Sample records for frequency reactive sputtering

  1. Optical and electrical properties of p-type transparent conducting CuAlO2 thin film synthesized by reactive radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.

    2010-10-01

    Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.

  2. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  3. Process Parameter-Growth Environment-Film Property Relationships for Reactive Sputter Deposited Metal (V, Nb, Zr, Y, Au) Oxide, Nitride, and Oxynitride Films

    DTIC Science & Technology

    1993-09-30

    speed of light in vac- ring within the first 5 min of exposure. In a separate ex- uum, and g(A) is the detected fraction of emitted radia- periment...fold: film growth by reactive sputter deposition, in situ discharge diagnostics, film charcterization. A radio frequency diode apparatus was used to...l-’ZrO, films is reported.)3 1) Films were grown on Supers!]I II fused silica in a hot-oil pumped rf diode sputter deposition system using a 13-cm

  4. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayestehaminzadeh, Seyedmohammad, E-mail: ses30@hi.is, E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasmamore » in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.« less

  5. Reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Magnus, F.; Tryggvason, T. K.; Sveinsson, O. B.; Olafsson, S.

    2012-10-01

    Here we discuss reactive high power impulse magnetron sputtering sputtering (HiPIMS) [1] of Ti target in an Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage. The discharge current increases with decreasing frequency or voltage. This we attribute to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as nitride [2] or oxide [3] forms on the target. We also discuss the growth of TiN films on SiO2 at temperatures of 22-600 ^oC. The HiPIMS process produces denser films at lower growth temperature and the surface is much smoother and have a significantly lower resistivity than dc magnetron sputtered films on SiO2 at all growth temperatures due to reduced grain boundary scattering [4].[4pt] [1] J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A, 30 030801 (2012)[0pt] [2] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, J. Appl. Phys., 110 083306 (2011)[0pt] [3] F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, J. Vac. Sci. Technol., submitted 2012[0pt] [4] F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, IEEE Elec. Dev. Lett., accepted 2012

  6. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  7. Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo

    2016-03-15

    Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less

  8. Deposition and characterization of vanadium oxide based thin films for MOS device applications

    NASA Astrophysics Data System (ADS)

    Rakshit, Abhishek; Biswas, Debaleen; Chakraborty, Supratic

    2018-04-01

    Vanadium Oxide films are deposited on Si (100) substrate by reactive RF-sputtering of a pure Vanadium metallic target in an Argon-Oxygen plasma environment. The ratio of partial pressures of Argon to Oxygen in the sputtering-chamber is varied by controlling their respective flow rates and the resultant oxide films are obtained. MOS Capacitor based devices are then fabricated using the deposited oxide films. High frequency Capacitance-Voltage (C-V) and gate current-gate voltage (I-V) measurements reveal a significant dependence of electrical characteristics of the deposited films on their sputtering deposition parameters mainly, the relative content of Argon/Oxygen in the plasma chamber. A noteworthy change in the electrical properties is observed for the films deposited under higher relative oxygen content in the plasma atmosphere. Our results show that reactive sputtering serves as an indispensable deposition-setup for fabricating vanadium oxide based MOS devices tailor-made for Non-Volatile Memory (NVM) applications.

  9. Effect of working power and pressure on plasma properties during the deposition of TiN films in reactive magnetron sputtering plasma measured using Langmuir probe measurement

    NASA Astrophysics Data System (ADS)

    How, Soo Ren; Nayan, Nafarizal; Khairul Ahmad, Mohd; Fhong Soon, Chin; Zainizan Sahdan, Mohd; Lias, Jais; Shuhaimi Abu Bakar, Ahmad; Arshad, Mohd Khairuddin Md; Hashim, Uda; Yazid Ahmad, Mohd

    2018-04-01

    The ion, electron density and electron temperature during formation of TiN films in reactive magnetron sputtering system have been investigated for various settings of radio frequency (RF) power and working pressure by using Langmuir probe measurements. The RF power and working pressure able to affect the densities and plasma properties during the deposition process. In this work, a working pressure (100 and 20 mTorr) and RF power (100, 150 and 200 W) have been used for data acquisition of probe measurement. Fundamental of studied on sputter deposition is very important for improvement of film quality and deposition rate. Higher working pressure and RF power able to produce a higher ion density and reduction of electron temperature.

  10. Electrical characteristics of thin Ta2O5 films deposited by reactive pulsed direct-current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, J.-Y.; Nielsen, M. C.; Rymaszewski, E. J.; Lu, T.-M.

    2000-02-01

    Room temperature deposition of tantalum oxide films on metallized silicon substrates was investigated by reactive pulsed magnetron sputtering of Ta in an Ar/O2 ambient. The dielectric constant of the tantalum oxide ranged from 19 to 31 depending on the oxygen percentage [P(%)=PO2/(PO2+PAr)] used during sputtering. The leakage current density was less than 10 nA/cm2 at 0.5 MV/cm electric field and the dielectric breakdown field was greater than 3.8 MV/cm for P=60%. A charge storage as high as 3.3 μF/cm2 was achieved for 70-Å-thick film. Pulse frequency variation (from 20 to 200 kHz) did not give a significant effect in the electrical properties (dielectric constant or leakage current density) of the Ta2O5 films.

  11. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, André

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.« less

  12. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE PAGES

    Anders, André

    2017-03-21

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.« less

  13. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    NASA Astrophysics Data System (ADS)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  14. Anomalous effects in the aluminum oxide sputtering yield

    NASA Astrophysics Data System (ADS)

    Schelfhout, R.; Strijckmans, K.; Depla, D.

    2018-04-01

    The sputtering yield of aluminum oxide during reactive magnetron sputtering has been quantified by a new and fast method. The method is based on the meticulous determination of the reactive gas consumption during reactive DC magnetron sputtering and has been deployed to determine the sputtering yield of aluminum oxide. The accuracy of the proposed method is demonstrated by comparing its results to the common weight loss method excluding secondary effects such as redeposition. Both methods exhibit a decrease in sputtering yield with increasing discharge current. This feature of the aluminum oxide sputtering yield is described for the first time. It resembles the discrepancy between published high sputtering yield values determined by low current ion beams and the low deposition rate in the poisoned mode during reactive magnetron sputtering. Moreover, the usefulness of the new method arises from its time-resolved capabilities. The evolution of the alumina sputtering yield can now be measured up to a resolution of seconds. This reveals the complex dynamical behavior of the sputtering yield. A plausible explanation of the observed anomalies seems to originate from the balance between retention and out-diffusion of implanted gas atoms, while other possible causes are commented.

  15. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content.more » The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.« less

  16. Pulsed-DC selfsputtering of copper

    NASA Astrophysics Data System (ADS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  17. Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film

    NASA Astrophysics Data System (ADS)

    Menon, Rashmi; Sreenivas, K.; Gupta, Vinay

    2008-05-01

    Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.

  18. Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators

    DOE PAGES

    Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann; ...

    2018-05-11

    Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes amore » direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less

  19. Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann

    Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes amore » direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less

  20. Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann

    Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. This work describes 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationshipmore » between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Furthermore, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less

  1. Microstructure evolution of Al-doped zinc oxide films prepared by in-line reactive mid-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, R. J.; Jiang, X.

    2006-07-01

    Aluminium-doped zinc oxide (ZnO:Al or AZO) thin films were deposited on glass substrates by reactive mid-frequency (MF) magnetron sputtering from Zn/Al metallic targets. Strong (002) preferred orientation was detected by X-ray diffraction (XRD). It was observed by plan-view transmission electron microscopy (TEM) that an AZO film deposited at low substrate temperature was composed of irregular large grains; but the film prepared at high temperature was composed of moderate sized grains with a regular shape. A secondary phase of ZnO2 was also observed for the film deposited at low substrate temperature. The cross-sectional TEM study of the AZO film showed that prior to the well-aligned columnar growth an initial interfacial zone with nano crystallites were formed. The nano crystallites formed initially with a large tilt angle normal to the substrate surface and during the growth of the transition zone, the tilt angle decreased until it vanished. The evolution of the film structure is discussed in terms of evolutionary selection model and the dynamic deposition process.

  2. Development of selective surfaces. Semiannual technical progress report, September 11, 1978-April 30, 1979. [Multilayer coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.A.

    1979-06-15

    Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less

  3. X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy

    NASA Astrophysics Data System (ADS)

    McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette

    2012-08-01

    Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.

  4. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  5. Origin of stress in radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Menon, Rashmi; Gupta, Vinay; Tan, H. H.; Sreenivas, K.; Jagadish, C.

    2011-03-01

    Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O2) mixture. The as-grown films were found to be stressed over a wide range from -1 × 1011 to -2 × 108 dyne/cm2 that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film.

  6. High rate DC-reactive sputter deposition of Y 2O 3 film on the textured metal substrate for the superconducting coated conductor

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sup; Park, Chan; Ko, Rock-Kil; Shi, Dongqui; Chung, Jun-Ki; Ha, Hong-Soo; Park, Yu-Mi; Song, Kyu-Jeong; Youm, Do-Jun

    2005-10-01

    Y2O3 film was directly deposited on Ni-3at%W substrate by DC reactive sputtering. DC reactive sputtering was carried out using metallic Y target and water vapor for oxidizing the elements of metallic target on the substrate. The detailed conditions of DC reactive sputtering for depositions of Y2O3 films were investigated. The window of water vapor for proper growth of Y2O3 films was determined by sufficient oxidations of the Y2O3 films and the non-oxidation of the target surface, which was required for high rate sputtering. The window turned out to be fairly wide in the chamber used. As the sputtering power was raised, the deposition rate increased without narrowing the window. The fabricated Y2O3 films showed good texture qualities and surface morphologies. The YBCO film deposited directly on the Y2O3 buffered Ni-3at%W substrate showed Tc, Ic (77 K, self field), and Jc (77 K, self field) of 89 K, 64 A/cm and 1.1 MA/cm2, respectively.

  7. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  8. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  9. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  10. Effect of gas flow ratio on the microstructure and mechanical properties of boron phosphide films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jia, Z. C.; Zhu, J. Q.; Jiang, C. Z.; Shen, W. X.; Han, J. C.; Chen, R. R.

    2011-10-01

    Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH 3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.

  11. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  12. Reactive bipolar pulsed dual magnetron sputtering of ZrN films: The effect of duty cycle

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Valerini, D.; Capodieci, L.; Mirenghi, L.; Di Benedetto, F.; Protopapa, M. L.

    2018-01-01

    Zirconium nitride (ZrN) coatings, due to their inherent high hardness, wear and corrosion resistance, as well as the golden color, can be attractive for a wide range of applications, such as mechanical, optical, decorative and biomedical devices. Reactive Bipolar Pulsed Dual Magnetron Sputtering (BPDMS) operating in mid-frequency range is a powerful technique for the deposition of dense coatings, free from morphological defects, at high deposition rate. In fact, the use of mid-frequency voltage reversals allows suppressing arcs and, as a consequence, stabilizing the reactive sputtering process. Despite the success of the dual bipolar process, there are many aspects of this complex process that are not yet well understood, such as the influence of the target voltage waveforms and plasma parameters on the film growth. In order to fill this lack of knowledge, ZrN films were deposited by BPDMS with different voltage waveforms on the Zr targets and the influence of these deposition parameters on the films' stoichiometry as well as on their structural and mechanical properties is investigated in this paper. In particular, it was found that, for duty cycle values below 33%, the hardness of the coating increases up to 31 GPa. The analysis of the chemical composition, performed by XPS, detects an almost constant value of stoichiometry along the depth-profile of each film and the N:Zr ratio increases from 1.06 to 1.20 as the duty cycle decreases. Therefore, when the N:Zr ratio is 1.06 we got a stoichiometric ZrN compound, while for N:Zr equal to 1.20 we obtained a lack of Zr atoms with respect to N atoms. Raman spectroscopy confirms the results of XPS analyzes, since it showed some features related to the structural disorder in the sample grown with the lowest duty cycle.

  13. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  14. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  15. Elementary surface processes during reactive magnetron sputtering of chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidationmore » sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.« less

  16. Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in a reactive gas admixture

    NASA Astrophysics Data System (ADS)

    Polonskyi, Oleksandr; Peter, Tilo; Mohammad Ahadi, Amir; Hinz, Alexander; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2013-07-01

    Using reactive DC sputtering in a gas aggregation cluster source, we show that pulsed discharge gives rise to a huge increase in deposition rate of nanoparticles by more than one order of magnitude compared to continuous operation. We suggest that this effect is caused by an equilibrium between slight target oxidation (during "time-off") and subsequent sputtering of Ti oxides (sub-oxides) at "time-on" with high power impulse.

  17. Fabrication of porous noble metal thin-film electrode by reactive magnetron sputtering.

    PubMed

    Cho, Tae-Shin; Choi, Heonjin; Kim, Joosun

    2013-06-01

    Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.

  18. Process parameter-growth environment-film property relationships for reactive sputter deposited metal (V, Nb, Zr, Y, Au) oxide, nitride, and oxynitride films. Final report, 1 January 1989-30 June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aita, C.R.

    1993-09-30

    The research developed process parameter-growth environment-film property relations (phase maps) for model sputter-deposited transition metal oxides, nitrides, and oxynitrides grown by reactive sputter deposition at low temperature. Optical emission spectrometry was used for plasma diagnostics. The results summarized here include the role of sputtered metal-oxygen molecular flux in oxide film growth; structural differences in highest valence oxides including conditions for amorphous growth; and using fundamental optical absorption edge features to probe short range structural disorder. Eight appendices containing sixteen journal articles are included.

  19. Wettability of Y2O3: A Relative Analysis of Thermally Oxidized, Reactively Sputtered and Template Assisted Nanostructured Coatings

    PubMed Central

    Barshilia, Harish C.; Chaudhary, Archana; Kumar, Praveen; Manikandanath, Natarajan T.

    2012-01-01

    The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited Y2O3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm), which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y2O3 (54 mJ/m2) and thermally oxidized Y-Y2O3 coatings (43 mJ/m2) compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2). PMID:28348296

  20. REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS

    EPA Science Inventory

    The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...

  1. Effects of Mg Doping on the Performance of InGaN Films Made by Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Kuo, Dong-Hau; Li, Cheng-Che; Tuan, Thi Tran Anh; Yen, Wei-Chun

    2015-01-01

    Mg-doped InGaN (Mg-InGaN) films have been deposited directly on Si (100) substrates by radio-frequency reactive sputtering technique with single cermet targets in an Ar/N2 atmosphere. The cermet targets with a constant 5% indium content were made by hot pressing the mixture of metallic In, Ga, and Mg powders and ceramic GaN powder. The Mg-InGaN films had a wurtzite structure with a preferential () growth plane. The SEM images showed that Mg-InGaN films were smooth, continuous, free from cracks and holes, and composed of nanometer-sized grains. As the Mg dopant content in Mg-InGaN increased to 7.7 at.%, the film was directly transformed into p-type conduction without a post-annealing process. It had high hole concentration of 5.53 × 1018 cm-3 and electrical mobility of 15.7 ± 4.2 cm2 V-1 s-1. The over-doping of Mg in InGaN degraded the electrical properties. The bandgap of Mg-InGaN films decreased from 2.92 eV to 2.84 eV, as the Mg content increased from 7.7% to 18.2%. The constructed p-type Mg-InGaN/ n-type GaN diode was used to confirm the realization of the p-type InGaN by sputtering technique.

  2. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    PubMed

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  3. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  4. Synthesis and characterization of sputtered titanium nitride as a nucleation layer for novel neural electrode coatings

    NASA Astrophysics Data System (ADS)

    Sait, R. A.; Cross, R. B. M.

    2017-12-01

    A growing demand for chronically implantable electrodes has led to a search for the most suitable neural electrode interface material. Nobel metals such as platinum (Pt) are inadequate for electrode/neuron interfaces at small scales due to their poor electrochemical properties, low charge injection and high charge density per unit area. Titanium nitride (TiN) has been implemented in neural electrodes application due to its outstanding properties. In this work, TiNx films were deposited by non-reactive radio frequency (RF) magnetron sputtering towards the development of a novel TiN nanowires (NWs) neural interface. Although, there is substantial work on this material, its growth using non-reactive RF magnetron sputtering has not been reported previously and optimised towards the growth of TiN NWs and their use in neural interface applications. The sputtering parameters of RF power and argon (Ar) flow rate were varied in order to investigate their effects on the structural, electrical and electrochemical properties of the TiN films. A dense film morphology was observed in the scanning electron microscopy (SEM) images of TiN thin films showing a columnar structure. The film preferential orientation was changed between (200) and (111) with Ar flow rate due to the variation of the kinetic energy (KE) of the sputtered atoms. The crystallites size obtained were in the range of 13-95 nm. Surface roughness was found to increase from 0.69 to 1.95 nm as Ar flow rate increased. TiNx films showed a good electrical resistivity of 228 μΩ cm. Stoichiometry was found to vary with sputtering conditions in which the nitrogen content was found to deplete from the film at low Ar flow rate. The electrochemical behaviour of TiN films were characterised and the highest capacitance value obtained was 0.416 mF/cm2. From the results, it can be suggested that TiN thin film can be easily optimised to act as a nucleation layer for the growth of nanowires.

