtering power, the target-to-substrate distance and deposition pressure, was studied by using the analysis lines Cu I 324. 754 nm, Cu I 327. 396 nm, Cu I 333. 784 nm, Cu I 353. 039 nm, Al I 394. 403 nm and Al I 396. 153 nm. Compared with the option of experimental parameters of thin films deposited by RF magnetron sputtering, it was shown that emission spectra analysis methods play a guiding role in optimizing the deposition conditions of thin films in RF magnetron sputtering.

  7. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  8. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.

    2016-08-01

    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  9. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    SciTech Connect

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.

    2014-10-15

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  10. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  11. AZO films prepared by r.f. magnetron sputtering: structural, electrical, and optical properties

    NASA Astrophysics Data System (ADS)

    Grilli, Maria Luisa; Krasilnikova Sytchkova, Anna; Boycheva, Sylvia; Piegari, Angela

    2008-09-01

    Aluminium-doped zinc oxide films with 91% transmittance in the visible range and electrical resistivity of the order of 10-3 Ωcm were fabricated by radio frequency magnetron sputtering in Ar atmosphere starting from a target of ZnO mixed with 2% wt Al2O3. A systematic study of the deposition conditions such as substrate temperature, working gas pressure, radio frequency power, magnetron strength, target to substrate distance, etc., was performed when searching for improved electrical and optical performances of the films. Several deposition conditions govern the film characteristics, so that films with same good optical and electrical properties can be obtained by opportunely combining different deposition parameters.

  12. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO{sub 2}) and adsorption of remazol reactive dye

    SciTech Connect

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-25

    Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.

  13. A Critical Precursor Frequency of Donor-Reactive CD4+ T Cell Help is Required for CD8+ T Cell-Mediated CD28/CD154-Independent Rejection

    PubMed Central

    Ford, Mandy L.; Wagener, Maylene E.; Hanna, Samantha S.; Pearson, Thomas C.; Kirk, Allan D.; Larsen, Christian P.

    2008-01-01

    Antigen-specific precursor frequency is increasingly being appreciated as an important factor in determining the kinetics, magnitude, and degree of differentiation of T cell responses, and recently was found to play a critical role in determining the relative requirement of CD8+ T cells for CD28- and CD154-mediated costimulatory signals during transplantation. We addressed the possibility that variations in CD4+ T cell precursor frequency following transplantation might affect CD4+ T cell proliferation, effector function, and provision of help for donor-reactive B cell and CD8+ T cell responses. Using a transgenic model system wherein increasing frequencies of donor-reactive CD4+ T cells were transferred into skin graft recipients, we observed that a critical CD4+ T cell threshold precursor frequency was necessary to provide help following blockade of the CD28 and CD154 costimulatory pathways, as measured by increased B cell and CD8+ T cell responses and precipitation of graft rejection. In contrast to high-frequency CD8+ T cell responses, this effect was observed even though the proliferative and cytokine responses of Ag-specific CD4+ T cells were inhibited. Thus, we conclude that an initial high frequency of donor-reactive CD4+ T cells uncouples T cell proliferative and effector cytokine production from the provision of T cell help. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third party. The final

  14. Aging and the Immune Response to Tetanus Toxoid: Diminished Frequency and Level of Cellular Immune Reactivity to Antigenic Stimulation

    PubMed Central

    Schatz, Desmond; Ellis, Tamir; Ottendorfer, Eric; Jodoin, Eric; Barrett, Douglas; Atkinson, Mark

    1998-01-01

    The period of efficacious immune reactivity afforded by tetanus immunization and the need for continuing some forms of tetanus vaccination programs have been the subjects of recent debates. Our studies demonstrate that the level of antitetanus immunity based on immunological memory (i.e., cellular immune responsiveness) varies dramatically as a function of age, with older individuals constituting a population which is increasingly susceptible to tetanus infection. PMID:9801353

  15. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  16. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  17. Experimental investigation of quasiperiodic-chaotic-quasiperiodic-chaotic transition in a direct current magnetron sputtering plasma

    SciTech Connect

    Sabavath, Gopi Kishan; Banerjee, I.; Mahapatra, S. K.; Shaw, Pankaj Kumar; Sekar Iyengar, A. N.

    2015-08-15

    Floating potential fluctuations from a direct current magnetron sputtering plasma have been analysed using time series analysis techniques like phase space plots, power spectra, frequency bifurcation plot, etc. The system exhibits quasiperiodic-chaotic-quasiperiodic-chaotic transitions as the discharge voltage was increased. The transitions of the fluctuations, quantified using the largest Lyapunov exponent, have been corroborated by Hurst exponent and the Shannon entropy. The Shannon entropy is high for quasiperiodic and low for chaotic oscillations.

  18. Metamaterial Cathodes in Multi-Cavity Magnetrons

    DTIC Science & Technology

    2011-06-01

    P.S. Campbell , R.R. Lentz, W.T. Main, S.G. Tantawi, K.G. Kato, H.K. Beutel, K.W. Brown, D.D. Crouch, G.K. Jones, and R.B. McDonald, “Develop- ment...14] G.A. Mesyats, Explosive Electron Emission, URO Press, 1998. [15] R.B. Miller, “The relativistic microwave magnetron,” in An Introduction to

  19. Fuzzy tungsten in a magnetron sputtering device

    NASA Astrophysics Data System (ADS)

    Petty, T. J.; Khan, A.; Heil, T.; Bradley, J. W.

    2016-11-01

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 1023-3.0 × 1024 m-2, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 1024 m-2, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ1/2 relation as opposed to the incubation fluence fit.

  20. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  1. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  2. Drastic improvement in the S-band relativistic magnetron operation

    NASA Astrophysics Data System (ADS)

    Sayapin, A.; Hadas, Y.; Krasik, Ya. E.

    2009-08-01

    The superior operation of a S-band relativistic magnetron powered by a Linear Induction Accelerator with ≤400 kV, ≤4 kA, and ˜150 ns output pulses was revealed when the magnetron was coupled with a resonance load and a part of the generated microwave power stored in the resonator was reflected back to the magnetron. It is shown that, under optimal conditions, the efficiency of the magnetron operation increases by ˜40% and the generated microwave power reaches the power of the electron beam.

  3. Satellite Power System (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    The data base was extended with respect to the magnetron directional amplifier and its operating parameters that are pertinent to its application in the solar power satellite. On the basis of the resulting extended data base the design of a magnetron was outlined that would meet the requirements of the SPS application and a technology program was designed that would result in its development. The proposed magnetron design for the SPS is a close scale of the microwave oven magnetron, and resembles it closely physically and electrically.

  4. A hybrid heterojunction with reverse rectifying characteristics fabricated by magnetron sputtered TiOx and plasma polymerized aniline structure

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Pal, Arup R.; Bailung, Heremba; Chutia, Joyanti

    2012-07-01

    A TiOx film produced by direct current reactive magnetron sputtering without substrate heating or post-deposition annealing and a plasma polymerized aniline (PPA) structure deposited in the same reactor by a radio-frequency glow discharge without the assistance of a carrier gas are used for the fabrication of a heterojunction. The gas phase discharge is investigated by a Langmuir probe and optical emission spectroscopy. The individual layers and the heterojunction are characterized for structural and optoelectronic properties. PPA has polymer-like structure and texture and is characterized by saturated-unsaturated, branched and crosslinked networks. X-ray photoelectron spectroscopy reveals a slightly reduced TiOx surface, which exhibits near band edge luminescence. The free radicals trapped in PPA readily react with oxygen when exposed to atmosphere. The heterojunction shows reverse rectifying characteristics under dark and ultraviolet (UV) irradiation. The energy levels of TiOx and PPA might exhibit reverse band bending and electrons and holes are accumulated on both sides of the heterojunction. The charge accumulation phenomena at the interface may play a key role in the device performance of a hybrid heterojunction. The current-voltage characteristic of the heterojunction is sensitive to UV light, so the structure may be used for photo-sensing applications.

  5. Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications

    SciTech Connect

    Aubert, T.; Assouar, M. B.; Legrani, O.; Elmazria, O.; Tiusan, C.; Robert, S.

    2011-03-15

    Piezoelectric aluminum nitride films were deposited onto 3 in. [0001] sapphire substrates by reactive magnetron sputtering to explore the possibility of making highly (002)-textured AlN films to be used in surface acoustic wave (SAW) devices for high temperature applications. The synthesized films, typically 1 {mu}m thick, exhibited a columnar microstructure and a high c-axis texture. The relationship between the microstructures and process conditions was examined by x-ray diffraction (XRD), transmission electron microscopy, and atomic force microscopy analyses. The authors found that highly (002)-textured AlN films with a full width at half maximum of the rocking curve of less than 0.3 deg. can be achieved under high nitrogen concentration and moderate growth temperature, i.e., 250 deg. C. The phi-scan XRD reveals the high in-plane texture of deposited AlN films. The SAW devices, based on the optimized AlN films on sapphire substrate, were characterized before and after an air annealing process at 800 deg. C for 90 min. The frequency response, recorded after the annealing process, confirmed that the thin films were still strong in a high temperature environment and that they had retained their piezoelectric properties.

  6. Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition.

    PubMed Central

    Niman, H L; Houghten, R A; Walker, L E; Reisfeld, R A; Wilson, I A; Hogle, J M; Lerner, R A

    1983-01-01

    Recent studies have shown that chemically synthesized small peptides can induce antibodies that often react with intact proteins regardless of their position in the folded molecule. These findings are difficult to explain in view of the experimental and theoretical data which suggest that in the absence of forces provided by the folded protein, small peptides in aqueous solution do not readily adopt stable structures. In order to rationalize the two findings, there has been general acceptance of a stochastic model which suggests that the multiple conformers of a peptide in solution induce sets of antibodies with a small percentage reactive with conformations shared by the folded protein. This stochastic model has become less tenable as the success rate for the generation of protein-reactive anti-peptide antibodies has grown. To test the stochastic model, we have used monoclonal anti-peptide antibodies as a way of estimating the frequency with which small peptides induce antibodies that react with folded proteins. We have made monoclonal antibodies to six chemically synthesized peptides from three proteins. The frequency with which the peptides induce protein-reactive antibodies is at least 4 orders of magnitude greater than expected from previous experimental work and vastly different from what would be predicted by calculating the possible number of peptide conformers in solution. These findings make the stochastic model less likely and lead to consideration of other models. Aside from their practical significance for generation of highly specific reagents, these findings may have important implications for the protein folding problem. Images PMID:6192445

  7. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  8. A modified relativistic magnetron with TEM output mode

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Ju, Jin-Chuan; Du, Guang-Xing

    2017-01-01

    A modified relativistic magnetron (RM) with TEM output mode is proposed. By setting the coupling slots at the bottom of the resonant cavities in the transmission region rather than in the interaction region, besides possessing the original RM's advantages of high power conversion efficiency and radiating the lowest order mode, the modified RM not only improves the compactness and miniaturization of the magnetic field system, which is beneficial to realize the RMs packed by a permanent magnet, but also improves the robustness of operating frequency to structural perturbations of the coupling slots, which contributes to optimize the RM performance by adjusting the coupling slot dimensions with a relatively stable operating frequency. In the three-dimensional particle-in-cell (PIC) simulation, the modified RM with a reduction of 27.2% in the weight of the coils, 35.8% in the occupied space of the coils, and 18.6% in the operating current, can output a relatively pure TEM mode, which has been demonstrated as the dominant output mode by simulation, corresponding to an output power of 495.0 MW and a power conversion efficiency of 56.4%, at the resonant frequency of 4.30 GHz. In addition, an output power of above 2 GW can also be obtained from the RM in simulations.

  9. Low-Frequency Electrical Properties of Zero Vvalent Iron-Sand Columns: Implications for Monitoring the Performance of Reactive Iron Wall Barriers

    NASA Astrophysics Data System (ADS)

    Choi, J.; Slater, L. D.; Wu, Y.