  5. In-situ x-ray studies of compositional control during synthesis of LaGaO 3 by radio frequency-magnetron sputtering

    DOE PAGES

    Highland, Matthew J.; Fong, Dillon D.; Ju, Guangxu; ...

    2015-08-28

    In-situ synchrotron x-ray scattering has been used to monitor and control the synthesis of LaGaO 3 epitaxial thin films by 90° off-axis RF-magnetron sputtering. We compared films deposited from a single LaGaO 3 source with those prepared by alternating deposition from separate La 2O 3 and Ga 2O 3 sources. The conditions for growth of stoichiometric films were determined by real-time monitoring of secondary phase formation as well as from features in the diffuse scatter from island formation during synthesis. Our results provide atomic-scale insight into the mechanisms taking place during reactive epitaxial growth and demonstrate how in-situ techniques canmore » be utilized to achieve stoichiometric control in ultrathin films.« less

  6. Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Noorprajuda, Marsetio; Ohtsuka, Makoto; Fukuyama, Hiroyuki

    2018-04-01

    The effect of oxygen partial pressure (PO2) on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC) reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (-c)-polarity to aluminum (+c)-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002) and (10-12) X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.

  7. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  8. Influence of hysteresis effect on properties of reactively sputtered TiAlSiN films

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Li, Guang; Xia, Yuan

    2018-02-01

    This article reports on the hysteresis effect in TiAlSiN films prepared by an intermediate frequency magnetron. The discharge voltages for different metallic alloy targets varying with nitrogen flow rate were systematically investigated, under a constant pressure provided by sputtering gas. The hysteresis transition was introduced by the sudden changes in sputtering rate, fraction of compound formation, phase composition and mechanical properties. The result was shown that: the initial growth rate aD in metallic mode was 4 times faster than that in supersaturated state. The optimized stoichiometric TiAl(Si)Nx=1 films containing 50 at.% N were founded in the transition region. The discussion on the plasma characteristics caused by hysteresis process showed that the TiN(111) texture could be increased by applying higher particle bombarding energy. The hardness of TiAlSiN film was strongly influenced by the orientation, which depended on the loading history of nitrogen. The superior TiAlSiN film with hardness 33 GPa could be prepared during the nitrogen unloading for same nitrogen flow rates.

  9. [Effect of vacuum deposition technology on the metal-porcelain bond strength of a new type of CO-CR ceramic and framework dental alloy].

    PubMed

    Wu, Jun-ling; Chao, Yong-lie; Ji, Ping; Gao, Xu

    2007-10-01

    To investigate the effect of a new engineering technique of vacuum deposition-plasma magnetron reactive sputter deposition technique on the metal-porcelain bond strength of a new type of Co-Cr ceramic and framework dental alloy. Before porcelain painted on the specimens, the standardized metal strips made from DA9-4 dental alloy were coated with a thin Al2O3 ceramic film by plasma magnetron reactive sputter deposition technique. The conformation, structure and thickness of the ceramic film were analyzed. The specimens for three-point bending test made from DA9-4 alloy and VMK95 porcelain were used for metal-porcelain bond strength measurement, in the same time the interface of metal-porcelain and element distribution were also observed. The flexural bonding strength of metal-porcelain of sputtering group and control group were (180.55+/-16.45) MPa and (143.80+/-24.49) MPa. The flexural bonding strength of metal-porcelain of sputtering group was higher than control group significantly through statistical analysis (P<0.01). The plasma magnetron reactive sputter deposition technique has a positive effect in improving the bonding strength of DA9-4 dental alloy and ceramic.

  10. Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Her; Lin, Ruei-De; Cherng, Bo-Ruei; Cherng, Jyh-Shiarn

    2018-05-01

    The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films are systematically studied. Those films were reactively sputtered in various sputtering modes using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in an amorphous matrix, which undergoes an abnormal grain growth upon annealing at 800 °C. At 500 °C, the measured ionic conductivity of this annealed film is higher, by about a half order of magnitude, than those of its poisoned-mode counterparts, which are in turn significantly higher than that of the YSZ bulk by about two orders of magnitude. The abnormally-grown ultra-large grain size of the film deposited in the transition mode and then annealed is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.

  11. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  12. Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Shaltens, R. K. (Inventor)

    1973-01-01

    The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.

  13. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  14. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  15. Threshold voltage tuning in AlGaN/GaN HFETs with p-type Cu2O gate synthesized by magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Liuan; Xie, Tian; Wang, Xinzhi; Liu, Xinke; Ao, Jin-Ping

    2018-04-01

    In present study, copper oxide films were prepared at different sputtering powers (10-100 W) using magnetron reactive sputtering. The crystalline structure, surface morphologies, composition, and optical band gap of the as-grown films are dependent on sputtering power. As the sputtering power decreasing from 100 to 10 W, the composition of films changed from CuO to quasi Cu2O domination. Moreover, when the sputtering power is 10 W, a relative high hole carrier density and high-surface-quality quasi Cu2O thin film can be achieved. AlGaN/GaN HFETs were fabricated with the optimized p-type quasi Cu2O film as gate electrode, the threshold voltage of the device shows a 0.55 V positive shift, meanwhile, a lower gate leakage current, a higher ON/OFF drain current ratio of ∼108, a higher electron mobility (1465 cm2/Vs), and a lower subthreshold slope of 74 mV/dec are also achieved, compared with the typical Ni/Au-gated HFETs. Therefore, Cu2O have a great potential to develop high performance p-type gate AlGaN/GaN HFETs.

  16. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.

    2018-06-01

    Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.

  17. Effect of annealing on Curie temperature and phase transition in La{sub 0.55}Sr{sub 0.08}Mn{sub 0.37}O{sub 3} epitaxial films grown on SrTiO{sub 3} (100) substrates by reactive radio frequency magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichinose, T.

    2016-08-15

    Mn-poor LaSrMnO{sub 3} (LSMO) epitaxial films were grown on SrTiO{sub 3} (100) substrates by radio frequency magnetron sputtering in an argon and oxygen gas mix, and then the samples were annealed in air at various temperatures (T{sub a}). 2 theta-chi X-ray diffraction mapping, nano-beam diffraction analysis through transmission electron microscopy, and electron back scatter diffraction through scanning electron microscopy revealed that the crystal symmetry of the LSMO films changed from monoclinic/orthorhombic to rhombohedral on annealing in air. Curie temperature (T{sub C}) of the LSMO films was found to increase with increasing T{sub a}, and become higher than the room temperaturemore » at T{sub a} ≥ 861 °C, indicating that the cause of these changes was the filling of oxygen and the transition of the crystal symmetry into rhombohedral. - Highlights: •Mn-poor LSMO changed from monoclinic/orthorhombic to rhombohedral by oxygen supply. •Mn-poor LSMO was increased T{sub C} by changed crystal symmetry, and it showed T{sub C} above RT. •Annealed in air effectively supplied O{sub 2} more than O{sub 2} gas during sputtering •EBSD is useful to evaluate crystal symmetry of complex oxide film from the substrate.« less

  18. Enhanced electrical and noise properties of nanocomposite vanadium oxide thin films by reactive pulsed-dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.

    2012-06-01

    Thin films of VOx (1.3 ≤ x ≤ 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VOx samples. The resistivity of nanotwinned VOx films ranged from 4 mΩ.cm to 0.6 Ω.cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VOx samples using the Hooge-Vandamme relation. These VOx films are comparable or surpass commercial VOx films deposited by ion beam sputtering.

  19. Deposition of the low resistive ITO-films by means of reactive magnetron sputtering of the In/Sn target on the cold substrate

    NASA Astrophysics Data System (ADS)

    Zhidik, Y. S.; Troyan, P. E.; Baturina, E. V.; Korzhenko, D. V.; Yurjev, Y. N.

    2016-06-01

    Detailed information on the deposition technology of the low-resistive ITO-films in oxygen-containing media by magnetron reactive sputtering from the In(90%)/Sn(10%) target on the cold substrate is given. Developed technology allows deposition ITO-films with sheet resistance 2-3 Ω/□, transparency higher than 90%. Developed technology is notable for high reproducibility of results and is compatible with production technology of semiconductor devices of optoelectronics.

  20. Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.; Greczynski, G.; Jensen, J.

    2012-07-01

    Ion mass spectrometry was used to investigate discharges formed during high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a graphite target in Ar and Ar/N{sub 2} ambient. Ion energy distribution functions (IEDFs) were recorded in time-averaged and time-resolved mode for Ar{sup +}, C{sup +}, N{sub 2}{sup +}, N{sup +}, and C{sub x}N{sub y}{sup +} ions. An increase of N{sub 2} in the sputter gas (keeping the deposition pressure, pulse width, pulse frequency, and pulse energy constant) results for the HiPIMS discharge in a significant increase in C{sup +}, N{sup +}, and CN{sup +} ion energies.more » Ar{sup +}, N{sub 2}{sup +}, and C{sub 2}N{sup +} ion energies, in turn, did not considerably vary with the changes in working gas composition. The HiPIMS process showed higher ion energies and fluxes, particularly for C{sup +} ions, compared to DCMS. The time evolution of the plasma species was analyzed for HiPIMS and revealed the sequential arrival of working gas ions, ions ejected from the target, and later during the pulse-on time molecular ions, in particular CN{sup +} and C{sub 2}N{sup +}. The formation of fullerene-like structured CN{sub x} thin films for both modes of magnetron sputtering is explained by ion mass-spectrometry results and demonstrated by transmission electron microscopy as well as diffraction.« less

  1. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  2. Low-temperature formation of c-axis-oriented aluminum nitride thin films by plasma-assisted reactive pulsed-DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi

    2018-01-01

    The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.

  3. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

    DOE PAGES

    Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...

    2015-05-27

    Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less

  4. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  5. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    PubMed

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, M. A.; Centro Nacional de Investigaciones Metalurgicas; Vazquez, L.

    2006-01-15

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values {alpha}{sub loc}=1.0 and {beta}{sub loc}=0.39, and global exponent values {alpha}=1.7 and {beta}=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability duemore » to nonlocal shadowing effects that take place during thin-film growth by sputtering.« less

  7. Investigation of optical properties of ternary Zn-Ti-O thin films prepared by magnetron reactive co-sputtering

    NASA Astrophysics Data System (ADS)

    Netrvalová, Marie; Novák, Petr; Šutta, Pavol; Medlín, Rostislav

    2017-11-01

    Zn-Ti-O thin films with different concentrations of titanium were deposited by reactive magnetron co-sputtering in a reactive Ar/O2 atmosphere from zinc and titanium targets. It was found that with increasing Ti content the structure of the films gradually changes from a fully crystalline pure ZnO wurtzite structure with a strongly preferred columnar orientation to an amorphous Zn-Ti-O material with 12.5 at.% Ti. The optical parameters (spectral refractive index and extinction coefficient, optical band gap) and thickness of the films were analysed by the combined evaluation of ellipsometric measurements and measurements of transmittance on a UV-vis spectrophotometer. For evaluation of optical parameters was used Cody-Lorentz dispersion model.

  8. Temperature characteristics of SAW resonators on Sc0.26Al0.74N/polycrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sinusía Lozano, M.; Chen, Z.; Williams, Oliver A.; Iriarte, G. F.

    2018-07-01

    Surface acoustic wave (SAW) resonators have been fabricated on a 2 μm scandium aluminium nitride (ScAlN) film deposited by means of pulsed-DC reactive magnetron sputtering on a 5.8 μm polycrystalline diamond substrate. Thin film characterization comprised of the assessment of the thin film texture by means of x-ray diffraction (XRD) measurements, reporting highly c-axis oriented ScAlN thin films with a full width at half maximum (FWHM) of the ω-θ scans below 2°. Compositional and piezoelectric analyses of the thin films synthesized with the sputtering parameters used in this work, namely a sputtering power of 700 W and a synthesis pressure of 0.53 Pa, have reported a thin film composition of Sc0.26Al0.74N together with a piezoelectric d33 constant of ‑11 pC/N. Finally, a SAW resonator has been characterized using a vector network analyser (VNA) under various substrate temperature conditions with two iterations. The resulting temperature coefficient of frequency (TCF) values show a highly linear behaviour within two temperature ranges, namely from 20 K to room temperature (300 K) (‑12.5 ppm/K) as well as from 300 K up to 450 K (‑34.6 ppm/K).

  9. Effect of SiN x diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering.

    PubMed

    Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  10. Internal stress and opto-electronic properties of ZnO thin films deposited by reactive sputtering in various oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Tuyaerts, Romain; Poncelet, Olivier; Raskin, Jean-Pierre; Proost, Joris

    2017-10-01

    In this article, we propose ZnO thin films as a suitable material for piezoresistors in transparent and flexible electronics. ZnO thin films have been deposited by DC reactive magnetron sputtering at room temperature at various oxygen partial pressures. All the films have a wurtzite structure with a strong (0002) texture measured by XRD and are almost stoichiometric as measured by inductively coupled plasma optical emission spectroscopy. The effect of oxygen concentration on grain growth has been studied by in-situ multi-beam optical stress sensor, showing internal stress going from 350 MPa to -1.1 GPa. The transition between tensile and compressive stress corresponds to the transition between metallic and oxidized mode of reactive sputtering. This transition also induces a large variation in optical properties—from absorbent to transparent, and in the resistivity—from 4 × 10 - 2 Ω .cm to insulating. Finally, the piezoresistance of the thin film has been studied and showed a gauge factor (ΔR/R)/ɛ comprised between -5.8 and -8.5.

  11. A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model

    NASA Astrophysics Data System (ADS)

    Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.

    2017-05-01

    The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.

  12. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Särhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition ratemore » from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.« less

  13. Low temperature fabrication of VO x thin films for uncooled IR detectors by direct current reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Wang, Xingzhi; He, Shaowei; Huang, Ying; Yi, Xinjian

    2008-03-01

    Vanadium oxide films have been fabricated on Si3N4-film-coated silicon substrates by direct current reactive magnetron sputtering method. Conditions of deposition are optimized making use of parameters such as sputtering time, dc power, oxygen partial pressure and substrate temperature. X-ray diffraction indicates that the film is a mixture of VO2, V2O3, and V3O5. Four-probe measurement shows that the VOx thin film owns high temperature coefficient of resistance (TCR ∼-2.05%/°C) and suitable square resistance 18.40 kΩ/□ (measured at 25 °C), indicating it is a well candidate material for uncooled IR detectors. In addition, IR absorption in the wavelength of 2-16 μm has been characterized. It is worth noting that the films are sputtered at a relatively low temperature of 210 °C in a controlled Ar/O2 atmosphere. Compared to traditional craft, this method needs no post-anneal at high temperature (400-500 °C).

  14. Limits of carrier mobility in Sb-doped SnO{sub 2} conducting films deposited by reactive sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissig, B., E-mail: Benjamin.bissig@empa.ch; Jäger, T.; Tiwari, A. N.

    2015-06-01

    Electron transport in Sb-doped SnO{sub 2} (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm{sup 2} V{sup −1} s{sup −1} to 6 cm{sup 2} V{sup −1} s{sup −1} when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10{sup −3} Ω cm corresponding to the mobility of 12 cm{sup 2} V{sup −1} s{sup −1}more » which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO{sub 2} films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.« less

  15. Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Yasui, I.

    2006-05-01

    Vanadium oxide VOx films were deposited by reactive RF magnetron sputtering by applying a substrate bias, in which the Ar ions in plasma impacted the growing film surface. The vanadium valence of the VOx film decreased when the substrate negative bias voltage was increased. The VO2 film was successfully deposited at a substrate temperature of 400 °C and with a bias voltage of -50 to -80 V. The transition temperatures of the VO2 films with a substrate bias of -50 and -80 V were about 56 °C and 44 °C, respectively.

  16. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  17. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  18. Hybrid absorbers composed of Fe3O4 thin film and magnetic composite sheet and enhancement of conduction noise absorption on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo

    2015-05-01

    In response to develop wide-band noise absorbers with an improved low-frequency performance, this study investigates hybrid absorbers that are composed of conductive Fe3O4 thin film and magnetic composite sheets. The Fe3O4 films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ωm. Rubber composites with flaky Fe-Si-Al particles of a high permeability and high permittivity are used as the magnetic sheet functioning as an electromagnetic shield barrier. Microstrip lines with a characteristic impedance of 50 Ω are used to measure the noise absorbing properties. For the Fe3O4 film with a low surface resistance and covered by the magnetic sheet, approximately 80% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or Fe3O4 film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the Fe3O4 film through increased electric field strength bounded by the upper magnetic composite sheet. The noise absorption is further enhanced through increasing the electrical conductivity of the film containing more conductive phase (Fe3O4 + Fe), which can be prepared in a reduced oxygen partial pressure during reactive sputtering.

  19. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less

  20. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode

    NASA Astrophysics Data System (ADS)

    Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.

    2015-02-01

    Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.

  1. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    NASA Astrophysics Data System (ADS)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  2. Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter; Mráz, Stanislav; Schneider, Jochen M.; Mussenbrock, Thomas

    2018-05-01

    Direct current magnetron sputtering of Al by Ar and Ar/N2 low pressure plasmas was characterized by experimental and theoretical means in a unified consideration. Experimentally, the plasmas were analyzed by optical emission spectroscopy, while the film deposition rate was determined by weight measurements and laser optical microscopy, and the film composition by energy dispersive x-ray spectroscopy. Theoretically, a global particle and power balance model was used to estimate the electron temperature T e and the electron density n e of the plasma at constant discharge power. In addition, the sputtering process and the transport of the sputtered atoms were described using Monte Carlo models—TRIDYN and dsmcFoam, respectively. Initially, the non-reactive situation is characterized based on deposition experiment results, which are in agreement with predictions from simulations. Subsequently, a similar study is presented for the reactive case. The influence of the N2 addition is found to be twofold, in terms of (i) the target and substrate surface conditions (e.g., sputtering, secondary electron emission, particle sticking) and (ii) the volumetric changes of the plasma density n e governing the ion flux to the surfaces (e.g., due to additional energy conversion channels). It is shown that a combined experimental/simulation approach reveals a physically coherent and, in particular, quantitative understanding of the properties (e.g., electron density and temperature, target surface nitrogen content, sputtered Al density, deposited mass) involved in the deposition process.

  3. Research on optical reflectance and infrared emissivity of TiNx films depending on sputtering pressure

    NASA Astrophysics Data System (ADS)

    Lu, Linlin; Luo, Fa; Huang, Zhibin; Zhou, Wancheng; Zhu, Dongmei

    2018-06-01

    TiNx thin films were deposited on glass substrates using direct current reactive magnetron sputtering, and effects of sputtering pressure on optical reflectance and infrared emissivity of TiNx films were studied. The results indicated that sputtering pressure was a key factor to affect the optical reflectance and infrared emissivity of TiNx films in this study. When sputtering pressure varied from 0.3 Pa to 1.2 Pa, an average reflectance of less than 25% in the visible range was obtained for the prepared films. With the working pressure rise, the resistivity of TiNx films went up. Meanwhile, the infrared emissivity of the films increased. As sputtering pressure was 0.3 Pa, the infrared emissivity in the wavelength of 3-5 and 8-14 μm of TiNx film with dark color and low optical reflectance was less than 0.2.

  4. Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System

    PubMed Central

    Liu, Fang-Cheng; Li, Jyun-Yong; Chen, Tai-Hong; Chang, Chun-How; Lee, Ching-Ting; Hsiao, Wei-Hua; Liu, Day-Shan

    2017-01-01

    Ag-ZnO co-sputtered films at various atomic ratios of Ag (Ag/(Ag + Zn) at.%) were prepared by a radio frequency magnetron cosputtering system, using the co-sputtered targets of Ag and ZnO. The activation of the Ag acceptors (AgZn) and the formation of the Ag aggregations (Ag0) in the ZnO matrix were investigated from XRD, Raman scattering, and XPS measurements. The Ag-ZnO co-sputtered film behaving like a p-type conduction was achievable after annealing at 350 °C under air ambient for 1 h. PMID:28773159

  5. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  6. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  7. Multilayer Anti-Reflective Coating Development for PMMA Fresnel Lenses

    DTIC Science & Technology

    2010-06-07

    been sputter deposited on UV transparent polymethylmethacrylate (UVT-PMMA) windows. The amorphous coatings are deposited using reactive sputtering in a...SUBJECT TERMS Anti-reflective coatings, Fresnel lens, polymethylmethacrylate , PMMA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...high quality dielectric materials deposited on a variety of substrates including polymethylmethacrylate (PMMA)  Highly amorphous films achieved

  8. Au doping effects on electrical and optical properties of vanadium dioxides

    NASA Astrophysics Data System (ADS)

    Zhu, YaBin; He, Fan; Na, Jie

    2012-03-01

    Vanadium dioxides were fabricated on normal glass substrates using reactive radio frequency (RF) magnetron sputtering. The oxygen flow volume and annealed temperatures as growth parameters are systematically investigated. The electrical and optical properties of VO2 and Au:VO2 thin films with different growth conditions are discussed. The semiconductor-metal phase transition temperature decreased by ˜10°C for the sample with Au doping compared to the sample without Au doping. However, the optical transmittance of Au:VO2 thin films is much lower than that of bare VO2. These results show that Au doping has a marked effect on the electrical and optical properties.

  9. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Fu, Ganhua; Polity, Angelika; Volbers, Niklas; Meyer, Bruno K.; Mogwitz, Boris; Janek, Jürgen

    2006-12-01

    FeS polycrystalline thin films were prepared on float glass at 500°C by radio-frequency reactive sputtering. The influence of vacuum annealing on the metal-semiconductor transition of FeS films was investigated. It has been found that with the increase of the annealing temperature from 360to600°C, the metal-semiconductor transition temperature of FeS films first decreases and then increases, associated with first a reduction and then an enhancement of hysteresis width. The thermal stress is considered to give rise to the abnormal change of the metal-semiconductor transition of the FeS film during annealing.

  10. Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing.

    PubMed

    Johnson, Grant E; Moser, Trevor; Engelhard, Mark; Browning, Nigel D; Laskin, Julia

    2016-11-07

    About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electrocatalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry. The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar for all of the NPs. The difference in reactivity between the NPs is attributed to their Ta/C ratios. Collectively, the findings presented herein indicate that reactive magnetron sputtering and gas aggregation combined with ion soft landing offer a promising physical approach for the synthesis of organic-inorganic hybrid NPs that have potential as low-cost durable substitutes for precious metals in catalysis.

  11. Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films

    NASA Astrophysics Data System (ADS)

    Baoshan, Jia; Yunhua, Wang; Lu, Zhou; Duanyuan, Bai; Zhongliang, Qiao; Xin, Gao; Baoxue, Bo

    2012-08-01

    Amorphous GaAs1-xNx (a-GaAs1-xNx) thin films have been deposited at room temperature by a reactive magnetron sputtering technique on glass substrates with different sputtering pressures. The thickness, nitrogen content, carrier concentration and transmittance of the as-deposited films were determined experimentally. The influence of sputtering pressure on the optical band gap, refractive index and dispersion parameters (Eo, Ed) has been investigated. An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-deposited films. The refractive index dispersions of the as-deposited a-GaAs1-xNx films fitted well to the Cauchy dispersion relation and the Wemple model.

  12. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitelaru, Catalin; National Institute for Optoelectronics, Magurele-Bucharest, RO 077125; Lundin, Daniel

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  13. Role of copper/vanadium on the optoelectronic properties of reactive RF magnetron sputtered NiO thin films

    NASA Astrophysics Data System (ADS)

    Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan

    2018-04-01

    In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.

  14. Study on re-sputtering during CN{sub x} film deposition through spectroscopic diagnostics of plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Peipei; Yang, Xu; Li, Hui

    2015-10-15

    A nitrogen-carbon plasma was generated during the deposition of carbon nitride (CN{sub x}) thin films by pulsed laser ablation of a graphite target in a discharge nitrogen plasma, and the optical emission of the generated nitrogen-carbon plasma was measured for the diagnostics of the plasma and the characterization of the process of CN{sub x} film deposition. The nitrogen-carbon plasma was recognized to contain various species including nitrogen molecules and molecular ions excited in the ambient N{sub 2} gas, carbon atoms and atomic ions ablated from the graphite target and CN radicals. The temporal evolution and spatial distribution of the CNmore » emission and their dependence on the substrate bias voltage show two groups of CN radicals flying in opposite directions. One represents the CN radicals formed as the products of the reactions occurring in the nitrogen-carbon plasma, revealing the reactive deposition of CN{sub x} film due to the reactive expansion of the ablation carbon plasma in the discharge nitrogen plasma and the effective formation of gaseous CN radicals as precursors for CN{sub x} film growth. The other one represents the CN radicals re-sputtered from the growing CN{sub x} film by energetic plasma species, evidencing the re-sputtering of the growing film accompanying film growth. And, the re-sputtering presents ion-induced sputtering features.« less

  15. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.

    2010-02-01

    Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  16. Effect of substrate temperature on thermochromic vanadium dioxide thin films sputtered from vanadium target

    NASA Astrophysics Data System (ADS)

    Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.

    2018-05-01

    Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.

  17. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  18. The structure of biocoats based on TiO2 doped with nitrogen study

    NASA Astrophysics Data System (ADS)

    Boytsova, E. L.; Leonova, L. A.; Pichugin, V. F.

    2018-04-01

    Nitrogen-doped titanium dioxide (N-TiO2) nanofilms were deposited by reactive magnetron sputtering under different bias voltage. The mode of sputtering influences to formation and properties of titanium films. X-ray diffraction (XRD) was used to study the phase transition and crystallinity of the nanofilms. A technique of layer-by-layer measurement of Raman scattering from nanostructured titanium dioxide films based on a preliminary sputtering of the films by argon beam under an angle of 45° and less has been developed. Experimentally confirmed low dissolution rate of the coating in NaCl saline (0.9%).

  19. Correlation between Optical Properties and Chemical Composition of Sputter-Deposited Germanium Oxide (GEOX) Films (Postprint)

    DTIC Science & Technology

    2014-03-18

    the GeOx films. The measured index of refraction ( n ) at a wavelength (k) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior...in n (k = 550 nm) to 2.62 and occurs at Γ = 0.25. Finally n drops to 1.60 for U = 0.50–1.00, where the films become GeO2. A detailed correlation...between Γ n , k and stoichiometry in DC sputtered GeOx films is presented and discussed. 15. SUBJECT TERMS ellipsometry, reactive sputtering, x-ray

  20. In situ stress evolution during magnetron sputtering of transition metal nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadias, G.; Guerin, Ph.

    2008-09-15

    Stress evolution during reactive magnetron sputtering of TiN, ZrN, and TiZrN layers was studied using real-time wafer curvature measurements. The presence of stress gradients is revealed, as the result of two kinetically competing stress generation mechanisms: atomic peening effect, inducing compressive stress, and void formation, leading to a tensile stress regime predominant at higher film thickness. No stress relaxation is detected during growth interrupt in both regimes. A change from compressive to tensile stress is evidenced with increasing film thickness, Ti content, sputtering pressure, and decreasing bias voltage.

  1. Corrosion studies of DC reactive magnetron sputtered alumina coating on 304 SS

    NASA Astrophysics Data System (ADS)

    Thangaraj, Baskar; Mahadevan, Krishnan

    2017-12-01

    Aluminum oxide films on SS 304 deposited by DC reactive magnetron sputtering technique were studied with respect to the composition of the sputter gas (Ar:O2), gas pressure, substrate temperature, current etc. to achieve good insulating films with high corrosion resistance. The films were characterized by XRD and SEM techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were made under static conditions in order to evaluate the corrosion performance of the alumina-coated SS 304 for various immersion durations in 0.5 M and 1 M NaCl solution. Alumina-coated SS 304 has low corrosion value of 0.4550 and 1.1090MPY for 24 h immersion time in both solutions. The impedance plots for the alumina coated SS 304 in 1 M NaCl solution at different durations are slightly different to when compared to its immersion in 0.5 M NaCl solutions and are composed of two depressed semi circles. For the alumina coated film, the impedance spectrum decreased, when immersion time increased.

  2. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width atmore » half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.« less

  3. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  4. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  5. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  6. Silicon Micromachining for Terahertz Component Development

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore J.; Jung-Kubiak, Cecile; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Mehdi, Imran

    2013-01-01

    Waveguide component technology at terahertz frequencies has come of age in recent years. Essential components such as ortho-mode transducers (OMT), quadrature hybrids, filters, and others for high performance system development were either impossible to build or too difficult to fabricate with traditional machining techniques. With micromachining of silicon wafers coated with sputtered gold it is now possible to fabricate and test these waveguide components. Using a highly optimized Deep Reactive Ion Etching (DRIE) process, we are now able to fabricate silicon micromachined waveguide structures working beyond 1 THz. In this paper, we describe in detail our approach of design, fabrication, and measurement of silicon micromachined waveguide components and report the results of a 1 THz canonical E-plane filter.

  7. Effect of Target Composition and Sputtering Deposition Parameters on the Functional Properties of Nitrogenized Ag-Permalloy Flexible Thin Films Deposited on Polymer Substrates

    PubMed Central

    Wang, Qun; Jin, Xin

    2018-01-01

    We report the first results of functional properties of nitrogenized silver-permalloy thin films deposited on polyethylene terephthalic ester {PETE (C10H8O4)n} flexible substrates by magnetron sputtering. These new soft magnetic thin films have magnetization that is comparable to pure Ni81Fe19 permalloy films. Two target compositions (Ni76Fe19Ag5 and Ni72Fe18Ag10) were used to study the effect of compositional variation and sputtering parameters, including nitrogen flow rate on the phase evolution and surface properties. Aggregate flow rate and total pressure of Ar+N2 mixture was 60 sccm and 0.55 Pa, respectively. The distance between target and the substrate was kept at 100 mm, while using sputtering power from 100–130 W. Average film deposition rate was confirmed at around 2.05 nm/min for argon atmosphere and was reduced to 1.8 nm/min in reactive nitrogen atmosphere. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and contact angle measurements were used to characterize the functional properties. Nano sized character of films was confirmed by XRD and SEM. It is found that the grain size was reduced by the formation of nitride phase, which in turns enhanced the magnetization and lowers the coercivity. Magnetic field coupling efficiency limit was determined from 1.6–2 GHz frequency limit. The results of comparable magnetic performance, lowest magnetic loss, and highest surface free energy, confirming that 15 sccm nitrogen flow rate at 115 W is optimal for producing Ag-doped permalloy flexible thin films having excellent magnetic field coupling efficiency. PMID:29562603

  8. Electric tunable behavior of sputtered lead barium zirconate thin films

    NASA Astrophysics Data System (ADS)

    Wu, Lin-Jung; Wu, Jenn-Ming; Huang, Hsin-Erh; Bor, Hui-Yun

    2007-02-01

    Lead barium zirconate (PBZ) films were grown on Pt /Ti/SiO2/Si substrates by rf-magnetron sputtering. The sputtered PBZ films possess pure perovskite phase, uniform microstructure, and excellent tunable behaviors. The tunability and loss tangent of sputtered PBZ films depend greatly on the oxygen mixing ratio (OMR). The optimal dielectric tunable behavior occurs in the PBZ films sputtered at 10% OMR. The sputtered PBZ film (10% OMR) possesses a value of figure of merit of 60, promising for frequency-agile applications. Bulk acoustic waves induced by electromechanical coupling occur at 2.72GHz, which is useful in fabricating filters and related devices in the microwave range.

  9. The structure and properties of pulsed dc magnetron sputtered nanocrystalline TiN films for electrodes of alkali metal thermal-to-electric conversion systems.

    PubMed

    Chun, Sung-Yong

    2013-03-01

    Titanium nitride films used as an important electrode material for the design of alkali metal thermal-to-electric conversion (AMTEC) system have been prepared using dc (direct current) and asymmetric-bipolar pulsed dc magnetron sputtering. The pulse frequency and the duty cycle were varied from 5 to 50 kHz and 50 to 95%, respectively. The deposition rate, grain size and resistivity of pulsed dc sputtered films were decreased when the pulse frequency increased, while the nano hardness of titanium nitride films increased. We present in detail coatings (e.g., deposition rate, grain size, prefer-orientation, resistivity and hardness). Our studies show that titanium nitride coatings with superior properties can be prepared using asymmetric-bipolar pulsed dc sputtering.

  10. Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz

    2013-01-15

    The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inertmore » gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.« less

  11. Tribological characterization of TiN coatings prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.

  12. Optical models for radio-frequency-magnetron reactively sputtered AlN films

    NASA Astrophysics Data System (ADS)

    Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.

    2005-10-01

    The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.