    2003-12-01

    The reactive iron barrier is an in-situ technology for passive remediation of chlorinated solvents and heavy metals. Redox reactions occurring on the iron surface effectively remove these contaminants from groundwater. The effectiveness of this redox reaction diminishes with time due to oxidation and precipitation occurring on the metal surface, such that the long-term performance of reactive barriers is uncertain. Non-invasive measurement methods for evaluating reactive barrier performance are thus required to support remedial strategies at reactive barrier installations. Low-frequency (0.1-1000 Hz) electrical measurements are sensitive to the electrochemistry of the metal surface-pore fluid interface. We are conducting a series of laboratory experiments to assess the sensitivity of electrical methods (induced polarization and resistivity) to changes in the physicochemical properties of the metal-fluid interface that occur over time. In this paper we present the results of baseline studies on zero-valent iron-sand columns as a function of (a) reactive iron concentration (b) saturating fluid chemistry, and (c) degree of surface oxidation. The sensitivity of low-frequency electrical parameters to total zero-valent iron (Fe0) surface area was investigated by synthesizing Fe-Ottawa sand samples with varying Fe0 concentration from 0-10 percent. The dependence on ionic strength and electrolyte activity was investigated by making measurements on samples saturated with 0.001-1.0 for NaNO3, NaCl and CaCl2 solutions. The effect of pH was evaluated at constant electrolyte activity. As a first step towards evaluating the sensitivity of electrical measurements to reduction in reactive iron performance, measurements were made over a three month period of ageing and correlated with geochemical indicators (pH, Eh, electrical conductivity, iron concentrations) of Fe surface oxidation and precipitation. We find that induced polarization (IP) parameters are highly sensitive to Fe0

  10. Plasma"anti-assistance" and"self-assistance" to high power impulse magnetron sputtering

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-30

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contra-productive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  11. In situ stress evolution during magnetron sputtering of transition metal nitride thin films

    SciTech Connect

    Abadias, G.; Guerin, Ph.

    2008-09-15

    Stress evolution during reactive magnetron sputtering of TiN, ZrN, and TiZrN layers was studied using real-time wafer curvature measurements. The presence of stress gradients is revealed, as the result of two kinetically competing stress generation mechanisms: atomic peening effect, inducing compressive stress, and void formation, leading to a tensile stress regime predominant at higher film thickness. No stress relaxation is detected during growth interrupt in both regimes. A change from compressive to tensile stress is evidenced with increasing film thickness, Ti content, sputtering pressure, and decreasing bias voltage.

  12. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  13. Thin-film TiPbO3 varistors obtained by two-source magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Lewandowski, M.

    2016-02-01

    The paper presents the method of obtaining thin films of TiPbO3 by two-source magnetron sputtering DC-M. The films were obtained in a reactive process of sputtering metallic targets of titanium (Ti) and lead (Pb). The research involved the impact of the time of sputtering of the respective targets on voltage-dependent resistance of the obtained films for different power conditions, pressures of process gases and the powers provided on the targets. The obtained nonlinearity coefficients and the current-voltage I(U) characteristics were within the following range.

  14. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Du, Guang-Xing

    2016-11-01

    A novel relativistic magnetron (RM) with a circularly polarized TE11 coaxial waveguide mode and its corresponding mode excitation are investigated in this paper. By operating in the 4π/5 mode in the ten-cavity RM and compactly designing the RM structure with the all cavity-magnetron axial extraction technique, the RM can directly output a circularly polarized TE11 coaxial waveguide mode in a reversible direction of rotation without any mode converters. In addition, the analysis of mode excitation can be generalized to a 2N-cavity RM, where 2N  >  4 is the number of cavities. Results of the 3D particle-in-cell (PIC) simulation show that a high power microwave (HPM) with an operating frequency of 4.15 GHz and an output power of 700 MW is obtained from the RM, corresponding to the power conversion efficiency of 50.0%.

  15. Particle-In-Cell (PIC) simulation of long-anode magnetron

    NASA Astrophysics Data System (ADS)

    Verma, Rajendra Kumar; Maurya, Shivendra; Singh, Vindhyavasini Prasad

    2016-03-01

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was `Virtual Prototyped' using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were - hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.

  16. Development of a 14-vane, double-strapped, 5.8-GHz magnetron oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jin Joo; Lee, Han Seoul; Jang, Kwang Ho; Sim, Sung Hun; Choi, Heung Sik

    2016-08-01

    Experiments on a 14-vane, double-strapped magnetron oscillator were performed to demonstrate high-power, high-efficiency coherent radiation at 5.8 GHz. The double-strapped magnetron was designed by using the Buneman-Hatree resonance condition, electromagnetic simulations and non-linear three-dimensional particle-in-cell (PIC) simulations. Experiments showed an oscillation output power of 5.3 kW at 5.79 GHz, corresponding to a DC-RF conversion efficiency of 57%. The cathode voltage was 9.2 kV, the collected anode current was 1 A, and the external magnetic field is 7.5 kG. Experimental results for the RF power, oscillation frequency, and efficiency were in good agreement with the corresponding values from non-linear three-dimensional PIC simulations.

  17. Particle-In-Cell (PIC) simulation of long-anode magnetron

    SciTech Connect

    Verma, Rajendra Kumar Maurya, Shivendra; Singh, Vindhyavasini Prasad

    2016-03-09

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was ‘Virtual Prototyped’ using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were – hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.

  18. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  19. Relativistic Magnetron Priming Experiments and Theory

    DTIC Science & Technology

    2010-03-29

    THEORY Grant/Contract Number: FA9550-05-1-0087 Personnel Supported Faculty: R.M. Gilgenbach and Y.Y. Lau Graduate Students and Postdocs: Brad ... Hoff , PhD, (Now Employed at AFRL, Kirtland AFB, NM) Wilkin Tang, PhD, (Now Employed at AFRL, Kirtland AFB. NM) Will White, PhD, (Now Employed at...Relativistic Magnetron B.W. Hoff , R.M. Gilgenbach, N.M. Jordan, Y.Y. Lau, E. Cruz, D. French, M.R. Gomez, J.C. Zier., T.A. Spencera), D. Priceb) Plasma

  20. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  1. The influence of N2 flow rate on Ar and Ti Emission in high-pressure magnetron sputtering system plasma

    NASA Astrophysics Data System (ADS)

    How, Soo Ren; Nayan, Nafarizal; Lias, Jais

    2017-03-01

    For ionized physical vapor deposition (known as IPVD) technique, investigation on the ionization mechanism of titanium atoms is very important during the deposition of titanium nitride (TiN) thin film using reactive magnetron sputtering plasma. The introduction of nitrogen gas into the chamber discharge leads to modifications of plasma parameters and ionization mechanism of transition species. In this work, an investigation on the influence of nitrogen flow rate on spectrum properties of argon and titanium during the deposition process have been carried out. The experimental configuration consists of OES and structure of magnetron sputtering device with the turbo molecular pump. A high-pressure magnetron sputtering plasma was used as plasma discharge chamber with various flow rate of nitrogen gas. Optical emission spectroscopy (OES) measurements were employed as plasma diagnostics tool in magnetron sputtering plasma operated at relatively high pressure. OES is a non-invasive plasma diagnostics method and that can detect the atomic and ionic emission during plasma discharge. The flow rate of the Ar and N2 gas are controlled by mass flow controller. The changes of relative emission for both neutral and ionic of argon as well as titanium were observed using optical spectrometer when the nitrogen gas is introduced into the discharged chamber. We found that the titanium emission decreased very rapidly with the flow rate of nitrogen. In addition, the argon emission slightly decreased with the flow rate of nitrogen.

  2. Optical Properties of Magnetron sputtered Nickel Thin Films

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Fidele; Geerts, Wilhelmus J.; Cui, Yubo

    2015-03-01

    The study of optical properties of Nickel (Ni) is important, given the pivotal role it plays in the semiconductor and nano-electronics technology. Ni films were made by DC and RF magnetron sputtering in an ATC Orion sputtering system of AJA on various substrates. The optical properties were studied ex situ by variable angle spectroscopic (220-1000 nm) ellipsometry at room temperature. The data were modeled and analyzed using the Woollam CompleteEase Software fitting ellipsometric and transmission data. Films sputtered at low pressure have optical properties similar to that of Palik. Films sputtered at higher pressure however have a lower refraction index and extinction coefficient. It is expected from our results that the density of the sputtered films can be determined from the ellipsometric quantities. Our experiments also revealed that Ni is susceptible to a slow oxidation changing its optical properties over the course of several weeks. The optical properties of the native oxide differ from those of reactive sputtered NiO similar as found by. Furthermore the oxidation process of our samples is characterized by at least two different time constants.

  3. Semiconducting ZnSn{sub x}Ge{sub 1−x}N{sub 2} alloys prepared by reactive radio-frequency sputtering

    SciTech Connect

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-07-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSn{sub x}Ge{sub 1−x}N{sub 2} thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having <10% atomic composition (x = 0.025) of tin. These low-Sn alloys followed the structural and optoelectronic trends of the alloy series. Samples exhibited semiconducting properties, including optical band gaps and increasing in resistivities with temperature. Resistivity vs. temperature measurements indicated that low-Sn alloys were non-degenerately doped, whereas alloys with higher Sn content were degenerately doped. These films show potential for ZnSn{sub x}Ge{sub 1−x}N{sub 2} as tunable semiconductor absorbers for possible use in photovoltaics, light-emitting diodes, or optical sensors.

  4. Ionized magnetron sputtering of aluminum(,2)oxygen(,3)

    NASA Astrophysics Data System (ADS)

    Gonzalez, Patrick Fernando

    2000-10-01

    This dissertation shows a detailed study of the conditions necessary for sputtering alumina using a novel variant of ionized magnetron sputtering (IMS) first demonstrated by Yamashita et. al. The study presented herein leverages concurrent research at our laboratory on high density plasmas, plasma characterization and charged particle beams research to demonstrate a new source capable of sputtering hydrated alumina films at high rates. High quality ceramics such as Al2O3 find uses in a variety of applications, and in particular, for mass storage applications. Consequently, there exists an ever-growing need to provide and improve the capability of growing thick insulating films. Ideally, the insulating film should be stoichiometric and able to be grown at rates high enough to be easily manufacturable. Alumina is a particularly attractive due to its high density, Na barrier properties, and stability and radiation resistance. However, high quality films are often difficult to achieve with conventional RF plasma due to extremely slow deposition rates and difficulties associated with system cooling. The preferred method is to reactively sputter Al from a solid target in an O2 ambient. Nevertheless, this process is inherently unstable and leads to arcing and uneven target wear when magnetrons are used. In this study, we build the sputtering source, evaluate, and maximize the deposition characteristics of alumina films sputtered from a solid target in an Ar/O2 ambient. Semi-crystalline (kappa + theta) alumina has been reported using a similar technique at temperatures as low 370 C. The difference in the system used herein is that RF power is used for both, the inductive and capacitive components. Additionally, we use a solid target made of sintered alumina throughout the experiment. A model is developed using regression analysis and compared to results obtained. Because plasma parameters can interact with each other, we explore ICP/CCP power interactions and gas influence

  5. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  6. Phased Array Technology with Phase and Amplitude Controlled Magnetron for Microwave Power Transmission

    NASA Astrophysics Data System (ADS)

    Shinohara, N.; Matsumoto, H.

    2004-12-01

    We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.

  7. Magnetron sputtering for the production of EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank

    2015-03-01

    Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.