  13. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-06-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  14. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  15. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering

    NASA Astrophysics Data System (ADS)

    Müllerová, Jarmila; Šutta, Pavol; Medlín, Rostislav; Netrvalová, Marie; Novák, Petr

    2017-12-01

    In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of ZnTiO3 perovskite thin films deposited on glass by reactive magnetron co-sputtering. The members of the series differ by the titanium content that was revealed as an origin of the changes not only in structure but also in dispersive optical properties. Low porosity has been discovered and calculated using the Bruggeman effective medium approximation. An apparent blue-shift of the optical band gap energies with increasing titanium content was observed. The observed band gap engineering is a good prospective for eg optoelectronic and photocatalytic applications of ZnTiO3.

  16. Plasma deposition and surface modification techniques for wear resistance

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1982-01-01

    The ion-assisted or plasma coating technology is discussed as it applies to the deposition of hard, wear resistant refractory compound films. Of the many sputtering and ion plating modes and configurations the reactive magnetron sputtering and the reactive triode ion plating techniques are the preferred ones to deposit wear resistant coatings for tribological applications. Both of these techniques incorporate additional means to enhance the ionization efficiency and chemical reaction to precision tailor desirable tribological characteristics. Interrelationships between film formation, structure, and ribological properties are strictly controlled by the deposition parameters and the substrate condition. The enhanced ionization contributes to the excellent adherence and coherence, reduced internal stresses and improved structural growth to form dense, cohesive, equiaxed grain structure for improved wear resistance and control.

  17. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  18. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  19. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  20. Initial deposition of calcium phosphate ceramic on polystyrene and polytetrafluoroethylene by rf magnetron sputtering deposition

    NASA Astrophysics Data System (ADS)

    Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.

    2003-03-01

    Calcium phosphate (CaP) coatings can be applied to improve the biological performance of polymeric medical implants. A strong interfacial bond between ceramic and polymer is required for clinical applications. Because the chemical structure of an interface plays an important role in the adhesion of a coating, we studied the formation of the interface between CaP and polystyrene (PS) and polytetrafluoroethylene (PTFE). The coating was deposited in a radio frequency (rf) magnetron sputtering deposition system. Prior to the deposition, some samples received an oxygen plasma pretreatment. We found that the two substrates show a strongly different reactivity towards CaP. On PS a phosphorus and oxygen enrichment is present at the interface. This is understood from POx complexes that are able to bind to the PS. The effects of the plasma pretreatment are overruled by the deposition process itself. On PTFE, a calcium enrichment and an absence of phosphorus is found at the interface. The former is the result of CaF2-like material being formed at the interface. The latter may be the result of phosphorus reacting with escaping fluorine to a PF3 molecule, which than escapes from the material as a gas molecule. We found that the final structure of the interface is mostly controlled by the bombardment of energetic particles escaping either from the plasma or from the sputtering target. The work described here can be used to understand and improve the adhesion of CaP coatings deposited on medical substrates.

  1. Discontinuous model with semi analytical sheath interface for radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Miyashita, Masaru

    2016-09-01

    Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.

  2. Sputter-deposited WO x and MoO x for hole selective contacts

    DOE PAGES

    Bivour, Martin; Zähringer, Florian; Ndione, Paul F.; ...

    2017-09-21

    Here, reactive sputter deposited tungsten and molybdenum oxide (WO x, MoO x) thin films are tested for their ability to form a hole selective contact for Si wafer based solar cells. A characterization approach based on analyzing the band bending induced in the c-Si absorber and the external and implied open-circuit voltage of test structures was used. It is shown that the oxygen partial pressure allows to tailor the selectivity to some extent and that a direct correlation between induced band bending and hole selectivity exists. Although the selectivity of the sputtered films is inferior to the reference films depositedmore » by thermal evaporation, these results demonstrate a good starting point for further optimizations of sputtered WO x and MoO x towards higher work functions to improve the hole selectivity.« less

  3. Sputter-deposited WO x and MoO x for hole selective contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bivour, Martin; Zähringer, Florian; Ndione, Paul F.

    Here, reactive sputter deposited tungsten and molybdenum oxide (WO x, MoO x) thin films are tested for their ability to form a hole selective contact for Si wafer based solar cells. A characterization approach based on analyzing the band bending induced in the c-Si absorber and the external and implied open-circuit voltage of test structures was used. It is shown that the oxygen partial pressure allows to tailor the selectivity to some extent and that a direct correlation between induced band bending and hole selectivity exists. Although the selectivity of the sputtered films is inferior to the reference films depositedmore » by thermal evaporation, these results demonstrate a good starting point for further optimizations of sputtered WO x and MoO x towards higher work functions to improve the hole selectivity.« less

  4. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  5. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with thismore » microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.« less

  6. Reactive magnetron sputtering of N-doped carbon thin films on quartz glass for transmission photocathode applications

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.

    2018-03-01

    N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.

  7. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites

    PubMed Central

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  8. Tribological properties of ternary nanolayers, obtained from simple/compound materials

    NASA Astrophysics Data System (ADS)

    Jinga, V.; Cristea, D.; Samoilă, C.; Ursuţiu, D.; Mateescu, A. O.; Mateescu, G.; Munteanu, D.

    2016-06-01

    Numerous recently investigations are oriented towards the development of new classes of thin films, having dry-lubrication properties. These efforts were determined by the enormous energy losses generated by friction, and due to technical complications determined by the systems used for classic lubrication. This paper presents our results concerning a new class of nanomaterials, with ternary composition deposited from simple/compound materials (Ti/TixNy, TiB2/TixBiyNz, WC/WxCyNz). The films were deposited by magnetron sputtering, with varying sputtering parameters (sputtering power, reactive gas) on stainless steel substrates - ultrasonically and glow discharge cleaned before the deposition process. The influence of the deposition parameters on the mechanical and wear properties was assessed by nanoindentation, scratch resistance (to quantify the adhesion of the films to the steel substrate) and by pin-on- disk wear tests. The general conclusion was that the sample deposited at 5500 C, with N2 as reactive gas and 0.5 kV for substrate polarization, has the best mechanical characteristics (hardness and elastic modulus) and lubricant properties (represented by μ average), when compared to the remaining samples.

  9. Reactive ion-beam-sputtering of fluoride coatings for the UV/VUV range

    NASA Astrophysics Data System (ADS)

    Schink, Harald; Kolbe, Jurgen; Zimmermann, F.; Ristau, Detlev; Welling, Herbert

    1991-06-01

    Fluoride coatings produced by thermal evaporation suffer from high scatter losses ageing and cracking due to high tensile stress. These problems impose severe limitations to the production of low loss multilayer coatings for the VUV range. A key position for improved performance is the microstructure of the layers. The aim of our investigations is to improve the microstructure of A1F3- and LaF3-'' films by ionbeamsputtering. Scatter measurements of single layers revealed lower values for lBS than for boat evaporation. Unfortunately sputtered fluoride films nave high absorption losses caused by decomposition of the coating material. By sputtering in reactive atmospheres and annealing we were able to reduce the absorption losses significantly. Antireflective as well as high reflective coatings were produced. Reflection and transmission values were obtained with a VUV-spectrophotometer. Damage tests at the 193 mu ArF laser wavelength were performed at the Laser-Laboratorium Gttingen. Key words: ion-beamsputtering fluoride films UVcoatings VUV-coatings color-center laser damage A]. F3 MgF2 LaF3. 1.

  10. Stability of sputter deposited cuprous oxide (Cu2O) subjected to ageing conditions for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.

    2018-02-01

    Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.

  11. Synthesis, Characterization and Optical Constants of Silicon Oxycarbide

    NASA Astrophysics Data System (ADS)

    Memon, Faisal Ahmed; Morichetti, Francesco; Abro, Muhammad Ishaque; Iseni, Giosue; Somaschini, Claudio; Aftab, Umair; Melloni, Andrea

    2017-03-01

    High refractive index glasses are preferred in integrated photonics applications to realize higher integration scale of passive devices. With a refractive index that can be tuned between SiO2 (1.45) and a-SiC (3.2), silicon oxycarbide SiOC offers this flexibility. In the present work, silicon oxycarbide thin films from 0.1 - 2.0 μm thickness are synthesized by reactive radio frequency magnetron sputtering a silicon carbide SiC target in a controlled argon and oxygen environment. The refractive index n and material extinction coefficient k of the silicon oxycarbide films are acquired with variable angle spectroscopic ellipsometry over the UV-Vis-NIR wavelength range. Keeping argon and oxygen gases in the constant ratio, the refractive index n is found in the range from 1.41 to 1.93 at 600 nm which is almost linearly dependent on RF power of sputtering. The material extinction coefficient k has been estimated to be less than 10-4 for the deposited silicon oxycarbide films in the visible and near-infrared wavelength regions. Morphological and structural characterizations with SEM and XRD confirms the amorphous phase of the SiOC films.

  12. Corrosion, optical and magnetic properties of flexible iron nitride nano thin films deposited on polymer substrate

    NASA Astrophysics Data System (ADS)

    Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.

    2017-11-01

    Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.

  13. Reactive sputter deposition of metal oxide nanolaminates

    NASA Astrophysics Data System (ADS)

    Rubin Aita, Carolyn

    2008-07-01

    We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.

  14. Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE

    NASA Astrophysics Data System (ADS)

    Meyers, Cedric J. G.; Freeze, Christopher R.; Stemmer, Susanne; York, Robert A.

    2017-12-01

    Voltage-tunable, interdigital capacitors (IDCs) were fabricated on Ba0.29Sr0.71TiO3 grown by hybrid molecular beam epitaxy (MBE). In this growth technique, we utilize the metal-organic precursor titanium tetraisopropoxide rather than solid-source Ti as with conventional MBE. Two samples of varying BaxSr(1-x)TiO3 (BST) thicknesses were fabricated and analyzed. High-quality, epitaxial Pt electrodes were deposited by sputtering from a high-purity Pt target at 825 °C. The Pt electrodes were patterned and etched by argon ion milling, passivated with reactively sputtered SiO2, and then metallized with lift-off Ti/Au. The fabricated devices consisted of two-port IDCs embedded in ground-signal-ground, coplanar waveguide (CPW) transmission lines to enable radio-frequency (RF) probing. The sample included open and thru de-embedding structures to remove pad and CPW parasitic impedances. Two-port RF scattering (S) parameters were measured from 100 MHz to 40 GHz while DC bias was stepped from 0 V to 100 V. The IDCs exhibit a high zero-bias radio-frequency (RF) quality factor (Q) approaching 200 at 1 GHz and better than 2.3:1 capacitance tuning for the 300-nm-thick sample. Differences in the Q(V) and C(V) response with varying thicknesses indicate that unknown higher order material phenomena are contributing to the loss and tuning characteristics of the material.

  15. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  16. Ionizing radiation effects on electrical and reliability characteristics of sputtered Ta2O5/Si interface

    NASA Astrophysics Data System (ADS)

    Rao, Ashwath; Verma, Ankita; Singh, B. R.

    2015-06-01

    This paper describes the effect of ionizing radiation on the interface properties of Al/Ta2O5/Si metal oxide semiconductor (MOS) capacitors using capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The devices were irradiated with X-rays at different doses ranging from 100 rad to 1 Mrad. The leakage behavior, which is an important parameter for memory applications of Al/Ta2O5/Si MOS capacitors, along with interface properties such as effective oxide charges and interface trap density with and without irradiation has been investigated. Lower accumulation capacitance and shift in flat band voltage toward negative value were observed in annealed devices after exposure to radiation. The increase in interfacial oxide layer thickness after irradiation was confirmed by Rutherford Back Scattering measurement. The effect of post-deposition annealing on the electrical behavior of Ta2O5 MOS capacitors was also investigated. Improved electrical and interface properties were obtained for samples deposited in N2 ambient. The density of interface trap states (Dit) at Ta2O5/Si interface sputtered in pure argon ambient was higher compared to samples reactively sputtered in nitrogen-containing plasma. Our results show that reactive sputtering in nitrogen-containing plasma is a promising approach to improve the radiation hardness of Ta2O5/Si MOS devices.

  17. Effect of oxygen concentration and metal electrode on the resistive switching in MIM capacitors with transition metal oxides

    NASA Astrophysics Data System (ADS)

    Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz

    2017-01-01

    The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.

  18. Microstructural Analysis of TiAl x N y O z Coatings Fabricated by DC Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, L.; Hernández-Torres, J.; Flores-Ramírez, N.; Martínez-Castillo, J.; García-Ramírez, P. J.; Muñoz-Saldaña, J.; Espinoza-Beltrán, F. J.

    2009-02-01

    TiAl x N y O z coatings were prepared by DC reactive sputtering on AISI D2 tool steel substrates, using a target of Ti-Al-O fabricated from a mixture of powders of Ti (22.60 wt.%), Al (24.77 wt.%), and O (52.63 wt.%). The coatings were deposited on substrates at room temperature in a reactive atmosphere of nitrogen and argon under a pressure of 8.5 × 10-3 mbar. X-ray diffraction, electron dispersive spectroscopy, Raman scattering, and nanoindentation techniques were employed to investigate the coatings. The results show that the increment in the nitrogen flow affects the structure and the mechanical properties of the coatings. The sample with the lowest nitrogen flow presented the highest hardness (10.5 GPa) and the Young’s modulus (179.5 GPa). The hardness of the coatings TiAl x N y O z as a function of crystalline grain size shows a behavior consistent with the Hall-Petch relation.

  19. FAST TRACK COMMUNICATION: Magnetic exchange hardening in polycrystalline GdN thin films

    NASA Astrophysics Data System (ADS)

    Senapati, K.; Fix, T.; Vickers, M. E.; Blamire, M. G.; Barber, Z. H.

    2010-08-01

    We report the observation of intrinsic exchange hardening in polycrystalline GdN thin films grown at room temperature by magnetron sputtering. We find, in addition to the ferromagnetic phase, that a fraction of GdN crystallizes in a structural polymorphic form which orders antiferromagnetically. The relative fraction of these two phases was controlled by varying the relative abundance of reactive species in the sputtering plasma by means of the sputtering power and N2 partial pressure. An exchange bias of ~ 30 Oe was observed at 10 K. The exchange coupling between the ferromagnetic and the antiferromagnetic phases resulted in an order of magnitude enhancement in the coercive field in these films.

  20. Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass

    NASA Astrophysics Data System (ADS)

    Erkan, Selen; Arpat, Erdem; Peters, Sven

    2017-11-01

    Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.

  1. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  2. Dependence of annealing temperature on microstructure and photoelectrical properties of vanadium oxide thin films prepared by DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping

    2013-12-01

    Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.

  3. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  4. Origin of the butterfly-shaped magnetoresistance in reactive sputtered epitaxial Fe{sub 3}O{sub 4} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, P.; Zhang, L. T.; Mi, W. B.

    2009-08-01

    Epitaxial Fe{sub 3}O{sub 4} thin films were synthesized by facing-target reactive sputtering Fe targets. The epitaxy of the Fe{sub 3}O{sub 4} film on MgO (100) was examined macroscopically using x-ray diffraction, including conventional theta-2theta scan, tilting 2theta scan, phi scan, and pole figure. The observed low-field butterfly-shaped magnetoresistance (MR) are explained by the primary fast rotation of the spins far away from antiphase boundaries and the high-field MR changing linearly with magnetic field can be understood by the gradual rotation of the spins near the antiphase boundaries. It is magnetocrystalline anisotropy that causes an increase in MR below Verwey transitionmore » temperature.« less

  5. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.

    2010-10-15

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case ofmore » the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.« less

  6. Multilayer coating of optical substrates by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Daniel, M. V.; Demmler, M.

    2017-10-01

    Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.

  7. Fundamental study of an industrial reactive HPPMS (Cr,Al)N process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Brögelmann, T.; Kruppe, N. C.; Engels, M.; von Keudell, A.; Hecimovic, A.; Ludwig, A.; Grochla, D.; Banko, L.

    2017-07-01

    In this work, a fundamental investigation of an industrial (Cr,Al)N reactive high power pulsed magnetron sputtering (HPPMS) process is presented. The results will be used to improve the coating development for the addressed application, which is the tool coating for plastics processing industry. Substrate-oriented plasma diagnostics and deposition of the (Cr,Al)N coatings were performed for a variation of the HPPMS pulse frequency with values from f = 300 Hz to f = 2000 Hz at constant average power P = 2.5 kW and pulse length ton = 40 μs. The plasma was investigated using an oscilloscope, an intensified charge coupled device camera, phase-resolved optical emission spectroscopy, and an energy-dispersive mass spectrometer. The coating properties were determined by means of scanning electron microscopy, glow discharge optical emission spectroscopy, cantilever stress sensors, nanoindentation, and synchrotron X-ray diffraction. Regarding the plasma properties, it was found that the average energy within the plasma is nearly constant for the frequency variation. In contrast, the metal to gas ion flux ratio is changed from JM/JG = 0.51 to JM/JG = 0.10 for increasing frequency. Regarding the coating properties, a structure refinement as well as lower residual stresses, higher universal hardness, and a changing crystal orientation from (111) to (200) were observed at higher frequencies. By correlating the plasma and coating properties, it can be concluded that the change in the gas ion to metal ion flux ratio results in a competitive crystal growth of the film, which results in changing coating properties.

  8. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  9. Reactive sputtering of δ-ZrH{sub 2} thin films by high power impulse magnetron sputtering and direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Högberg, Hans, E-mail: hans.hogberg@liu.se; Tengdelius, Lina; Eriksson, Fredrik

    2014-07-01

    Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H{sub 2} plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at. % and O contents typically below 0.2 at. % as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of ∼0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase δ-ZrH{sub 2} (CaF{submore » 2} type structure) at H content >∼55 at. % and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5–7 GPa for the δ-ZrH{sub 2} films that is slightly harder than the ∼5 GPa determined for Zr films and with coefficients of friction in the range of 0.12–0.18 to compare with the range of 0.4–0.6 obtained for Zr films. Wear resistance testing show that phase-pure δ-ZrH{sub 2} films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of ∼100–120 μΩ cm for the δ-ZrH{sub 2} films, which is slightly higher compared to Zr films with values in the range 70–80 μΩ cm.« less

  10. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  11. Influence of various surface pretreatments on adherence of sputtered molybdenum disulfide to silver, gold, copper, and bronze

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1973-01-01

    Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.

  12. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    NASA Astrophysics Data System (ADS)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  13. Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects

    NASA Astrophysics Data System (ADS)

    Sugimoto, Iwao; Nakano, Satoko; Kuwano, Hiroki

    1994-06-01

    Optical emission spectroscopy reveals that helium and neon gases enhance the nitridation reactivity of the nitrogen plasma by Penning effects during magnetron sputtering of the silicon target. These excited nitrogen plasmas promote the saturation of frameworks of the resultant silicon nitride films. X-ray photoelectron spectroscopy, electron spin resonance, and x-ray diffraction analyses provide insight into the structure of these films, and thermal desorption mass spectroscopy reveals the behavior of volatile species in these films.

  14. TaN resistor process development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Kathleen; Martinez, Marino John; Clevenger, Jascinda

    This paper describes the development and implementation of an integrated resistor process based on reactively sputtered tantalum nitride. Image reversal lithography was shown to be a superior method for liftoff patterning of these films. The results of a response surface DOE for the sputter deposition of the films are discussed. Several approaches to stabilization baking were examined and the advantages of the hot plate method are shown. In support of a new capability to produce special-purpose HBT-based Small-Scale Integrated Circuits (SSICs), we developed our existing TaN resistor process, designed for research prototyping, into one with greater maturity and robustness. Includedmore » in this work was the migration of our TaN deposition process from a research-oriented tool to a tool more suitable for production. Also included was implementation and optimization of a liftoff process for the sputtered TaN to avoid the complicating effects of subtractive etching over potentially sensitive surfaces. Finally, the method and conditions for stabilization baking of the resistors was experimentally determined to complete the full implementation of the resistor module. Much of the work to be described involves the migration between sputter deposition tools - from a Kurt J. Lesker CMS-18 to a Denton Discovery 550. Though they use nominally the same deposition technique (reactive sputtering of Ta with N{sup +} in a RF-excited Ar plasma), they differ substantially in their design and produce clearly different results in terms of resistivity, conformity of the film and the difference between as-deposited and stabilized films. We will describe the design of and results from the design of experiments (DOE)-based method of process optimization on the new tool and compare this to what had been used on the old tool.« less

  15. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  16. An experimental approach of decoupling Seebeck coefficient and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Muhammed Sabeer N., A.; Paulson, Anju; Pradyumnan, P. P.

    2018-04-01

    The Thermoelectrics (TE) has drawn increased attention among renewable energy technologies. The performance of a thermoelectric material is quantified by a dimensionless thermoelectric figure of merit, ZT=S2σT/κ, where S and σ vary inversely each other. Thus, improvement in ZT is not an easy task. So, researchers have been trying different parameter variations during thin film processing to improve TE properties. In this work, tin nitride (Sn3N4) thin films were deposited on glass substrates by reactive RF magnetron sputtering and investigated its thermoelectric response. To decouple the covariance nature of Seebeck coefficient and electrical resistivity for the enhancement of power factor (S2σ), the nitrogen gas pressure during sputtering was reduced. Reduction in nitrogen gas pressure reduced both sputtering pressure and amount of nitrogen available for reaction during sputtering. This experimental approach of combined effect introduced preferred orientation and stoichiometric variations simultaneously in the sputtered Sn3N4 thin films. The scattering mechanism associated with these variations enhanced TE properties by independently drive the Seebeck coefficient and electrical resistivity parameters.

  17. Cobalt Modification of Thin Rutile Films Magnetron-Sputtered in Vacuum

    NASA Astrophysics Data System (ADS)

    Afonin, N. N.; Logacheva, V. A.

    2018-04-01

    Using X-ray phase analysis, atomic force microscopy, and secondary ion mass-spectrometry, the phase formation and component distribution in a Co-TiO2 film system have been investigated during magnetron sputtering of the metal on the oxide and subsequent vacuum annealing. It has been found that cobalt diffuses deep into titanium oxide to form complex oxides CoTi2O5 and CoTiO3. A mechanism behind their formation at grain boundaries throughout the thickness of the TiO2 film is suggested. It assumes the reactive diffusion of cobalt along grain boundaries in the oxide. A quantitative model of reactive interdiffusion in a bilayer polycrystalline metal-oxide film system with limited solubility of components has been developed. The individual diffusion coefficients of cobalt and titanium have been determined in the temperature interval 923-1073 K.

  18. BiVO{sub 4} photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Haibo; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin; Freudenberg, Norman

    2016-04-15

    Photoactive bismuth vanadate (BiVO{sub 4}) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO{sub 4} films were investigated. Phase-pure monoclinic BiVO{sub 4} films, which are more photoactive than the tetragonal BiVO{sub 4} phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO{sub 4} films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO{sub 4} film thickness, the photocurrent densities (without a catalyst or a blocking layer ormore » a hole scavenger) exceeded 1.2 mA/cm{sup 2} at a potential of 1.23 V{sub RHE} under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO{sub 4} films opens new possibilities for the fabrication of large-scale devices for water splitting.« less

  19. Sputtered deposited nanocrystalline ZnO films: A correlation between electrical, optical and microstructural properties

    NASA Astrophysics Data System (ADS)

    Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.

    2005-05-01

    Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.

  20. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    NASA Astrophysics Data System (ADS)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  1. Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Solovan, M. M.; Gavaleshko, N. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Tresso, E.

    2016-10-01

    MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The obtained heterojunctions possessed sharply defined rectifying properties with the rectification ration RR ˜ 106. The temperature dependences of the height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance.

  2. Microtribological Mechanisms of Tungsten and Aluminum Nitride Films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjian; Mu, Chunyan; Ye, Fuxing

    2016-04-01

    Microtribology experiments were carried out on the W1- x Al x N films, deposited by radio frequency magnetron reactive sputtering on 304 stainless steel substrates and Si(100). Film wear mechanisms were investigated from the evolution of the friction coefficient and scanning electron microscopy observations. The results show that the WAlN films consist of a mixture of face-centered cubic W(Al)N and hexagonal wurtzite structure AlN phases and the preferred orientation changes from (111) to (200). The film damage after sliding test is mainly attributed to the composition and microstructure of the films. The amount of debris generated by friction is linked to the crack resistance. The better tribological properties for W1- x Al x N films ( x < 0.4) are mainly determined by the higher toughness.

  3. Tuning of the magnetization dynamics in as-sputtered FeCoSiN thin films by various sputtering gas pressures

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Phuoc, N. N.; Zhang, Xiaoyu; Ma, Yungui; Chen, Xin; Ong, C. K.

    2008-11-01

    In this work, we investigate the influence of various sputtering gas pressures on the high-frequency magnetization dynamics in as-sputtered FeCoSiN granular thin films. The permeability spectra are measured with the shorted microstrip transmission-line perturbation method and analyzed with the Landau-Lifshitz-Gilbert equation. The dependence of the effective damping coefficient on the external fields is fitted with a power law. The measurement and fitting results show that both the effective and the intrinsic damping coefficients in the magnetization dynamics can be conveniently and effectively tuned by changing the sputtering gas pressure. The physical origin of the influences is suggested to be related to the stress in the films.

  4. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  5. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  6. Preparation and study of Titanium Nitride films by reactive sputtering and an investigation of target poisoning during the process

    NASA Astrophysics Data System (ADS)

    Aziz, Tareque; Rumaiz, Abdul

    Titanium Nitride (TiNx) thin films were prepared by reactive dc sputtering in presence of Ar-N2 plasma. The thin films were grown on Quartz and pure Si surfaces. The Ar-N2 content ratio was gradually varied while the substrate and the Titanium target were kept at room temperature. Structural properties, optical and electrical properties of the thin films were studied by using X-ray Photoelectron Spectroscopy (XPS) and XRD and 4 probe resistivity measurement. Target poisoning of the Ti target was also studied by varying reactive gas concentration and measuring the target current. A study of target current vs growth rate of the films was performed to investigate the onset of ``poison'' mode.Although there was an insignificant drop in plasma current, we noticed a drop in the deposition rate. This result was tested against Monte Carlo simulations using SRIM simulations. Effects of annealing on the crystallinity and the sheet resistance will also be discussed. The work has been supported by BSA,DOE.

  7. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +}more » or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.« less

  8. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.

    2016-05-01

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.

  9. XPS studies of water and oxygen on iron-sputtered natural ilmenite

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.

    1985-01-01

    The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.

  10. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  11. Effects of surface condition on the work function and valence-band position of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Shing, Amanda M.; Tolstova, Yulia; Lewis, Nathan S.; Atwater, Harry A.

    2017-12-01

    ZnSnN2 is an emerging wide band gap earth-abundant semiconductor with potential applications in photonic devices such as solar cells, LEDs, and optical sensors. We report the characterization by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy of reactively radio-frequency sputtered II-IV-nitride ZnSnN2 thin films. For samples transferred in high vacuum, the ZnSnN2 surface work function was 4.0 ± 0.1 eV below the vacuum level, with a valence-band onset of 1.2 ± 0.1 eV below the Fermi level. The resulting band diagram indicates that the degenerate bulk Fermi level position in ZnSnN2 shifts to mid-gap at the surface due to band bending that results from equilibration with delocalized surface states within the gap. Brief (< 10 s) exposures to air, a nitrogen-plasma treatment, or argon-ion sputtering caused significant chemical changes at the surface, both in surface composition and interfacial energetics. The relative band positioning of the n-type semiconductor against standard redox potentials indicated that ZnSnN2 has an appropriate energy band alignment for use as a photoanode to effect the oxygen-evolution reaction.

  12. Tribology-Structure Relationships in Silicon Oxycarbide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Colombo, Paolo; Howell, Jane A.

    Silicon oxycarbide is a versatile material system that is attractive for many applications because of its ability to tune properties such as chemical compatibility, refractive index, electrical conductivity, and optical band gap through changes in composition. One particularly intriguing application lies in the production of biocompatible coatings with good mechanical properties. In this paper, we report on the wide range of mechanical and tribological property values exhibited by silicon oxycarbide thin films deposited by reactive radio frequency magnetron sputtering. Through a change in oxygen partial pressure in the sputtering plasma, the composition of the films was controlled to produce relativelymore » pure SiO2, carbon-doped SiC, and compositions between these limits. Hardness values were 8-20 GPa over this range and the elastic modulus was measured to be between 60 and 220 GPa. We call attention to the fit of the mechanical data to a simple additive bond-mixture model for property prediction. Tribological parameters were measured using a ball-on-disk apparatus and the samples exhibited the same general trends for friction coefficient and wear rate. One film is shown to produce variable low friction behavior and low wear rate, which suggests a solid-state self-lubrication process because of heterogeneity on the nanometer scale.« less

  13. Room-temperature fabrication of a Ga-Sn-O thin-film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Takagi, Ryo; Umeda, Kenta; Kimura, Mutsumi

    2017-08-01

    We have succeeded in forming a Ga-Sn-O (GTO) film for a thin-film transistor (TFT) using radio-frequency (RF) magnetron sputtering at room temperature without annealing process. It is achieved that the field-effect mobility is 0.83 cm2 V-1 s-1 and the on/off ratio is roughly 106. A critical process parameter is the deposition pressure during the RF magnetron sputtering, which determines a balance between competing mechanisms of sputtering damages and chemical reactions, because the film quality has to be enhanced solely during the sputtering deposition. This result suggests a possibility of rare-metal free amorphous metal-oxide semiconductors.

  14. CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide.

    PubMed

    Cui, Jin; Meng, Fanping; Zhang, Hua; Cao, Kun; Yuan, Huailiang; Cheng, Yibing; Huang, Feng; Wang, Mingkui

    2014-12-24

    Herein we report an investigation of a CH3NH3PbI3 planar solar cell, showing significant power conversion efficiency (PCE) improvement from 4.88% to 6.13% by introducing a homogeneous and uniform NiO blocking interlayer fabricated with the reactive magnetron sputtering method. The sputtered NiO layer exhibits enhanced crystallization, high transmittance, and uniform surface morphology as well as a preferred in-plane orientation of the (200) plane. The PCE of the sputtered-NiO-based perovskite p-i-n planar solar cell can be further promoted to 9.83% when a homogeneous and dense perovskite layer is formed with solvent-engineering technology, showing an impressive open circuit voltage of 1.10 V. This is about 33% higher than that of devices using the conventional spray pyrolysis of NiO onto a transparent conducting glass. These results highlight the importance of a morphology- and crystallization-compatible interlayer toward a high-performance inverted perovskite planar solar cell.

  15. Investigation of electrical and optical properties of low temperature titanium nitride grown by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sosnin, D.; Kudryashov, D.; Mozharov, A.

    2017-11-01

    Titanium nitride is a promising material due to its low resistivity, high hardness and chemical inertness. Titanium nitride (TiN) can be applied as an ohmic contact for n-GaN and rectifying contact for p-GaN and also as a part of perovskite solar cell. A technology of TiN low temperature reactive rf-magnetron sputtering has been developed. Electrical and optical properties of titanium nitride were studied as a function of the rf-power and gas mixture composition. Reflectance and transmittance spectra were measured. Cross-section and surface SEM image were obtained. 250 nm thin films of TiN with a resistivity of 23.6 μOm cm were obtained by rf-magnetron sputtering at low temperature.

  16. Substantial difference in target surface chemistry between reactive dc and high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2018-02-01

    The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.

  17. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  18. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Yan, Rong; Chen, Junling; Chen, Longwei; Ding, Rui; Zhu, Dahuan

    2014-12-01

    The stainless steel (SS) first mirror pre-exposed in the deposition-dominated environment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.

  19. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  20. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  1. Plasma emission spectroscopy and its relation to the refractive index of silicon nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.

    2018-03-01

    In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.

  2. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkerk, B. E.; Soussou, A.; Carette, M.