  8. Non-uniform plasma distribution in dc magnetron sputtering: origin, shape and structuring of spokes

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Loquai, Simon; Ewa Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2015-12-01

    Non-homogeneous plasma distribution in the form of organized patterns called spokes was first observed in high power impulse magnetron sputtering (HiPIMS). In the present work we investigate the spoke phenomenon in non-pulsed low-current dc magnetron sputtering (DCMS). Using a high-speed camera the spokes were systematically studied with respect to discharge current, pressure, target material and magnetic field strength. Increase in the discharge current and/or gas pressure resulted in the sequential formation of two, then three and more spokes. The observed patterns were reproducible for the same discharge conditions. Spokes at low currents and pressures formed an elongated arrowhead-like shape and were commonly arranged in symmetrical patterns. Similar spoke patterns were observed for different target materials. When using a magnetron with a weaker magnetic field, spokes had an indistinct and diffuse shape, whereas in stronger magnetic fields spokes exhibited an arrowhead-like shape. The properties of spokes are discussed in relation to the azimuthally dependent electron-argon interactions. It is suggested that a single spoke is formed due to local gas breakdown and subsequent electron drift in the azimuthal direction. The spoke is self-sustained by electrons drifting in complex electric and magnetic fields that cause and govern azimuthally dependent processes: ionization, sputtering, and secondary electron emission. In this view plasma evolves from a single spoke into different patterns when discharge conditions are changed either by the discharge current, pressure or magnetic field strength. The azimuthal length of the spoke is associated with the electron-Ar collision frequency which increases with pressure and results in shortening of spoke until an additional spoke forms at a particular threshold pressure. It is proposed that the formation of additional spokes at higher pressures and discharge currents is, in part, related to the increased transport of

  9. Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics

    SciTech Connect

    Anders, Andre

    2009-11-22

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase of the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes to due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes of the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction of the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits considered.

  10. Deposition rates of high power impulse magnetron sputtering: Physics and economics

    SciTech Connect

    Anders, Andre

    2010-07-15

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered.

  11. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    SciTech Connect

    Hunter, C. N.; Check, M. H.; Muratore, C.; Voevodin, A. A.

    2010-05-15

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  12. Increased frequency of {gamma}{delta} T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis: Reactivity, cytotoxicity, and T cell receptor V gene rearrangements

    SciTech Connect

    Stinissen, P.; Vandevyver, C.; Medaer, R.

    1995-05-01

    Infiltrating {gamma}{delta} T cells are potentially involved in the central nervous system demyelination in multiple sclerosis (MS). To further study this hypothesis, we analyzed the frequency and functional properties of {gamma}{delta} T cells in peripheral blood (PB) and paired cerebrospinal fluid (CSF) of patients with MS and control subjects, including patients with other neurologic diseases (OND) and healthy individuals. The frequency analysis was performed under limiting dilution condition using rIL-2 and PHA. After PHA stimulation, a significantly increased frequency of {gamma}{delta} T cells was observed in PB and in CSF of MS patients as compared with PB and CSF of patients with OND. The frequency was represented equally in OND patients and normal individuals. Similarly, the IL-2-responsive {gamma}{delta} T cells occurred at a higher frequency in PB of MS than of control subjects. Forty-three percent of the {gamma}{delta} T cell clones isolates from PB and CSF of MS patients responded to heat shock protein (HSP70) but not HSP65, whereas only 2 of 30 control {gamma}{delta} T cell clones reacted to the HSP. The majority of the {gamma}{delta} T cell clones were able to induce non-MHC-restricted cytolysis of Daudi cells. All clones displayed a substantial reactivity to bacterial superantigens staphylococcal enterotoxin B and toxic shock syndrome toxin-1, irrespective of their {gamma}{delta} V gene usage. Furthermore, the {gamma}{delta} T cell clones expressed predominantly TCRDV2 and GV2 genes, whereas the clones derived from CSF of MS patients expressed either DV1 or DV2 genes. The obtained {gamma}{delta} clones, in general, represented rather heterogeneous clonal origins, even though a predominant clonal origin was found in a set of 10 {gamma}{delta} clones derived from one patient with MS. The present study provides new evidence supporting a possible role of {gamma}{delta} T cells in the secondary inflammatory processes in MS. 39 refs., 5 figs., 4 tabs.

  13. High peak power gyroklystron with an inverted magnetron injection gun

    SciTech Connect

    Read, Michael E.; Lawson, Wesley; Miram, George; Marsden, David; Borchard, Philipp

    2005-12-01

    Calabazas Creek Research Inc. (CCR) has investigated the feasibility of a 30 GHz gyroklystron amplifier for driving advanced accelerators. Gyroklystrons have been shown to be efficient sources of high power radiation at frequencies above X-Band and are, therefore, well suited for driving high frequency accelerators. CCR's gyroklystron design includes a novel inverted magnetron injection gun (MIG) that allows support and cooling of the coaxial inner conductor of the circuit. This novel gun provides a very high quality electron beam, making it possible to achieve a cavity design with an efficiency of 54%. During Phase I, it was determined that the original frequency of 17 GHz was no longer well matched to the potential market. A survey of accelerator needs identified the Compact Linear Collider (CLIC) as requiring 30 GHz sources for testing of accelerator structures. Developers at CLIC are seeking approximately 25 MW per tube. This will result in the same power density as in the original 80 MW, 17 GHz device and will thus have essentially the same risk. CLIC will require initially 3-4 tubes and eventually 12-16 tubes. This quantity represents $5M-$10M in sales. In addition, gyroklystrons are of interest for radar systems and electron paramagnetic resonance (EPR) instruments. Following discussions with the Department of Energy, it was determined that changing the program goal to the CLIC requirement was in the best interest of CCR and the funding agency. The Phase I program resulted in a successful gyroklystron design with a calculated efficiency of 54% with an output power of 33 MW. Design calculations for all critical components are complete, and no significant technical issues remain.

  14. Harmonic Generation in the Multifrequency Recirculating Planar Magnetron

    NASA Astrophysics Data System (ADS)

    Exelby, S. C.; Greening, G. B.; Jordan, N. M.; Simon, D.; Zhang, P.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    The Multifrequency Recirculating Planar Magnetron (MFRPM) is a high power microwave source adapted from the Recirculating Planar Magnetrona, currently under investigation at the University of Michigan. The device features 2 dissimilar periodic structures allowing for the generation of (L-band) 1- and (S-band) 2-GHz high power microwave pulses simultaneously. These distinct frequencies offer the potential for variable coupling for defense applications, such as counter-IED. Experiments have been performed on the RPM, driven by the Michigan Electron Long Beam Accelerator with a Ceramic insulator (MELBA-C) using a -300kV, 1-10 kA, 0.3-1.0 us pulse applied to the cathode. Using the Mode Control Cathodeb and a coax-to-waveguide extraction system, the MFRPM has demonstrated simultaneous production of 20 MW at 1 GHz and 10 MW at 2 GHz. The L-band oscillator also produced both 2- and 4-GHz oscillations when the S-band oscillator turns on. These harmonics persist after the S-band oscillator turns off. Ongoing work will attempt to isolate these harmonics to measure the power accurately and confirm these observations. Supported by the Office of Naval Research grant no. N00014-13-1-0566 and L-3 Communications.

  15. Magnetron sputtered WS2; optical and structural analysis

    NASA Astrophysics Data System (ADS)

    Koçak, Y.; Akaltun, Y.; Gür, Emre

    2016-04-01

    Remarkable properties of graphene have renewed interest in inorganic, Transition Metal Dichalgogenits (TMDC) due to unique electronic and optical properties. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as solar cells, transistors, photodetectors and electroluminescent devices in which the graphene is not actively used. So, fabrication and analysis of these films are important for new generation devices. In this work, polycrystalline WS2 films were grown by radio frequency magnetron sputtering (RFMS) on different substrates like n-Si(100), n-Si(111), p-Si(100), glass and fused silica. Structural, morphological, optical and electrical properties were investigated as a function of film thickness and RF power. From XRD analysis, signals from planes of (002), (100), (101), (110), (008) belong to the hegzagonal WS2 were obtained. Raman spectra of the WS2 show that there are two dominant peaks at ~351 cm-1 (in-plane phonon mode) and ~417 cm-1 (out-of-plane phonon mode). XPS analysis of the films has shown that binding energy and the intensity of tungsten 4f shells shifts by depending on the depth of the films which might be due to the wellknown preferential sputtering.

  16. Nanostructure evolution of magnetron sputtered hydrogenated silicon thin films

    NASA Astrophysics Data System (ADS)

    Adhikari, Dipendra; Junda, Maxwell M.; Marsillac, Sylvain X.; Collins, Robert W.; Podraza, Nikolas J.

    2017-08-01

    Hydrogenated silicon (Si:H) thin films have been prepared by radio frequency (RF) magnetron sputtering. The effect of hydrogen gas concentration during sputtering on the resultant film structural and optical properties has been investigated by real time spectroscopic ellipsometry (RTSE) and grazing incidence x-ray diffraction (GIXRD). The analysis of in-situ RTSE data collected during sputter deposition tracks the evolution of surface roughness and film bulk layer thickness with time. Growth evolution diagrams depicting amorphous, nanocrystalline, and mixed-phase regions for low and high deposition rate Si:H are constructed and the effects of process parameter (hydrogen gas concentration, total pressure, and RF power) variations on the deposition rate have been qualified. Virtual interface analysis of RTSE data provides nanocrystalline volume fraction depth profiles in the mixed-phase growth regime. GIXRD measurements show the presence of (111) and (220) oriented crystallites. Vibrational mode absorption features from Si-Hn bonding configurations at 590, 640, 2000, and 2090 cm-1 are obtained by ex-situ infrared spectroscopic ellipsometry. Hydrogen incorporation decreases as films transition from amorphous to nanocrystalline phases with increasing hydrogen gas concentration during sputtering.

  17. Direct observation of spoke evolution in magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yang, Yuchen

    2017-08-01

    Ionization zones, also known as spokes, are plasma instabilities manifested as locations of intensified excitation and ionization over a sputtering magnetron's racetrack. Using a linear magnetron and a streak camera, we were able to observe and quantify spoke dynamics. The technique allows us to image the onset and changes for both direct current magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). Spokes in dcMS exhibit substructures. Spokes in HiPIMS are not stable as they shift along the racetrack; rather, they tend to grow or diminish, and they may split and merge. Their evolution can be interpreted in the context of localized electric fields and associated electron heating.

  18. Performance and test results of a regulated magnetron pulser

    SciTech Connect

    Rose, C.R.; Warren, D.S.

    1998-12-31

    This paper describes the test results and performance of a 5.0-kV, 750-mA, regulated current pulser used to drive an Hitachi model 2M130 2,425-MHz magnetron. The magnetron is used to modulate the plasma in a particle accelerator injector. In this application, precise and stable rf power is crucial to extract a stable and accurate particle beam. A 10-kV high-voltage triode vacuum tube with active feedback is used to control the magnetron current and output rf power. The pulse width may be varied from as little as ten microseconds to continuous duty by varying the width of a supplied gate pulse. The output current level can be programmed between 10 and 750 mA. Current regulation and accuracy are better than 1%. The paper discusses the overall performance of the pulser and magnetron including anode current and rf power waveforms, linearity compliance, and vacuum tube performance.

  19. Ordering of Fine Particles in a Planar Magnetron Plasma

    SciTech Connect

    Hayashi, Y.; Takahashi, K.; Totsuji, H.; Ishihara, O.; Sato, N.; Watanabe, Y.; Adachi, S.

    2008-09-07

    Fine particles injected in a planar magnetron were pushed upward by diffusible plasma, leading to being suspended by the force balance with the gravity and forming three-dimensional structures on the two-dimensional structure formed by particle strings.

  20. On the evolution of film roughness during magnetron sputtering deposition

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; De Hosson, J. Th. M.

    2010-11-15

    The effect of long-range screening on the surface morphology of thin films grown with pulsed-dc (p-dc) magnetron sputtering is studied. The surface evolution is described by a stochastic diffusion equation that includes the nonlocal shadowing effects in three spatial dimensions. The diffusional relaxation and the angular distribution of the incident particle flux strongly influence the transition to the shadowing growth regime. In the magnetron sputtering deposition the shadowing effect is essential because of the configuration of the magnetron system (finite size of sputtered targets, rotating sample holder, etc.). A realistic angular distribution of depositing particles is constructed by taking into account the cylindrical magnetron geometry. Simulation results are compared with the experimental data of surface roughness evolution during 100 and 350 kHz p-dc deposition, respectively.

  1. Satellite power system (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Taks performed to extend the data base and to define a technology development program for the magnetron directional amplifier for the SPS are reviewed. These include: (1) demonstrating the tracking of phase and amplitude of the microwave output to phase and amplitude references; (2) expanding the range of power over which the directional amplifier will operate; (3)recognizing the importance of amplitude control in overall system design and in simplifying power conditioning; (4) developing a preliminary design for the overall architecture of the power module; (5) demonstrating magnetron starting using the amplitude control system; (6) mathematically modelling and performing a computerized study of the pyrolytic graphite radiating fin; (7) defining the mass of the magnetic circuit for the SPS tube; (8) noise measurement; (9) achieving harmonic suppression by notch reflection filters; (10) estimating the mass of the transmitting antenna; (11) developing a magnetron package with power generation, phase control, and power condition functions; and (12) projecting magnetron package characteristics.

  2. Effect of space charge on the negative oxygen flux during reactive sputtering

    NASA Astrophysics Data System (ADS)

    Moens, F.; Kalvas, T.; Van Steenberge, S.; Depla, D.

    2017-03-01

    Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

  3. 3D Magnetron simulation with CST STUDIO SUITE

    SciTech Connect

    Balk, Monika C.

    2011-07-01

    The modeling of magnetrons compared to other tubes is more difficult since it requires 3D modeling rather than a 2D investigation. This is not only due to the geometry which can include complicated details to be modeled in 3D but also due to the interaction process itself. The electric field, magnetic field and particle movement span a 3D space. In this paper 3D simulations of a strapped magnetron with CSTSTUDIO SUITE{sup TM} are presented. (author)

  4. Characteristics of Cu-doped amorphous NiO thin films formed by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sato, Kazuya; Kim, Sangcheol; Komuro, Shuji; Zhao, Xinwei

    2016-06-01

    Transparent conducting Cu-doped NiO thin films were deposited on quartz glass substrates by radio frequency magnetron spattering. The fabricated thin films were all in amorphous phase. A relatively high transmittance of 73% was achieved. The density ratio of Ni3+/(Ni2+ + Ni3+) ions in the films decreased with increasing O2 gas pressure in the fabrication chamber, which caused a decrease in the carrier concentration of the films. The increasing pressure also led to the increase in Hall mobility. By controlling the chamber pressure and substrate temperature, p-type transparent conducting NiO films with reasonable electrical properties were obtained.

  5. Friction characteristics of r. f. magnetron sputtered C and C:N thin films.

    NASA Astrophysics Data System (ADS)

    Sobota, Jaroslav

    Carbon and C:N layers were prepared using the commercially available Leybold-Heraeus Z 550 radio frequency magnetron sputtering plant. A graphite target of high purity (99.999 % C) was used. The tribological testing was performed with a reciprocating ball-on-disc tribometer. The sliding distance on the coating was defined as the time at which a scoring occurs, and the friction coefficient exhibits an abrupt increase. From this, and from the known amplitude of the reciprocating ball, the sliding distance was evaluated.

  6. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    SciTech Connect

    Yang, Yuchen; Zhou, Xue; Liu, Jason X.; Anders, André

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  7. Numerical simulation of the magnetron operation with resonance load

    NASA Astrophysics Data System (ADS)

    Sayapin, A.; Krasik, Y. E.

    2010-04-01

    The results of numerical simulations and a comparison with experimental data obtained in recent experiments with the relativistic S-band magnetron by Sayapin et al. [Appl. Phys. Lett. 95, 074101 (2009)], having a resonance load and without special measures being taken to suppress the microwaves reflected from the load, are presented. The numerical simulations were based on the model which considers a magnetron as a traveling wave resonator coupled with external resonator. In these simulations, experimentally determined parameters of the magnetron and resonator and their coupling coefficient were used. It was found that, under certain conditions, the electromagnetic wave reflected from the resonator leads to an increase in the efficiency of the magnetron operation. Taking into account microwave energy compression in the resonator, one obtains a microwave power comparable with the power of the electron beam in the magnetron. Also, it was shown that the magnetron traveling wave acquires a phase shift due to its interaction with the amplified wave of the resonator. This phase shift can be comparable with the phase of the electron spoke with respect to the maximum of the decelerating phase of the microwave electric field. The latter could be a reason for the quenching of the microwave generation and the fast decay of the microwave power in the resonator found in experiments.

  8. Frequency, Private Specificity, and Cross-Reactivity of Preexisting Hepatitis C Virus (HCV)-Specific CD8+ T Cells in HCV-Seronegative Individuals: Implications for Vaccine Responses.

    PubMed

    Zhang, Shihong; Bakshi, Rakesh K; Suneetha, Pothakamuri Venkata; Fytili, Paraskevi; Antunes, Dinler A; Vieira, Gustavo F; Jacobs, Roland; Klade, Christoph S; Manns, Michael P; Kraft, Anke R M; Wedemeyer, Heiner; Schlaphoff, Verena; Cornberg, Markus

    2015-08-01

    T cell responses play a critical role in controlling or clearing viruses. Therefore, strategies to prevent or treat infections include boosting T cell responses. T cells specific for various pathogens have been reported in unexposed individuals and an influence of such cells on the response toward vaccines is conceivable. However, little is known about their frequency, repertoire, and impact on vaccination. We performed a detailed characterization of CD8(+) T cells specific to a hepatitis C virus (HCV) epitope (NS3-1073) in 121 HCV-seronegative individuals. We show that in vitro HCV NS3-1073-specific CD8(+) T cell responses were rather abundantly detectable in one-third of HCV-seronegative individuals irrespective of risk factors for HCV exposure. Ex vivo, these NS3-1073-specific CD8(+) T cells were found to be both naive and memory cells. Importantly, recognition of various peptides derived from unrelated viruses by NS3-1073-specific CD8(+) T cells showed a considerable degree of T cell cross-reactivity, suggesting that they might in part originate from previous heterologous infections. Finally, we further provide evidence that preexisting NS3-1073-specific CD8(+) T cells can impact the T cell response toward peptide vaccination. Healthy, vaccinated individuals who showed an in vitro response toward NS3-1073 already before vaccination displayed a more vigorous and earlier response toward the vaccine. Preventive and therapeutic vaccines are being developed for many viral infections and often aim on inducing T cell responses. Despite effective antiviral drugs against HCV, there is still a need for a preventive vaccine. However, the responses to vaccines can be highly variable among different individuals. Preexisting T cells in unexposed individuals could be one reason that helps to explain the variable T cell responses to vaccines. Based on our findings, we suggest that HCV CD8(+) T cells are abundant in HCV-seronegative individuals but that their repertoire is

  9. Frequency, Private Specificity, and Cross-Reactivity of Preexisting Hepatitis C Virus (HCV)-Specific CD8+ T Cells in HCV-Seronegative Individuals: Implications for Vaccine Responses

    PubMed Central

    Zhang, Shihong; Bakshi, Rakesh K.; Suneetha, Pothakamuri Venkata; Fytili, Paraskevi; Antunes, Dinler A.; Vieira, Gustavo F.; Jacobs, Roland; Klade, Christoph S.; Manns, Michael P.; Kraft, Anke R. M.; Wedemeyer, Heiner; Schlaphoff, Verena

    2015-01-01

    ABSTRACT T cell responses play a critical role in controlling or clearing viruses. Therefore, strategies to prevent or treat infections include boosting T cell responses. T cells specific for various pathogens have been reported in unexposed individuals and an influence of such cells on the response toward vaccines is conceivable. However, little is known about their frequency, repertoire, and impact on vaccination. We performed a detailed characterization of CD8+ T cells specific to a hepatitis C virus (HCV) epitope (NS3-1073) in 121 HCV-seronegative individuals. We show that in vitro HCV NS3-1073-specific CD8+ T cell responses were rather abundantly detectable in one-third of HCV-seronegative individuals irrespective of risk factors for HCV exposure. Ex vivo, these NS3-1073-specific CD8+ T cells were found to be both naive and memory cells. Importantly, recognition of various peptides derived from unrelated viruses by NS3-1073-specific CD8+ T cells showed a considerable degree of T cell cross-reactivity, suggesting that they might in part originate from previous heterologous infections. Finally, we further provide evidence that preexisting NS3-1073-specific CD8+ T cells can impact the T cell response toward peptide vaccination. Healthy, vaccinated individuals who showed an in vitro response toward NS3-1073 already before vaccination displayed a more vigorous and earlier response toward the vaccine. IMPORTANCE Preventive and therapeutic vaccines are being developed for many viral infections and often aim on inducing T cell responses. Despite effective antiviral drugs against HCV, there is still a need for a preventive vaccine. However, the responses to vaccines can be highly variable among different individuals. Preexisting T cells in unexposed individuals could be one reason that helps to explain the variable T cell responses to vaccines. Based on our findings, we suggest that HCV CD8+ T cells are abundant in HCV-seronegative individuals but that their repertoire

  10. Model for designing planar magnetron cathodes

    SciTech Connect

    Garcia, M.

    1997-05-30

    Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density to enhance ion bombardment and sputtering. Typical parameters are: helium at 1 to 300 milli-torr, 200 to 2000 gauss at the cathode, 200 to 800 volts, and plasma density decreasing by up to ten times within 2 to 10 cm from the cathode. A 2D, quasineutral, fluid model yields formulas for the plasma density: n(x,y), current densities: j(x,y), j{sub e}(x,y), j{sub +}(x,y), the electric field: E{sub y}(y), and the voltage between the cathode surface and a distant plasma. An ion sheath develops between the cathode and the quasineutral flow. The thickness of this sheath depends on processes in the quasineutral flow. Experiments shows that T{sub e} (3 {yields} 8 eV) adjusts to ensure that {alpha}{sub 0}{tau} {approx} 2.5 in helium, for ionization rate {alpha}{sub 0} (10{sup 4} {yields} 10{sup 5} s{sup -1}), and electron transit time to the unmagnetized plasma {tau} (10 {yields} 100 {micro}s). Helium glow discharge cathode fall {alpha}{sub 0}{tau} is about 2.5, though this occurs at much higher voltage.

  11. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  12. Composition-dependent structure of polycrystalline magnetron-sputtered V–Al–C–N hard coatings studied by XRD, XPS, XANES and EXAFS

    PubMed Central

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-01-01

    V–Al–C–N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C–C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V–Al–C–N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings. PMID:24046506

  13. Composition-dependent structure of polycrystalline magnetron-sputtered V-Al-C-N hard coatings studied by XRD, XPS, XANES and EXAFS.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-08-01

    V-Al-C-N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C-C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V-Al-C-N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings.

  14. Continuous and nanostructured TiO2 films grown by dc sputtering magnetron.

    PubMed

    Sánchez, O; Vergara, L; Font, A Climent; de Melo, O; Sanz, R; Hernández-Vélez, M

    2012-12-01

    The growth of Anatase nanostructured films using dc reactive magnetron sputtering and post-annealing treatment is reported. TiO2 has been deposited on Porous Anodic Alumina Films used as templates which were previously grown in phosphoric acid solution and etched to modify their pore diameters. This synthesis via results in the formation of vertically aligned and spatially ordered TiO2 nanostructures replicating the underlying template. Previously, the growth optimization of TiO2 thin films deposited by dc magnetron sputtering on flat silicon substrates was done. The crystalline structure and Ti in-depth concentration profile were determined by grazing incidence X-ray diffraction and Rutherford backscattering spectrometry, respectively. The surface morphology of the samples was explored by mean of a Field Emission Gun scanning electron microscope. Optical properties of the nanostructured samples were studied by using the reflectance spectra received in the UV-visible range. In these spectra different band gap values and complex light absorption features were observed.

  15. Codeposition of amorphous zinc tin oxide using high power impulse magnetron sputtering: characterisation and doping

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Mayes, E. L. H.; Murdoch, B. J.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.; Holland, A. S.; Partridge, J. G.