    This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1}more » K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.« less

  3. Utility of reactively sputtered CuN{sub x} films in spintronics devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Yeyu; Persson, J.; NanOsc AB, Electrum 205, 164 40 Kista

    2012-04-01

    We have studied nitrified copper (CuN{sub x}) thin films grown by reactive sputtering in the context of spintronic devices. The Ar-to-N{sub 2} flow ratio enables tunability of the electrical resistivity and surface roughness of the CuN{sub x} films, with the former increasing to nearly 20 times that of Cu, and the latter reduced to the atomic scale. Incorporating this into a Ta/CuN{sub x}/Ta seed stack for spin valves improves the current-in-plane (CIP) magnetoresistance; maximum magnetoresistance results with CuN{sub x} seed layer and Cu interlayer. Finally, finite element modeling results are presented that suggest the use of CuN{sub x} in nanocontactmore » spin torque oscillators can enhance current densities by limiting the current spread through the device. This may positively impact threshold currents, power requirements, and device reliability.« less

  4. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  5. Development of RF sputtered chromium oxide coating for wear application

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Moser, Trevor; Engelhard, Mark

    About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electro-catalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry.more » The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar for all of the NPs. The difference in reactivity between the NPs is attributed to their Ta/C ratios. Collectively, the findings presented herein indicate that reactive magnetron sputtering and gas aggregation combined with ion soft landing offer a promising physical approach for the synthesis of organic-inorganic hybrid NPs that have potential as low-cost durable substitutes for precious metals in catalysis« less

  7. Low Temperature Unbalanced Magnetron Deposition of Hard, Wear-Resistant Coatings for Liquid-Film Bearing Applications

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1996-01-01

    The original program for evaluating the tribological properties several different hard coatings for liquid film bearing applications was curtailed when the time for the program was reduced from 3 years to 1. Of the several different coatings originally planned for evaluation, we decided to concentrate on one coating, carbon nitride. At BIRL, we have been instrumental in the development of reactively sputtered carbon nitride coatings, and we have found that it is a very interesting new material with very good tribological properties. In this program, we found that the reactively sputtered carbon nitride does not bond well directly to hardened 440C stainless steel; but if an interlayer of titanium nitride is added between the carbon nitride and the 440C, the adhesion of the dual coating combination is very good. Statistically designed experiments were run with the dual layer combination, and 3 variables were chosen for the Box-Benken design, which were the titanium nitride interlayer thickness, the nitrogen partial pressure during the reactive sputtering of the carbon nitride, and the carbon nitride substrate bias voltage. Two responses were studied from these three variables; the adhesion of the dual coating combination to the 440C substrate and the friction coefficient of the carbon nitride in dry sliding contact with 52100 steel in air. The best adhesion came with the thickness interlayer thickness studied, which was 4 micrometers, and the lowest coefficient of friction was 0.1, which was achieved when the bias voltage was in the range of -80 to - 120 V and the nitrogen partial pressure was 3 mTorr.

  8. Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Delahoy, A. E.; Guo, S. Y.

    2005-07-01

    Highly transparent and conductive In2O3 and ZnO films containing different doping elements such as Ti, Mo, Zr, Nb, Ta, W (for In2O3), and B (for ZnO) have been prepared by reactive-environment, hollow cathode sputtering (RE-HCS). The use of Nb and W as effective dopants is reported for the first time. Metallic targets were used exclusively, and the dopant concentration was easily controlled using a second sputtering power supply. As a result of the cathode and gas flow geometry, the sputtering is conducted in metal mode, and the target and doping materials are free from oxidation during the deposition process. Film resistivities achieved with the various dopants are reported. For In2O3:Mo (IMO), a resistivity of 1.6×10-4Ω cm and a mobility of 80 cm2/Vs were achieved for Mo concentrations in the range 0.5-5.0% as measured by inductively coupled plasma (ICP). X-ray photoelectron spectroscopy (XPS) analysis indicates Mo with a +6 valence state and that the film is stoichiometric. For In2O3:Ti (ITiO), a superior optical transmission is achieved relative to IMO, while carrier mobility and conductivity were similar. Remarkably, semitransparent films of InN:O having sheet resistances of 9.5 Ω/square have also been prepared. ZnO:B films deposited by RE-HCS exhibit superior optical properties relative to ZnO:Al, and when applied as a window layer to CIGS solar cells yield higher quantum efficiencies.

  9. Structural and electrical properties of reactive magnetron sputtered yttrium-doped HfO 2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Zhou, Da-Yu; Wang, Hang-Hang; Lu, Wen-Qi; Choi, Chi-Kyu

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51272034 and 51672032) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT17ZD211).

  10. Development of Ni-based multilayers for future focusing soft gamma ray telescopes

    NASA Astrophysics Data System (ADS)

    Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.

    2015-09-01

    Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.

  11. Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Bogaerts, A.

    2009-10-01

    The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O- ions and O atoms. This model accounts for plasma-target interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O- density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.

  12. TiOx deposited by magnetron sputtering: a joint modelling and experimental study

    NASA Astrophysics Data System (ADS)

    Tonneau, R.; Moskovkin, P.; Pflug, A.; Lucas, S.

    2018-05-01

    This paper presents a 3D multiscale simulation approach to model magnetron reactive sputter deposition of TiOx⩽2 at various O2 inlets and its validation against experimental results. The simulation first involves the transport of sputtered material in a vacuum chamber by means of a three-dimensional direct simulation Monte Carlo (DSMC) technique. Second, the film growth at different positions on a 3D substrate is simulated using a kinetic Monte Carlo (kMC) method. When simulating the transport of species in the chamber, wall chemistry reactions are taken into account in order to get the proper content of the reactive species in the volume. Angular and energy distributions of particles are extracted from DSMC and used for film growth modelling by kMC. Along with the simulation, experimental deposition of TiOx coatings on silicon samples placed at different positions on a curved sample holder was performed. The experimental results are in agreement with the simulated ones. For a given coater, the plasma phase hysteresis behaviour, film composition and film morphology are predicted. The used methodology can be applied to any coater and any films. This paves the way to the elaboration of a virtual coater allowing a user to predict composition and morphology of films deposited in silico.

  13. Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu

    2018-02-01

    A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.

  14. Generation and Characterization of Nanoaerosols Using a Portable Scanning Mobility Particle Sizer and Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Marty, Adam J.

    The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored. A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM. The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 -- 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 -- 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates. A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.

  15. Structural, electrical, and photoelectric properties of p-NiO/n-CdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Parkhomenko, Hryhorii; Solovan, Mykhaylo; Brus, Viktor; Maystruk, Eduard; Maryanchuk, Pavlo

    2018-01-01

    p-NiO/n-CdTe-photosensitive heterojunctions were prepared by the deposition of nickel oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance. The dominant current transport mechanisms in the heterojunctions were determined at forward and reverse biases. Using "light" I-V characteristics, we determined the open-circuit voltage Voc=0.42 V, the short-circuit current Isc=57.5 μA/cm2, and the fill factor FF=0.24 under white light illumination with the intensity of 80 mW.

  16. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Jijun; Wang, Minqiang, E-mail: mqwang@mail.xjtu.edu.cn; Zhang, Xiangyu

    2014-12-08

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situmore » sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites.« less

  17. Cu-Doped ZnO Thin Films Grown by Co-deposition Using Pulsed Laser Deposition for ZnO and Radio Frequency Sputtering for Cu

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-05-01

    Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.

  18. Piezoelectric Behaviour of Sputtered Aluminium Nitride Thin Film for High Frequency Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Herzog, T.; Walter, S.; Bartzsch, H.; Gittner, M.; Gloess, D.; Heuer, H.

    2011-06-01

    Many new materials and processes require non destructive evaluation in higher resolutions by phased array ultrasonic techniques in a frequency range up to 250 MHz. This paper presents aluminium nitride, a promising material for the use as a piezoelectric sensor material in the considered frequency range, which contains the potential for high frequency phased array application in the future. This work represents the fundamental development of piezoelectric aluminium nitride films with a thickness of up to 10 μm. We have investigated and optimized the deposition process of the aluminium nitride thin film layers regarding their piezoelectric behavior. Therefore a specific test setup and a measuring station were created to determine the piezoelectric charge constant (d33) and the electro acoustic behavior of the sensor. Single element transducers were deposited on silicon substrates with aluminium electrodes for top and bottom, using different parameters for the magnetron sputter process, like pressure and bias voltage. Afterwards acoustical measurements up to 500 MHz in pulse echo mode have been carried out and the electrical and electromechanical properties were qualified. In two different parameter sets for the sputtering process excellent piezoelectric charge constant of about 8.0 pC/N maximum were obtained.

  19. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  20. Low Temperature Film Growth of the Oxides of Zinc, Aluminum, and Vanadium (and Related Systems, Oxides of Gold and Germanium, Nitrides of Aluminum and Tungsten) by Reactive Sputter Deposition.

    DTIC Science & Technology

    1988-02-01

    the optical behavior of the material in its preswitched, or A Perkin-Elmer Model 330 UV - Visible -IR double beam ,% spectrophotometer with a specular...S ~ * ." at.* U a * . a. *%~ ~9g 0 ~ --- a.. ’ a * ~ .r~vaa- *a,~ * ~ * ~****.,*a,* *** UV - Visible -IR Optical Behavior of Sputter Deposited Gee x...Films deposited in 0 to 60% Ar were nominally germania. However, transmission in the UV - visible , the strength of the 245nm defect center, the optical

  1. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for themore » performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.« less

  2. Design, Fabrication, and Testing of a TiN Ti TiN Trilayer KID Array for 3mm CMB Observations

    NASA Technical Reports Server (NTRS)

    Lowitz, A. E.; Brown, A. D.; Mikula, V.; Stevenson, T. R.; Timbie, P. T.; Wollack, E. J.

    2016-01-01

    Kinetic inductance detectors (KIDs) are a promising technology for astronomical observations over a wide range of wavelengths in the mm and sub-mm regime. Simple fabrication, in as little as one lithographic layer, and passive frequency-domain multiplexing, with readout of up to 1000 pixels on a single line with a single cold amplifier, make KIDs an attractive solution for high-pixel-count detector arrays. We are developing an array that optimizes KIDs for optical frequencies near 100GHz to expand their usefulness in mm-wave applications, with a particular focus on CMBB-mode measurement efforts in association with the QUBIC telescope. We have designed, fabricated, and tested a 20-pixel prototype array using a simple quasi lumped microstrip design and pulsed DC reactive magnetron-sputtered TiNTiTiN trilayer resonators, optimized for detecting 100GHz (3mm) signals. Here we present a discussion of design considerations for the array, as well as preliminary detector characterization measurements and results from a study of TiN trilayer properties.

  3. Nanolaminated FeCoB/FeCo and FeCoB/NiFe soft magnetic thin films with tailored magnetic properties deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe

    2018-05-01

    Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction

  4. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    PubMed Central

    2007-01-01

    Nonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110) are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  5. Experimental study on TiN coated racetrack-type ceramic pipe

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Xu, Yan-Hui; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-11-01

    TiN film was coated on the internal surface of a racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. The highest deposition rate was 156 nm/h, which was obtained by magnetron sputtering coating. Based on AFM, SEM and XPS test results, the properties of TiN film, such as film roughness and surface morphology, were analyzed. Furthermore, the deposition rates were studied with two different cathode types, Ti wires and Ti plate. According to the SEM test results, the deposition rate of TiN/Ti film was about 800 nm/h with Ti plate cathode by DC magnetron sputtering. Using Ti plate cathode rather than Ti wire cathode can greatly improve the film deposition rate. Supported by National Nature Science Foundation of China (11075157)

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, L.G.

    In this study, hydrogenated amorphous silicon carbide thin films were deposited by reactive ion-beam sputtering under varying conditions to determine whether a film's optical properties can be controlled, focusing on refractive index. Using a Kaufman type ion source to sputter a pure silicon target, three distinct series of films were grown. The first series varied the mixture of methane and argon used in the ion-beam. holding all other parameters constant. For the second series the gas mix was fixed, and only the beam energy (beam voltage) was varied. The final series also varied beam energy, but was grown with amore » graphite shield next to the target to reduce metal contamination sputtered from chamber surfaces. Results show the index of refraction increased monotonically with beam energy up to a beam voltage of 1300 volts. Both the second and third series of films followed this trend, but analysis of differences in atomic composition between two series revealed opposite trends for how the silicon to carbon content ratio and refractive index were related. More precise control of the gas flow, and sputtering from only the intended (silicon)target would have reduced experimental errors.« less

  7. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and ionized oxygen, since the monitored discharge is operated above a fully poisoned (oxidized) target from which only a minimum of Cr is sputtered. No signs of self-sputtering have been detected, in contrast to the discharges in Ar, N2 and N2/Ar mixtures previously investigated. Paper IV: In the fourth paper, we study different power management approaches in HiPIMS and MPPMS and their effects on the pulsed discharge evolution, plasma composition, and metal ionization estimated by OES. It is shown that HiPIMS is the only technique that enables the discharge operation in self-sputtering mode within the investigated range of applied powers, resulting in a significantly higher ionization of the sputtered metal than that reached with MPPMS. In contrast to HiPIMS, MPPMS provides a higher versatility in adjusting the pulse shape and pulse length. This feature can be particularly beneficial, for instance, in the discharge ignition. Nb coatings prepared by HiPIMS and MPPMS have very similar deposition rates that are lower than in DCMS. All films prepared at p = 1Pa possess a dense columnar structure. Coatings deposited by the two high power pulsed discharges exhibit higher compressive stress and larger out-of-plane lattice spacing than those prepared by DC sputtering under comparable conditions. At higher pressure, p = 2Pa, DCMS-grown films show a tensile stress due to a porous microstructure, while films prepared by HiPIMS and MPPMS are dense and in compression, most probably due to the substantial ion bombardment. Paper V: In the last paper, we analyze the behavior of the HiPIMS, MPPMS and DCMS discharges in reactive O2/Ar gas mixtures and evaluate the characteristics of the fabricated NbOx films. We demonstrate that the surface metal oxides can be effectively sputter-eroded from the target during both HiPIMS and MPPMS pulses, and that sputtering from a partially oxide-free target is possible even at high oxygen concentrations. This results in a hysteresisfree deposition process which allows one to prepare optically transparent b2O5 coatings at a high growth rate without the need of feedback control commonly used in reactive DCMS. Nb2O 5 coatings prepared by both reactive high power pulsed discharges exhibited a high index of refraction, a low extinction coefficient, a near-zero internal stress, and high hardness and Young's modulus. The HiPIMS-deposited coatings showed the highest deposition rate and the highest index of refraction. The latter observation was related to the higher film density. In comparison, MPPMS exhibited the highest power-normalized deposition rate among the three investigated deposition techniques, possibly due to the longer period that is available for the gradual target cleaning. (Abstract shortened by UMI.).

  8. CIGS thin film solar cell prepared by reactive co-sputtering

    NASA Astrophysics Data System (ADS)

    Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man

    2013-09-01

    The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.

  9. Nanoengineered explosives

    DOEpatents

    Makowiecki, D.M.

    1996-04-09

    A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.

  10. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  11. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  12. Characterization of polycrystalline nickel cobaltite nanostructures prepared by DC plasma magnetron co-sputtering for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Hammadi, Oday A.; Naji, Noor E.

    2018-03-01

    In this work, a gas sensor is fabricated from polycrystalline nickel cobaltite nano films deposited on transparent substrates by closed-field unbalanced dual-magnetrons (CFUBDM) co-sputtering technique. Two targets of nickel and cobalt are mounted on the cathode of discharge system and co-sputtered by direct current (DC) argon discharge plasma in presence of oxygen as a reactive gas. The total gas pressure is 0.5 mbar and the mixing ratio of Ar:O2 gases is 5:1. The characterization measurements performed on the prepared films show that their transmittance increases with the incident wavelength, the polycrystalline structure includes 5 crystallographic planes, the average particle size is about 35 nm, the electrical conductivity is linearly increasing with increasing temperature, and the activation energy is about 0.41 eV. These films show high sensitivity to ethanol vapor.

  13. See Also:physica status solidi (b)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  14. Get Sample Copy
  15. Recommend to Your Librarian
  16. E-MailPrint
  1. Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Yoshida, Ryo; Mishima, Toshihiko; Azuma, Kingo; Nakao, Setsuo

    2018-06-01

    Titanium nitride (TiN) films are prepared by reactive high-power pulsed sputtering Penning discharges at a total pressure of 0.7 Pa and an average power of 60 W, where the nitrogen fraction is varied up to 15%. The peak value of the instantaneous power ranges between 3 and 14 kW, and the peak power density ranges between 0.3 and 1.2 kW cm‑2. The hardness of TiN films is higher than 22 GPa at the nitrogen fractions lower than 10% and it reaches 31 GPa at a nitrogen fraction of 5%. The X-ray diffraction peak of TiN(111) texture is observed for all prepared films, showing the grain size of about 10 nm. In X-ray photoelectron spectroscopy, oxygen is mainly bonded to titanium, but the intensity of the TiN bond is dominant in the entire Ti 2p spectrum. The intensity ratio of N 1s to Ti 2p ranges between 0.85 and 0.95.

  2. Cu2SixSn1-xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang

    2011-10-01

    We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.