    2017-04-01

    Thin film zinc tin oxide (ZTO) has been energetically deposited at 100 °C using high power impulse magnetron sputtering (HiPIMS). Reactive co-deposition from Zn (HiPIMS mode) and Sn (DC magnetron sputtering mode) targets yielded a gradient in the Zn:Sn ratio across a 4-inch diameter sapphire substrate. The electrical and optical properties of the film were studied as a function of composition. As-deposited, the films were amorphous, transparent and semi-insulating. Hydrogen was introduced by post-deposition annealing (1 h, 500 °C, 100 mTorr H2) and resulted in significantly increased conductivity with no measurable structural alterations. After annealing, Hall effect measurements revealed n-type carrier concentrations of ˜1 × 1017 cm-3 and mobilities of up to 13 cm2 V-1 s-1. These characteristics are suitable for device applications and proved stable. X-ray photoelectron spectroscopy was used to explore the valence band structure and to show that downward surface band-bending resulted from OH attachment. The results suggest that HiPIMS can produce dense, high quality amorphous ZTO suitable for applications including transparent thin film transistors.

  16. Characteristics of end Hall ion source with magnetron hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Tang, Deli; Wang, Lisheng; Pu, Shihao; Cheng, Changming; Chu, Paul K.

    2007-04-01

    An end Hall ion source with magnetron hollow cathode discharge is described. The source is suitable for high current, low energy ion beam applications such as Hall current plasma accelerators. The end Hall ion source is based on an anode layer thruster with closed drift electrons that move in a closed path in the E × B field. Only a simple magnetron power supply is used in the ion source. The special configuration enables uninterrupted and expanded operation with oxygen as well as other reactive gases because of the absence of an electron source in the ion source. In our evaluation, the ion beam current was measured by a circular electrostatic probe and the energy distribution of the ion beam was measured by a retarding potential analyzer (RPA). An ion beam current density of up to 10 mA/cm2 was obtained at a mean ion energy of 100-250 eV using Ar or O2. The ion source can be operated in a stable fashion at a discharge voltage between 200 and 500 V and without additional electron triggering. The discharge power of the ion source can be easily changed by adjusting the gas flow rate and anode voltage. No water cooling is needed for power from 500 W to 2 kW. The simple and rugged ion source is suitable for industrial applications such as deposition of thin films with enhanced adhesion. The operational characteristics of the ion source are experimentally determined and discussed.

  17. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects.

    PubMed

    Defoort, Ericka N; Kim, Perry M; Winn, Louise M

    2006-04-01

    Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.

  18. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    SciTech Connect

    Panda, Padmalochan; Ramaseshan, R. Dash, S.; Krishna, Nanda Gopala

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  19. Evolution of film temperature during magnetron sputtering

    SciTech Connect

    Shaginyan, L.R.; Han, J.G.; Shaginyan, V.R.; Musil, J.

    2006-07-15

    We report on the results of measurements of the temperature T{sup F}{sub surf} which developed on the surface of films deposited by magnetron sputtering of chromium and copper targets on cooling and non-cooling silicon substrates. The T{sup F}{sub surf} and substrate temperature (T{sub s}) were simultaneously measured using high-resolution IR camera and thermocouple, respectively. We revealed that the T{sup F}{sub surf} steeply grows, keeps constant when it achieves saturation level, and rapidly drops to the value of the T{sub s} after stopping the deposition. At the same time, the T{sub s} either does not change for the case of cooling substrate or increases to a certain level for noncooling substrate. However, in both cases the T{sub s} remains several times lower than the T{sup F}{sub surf}. The T{sup F}{sub surf} is proportional to the flux of energy delivered to the growth surface by sputtered atoms and other fast particles, weakly depends on the depositing metal and can achieve several hundreds of deg. C. This phenomenon is explained by a model assuming formation of a hot thin surface layer (HTSL) on the top of the growing film, which exists only during film deposition and exhibits extremely low thermal conductivity. Due to this unique property the temperature T{sup F}{sub surf} of HTSL is several times higher than the T{sub s}. Variations in the T{sup F}{sub surf} fairly correlate with structure changes of Cr films along thickness investigated in detail previously.

  20. Optical properties study of silicon oxynitride films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Gu, Peifu; Ye, Hui; Shen, Weidong

    2004-12-01

    Graded refractive index Silicon Oxy-nitride thin films were deposited by RF magnetron reactive sputtering at different N2/O2 flow ratio. The effects of gas flow ratio on the refractive index, extinction coefficient and composition were studied using UV-VIS spectrophotometer, XPS and FTIR characterization methods. A simple and accurate method is presented for determination of the optical constants and physical thickness of thin films. Which was consisted in fitting the experimental transmission curve with the help of the physical model. The relationship between composition and optical gap and dispersion energy was analyzed using Wemple DiDomenico single-oscillator model. As a result, the samples" refractive index can be controlled from 1.92 to 1.46 by adjusting the gas flow ratio, and the optical gap lies between 5eV~6.5eV.

  1. Light-induced changes in photocarrier transport in magnetron sputtered a-Si:H

    NASA Astrophysics Data System (ADS)

    Doyle, J. R.; Maley, N.; Abelson, J. R.

    1991-08-01

    The effect of light soaking on the steady-state reverse bias collection efficiency has been studied for hydrogenated amorphous silicon films produced by reactive magnetron sputtering. Films with optical gaps of 1.63 and 1.74 eV both showed considerable degradation in the collection efficiency, correlating with increases in sub-gap absorption and decreases in the spectral response quantum efficiency. The collection efficiency data have been fitted with the two-field Hecht expression, and effective mobility-life-time products have been extracted. These results indicate that straightforward measurements on Schottky barriers can be utilized as sensitive monitors of light induced degradation in a-Si:H

  2. Morphology of epitaxial TiN(001) grown by magnetron sputtering

    SciTech Connect

    Karr, B.W.; Petrov, I.; Cahill, D.G.; Greene, J.E.

    1997-03-01

    The evolution of surface morphology and microstructure during growth of single crystal TiN(001) is characterized by {ital in situ} scanning tunneling microscopy and postdeposition plan-view transmission electron microscopy. The TiN layers are grown on MgO at 650{lt}T{lt}750{degree}C using reactive magnetron sputter deposition in pure N{sub 2}. The surface morphology is dominated by growth mounds with an aspect ratio of {approx_equal}0.006; both the roughness amplitude and average separation between mounds approximately follow a power law dependence on film thickness, t{sup {alpha}}, with {alpha}=0.25{plus_minus}0.07. Island edges show dendritic geometries characteristic of limited step-edge mobility at the growth temperature. {copyright} {ital 1997 American Institute of Physics.}

  3. Direct current magnetron sputtering deposition of InN thin films

    NASA Astrophysics Data System (ADS)

    Cai, Xing-Min; Hao, Yan-Qing; Zhang, Dong-Ping; Fan, Ping

    2009-10-01

    In this paper, InN thin films were deposited on Si (1 0 0) and K9 glass by reactive direct current magnetron sputtering. The target was In metal with the purity of 99.999% and the gases were Ar (99.999%) and N 2 (99.999%). The properties of InN thin films were studied. Scanning electron microscopy (SEM) shows that the film surface is very rough and energy dispersive X-ray spectroscopy (EDX) shows that the film contains In, N and very little O. X-ray diffraction (XRD) and Raman scattering reveal that the film mainly contains hexagonal InN. The four-probe measurement shows that InN film is conductive. The transmission measurement demonstrates that the transmission of InN deposited on K9 glass is as low as 0.5% from 400 nm to 800 nm.

  4. Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering.

    PubMed

    Stan, G E; Pina, S; Tulyaganov, D U; Ferreira, J M F; Pasuk, I; Morosanu, C O

    2010-04-01

    Radiofrequency magnetron sputtering deposition at low temperature (150 degrees C) was used to deposit bioactive glass coatings onto titanium substrates. Three different working atmospheres were used: Ar 100%, Ar + 7%O(2), and Ar + 20%O(2). The preliminary adhesion tests (pull-out) produced excellent adhesion values (approximately 75 MPa) for the as-deposited bio-glass films. Bioactivity tests in simulated body fluid were carried out for 30 days. SEM-EDS, XRD and FTIR measurements were performed. The tests clearly showed strong bioactive features for all the prepared films. The best biomineralization capability, expressed by the thickest chemically grown carbonated hydroxyapatite layer, was obtained for the bio-glass coating sputtered in a reactive atmosphere with 7% O(2).

  5. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  6. The role of pulse length in target poisoning during reactive HiPIMS: application to amorphous HfO2

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Murdoch, B. J.; Treverrow, B.; Ross, A. E.; Falconer, I. S.; Kondyurin, A.; McCulloch, D. G.; Partridge, J. G.; McKenzie, D. R.; Bilek, M. M. M.

    2015-06-01

    In conventional reactive magnetron sputtering, target poisoning frequently leads to an instability that requires the reactive gas flow rate to be actively regulated to maintain a constant composition of the deposited layers. Here we demonstrate that the pulse length in high power impulse magnetron sputtering (HiPIMS) is important for determining the surface conditions on the target that lead to poisoning. By increasing the pulse length, a smooth transition can be achieved from a poisoned target condition (short pulses) to a quasi-metallic target condition (long pulses). Appropriate selection of pulse length eliminates the need for active regulation, enabling stable reactive magnetron sputter deposition of stoichiometric amorphous hafnium oxide (HfO2) from a Hf target. A model is presented for the reactive HiPIMS process in which the target operates in a partially poisoned mode with a distribution of oxide on its surface that depends on the pulse length.

  7. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  8. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  9. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  10. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  11. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  12. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study.

    PubMed

    Rojas, R; Rubinsky, B; González, C A

    2008-06-01

    This numerical simulation study addressed the effects of the location of a discrete brain hematoma on the volumetric inductive phase shift of the brain measured with an induction circular sensor coil and an induction magnetron sensor coil. The theoretical study simulates the brain cavity as a circular sphere transversely centered with respect to the circular and magnetron sensor coils. As a case study for the effects of hematoma location, we employed similar size simulated spherical hematomas placed at three different positions from the center of the brain outward. A three-dimensional finite element analysis of the field equations in the frequency range from 100 kHz to 100 MHz revealed a substantial effect of hematoma location on the ability of both the circular and magnetron sensors to detect the hematomas. In particular it was found that there are frequencies, which may be related to resonance, at which the occurrence of the hematomas has no effect on the volumetric inductive phase shift of the brain. Furthermore it was found that the relative sensitivity of circular and magnetron sensor coils with respect to the occurrence of hematoma varies with the location of the hematoma.

  13. A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Karkari, S. K.; Vetushka, A.

    2004-05-01

    The temporal evolution of the plasma potential, Vp, in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, Vp was found to respond to the large and rapid changes in the cathode voltage, Vd, during the different phases of the pulse cycle, with Vp always more positive than Vd. At a typical substrate position (>80 mm from the target), Vp remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with Vp elevated uniformly to about 3 V above Vd. Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), Vd reached a potential of +290 V; however, close to the target, Vp was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target. The spatial and temporal measurements of Vp

  14. Plasma kinetics of Ar/O{sub 2} magnetron discharge by two-dimensional multifluid modeling

    SciTech Connect

    Costin, C.; Minea, T. M.; Popa, G.; Gousset, G.

    2010-03-15

    Multifluid two-dimensional model was developed to describe the plasma kinetics of the direct current Ar/O{sub 2} magnetron, coupling two modules: charged particles and neutrals. The first module deals with three positive ions - Ar{sup +}, O{sub 2}{sup +}, and O{sup +} - and two negative species - e{sup -} and O{sup -} - treated by the moments of Boltzmann's equation. The second one follows seven neutral species (Ar, O{sub 2}, O, O{sub 3}, and related metastables) by the multicomponent diffusion technique. The two modules are self-consistently coupled by the mass conservation and kinetic coefficients taking into account more than 100 volume reactions. The steady state is obtained when the overall convergence is achieved. Calculations for 10%O{sub 2} in Ar/O{sub 2} mixture at 2.67 and 4 Pa show that the oxygen excited species are mainly created by electron collisions in the negative glow of the discharge. Decreasing the pressure down to 0.67 Pa, the model reveals the nonlocal behavior of the reactive species. The density gradient of O{sub 2} ground state is reversed with respect to all gradients of the other reactive species, since the latter ones originate from the molecular ground state of oxygen. It is also found that the wall reactions drastically modify the space gradient of neutral reactive species, at least as much as the pressure, even if the discharge operates in compound mode.

  15. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effects of LSMO Buffer Layer on Crystalline Orientation and Ferroelectric Properties of Bi2.9Pr0.9Ti3O12 Thin Films Prepared by Radio-Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yun-Yi; Zhang, Duan-Ming; Yu, Jun; Zheng, Chao-Dan; Wang, Yun-Bo

    2008-11-01

    Ferroelectric Bi2.9Pr0.9Ti3O12/La0.67Sr0.33MnO3 (BPT/LSMO) films are fabricated on Pt(111)/TiO2/SiO2/Si substrates by rf-magnetron sputtering method. The influences of the LSMO deposition conditions and LSMO layer thickness on properties of BPT thin films are studied. The LSMO layer deposited at 300° C and 450σ C favours preferred (117) orientation of BPT films, while deposited at 600° C for LSMO layer leads to strong (111)-preferred orientation of BPT film. With the LSMO buffer layer, the films exhibit improved ferroelectric properties and Pt/BPT/LSMO(20nm)/Pt capacitor shows the largest remnant polarization Pr of 18.4 μC/cm2 at 14 V. A similar change in dielectric constant with the increase of LSMO layer thickness is also observed and the highest dielectric constant of 342.7 is obtained for the Pt/BPT/LSMO(20 nm)/Pt film. Compared with the Pt/BPT/Pt film, the Pt/BPT/LSMO/Pt films exhibit better fatigue endurance after 5 × 109 switching cycles. Moreover, the LSMO layer has apparent effect on leakage current density and the Pt/BPT/LSMO(20 nm)/Pt film exhibits the lowest leakage current density.

  16. On the target surface cleanness during magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Schelfhout, R.; Strijckmans, K.; Boydens, F.; Depla, D.

    2015-11-01

    The thickness of the chemisorbed oxide layer on a tantalum target surface was determined from sputter cleaning experiments. These measurements show a clear logarithmic growth behaviour as a function of the oxygen exposure. By extrapolating this result towards other sputter conditions, the target cleanness during magnetron sputter deposition can be estimated.

  17. Enhanced oxidation of TiO2 films prepared by high power impulse magnetron sputtering running in metallic mode

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Kratochvil, J.; Olejnicek, J.; Ksirova, P.; Sezemsky, P.; Cada, M.; Hubicka, Z.

    2017-05-01

    A method is introduced that allows suppressing unwanted effects of target poisoning during reactive high-power impulse magnetron sputtering (R-HiPIMS) employed for deposition of oxide films. The method, based on higher reactivity of excited/activated oxygen species, is studied and demonstrated on TiO2 films deposited in R-HiPIMS discharge running very close to the metallic mode with a high deposition rate. An external source of energetic plasma that activates oxygen gas, delivered to the vicinity of the substrate, is combined with conventional R-HiPIMS of the Ti target. The activated oxygen species enable reducing the total flow rate, which simultaneously results in suppression of the target poisoning effect. On the other hand, sufficient oxidation and growth of transparent crystalline TiO2 films were observed.

  18. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and

  19. A new solid state extractor pulser for the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Lackey, J.; Larson, J.; Triplett, K.

    2016-02-15

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.

  20. Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure

    NASA Astrophysics Data System (ADS)

    Stan, G. E.; Marcov, D. A.; Pasuk, I.; Miculescu, F.; Pina, S.; Tulyaganov, D. U.; Ferreira, J. M. F.

    2010-09-01

    Bioglass coatings were prepared by radio frequency magnetron sputtering deposition at low temperature (150 °C) onto silicon substrates. The influence of argon pressure values used during deposition (0.2 Pa, 0.3 Pa and 0.4 Pa) on the short-range structure and biomineralization potential of the bioglass coatings was studied. The biomineralization capability was evaluated after 30 days of immersion in simulated body fluid. SEM-EDS, XRD and FTIR measurements were performed. The tests clearly showed strong biomineralization features for the bioglass films. The thickness of the chemically grown hydroxyapatite layers was more than twice greater for the BG films deposited at the highest working pressure, in comparison to those grown on the films obtained at lower working pressures. The paper attempts to explain this experimental fact based on structural and compositional considerations.

  1. A new solid state extractor pulser for the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.

    2015-10-05

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.

  2. Time resolved tunable diode laser absoption spectroscopy of dual High Power Impulse Magnetron Sputtering discharges

    NASA Astrophysics Data System (ADS)

    Do, Hoang Tung; Stranak, Vitezslav; Hippler, Rainer

    2014-08-01

    Time-resolved measurements have been performed during dual High Power Impulse Magnetron Sputtering (dual-HiPIMS) with two cathodes in a closed magnetic field configuration. The dual-HiPIMS system, operated at a repetition frequency f = 100 Hz and duty cycle of 1 %, was equipped with two different metallic targets (Ti, Cu). The effect of a delay between subsequent pulses on argon excited atom density and temperature was investigated by means of tunable diode laser absorption spectroscopy. It is shown that the peak densities of pulses vary strongly with the delay. We observed an enhancement of metastable density due to pre-ionization effect but more effective than that is the contribution of metal atoms which have smaller ionization energy compare to that of buffer gas atom. Associate with the enhancement of density, the temporal variation of metastable atom temperature in the Cu pulse also transforms from those of low current pulse into the high current one.

  3. The physical properties of AZO films deposited by RF magnetron sputtering in hydrogen-diluted argon

    NASA Astrophysics Data System (ADS)

    Kim, Jwayeon; Han, Jungsu; Jin, Hyunjoon; Kim, Youhyuk; Park, Kyeongsoon

    2014-08-01

    The properties of AZO (98-wt% ZnO, 2-wt% Al2O3) films produced in pure Ar and Ar (98%) + H2 (2%) (H2-diluted Ar) by radio-frequency (RF) magnetron sputtering were investigated as functions of the substrate temperatures. H2-diluted Ar improved the electrical properties of the AZO films fabricated at low substrate temperatures, but this benefit gradually diminished with increasing substrate temperature. This phenomenon was explained by O-H stretching in the Zn-O bond at low temperatures and by the formation of oxygen vacancies at high temperatures. The average optical transmission was over ~85%, and the orientation of the AZO films deposited both in pure Ar and in H2-diluted Ar was in the [002] direction.

  4. Dielectric properties of tetragonal tungsten bronze films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bodeux, Romain; Michau, Dominique; Josse, Michaël; Maglione, Mario

    2014-12-01

    Tetragonal tungsten bronze (TTB) films have been synthesised on Pt(111)/TiO2/SiO2/Si substrates from Ba2LnFeNb4O15 ceramics (Ln = La, Nd, Eu) by RF magnetron sputtering. X-ray diffraction measurements evidenced the multi-oriented nature of films with some degrees of preferential orientation along (111). The dependence of the dielectric properties on temperature and frequency has been investigated. The dielectric properties of the films are similar to those of the bulk, i.e., ɛ ˜150 and σ ˜10-6 Ω-1 cm-1 at 1 MHz and room temperature. The films exhibit two dielectric anomalies which are attributed to Maxwell Wagner polarization mechanism and relaxor behaviour. Both anomalies are sensitive to post-annealing under oxygen atmosphere and their activation energies are similar Ea ˜0.30 eV. They are explained in terms of electrically heterogeneous contributions in the films.

  5. Relativistic performance analysis of a high current density magnetron injection gun

    SciTech Connect

    Barnett, L. R.; Luhmann, N. C. Jr.; Chiu, C. C.; Chu, K. R.

    2009-09-15

    Electron beam quality is essential to the performance of millimeter-wave gyroamplifiers, particularly the gyrotron traveling-wave tube amplifier, which is extremely sensitive to the electron velocity spread and emission uniformity. As one moves up in power and frequency, the quality of the electron beam becomes even more critical. One aspect of the electron beam formation technology which has received relatively little attention has been the performance analysis of the electron beam itself. In this study, a 100 kV, 8 A magnetron injection gun with a calculated perpendicular-to-parallel velocity ratio of 1.4 and axial velocity spread of 3.5% has been designed, tested, and analyzed. It is shown that the equipment precision and a fully relativistic data analysis model afford sufficient resolution to allow a verification of the theoretical predictions as well as a quantitative inference to the surface roughness of the cathode used.

  6. [Spectrum diagnostics for the time of pre-sputtering in thin films deposited by magnetron puttering].

    PubMed

    Guo, Qing-Lin; Fan, Qing; Cui, Yong-Liang; Dong, Kai-Hu; Zhang, Lei; Li, Xu; Zhang, Jin-Ping; Chen, Jin-Zhong

    2013-03-01

    Abstract A plasma analysis system comprised of Omni-X300 series grating spectrometer, CCD data acquisition system and optical fiber transmission system was utilized in the present paper to realize the real-time acquisition of plasma emission spectra during the process of radio frequency (RF) magnetron sputtering. The plasma emission spectra produced by NiTa, TiAl ceramic targets and NiA1, TiA1 alloy targets were monitored respectively, in addition, the behavior of analysis lines of Ta I 333.991 nm, Ni I 362.473 nm, Al I 396.153 nm and Ti I 398.176 nm with time was obtained, according to which the time of pre-sputtering of the four kinds of target materials was fixed. At the same time, for the TiAl alloy target as the research object, the influence of different powers and pressures on the time of pre-sputtering was studied.

  7. Frequency analysis of functional immunoglobulin C- and V-gene expression by mitogen-reactive B cells in germfree mice fed chemically defined ultra-filtered "antigen-free" diet.

    PubMed

    Hooijkaas, H; van der Linde-Preesman, A A; Bitter, W M; Benner, R; Pleasants, J R; Wostmann, B S

    1985-04-01

    The frequencies of lipopolysaccharide (LPS)-reactive B cells and their antibody specificity repertoire have been determined in the spleen and bone marrow (BM) of conventional (CV) and "antigen-free" C3H/HeCr mice of various ages. The antigen-free mice were germfree (GF)-raised and were fed an ultrafiltered solution of chemically defined (CD) low m.w. nutrients, and were thus devoid of exogenous antigenic stimulation. Spleen and BM cells were grown in a limiting dilution culture system that allows the growth and development of every newly formed LPS-reactive B cell into a clone of IgM-secreting cells which are capable of switching to other immunoglobulin (Ig) heavy chain isotypes (C-gene expression). The secretion of IgM and IgG1 was determined in the protein A plaque assay, whereas specific IgM antibody-secreting cells (V-gene expression) were detected in plaque assays specific for various heterologous erythrocytes and sheep red blood cells (SRBC) coupled with a number of different haptens. The absolute frequency of LPS-reactive B cells and their capacity to switch to IgG1-secretion was not significantly different in 8- to 12-wk-old and 52-wk-old GF-CD mice and their age-matched CV controls. Moreover, no differences were observed in the frequencies of antigen-specific B cells within the pool of LPS reactive B cells. These frequencies ranged from 1 in 20 to 1 in 50 for NIP4-SRBC and NNP2-SRBC, from 1 in 100 to 1 in 150 for NIP0.4-SRBC, from 1 in 50 to 1 in 100 for TNP30-SRBC, and from 1 in 1000 to 1 in 2000 for SRBC and horse red blood cells. Within the limitations of having determined the switching capacity of IgM to IgG1 only and having assessed only a minor fraction of the total B cell antibody-specificity repertoire, the data indicate that young and old GF-CD mice, although devoid of exogenous antigenic and/or mitogenic stimulation, generate B cells with a similar switching capacity and a similar IgM antibody specificity repertoire as CV mice.