  3. Photocatalytic and photoelectrochemical performance of Ta{sub 3}N{sub 5} microcolumn films fabricated using facile reactive sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Der-Hwa; Chang, Kao-Shuo, E-mail: kschang@mail.ncku.edu.tw; Promotion Center for Global Materials Research, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan

    2016-08-21

    This paper presents the photocatalytic and photoelectrochemical (PEC) properties of Ta{sub 3}N{sub 5} microcolumn films. The highlights include (1) overcoming the fundamental barrier of standard reactive sputtering for fabricating microcolumns; (2) preventing unnecessary complexity from complicating facile sputtering; (3) an alternative but effective approach for fabricating Ta{sub 3}N{sub 5} without using caustic NH{sub 3} gases; (4) investigating morphology tuning for favorable photocatalysis and PEC reactions; and (5) elucidating the relationships of the structures, morphologies, and properties of Ta{sub 3}N{sub 5} microcolumns. High-resolution transmission electron microscopy and selective-area electron diffraction verified the polycrystallinity of Ta{sub 3}N{sub 5} microcolumns, of which themore » elemental compositions and stoichiometry were measured using electron-probe energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The corresponding band gap was determined to be approximately 2.1 eV. The sample exhibited a superior photodegradation capability; the photodegradation rate constant k was determined to be approximately 1.4 times higher than that of P25 under UV irradiation. A photocatalytic and PEC cycling test indicated the photodegradation reusability and photostability of the Ta{sub 3}N{sub 5} microcolumns. The incident photon-to-current efficiency performance reached 6%, suggesting that these microcolumns hold potential for application in PEC devices.« less

  4. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  5. Structural and electrical properties of sputter deposited ZnO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-05-01

    The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.

  6. Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering (HiPIMS)

    NASA Astrophysics Data System (ADS)

    Partridge, J. G.; Mayes, E. L. H.; McDougall, N. L.; Bilek, M. M. M.; McCulloch, D. G.

    2013-04-01

    ZnO films have been reactively deposited on sapphire substrates at 300 °C using a high impulse power magnetron sputtering deposition system and characterized structurally, optically and electronically. The unintentionally doped n-type ZnO films exhibit high transparency, moderate carrier concentration (˜5 × 1018 cm-3) and a Hall mobility of 8.0 cm2 V-1 s-1, making them suitable for electronic device applications. Pt/ZnO Schottky diodes formed on the HiPIMS deposited ZnO exhibited rectification ratios up to 104 at ±2 V and sensitivity to UV light.

  7. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  8. Characterisation of RF-sputtered platinum films from industrial production plants using slow positrons

    NASA Astrophysics Data System (ADS)

    Osipowicz, A.; Härting, M.; Hempel, M.; Britton, D. T.; Bauer-Kugelmann, W.; Triftshäuser, W.

    1999-08-01

    Platinum films, used in thin film technology, produced by radio-frequency sputter deposition on aluminium oxide substrates under different conditions, have been studied by positron beam and other techniques, before and after production annealing. The defect structure in the layers has been characterised using both positron lifetime and Doppler-broadening spectroscopy, and compared with X-ray studies of crystallinity and texture.

  9. Metal-insulator-semiconductor capacitors with bismuth oxide as insulator

    NASA Astrophysics Data System (ADS)

    Raju, T. A.; Talwai, A. S.

    1981-07-01

    Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25.

  10. A Study on the Formation of 2-Dimensional Tungsten Disulfide Thin Films on Sapphire Substrate by Sputtering and High Temperature Rapid Thermal Processing.

    PubMed

    Nam, Hanyeob; Kim, Hong-Seok; Han, Jae-Hee; Kwon, Sang Jik; Cho, Eou Sik

    2018-09-01

    As direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements. Process conditions for these WS2 thin films on sapphire substrate were optimized to low RF sputtering power and high temperature annealing.

  11. Properties of barium strontium titanate and niobate nanoparticles produced in gas discharge

    NASA Astrophysics Data System (ADS)

    Plyaka, Pavel; Kazaryan, Mishik; Pavlenko, Anatoly

    2018-03-01

    Dust particles produced in the gas-discharge plasma by barium-strontium titanate and niobate targets sputtering have been investigated in the paper. Particles shape, size and chemical composition were identified. It have been established by Raman scattering investigation and X-ray structure analysis that a part of the collected dust particles retained original crystal structure of the sputtering target. For electro-physical investigations two discs were formed by pressuring from produced particles, and electrodes were deposited on disc flat surface. Capacitance and dielectric loss temperature dependences measurement resulted in the frequency range proving the ferroelectric properties of assembled nanoparticles, similar to the sputtered material.

  12. Thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.

    1994-09-01

    This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  13. Elastic constant and Brillouin oscillations in sputtered vitreous SiO2 thin films

    NASA Astrophysics Data System (ADS)

    Ogi, H.; Shagawa, T.; Nakamura, N.; Hirao, M.; Odaka, H.; Kihara, N.

    2008-10-01

    We studied the relationship between elastic constants and microstructure in sputtered vitreous SiO2 thin films using pump-probe picosecond laser ultrasound. The delayed probe light pulse is diffracted by the acoustic wave excited by the pump light pulse, inducing Brillouin oscillations, seen as reflectivity change in the probe pulse, whose frequency can be used to extract the sound velocity and elastic moduli. Theoretical calculations were made to explain the asymmetric response of Brillouin oscillations and to predict the possible error limit of the determined elastic constants. The thin films containing defects exhibited lower elastic constant. A micromechanics modeling was developed to evaluate defect porosity and attenuation caused by scattering was able to predict the defect size. Elastic moduli of the defect-free specimens increased with increasing sputtering power, eventually exceeding the bulk value, and correlated with phonon frequencies, indicating that the decrease in the Si-O-Si bond angle of the tetrahedral structure increased the stiffness.

  14. Behavior of Osteoblast-Like Cells on a β-Tricalcium Phosphate Synthetic Scaffold Coated With Calcium Phosphate and Magnesium.

    PubMed

    Park, Ki-Deog; Jung, Young-Suk; Lee, Kyung-Ku; Park, Hong-Ju

    2016-06-01

    Tricalcium phosphate (TCP) is one of the most useful synthetic scaffolds for bone grafts and has several advantages. However, the rapid degradation of TCP makes it less osteoconductive than the other candidates, and represents a major shortcoming. To overcome this problem, the authors investigated magnesium (Mg) and/or hydroxyapatite (HA) coating on a β-TCP substrate using a sputtering technique. Biocompatibility tests were carried out on β-TCP discs that were either uncoated (TCP), coated with HA by radio frequency magnetron sputtering (HA-TCP), coated with Mg by DC sputtering (Mg-TCP), or multicoated with Mg and HA by DC and radio frequency magnetron sputtering (MgHA-TCP). Cells showed similar morphology in all 4 groups, and were widely spread, had flattened elongated shapes, and were connected to adjacent cells by pseudopods. An MTT assay revealed higher cell proliferation on HA-TCP, Mg-TCP, and MgHA-TCP compared with TCP at 3 and 5 days. MgHA-TCP also showed significantly higher alkaline phosphatase activity levels compared with TCP, HA-TCP, and Mg-TCP (P < 0.05). Results suggest that Mg-coated β-TCP could have great potential as a bone graft material for future applications in hard tissue regeneration.

  15. Thin film integrated capacitors with sputtered-anodized niobium pentoxide dielectric for decoupling applications

    NASA Astrophysics Data System (ADS)

    Jacob, Susan

    Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.

  16. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  17. Correlation of process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target

    NASA Astrophysics Data System (ADS)

    Bundesmann, Carsten; Lautenschläge, Thomas; Spemann, Daniel; Finzel, Annemarie; Mensing, Michael; Frost, Frank

    2017-10-01

    The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.

  18. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun

    2015-05-01

    Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.

  19. Reactively sputtered thermochromic tungsten-doped VO2 films

    NASA Astrophysics Data System (ADS)

    Sobhan, M. A.; Kivaisi, R. T.; Stjerna, B. A.; Granqvist, Claes-Goeran

    1994-09-01

    Tungsten-doped vanadium oxide (V1-xWxO2) films were prepared by concurrent reactive dc magnetron sputtering of vanadium and tungsten in an Ar + O2 plasma with a controlled oxygen partial pressure. Films were deposited onto glass substrates at 400 degree(s)C. The films had a metal-semiconductor transition at a temperature (tau) t that was depressed when x was increased. Rutherford Back Scattering was used to determine x. X- ray diffraction was employed to confirm the monoclinic low-temperature VO2 phase. The relation between x and (tau) t was studied and compared with results from the literature. It was shown that (tau) t could be set to a value between 17 and 65 degree(s)C by proper choice of x. The optical and electrical properties of the films were investigated around the metal-semiconductor phase transition. The luminous transmittance was rather unaffected by the temperature, whereas the near infrared transmittance showed lower values above (tau) t. The degree of thermochromic modulation decreased for increased x. Electrical measurements showed that the ratio of the resistance above and below (tau) t decreased with increasing x.

  20. Study of vanadium doped ZnO films prepared by dc reactive magnetron sputtering at different substrate temperatures.

    PubMed

    Meng, Lijian; Teixeira, Vasco; Dos Santos, M P

    2013-02-01

    ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT-500 degrees C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 degrees C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 degrees C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.

  1. High performance VO2 thin films fabricated by room-temperature reactive magnetron sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Zhan, Yongjun; Xiao, Xiudi; Lu, Yuan; Cao, Ziyi; Cheng, Haoliang; Shi, Jifu; Xu, Gang

    2017-10-01

    The VOx thin films are successfully prepared on glass substrate by reactive magnetron sputtering at room-temperature, and subsequently annealed by rapid thermal annealing system in N2 from 0.5Pa to 10000Pa. The effects of annealing pressure on the optical performance and phase transition temperature (Tc) of VOx thin films are systematically investigated. The results show that the VOx thin films exhibit good performance with Tlum of 28.17%, ΔTsol of 12.69%, and Tc of 42. The annealing pressure had an obvious influence on the grain size, which can be attributed to light scattering effects by gas molecule. Compared with oxygen vacancy defects, the grain size plays a decisive role in the regulation of Tc. The restricting the growth of grain can be reduced the Tc, and a little deterioration effect on optical performance can be observed. In addition, the method in this paper not only depressed the Tc, but also simplified the process and improved efficiency, which will provide guidance for the preparation and application of VOx thin films.

  2. Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu

    2016-02-01

    Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.

  3. Optical properties of aluminum-doped zinc oxide films deposited by direct-current pulse magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Yong; Chen, Chao; Zhang, Sa

    2014-03-01

    A series of <103>-oriented aluminum-doped zinc oxide (AZO) films were deposited on glass substrates via direct-current pulse magnetron reactive sputtering at different O2-to-Ar gas flow ratios (GFRs). The optical properties of the films were characterized using the fitted optical constants in the general oscillator model (which contains two Psemi-Tri oscillators) through the use of measured ellipsometric parameters. The refractive index dispersion data below the interband absorption edge were analyzed using a single-oscillator model. The fitted optical energy gap obtained using the single-oscillator model clearly shows a blue shift, followed by a red shift, as the GFR increases from 0.9/18 to 2.1/18. This shift can be attributed to the change in the free electron concentration of the film, which is closely related to the film stress. In addition, the fitted β value indicates that the AZO film falls under the ionic class. The photoluminescence spectrum indicates a photoluminescence mechanism of the direct and wide energy gap semiconductor.

  4. Depth profiling and morphological characterization of AlN thin films deposited on Si substrates using a reactive sputter magnetron

    NASA Astrophysics Data System (ADS)

    Macchi, Carlos; Bürgi, Juan; García Molleja, Javier; Mariazzi, Sebastiano; Piccoli, Mattia; Bemporad, Edoardo; Feugeas, Jorge; Sennen Brusa, Roberto; Somoza, Alberto

    2014-08-01

    It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates.

  5. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S., E-mail: uthanna@rediffmail.com

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was inmore » the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.« less

  6. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  7. Tailoring the soft magnetic properties of sputtered multilayers by microstructure engineering for high frequency applications

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Rohrmann, Hartmut; Bless, Martin; Meduňa, Mojmír; Marioni, Miguel; Schneider, Daniel; Richter, Jan H.; Padrun, Marco

    2017-05-01

    Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8" Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100) nm thick magnetic layers and (2-20) nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ˜(7-120) Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency), while the coercivity was kept low, ˜(0.05-0.9) Oe. The alignment of the easy axis (EA) on the 8" wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM), X-ray reflectivity (XRR) with reciprocal space mapping (RSM) and magneto-optical Kerr effect (MOKE) measurements.

  8. X-ray combined analysis of fiber-textured and epitaxial Ba(Sr,Ti)O{sub 3} thin films deposited by radio frequency sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remiens, D.; Ponchel, F.; Legier, J. F.

    2011-06-01

    A complete study is given in this paper on the structural properties of Ba(Sr,Ti)O{sub 3} (BST) thin films which present various preferred orientations: (111) and (001) fiber and epitaxial textures. The films are deposited in situ at 800 deg. C by sputtering on Si/SiO{sub 2}/TiO{sub x}/Pt substrates and the orientation is controlled by monitoring the concentration of O{sub 2} in the reactive plasma or by prior deposition of a very thin TiO{sub x} buffer layer between BST films and substrates. The epitaxial films are obtained on (001)-alpha-Al{sub 2}O{sub 3} substrates covered with TiO{sub x} buffer layers. In order to analyzemore » finely the preferred orientations, the texture, the microstructural features, and the anisotropy-related quantities such as residual stresses in the films, the conventional Bragg-Brentano {theta} - 2{theta} x-ray diffraction diagrams is shown not to be sufficient. So, we systematically used x-ray combined analysis, a recently developed methodology which gives access to precise determination of the structure (cell parameters and space group) of the films, their orientation distributions (texture strengths and types) and mean crystallite sizes, their residual stresses. This fine structural analysis shows important modifications between the film qualities which induce differences in BST films electrical behavior, permittivity, loss tangent, and tunability.« less

  9. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films

    NASA Astrophysics Data System (ADS)

    Kumar, A. K. Nanda; Prasanna, S.; Subramanian, B.; Jayakumar, S.; Rao, G. Mohan

    2015-03-01

    Pure α-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling γ-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of ≈0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-γ transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source.

  10. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  11. High-efficiency, thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.; Rajakarunanayake, Y.

    1995-08-01

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  12. Growth and characterization of zirconium oxynitride films prepared by reactive direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Venkataraj, S.; Kappertz, O.; Jayavel, R.; Wuttig, M.

    2002-09-01

    Thin films of zirconium oxynitrides have been deposited onto Si(100) substrates at room temperature by reactive dc magnetron sputtering of a metallic Zr target in an argon-oxygen-nitrogen atmosphere. To prepare oxynitride films the sum of the O2 and N2 flow was kept at 3.5 sccm, while the relative nitrogen content of this mixture was changed stepwise from 0% to 100%. The film structure was determined by x-ray diffraction, while x-ray reflectometry was employed to determine the thickness, density, and surface roughness of the films. The optical properties have been studied by spectroscopic reflectance measurements. X-ray diffraction (XRD) determines that the as-deposited films are crystalline and do not change their monoclinic ZrO2 crystal structure even for nitrogen flows up to 80%. For pure argon-nitrogen sputtering, on the contrary, cubic zirconium nitride (ZrN) has been formed. Nevertheless, even though the crystal structure does not change with increasing nitrogen flow up to 80%, there is clear evidence from nitrogen incorporation from Rutherford backscattering experiments, optical spectroscopy, XRD, and x-ray reflectometry. The latter technique determines that the film density increases from 5.2 to 5.8 g/cm3 with increasing nitrogen flow from 0% to 80%. Simultaneously, the rate of sputtering increases from 0.17 to 0.6 m/s, while the film roughness decreases upon increasing N2 flow. Optical spectroscopy measurements of the film reflectance confirm that fully transparent films can be prepared up to a nitrogen flow of 80%. For these films, the band gap decreases from 4.52 to 3.59 eV with increasing N2 flow, while the refractive index at 650 nm simultaneously increases from 2.11 to 2.26. For 100% N2 flow, i.e., without any oxygen, films with a metallic reflectance are obtained.

  13. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +}more » ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.« less

  14. Ohmic contact mechanism for RF superimposed DC sputtered-ITO transparent p-electrodes with a variety of Sn2O3 content for GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop

    2018-02-01

    The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.

  15. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  16. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  17. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  18. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options - CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

  19. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  20. Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Li, Chih-Wei; Li, Jyun-Yi; Lin, Chih-Chien

    2018-05-01

    In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.

  1. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Su Yong; Kang, Hyon Chol

    2018-01-01

    We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor-liquid-solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.

  2. FAST TRACK COMMUNICATION: Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann

    2008-12-01

    Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.

  3. Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES)

    NASA Astrophysics Data System (ADS)

    Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik

    2018-06-01

    In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.

  4. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lai, Jianjun; Li, Hui; Hu, Haoming; Chen, Sihai

    2013-03-01

    In order to obtain high quality of thermal sensitive material, VOx thin film of high temperature coefficient of resistance (TCR) of 6.5%/K at room temperature has been deposited by reactive ion beam sputtering and post annealing method. AFM and XRD measurements indicate that the VOx thin film with nanostructured crystalline is composed of VO2 and V2O3. The nanostructured VOx microbolometer has been designed and fabricated. The measurement of the film system with TiN absorbing layer indicates that it has about 92% infrared absorption in the range of 8-14 μm. The performance of this bolometer, comparing with that of bolometer with common VOx, has a better result. At 20 Hz frequency and 10 μA bias current, the bolometer with high TCR has reached detectivity of 1.0 × 109 cm Hz1/2/W. It also indicates that this nanostructured VOx thin film has not only a higher TCR but also a lower noise than common VOx thin film without annealing.