  8. Ion distribution measurements to probe target and plasma processes in electronegative magnetron discharges. II. Positive ions

    SciTech Connect

    Welzel, Th.; Ellmer, K.; Naumov, S.

    2011-04-01

    Spectra of the ion mass and energy distributions of positive ions in reactive (Ar/O{sub 2}) and nonreactive (Ar) dc magnetron sputtering discharges have been investigated by energy-resolved mass spectrometry. The results of three sputter target materials, i.e., Cu, In, and W are compared to each other. Besides the main gas constituents, mass spectra reveal a variety of molecular ions which are dependent on the target material. In reactive mode, ArO{sup +} is always observed in Ar/O{sub 2} but molecules containing Ar and the metal were exclusively found for the Cu target. The occurrence of the different ions is explained in the context of their bond strengths obtained from density functional theory calculations. The energy spectra generally contain the known low-energy peak corresponding to the plasma potential. Differently extended high-energy tails due to sputtered material were observed for the different targets. Besides these, high-energetic ions were detected with up to several 100 eV. Their energies are significantly different for Ar{sup +} and O{sup +} with Ar{sup +} strongly depending on the target material. The spectra are discussed together with results from transport of ions in matter (TRIM) calculation to elucidate the origin of these energetic ions.

  9. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    SciTech Connect

    Kunj, Saurabh Sreenivas, K.

    2016-05-23

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  10. Effect of the lead oxide content on the microstructure and properties of PZT films obtained by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mukhin, N. V.; Chigirev, D. A.

    2017-07-01

    Experimental studies of the influence of lead oxide as well as temperature and time of heat treatment on the microstructure and ferroelectric properties of PZT films obtained by the high-frequency magnetron sputtering method were carried out. It is shown that the change in the ferroelectric properties of polycrystalline PZT films can be explained by their heterophase structure with inclusions of lead oxide. It was found that the presence of a sublayer of lead oxide leads to a self-polarization of the film of the PZT. During the formation of the perovskite structure, the diffusion of lead oxide to the surface of the film occurs more intensively than after its formation.

  11. Reactive sputter deposition of boron nitride

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied {minus}300 V dc bias.

  12. Ionized Magnetron Sputtering with a Coupled DC and Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Hayden, D. B.; Green, K. M.; Juliano, D. R.; Ruzic, D. N.; Weiss, C. A.; Lantsman, A.; Ishii, J.

    1996-10-01

    A DC magnetron sputtering system is enhanced via an antenna microwave source. The ability of the microwaves to ionize the metal atoms from the aluminum target though electron impact and Penning ionization is studied as a function of microwave power, magnetron power, and pressure. A bias in the tens of volts (negative) is applied to the substrate and sample. This creates an electric field between the plasma and the substrate which is designed to draw the metal ions into the sample orthogonally for filling increased aspect ratio trenches. A quartz crystal oscillator is placed behind a gridded energy analyzer and embedded in the substrate. It determines the ion-to-neutral ratio and the deposition rate, and the gridded energy analyzer determines the energy spectrum of the ions, the ion current density, and the uniformity. These quantities are compared to the results of a computer simulation.

  13. The role of Ohmic heating in dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Brenning, N.; Gudmundsson, J. T.; Lundin, D.; Minea, T.; Raadu, M. A.; Helmersson, U.

    2016-12-01

    Sustaining a plasma in a magnetron discharge requires energization of the plasma electrons. In this work, Ohmic heating of electrons outside the cathode sheath is demonstrated to be typically of the same order as sheath energization, and a simple physical explanation is given. We propose a generalized Thornton equation that includes both sheath energization and Ohmic heating of electrons. The secondary electron emission yield {γ\\text{SE}} is identified as the key parameter determining the relative importance of the two processes. For a conventional 5 cm diameter planar dc magnetron, Ohmic heating is found to be more important than sheath energization for secondary electron emission yields below around 0.1.

  14. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect

    Jimenez, Francisco J. Dew, Steven K.; Field, David J.

    2014-11-01

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  15. Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1980-01-01

    The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.

  16. Optical properties and environmental stability of oxide coatings deposited by reactive sputtering.

    PubMed

    Edlou, S M; Smajkiewicz, A; Al-Jumaily, G A

    1993-10-01

    Refractory metal-oxide coatings are deposited by reactive dc magnetron sputtering in an oxygen environment. The optical constants and the environmental stability of silicon oxide, aluminium oxide, hafnium oxide, zirconium oxide, tantalum oxide, titanium oxide, and a blend of hafnium oxide with silicon oxide are investigated. Properties of both single-layer and multilayer interference filters are examined.

  17. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  18. Deposition of copper coatings in a magnetron with liquid target

    SciTech Connect

    Tumarkin, A. V. Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V.

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  19. Characterisation of Mg biodegradable stents produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Elmrabet, N.; Botterill, N.; Grant, D. M.; Brown, P. D.

    2015-10-01

    Novel Mg-minitubes for biodegradable stent applications have been produced using PVD magnetron sputtering. The minitubes were characterised, as a function of annealing temperature, using a combination of SEM/EDS, XRD and hardness testing. The as-deposited minitubes exhibited columnar grain structures with high levels of porosity. Slight alteration to the crystal structure from columnar to equiaxed grain growth was demonstrated at elevated temperature, along with increased material densification, hardness and corrosion resistance.

  20. Tribological performance of hybrid filtered arc-magnetron coatings - Part I: Coating deposition process and basic coating properties characterization

    SciTech Connect

    Gorokhovsky, Vladimir; Bowman, C.; Gannon, Paul E.; VanVorous, D.; Voevodin, A. A.; Rutkowski, A.; Muratore, C.; Smith, Richard J.; Kayani, Asghar N.; Gelles, David S.; Shutthanandan, V.; Trusov, B. G.

    2006-12-04

    Aircraft propulsion applications require low-friction and wear resistant surfaces that operate under high contact loads in severe environments. Recent research on supertough and low friction nanocomposite coatings produced with hybrid plasma deposition processes was demonstrated to have a high potential for such demanding applications. However, industrially scalable hybrid plasma technologies are needed for their commercial realization. The Large area Filtered Arc Deposition (LAFAD) process provides atomically smooth coatings at high deposition rates over large surface areas. The LAFAD technology allows functionally graded, multilayer, super-lattice and nanocomposite architectures of multi-elemental coatings via electro-magnetic mixing of two plasma flows composed of different metal ion vapors. Further advancement can be realized through a combinatorial process using a hybrid filtered arc-magnetron deposition system. In the present study, multilayer and nanostructured TiCrCN/TiCr +TiBC composite cermet coatings were deposited by the hybrid filtered arc-magnetron process. Filtered plasma streams from arc evaporated Ti and Cr targets, and two unbalanced magnetron sputtered B4C targets, were directed to the substrates in the presence of reactive gases. A multiphase nanocomposite coating architecture was designed to provide the optimal combination of corrosion and wear resistance of advanced steels (Pyrowear 675) used in aerospace bearing and gear applications. Coatings were characterized using SEM/EDS, XPS and RBS for morphology and chemistry, XRD and TEM for structural analyses, wafer curvature and nanoindentation for stress and mechanical properties, and Rockwell and scratch indentions for adhesion. Coating properties were evaluated for a variety of coating architectures. Thermodynamic modeling was used for estimation of phase composition of the top TiBC coating segment. Correlations between coating chemistry, structure and mechanical properties are discussed.

  1. Gas-phase clusterization of zinc during magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Abduev, A. Kh.; Akhmedov, A. K.; Asvarov, A. Sh.; Alikhanov, N. M.-R.; Emirov, R. M.; Muslimov, A. E.; Belyaev, V. V.

    2017-01-01

    The processes of gas-phase clusterization of zinc during dc magnetron sputtering of a zinc target in an argon atmosphere have been investigated. The influence of the working gas pressure and magnetron discharge current on the morphology and structure of the precipitates formed on substrates previously cooled to-50°C is studied. It is shown that dense textured (002)Zn layers with a columnar structure are formed at relatively low argon pressures in the chamber ( P = 0.5 Pa) and low discharge currents (100 mA). X-ray amorphous deposits with a fractal coral-like structure arise on substrates at an extremely high argon pressure in the chamber ( P = 5 Pa). An increase in the magnetron discharge current at an operating gas pressure of 5 Pa leads to the formation of polycrystalline layers on substrates; the intensity of the XRD peaks related to crystalline zinc increases with an increase in the discharge current. Possible mechanisms of the structural transformation of Zn deposits are considered.

  2. Passive mode control in the recirculating planar magnetron

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; Lau, Y. Y.; Greening, Geoff; Zhang, Peng; Hoff, Brad

    2013-03-15

    Preliminary experiments of the recirculating planar magnetron microwave source have demonstrated that the device oscillates but is susceptible to intense mode competition due, in part, to poor coupling of RF fields between the two planar oscillators. A novel method of improving the cross-oscillator coupling has been simulated in the periodically slotted mode control cathode (MCC). The MCC, as opposed to a solid conductor, is designed to electromagnetically couple both planar oscillators by allowing for the propagation of RF fields and electrons through resonantly tuned gaps in the cathode. Using the MCC, a 12-cavity anode block with a simulated 1 GHz and 0.26 c phase velocity (where c is the speed of light) was able to achieve in-phase oscillations between the two sides of the device in as little as 30 ns. An analytic study of the modified resonant structure predicts the MCC's ability to direct the RF fields to provide tunable mode separation in the recirculating planar magnetron. The self-consistent solution is presented for both the degenerate even (in phase) and odd (180 Degree-Sign out of phase) modes that exist due to the twofold symmetry of the planar magnetrons.

  3. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  4. Structure and properties of uranium oxide thin films deposited by pulsed dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Dahan, Isaac; Valderrama, Billy; Manuel, Michele V.

    2014-05-01

    Crystalline uranium oxide thin films were deposited in an unbalanced magnetron sputtering system by sputtering from a depleted uranium target in an Ar + O2 mixture using middle frequency pulsed dc magnetron sputtering. The substrate temperature was constantly maintained at 500 °C. Different uranium oxide phases (including UO2-x, UO2, U3O7 and U3O8) were obtained by controlling the percentage of the O2 flow rate to the total gas flow rate (f) in the chamber. The crystal structure of the films was characterized using X-ray diffraction and the microstructure of the films was studied using transmission electron microscopy and atom probe tomography. When the f was below 10%, the film contains a mixture of metallic uranium and UO2-x phases. As the f was controlled in the range of 10-13%, UO2 films with a (2 2 0) preferential orientation were obtained. The oxide phase rapidly changed to a mixture of U3O7 and U3O8 as the f was increased to the range of 15-18%. Further increasing the f to 20% and above, polycrystalline U3O8 thin films with a (0 0 1) preferential orientation were formed. The hardness and Young's modulus of the uranium oxide films were evaluated using nanoindentation. The film containing a single UO2 phase exhibited the maximum hardness of 14.3 GPa and a Young's modulus of 195 GPa. The UO2 thin film also exhibited good thermal stability in that no phase change was observed after annealing at 600 °C in vacuum for 104 h.

  5. Determination of the Electron Density and Electron Temperature in A Magnetron Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon

    NASA Astrophysics Data System (ADS)

    Evdokimov, K. E.; Konishchev, M. E.; Pichugin, V. F.; Pustovalova, A. A.; Ivanova, N. M.; Sun', Ch.

    2017-09-01

    A method for determining the electron temperature and electron density in a plasma is proposed that is based on minimization of the difference between the experimental relative intensities of the spectral argon (Ar) lines and those same intensities calculated with the aid of the collisional-radiative model. The model describes the kinetics of the ground state and 40 excited states of the Ar atom and takes into account the following processes: excitation and deactivation of the states of the atom by electron impact, radiative decay of the excited states, self-absorption of radiation, ionization of excited states by electron impact, and quenching of metastable states as a consequence of collisions with the chamber walls. Using the given method, we have investigated the plasma of a magnetron discharge on a laboratory setup for intermediate-frequency magnetron sputtering for a few selected operating regimes.

  6. Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Green, K. M.; Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-12-01

    A diagnostic which combines a quartz crystal microbalance (QCM) and a gridded energy analyzer has been developed to measure the metal flux ionization fraction in a modified commercial dc magnetron sputtering device. The sensor is mounted on a linear motion feedthrough and embedded in a slot in the substrate plane to allow for measuring the uniformity in deposition and ionization throughout the plane of the wafer. Radio-frequency (rf) power is introduced through a coil to ionize the Al atoms. The metal flux ionization fraction at the QCM is determined by comparing the total deposition rate with and without a bias that screens out the ions, but that leaves the plasma undisturbed. By varying the voltage applied to the grids, the plasma potential is determined. At a pressure of 35 mTorr, a magnetron power of 2 kW, and a net rf power of 310±5 W, 78±5% ionization was found.

  7. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers

    SciTech Connect

    Cai, Weiwei; Kaminski, Clemens F.

    2014-01-20

    This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds particular promise for the study of dynamic combusting flows. A proof-of-concept numerical demonstration is presented, using representative phantoms to model conditions typically prevailing in near-atmospheric or high pressure flames. The simulations reveal both the feasibility of the proposed technique and its robustness. Our calculations indicate precisions of ∼70 K at flame temperatures and ∼0.05 bars at high pressure from reconstructions featuring as much as 5% Gaussian noise in the projections.

  8. Plasma regimes in high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    de Los Arcos, Teresa

    2013-09-01

    High Power Pulsed Magnetron Sputtering (HPPMS) is a relatively recent variation of magnetron sputtering where high power is applied to the magnetron in short pulses. The result is the formation of dense transient plasmas with a high fraction of ionized species, ideally leading to better control of film growth through substrate bias. However, the broad range of experimental conditions accessible in pulsed discharges results in bewildering variations in current and voltage pulse shapes, pulse power densities, etc, which represent different discharge behaviors, making it difficult to identify relevant deposition conditions. The complexity of the plasma dynamics is evident. Within each pulse, plasma characteristics such as plasma composition, density, gas rarefaction, spatial distribution, degree of self-sputtering, etc. vary with time. A recent development has been the discovery that the plasma emission can self-organize into well-defined regions of high and low plasma emissivity above the racetrack (spokes), which rotate in the direction given by the E ×B drift and that significantly influence the transport mechanisms in HPPMS. One seemingly universal characteristic of HPPMS plasmas is the existence of well defined plasma regimes for different power ranges. These regimes are clearly differentiated in terms of plasma conductivity, plasma composition and spatial plasma self-organization. We will discuss the global characteristics of these regimes in terms of current-voltage characteristics, energy-resolved QMS and OES analysis, and fast imaging. In particular we will discuss how the reorganization of the plasma emission into spokes is associated only to specific regimes of high plasma conductivity. We will also briefly discuss the role of the target in shaping the characteristics of the HPPMS plasma, since sputtering is a surface-driven process. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SFB-TR87.

  9. Large area precision optical coatings by pulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Frach, Peter; Gloess, Daniel; Goschurny, Thomas; Drescher, Andy; Hartung, Ullrich; Bartzsch, Hagen; Heisig, Andreas; Grune, Harald; Leischnig, Lothar; Leischnig, Steffen; Bundesmann, Carsten

    2017-05-01

    Pulse magnetron sputtering is very well suited for the deposition of optical coatings. Due to energetic activation during film growth, sputtered films are dense, smooth and show an excellent environmental stability. Films of materials like SiO2, Al2O3, Nb2O5 or Ta2O5 can be produced with very little absorption and scattering losses and are well suited for precision optics. FEP's coating plant PreSensLine, a deposition machine dedicated for the development and deposition of precision optical layer systems will be presented. The coating machine (VON ARDENNE) is equipped with dual magnetron systems (type RM by FEP). Concepts regarding machine design, process technology and process control as well as in situ monitoring are presented to realize the high demands on uniformity, accuracy and reproducibility. Results of gradient and multilayer type precision optical coatings are presented. Application examples are edge filters and special antireflective coatings for the backlight of 3D displays with substrate size up to 300 x 400mm. The machine allows deposition of rugate type gradient layers by rotating a rotary table with substrates between two sources of the dual magnetron system. By combination of the precision drive (by LSA) for the substrate movement and a special pulse parameter variation during the deposition process (available with the pulse unit UBS-C2 of FEP), it is possible to adjust the deposition rate as a function of the substrate position exactly. The aim of a current development is a technology for the uniform coating of 3D-substrates and freeform components as well as laterally graded layers.

  10. Particle contamination formation and detection in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Weiss, C.A.; Sequeda, F.; Huang, C.

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  11. Development of magnetron sputtering simulator with GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Sohn, Ilyoup; Kim, Jihun; Bae, Junkyeong; Lee, Jinpil

    2014-12-01

    Sputtering devices are widely used in the semiconductor and display panel manufacturing process. Currently, a number of surface treatment applications using magnetron sputtering techniques are being used to improve the efficiency of the sputtering process, through the installation of magnets outside the vacuum chamber. Within the internal space of the low pressure chamber, plasma generated from the combination of a rarefied gas and an electric field is influenced interactively. Since the quality of the sputtering and deposition rate on the substrate is strongly dependent on the multi-physical phenomena of the plasma regime, numerical simulations using PIC-MCC (Particle In Cell, Monte Carlo Collision) should be employed to develop an efficient sputtering device. In this paper, the development of a magnetron sputtering simulator based on the PIC-MCC method and the associated numerical techniques are discussed. To solve the electric field equations in the 2-D Cartesian domain, a Poisson equation solver based on the FDM (Finite Differencing Method) is developed and coupled with the Monte Carlo Collision method to simulate the motion of gas particles influenced by an electric field. The magnetic field created from the permanent magnet installed outside the vacuum chamber is also numerically calculated using Biot-Savart's Law. All numerical methods employed in the present PIC code are validated by comparison with analytical and well-known commercial engineering software results, with all of the results showing good agreement. Finally, the developed PIC-MCC code is parallelized to be suitable for general purpose computing on graphics processing unit (GPGPU) acceleration, so as to reduce the large computation time which is generally required for particle simulations. The efficiency and accuracy of the GPGPU parallelized magnetron sputtering simulator are examined by comparison with the calculated results and computation times from the original serial code. It is found that

  12. The Magnetron Method for the Determination of e/m for Electrons: Revisited

    ERIC Educational Resources Information Center

    Azooz, A. A.

    2007-01-01

    Additional information concerning the energy distribution function of electrons in a magnetron diode valve can be extracted. This distribution function is a manifestation of the effect of space charge at the anode. The electron energy distribution function in the magnetron is obtained from studying the variation of the anode current with the…

  13. The Magnetron Method for the Determination of e/m for Electrons: Revisited

    ERIC Educational Resources Information Center

    Azooz, A. A.

    2007-01-01

    Additional information concerning the energy distribution function of electrons in a magnetron diode valve can be extracted. This distribution function is a manifestation of the effect of space charge at the anode. The electron energy distribution function in the magnetron is obtained from studying the variation of the anode current with the…

  14. Simulation of the velocity spread in magnetron injection guns

    SciTech Connect

    Liu, C.; Antonsen, T.M. Jr.; Levush, B.

    1996-06-01

    The velocity spread associated with phase mixing due to dc space charge in a magnetron injection gun (MIG) is investigated. A simple model is introduced to describe the mixing process. Simulations are performed by using the results of the EGUN trajectory calculation for initial conditions at the entrance of the drift region. Results for a 170 GHz gun are obtained and compared with EGUN simulations. This new model provides a more accurate and efficient approach for analyzing the velocity spread due to mixing in MIG`s.

  15. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    SciTech Connect

    Steglich, Martin; Schrempel, Frank; Füchsel, Kevin; Kley, Ernst-Bernhard; Patzig, Christian; Berthold, Lutz; Höche, Thomas; Tünnermann, Andreas

    2013-07-15

    The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  16. Magnetron co-sputtering system for coating ICF targets

    SciTech Connect

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-12-09

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres. The preliminary data on the properties of a Au-Cu binary alloy system by SEM and STEM analysis is presented.

  17. Discharge current modes of high power impulse magnetron sputtering

    SciTech Connect

    Wu, Zhongzhen Xiao, Shu; Ma, Zhengyong; Cui, Suihan; Ji, Shunping; Pan, Feng; Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  18. The study of titanium oxynitride coatings solubility deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leonova, L. A.; Boytsova, E. L.; Pustovalova, A. A.

    2016-06-01

    To improve hemocompatibility of cardiovascular stents the coatings based on titanium oxides and oxynitrides were used. In the present work the morphology, surface properties (wettability and surface energy), and in vitro solubility of the ternary system Ti-N-O coating were investigated. Experimentally, low dissolution rate of the coating in saline NaCl (0,9%) was confirmed. Instrumental methods of quantitative analysis (XRF, AES) revealed that the Ti-N-O coating is chemical-resistant and does not change the qualitative and quantitative composition of body fluids.

  19. Heteroepitaxial growth of TiN film on MgO (100) by reactive magnetron sputtering

    PubMed Central

    2014-01-01

    TiN thin films were deposited on MgO (100) substrates at different substrate temperatures using rf sputtering with Ar/N2 ratio of about 10. At 700°C, the growth rate of TiN was approximately 0.05 μm/h. The structural and electrical properties of TiN thin films were characterized with x-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Hall measurements. For all deposition conditions, XRD results show that the TiN films can be in an epitaxy with MgO with cube-on-cube orientation relationship of (001)TiN // (001)MgO and [100]TiN // [100]MgO. TEM with selected-area electron diffraction pattern verifies the epitaxial growth of the TiN films on MgO. SEM and AFM show that the surface of the TiN film is very smooth with roughness approximately 0.26 nm. The minimum resistivity of the films can be as low as 45 μΩ cm. PMID:25324706

  20. Medium-temperature solid oxide fuel cells prepared using reactive magnetron sputtering. Ph.D. Thesis

    SciTech Connect

    Wang, L.

    1993-12-31

    The purpose of this research is to investigate the deposition, structure, interfacial impedances, and characteristics of medium temperature solid-oxide fuel cells (SOFC`s) with thin-film electrolytes. Three main areas have been investigated. First, the structure, chemistry, and properties of materials designed specifically for medium temperature SOFC`s have been studied. The authors have developed techniques for sputter deposition of cubic 10 mol percent Y2O3-stabilized zirconia (YSZ) and 30 mol percent Y2O3-doped bismuth oxide (YSB) thin film oxygen ion conductors. The electrical properties of the films were characterized using the complex impedance spectroscopy method. Studies of AgYSZ cermet and Ag-perovskite (perovskite = La(1-x)Sr(x)Co(Mn)O3), used as high conductivity, low overpotential air electrodes, have also been carried out. Second, interfacial impedances for various electrode-electrolyte combinations and for multilayer electrolytes have been studied. In particular, the authors have found that a layer of Y-stabilized Bi2O3 (YSB) as thin as 60 nm between the YSZ electrolyte and the electrode significantly reduces the interfacial resistance. For example, inserting YSB between YSZ and a Ag-YSZ electrode reduces the resistance from 1.5 to 0.45 Omega cm(exp 2) at 750 deg C in air. Ag-(La,Sr)CoO3 on YSB electrolytes had interfacial resistances as low as 0.3 Omega cm2, compared with 0.4 and 1.5 Omega cm(exp 2) for (La,Sr)CoO3 and Ag on YSB at 750 deg C, respectively. The Ag cermet materials thus exhibited lower interfacial resistances than their component materials. Third, thin film medium temperature SOFC`s have been fabricated and characterized. SOFC`s were deposited onto porous alumina supports. The resulting cell open-circuit voltages (OCV) were approximately equal to 0.8 V, 0.3 V less than expected, due to gas cross-over.