  5. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  6. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure transition of deposited TiAlSiN compound films, demonstrating the applicability of this approach in understanding the characteristics of reactive MPPMS discharges as well as the composition and microstructure of deposited compound films. The model for reactive MPPMS discharges has no special limitations and is applicable to high power impulse magnetron sputtering discharges as well.

  7. Method for bonding thin film thermocouples to ceramics

    DOEpatents

    Kreider, Kenneth G.

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  8. Templated Growth of Pd Nanoparticles Using Sputtering Deposition Process and Its Catalytic Activities.

    PubMed

    Eberhardt, Dario; Migowski, Pedro; Teixeira, Sérgio R; Feil, Adriano F

    2018-03-01

    A simple method based on sputtering deposition of Pd onto mesoporous SiO2 (SBA-15) was employed to produce supported Pd nanoparticles (NPs) that can be used as hydrogenation catalysts. The use of sputtering deposition eliminates contaminants and avoids additional drawbacks of traditional chemical methods applied to prepare heterogeneous supported metal catalysts. A mechanical resonant stirrer was used to revolve the SBA-15 powder and ensure homogeneous distribution of the Pd NPs over the support. The SBA-15 pores act as templates for Pd NPs and drive nanostructure growth. Consequently, the NPs obtained have the same diameter as that of the SBA-15 channels (~5 nm) and elongated particles are formed as sputtering deposition increases. The SBA-15 supported Pd NPs (Pd NPs/SBA-15) were tested in a probe hydrogenation of cyclohexene reaction to evaluate the catalytic activity of the Pd NPs. Turnover frequency (TOF) of 2000 min-1 were achieved with the lower Pd NPs concentration (0.15 wt%) catalyst.

  9. Interface layer to tailor the texture and surface morphology of Al-doped ZnO polycrystalline films on glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2017-06-01

    A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.

  10. Heated probe diagnostic inside of the gas aggregation nanocluster source

    NASA Astrophysics Data System (ADS)

    Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team

    2016-09-01

    Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.

  11. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint)

    DTIC Science & Technology

    2016-03-30

    wavelength where n = k) is 1605 nm from the film (f). Figure 1 XRD patterns of the AZO films on quartz substrate Figure 2 UV-Vis-NIR...71.6 1605 9.87 x10 -4 Figure 3 Refractive index n (left) and extinction coefficient k of (right) the AZO films. 4. Conclusions AZO films were

  12. Optical and Chemical Properties of Mixed-valent Rhenium Oxide Films Synthesized by Reactive DC Magnetron Sputtering

    DTIC Science & Technology

    2015-04-03

    films were deposited within a stainless steel high vacuum chamber evacuated to a pressure of 5.3 105 Pa (4 107 Torr). A 3 mm thick, 50 mm diameter...G.E. Jellison, Thin Solid Films 234 (1993) 416 –422. [34] J.I. Pankove, Absorption, in: Optical Processes in Semiconductors, Dover Publications, New

  13. Review Article: Unraveling synergistic effects in plasma-surface processes by means of beam experiments

    PubMed Central

    von Keudell, Achim; Corbella, Carles

    2017-01-01

    The interaction of plasmas with surfaces is dominated by synergistic effects between incident ions and radicals. Film growth is accelerated by the ions, providing adsorption sites for incoming radicals. Chemical etching is accelerated by incident ions when chemical etching products are removed from the surface by ion sputtering. The latter is the essence of anisotropic etching in microelectronics, as elucidated by the seminal paper of Coburn and Winters [J. Appl. Phys. 50, 3189 (1979)]. However, ion-radical-synergisms play also an important role in a multitude of other systems, which are described in this article: (1) hydrocarbon thin film growth from methyl radicals and hydrogen atoms; (2) hydrocarbon thin film etching by ions and reactive neutrals; (3) plasma inactivation of bacteria; (4) plasma treatment of polymers; and (5) oxidation mechanisms during reactive magnetron sputtering of metal targets. All these mechanisms are unraveled by using a particle beam experiment to mimic the plasma–surface interface with the advantage of being able to control the species fluxes independently. It clearly shows that the mechanisms in action that had been described by Coburn and Winters [J. Appl. Phys. 50, 3189 (1979)] are ubiquitous. PMID:29104360

  14. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  15. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    PubMed Central

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Xia, Xiaohong; Gao, Yun

    2016-01-01

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating. PMID:28787867

  16. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  17. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  18. Structural, Electrical and Optical Properties of Cd Doped ZnO Thin Films by Reactive dc Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.

    2015-04-01

    Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.

  19. Relationship Between Crystalline Structure and Hardness of Ti-Si-N-O Coatings Fabricated by dc Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.

    2008-08-01

    Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.

  20. Effect of Si in reactively sputtered Ti-Si-N films on structure and diffusion barrier performance

    NASA Astrophysics Data System (ADS)

    Sun, X.; Kolawa, E.; Im, S.; Garland, C.; Nicolet, M.-A.

    Two ternary films about 100 nm thick, Ti34Si23N43 (b3) and Ti35Si13N52 (c3), are synthesized by reactively sputtering a Ti5Si3 or a Ti3Si target, respectively. The silicon-lean film (c3) has a columnar structure closely resembling that of TiN. As a diffusion barrier between a shallow Si n+p junction diode and a Cu overlayer, this material is effective up to 700 °C for 30 min annealing in vacuum, a performance similar to that for TiN. The silicon-rich (b3) film contains nanocrystals of TiN, randomly oriented and embedded in an amorphous matrix. A film of (b3) maintains the stability of the same diode structure up to 850 °C for 30 min in vacuum. This film (b3) is clearly superior to TiN or to (c3). Similar experiments performed with Al instead of Cu overlayers highlight the importance of the thermodynamic stability of a barrier layer and demonstrate convincingly that for stable barriers the microstructure is a parameter that directly determines the barrier performance.

  1. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  2. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  3. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    NASA Astrophysics Data System (ADS)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  4. Development of sputtering process to deposit stoichiometric zirconia coatings for the inside wall of regeneratively cooled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Busch, R.

    1978-01-01

    Thermal barrier coatings of yttria stabilized zirconia and zirconia-ceria mixtures were deposited by RF reactive sputtering. Coatings were 1-2 mils thick, and were deposited on copper cylinders intended to simulate the inner wall of a regeneratively cooled thrust chamber. Coating stoichiometry and adherence were investigated as functions of deposition parameters. Modest deposition rates (approximately 0.15 mil/hr) and subambient sustrate temperatures (-80 C) resulted in nearly stoichiometric coatings which remained adherent through thermal cycles between -196 and 400 C. Coatings deposited at higher rates or substrates temperatures exhibited greater oxygen deficiences, while coatings deposited at lower temperatures were not adherent. Substrate bias resulted in structural changes in the coating and high krypton contents; no clear effect on stoichiometry was observed.

  5. Electrochemical characteristics of amorphous carbon nanorod synthesized by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chang, Hsin-Yueh; Huang, Yung-Jui; Chang, Hsuan-Chen; Su, Wei-Jhih; Shih, Yi-Ting; Chen, John L.; Honda, Shin-ichi; Huang, Ying-Sheng; Lee, Kuei-Yi

    2015-01-01

    Amorphous carbon nanorods (CNRs) were deposited directly using radio frequency magnetron sputtering. The synthesized CNR electrochemical properties were investigated using graphene as the current collector for an electric double layer capacitor. The CNRs were vertically aligned to the graphene to achieve higher specific surface area. The capacitor performance was characterized using electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge testing in 1 M KOH electrolyte at 30°C, 40°C, 50°C, and 60°C. The CNR specific capacitance was observed to increase with increasing measurement temperature and could reach up to 830 F/g at 60°C. Even after extensive measurements, the CNR electrode maintained good adhesion to the graphene current collector thereby suggesting electrode material stability.

  6. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  7. Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films

    NASA Astrophysics Data System (ADS)

    Jacq, S.; Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Sharaiha, A.

    2016-04-01

    We have synthesized the composition x = 0.01 of the (Sr1-xLax)2(Ta1-xTix)2O7 solid solution, mixing the ferroelectric perovskite phases Sr2Ta2O7 and La2Ti2O7. Related oxide and oxynitride materials have been produced as thin films by magnetron radio frequency sputtering. Reactive sputter deposition was conducted at 750 °C under a 75 vol.% (Ar) + 25 vol.% (N2,O2) mixture. An oxygen-free plasma leads to the deposition of an oxynitride film (Sr0.99La0.01) (Ta0.99Ti0.01)O2N, characterized by a band gap Eg = 2.30 eV and a preferential (001) epitaxial growth on (001) SrTiO3 substrate. Its dielectric constant and loss tangent are respectively Epsilon' = 60 (at 1 kHz) and tanDelta = 62.5 × 10-3. In oxygen-rich conditions (vol.%N2 ≤ 15%), (110) epitaxial (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 oxides films are deposited, associated to a larger band gap value (Eg = 4.55 eV). The oxide films permittivity varies from 45 to 25 (at 1 kHz) in correlation with the decrease in crystalline orientation; measured losses are lower than 5.10-3. For 20 ≤ vol.% N2 ≤ 24.55, the films are poorly crystallized, leading to very low permittivities (minimum Epsilon' = 3). A correlation between the dielectric losses and the presence of an oxynitride phase in the samples is highlighted.

  8. Understanding the influence of surface chemical states on the dielectric tunability of sputtered Ba0.5Sr0.5TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Venkata Saravanan, K.; Raju, K. C. James

    2014-03-01

    The surface chemical states of RF-magnetron sputtered Ba0.5Sr0.5TiO3 (BST5) thin films deposited at different oxygen mixing percentage (OMP) was examined by x-ray photoelectron spectroscopy. The O1s XPS spectra indicate the existence of three kinds of oxygen species (dissociated oxygen ion O2 -, adsorbed oxide ion O- and lattice oxide ion O2-) on the films’ surface, which strongly depends on OMP. The presence of oxygen species other than lattice oxygen ion makes the films’ surface highly reactivity to atmospheric gases, resulting in the formation of undesired surface layers. The XPS results confirm the formation of surface nitrates for the films deposited under oxygen deficient atmosphere (OMP ≦̸ 25%), whereas the films deposited in oxygen rich atmosphere (OMP ≧̸ 75%) show the presence of metal-hydroxide. The influence of a surface dead layer on the tunable dielectric properties of BST5 films have been studied in detail and are reported. Furthermore, our observations indicate that an optimum ratio of Ar:O2 is essential for achieving desired material and dielectric properties in BST5 thin films. The films deposited at 50% OMP have the highest dielectric tunability of ~65% (@280 kV cm-1), with good ɛ r-E curve symmetry of 98% and low tan δ of 0.018. The figure of merit for these films is about 35, which is promising for frequency agile device applications.

  9. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  10. Angular distribution of hybridization in sputtered carbon thin film

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Wei, Z. C.

    2017-08-01

    The sp3/sp2 ratio of sputtered carbon thin film depends on the ion bombardment process and tailors the physical properties of carbon thin film. In present work, we report the angular distribution of hybridization in magnetron sputtered carbon thin film for the first time. By x-ray photoelectron spectra analyses, it is found that the sp3/sp2 ratio increases linearly with increasing the deposition angle from 0 to 90 degree, which could be attributed to the enhancement of direct knocking-out of near-surface target atoms. In addition, we also derive the sp3/sp2 ratio by simulation on complex permittivity in terahertz frequency using a modified percolation approximation tunneling model. Those derived data consist with the results from x-ray photoelectron spectroscopy.

  11. A new setup for experimental investigations of solar wind sputtering

    NASA Astrophysics Data System (ADS)

    Szabo, Paul S.; Berger, Bernhard M.; Chiba, Rimpei; Stadlmayr, Reinhard; Aumayr, Friedrich

    2017-04-01

    The surfaces of Mercury and Moon are not shielded by a thick atmosphere and therefore they are exposed to bombardment by charged particles, ultraviolet photons and micrometeorites. These influences lead to an alteration and erosion of the surface, and the emitted atoms and molecules form a thin atmosphere, an exosphere, around these celestial bodies [1]. The composition of these exospheres is connected to the surface composition and has been subject to flyby measurements by satellites. Model calculations which include the erosion mechanisms can be used as a method of comparison for such exosphere measurements and allow conclusions about the surface composition. Surface sputtering induced by solar wind ions hereby represents a major contribution to the erosion of the surfaces of Mercury and Moon [1]. However, the experimental database for sputtering of respective analogue materials by solar wind ions, which would be necessary for exact modelling of the space weathering process, is still in its early stages. Sputtering experiments have been performed at TU Wien during the past years using a quartz crystal microbalance (QCM) technique [2]. Target material is deposited on the quartz surface as a thin layer and the quartz's resonance frequency is measured under ion bombardment. The sputter yield can then be calculated from the frequency change and the ion current [2]. In order to remove the restrictions of a thin layer QCM target and simplify experiments with composite targets, a new QCM catcher setup was developed. In the new design, the QCM is placed beside the target holder and acts as a catcher for material that is sputtered from the target surface. By comparing the catcher signal to reference measurements and SDTrimSP simulations [3], the target sputter yield can be determined. In order to test the setup, we have performed experiments with a Au-coated QCM target under 2 keV Ar+ bombardment so that both the mass changes at the target and at the catcher could be obtained simultaneously. The results coincide very well with SDTrimSP predictions showing the feasibility of the new design [4]. Furthermore, Fe-coated QCM targets with different surface roughness were investigated in the new setup. The surface roughness represents a key factor for the solar wind induced erosion of planetary or lunar rocks. It has a strong influence on the absolute sputtering yield as well as on the spatial distribution of sputtered particles and was therefore investigated. As a next step, sputtering experiments with Mercury or Moon analogues will be conducted. Knowledge gained in the course of this research will enhance the understanding of surface sputtering by solar wind ions and used to improve theoretical models of the Mercury's and Moon's exosphere formation. References: [1] E. Kallio, et al., Planetary and Space Science, 56, 1506 (2008). [2] G. Hayderer, et al., Review of Scientific Instruments, 70, 3696 (1999). [3] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP: Version 5.00, IPP Report, 12/8, (2011). [4] B. M. Berger, P. S. Szabo, R. Stadlmayr, F. Aumayr, Nucl. Instrum. Meth. Phys. Res. B, doi: 10.1016/j.nimb.2016.11.039

  12. Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application

    NASA Astrophysics Data System (ADS)

    Kondaiah, P.; Mohan Rao, G.; Uthanna, S.

    2012-11-01

    Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.

  13. The influence of Atomic Oxygen on the Figure of Merit of Indium Tin Oxide thin Films grown by reactive Dual Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Geerts, Wilhelmus; Simpson, Nelson; Woodall, Allen; Compton, Maclyn

    2014-03-01

    Indium Tin Oxide (ITO) is a transparent conducting oxide that is used in flat panel displays and optoelectronics. Highly conductive and transparent ITO films are normally produced by heating the substrate to 300 Celsius during deposition excluding plastics to be used as a substrate material. We investigated whether high quality ITO films can be sputtered at room temperature using atomic instead of molecular oxygen. The films were deposited by dual ion beam sputtering (DIBS). During deposition the substrate was exposed to a molecular or an atomic oxygen flux. Microscope glass slides and silicon wafers were used as substrates. A 29 nm thick SIO2 buffer layer was used. Optical properties were measured with a M2000 Woollam variable angle spectroscopic ellipsometer. Electrical properties were measured by linear four point probe using a Jandel 4pp setup employing silicon carbide electrodes, high input resistance, and Keithley low bias current buffer amplifiers. The figure of merit (FOM), i.e. the ratio of the conductivity and the average optical absorption coefficient (400-800 nm), was calculated from the optical and electric properties and appeared to be 1.2 to 5 times higher for the samples sputtered with atomic oxygen. The largest value obtained for the FOM was 0.08 reciprocal Ohms. The authors would like to thank the Research Corporation for Financial Support.

  14. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  15. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossoy, Anna, E-mail: annaeden@hi.is, E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute itmore » to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.« less

  16. Influence of Si concentration on the magnetization dynamics in as-sputtered FeCoSiN thin films at high frequencies

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Chen, Xin; Ma, Yungui; Phuoc, N. N.; Zhang, Xiaoyu; Ong, C. K.

    2008-10-01

    In this work, the high-frequency magnetic permeability spectra of as-sputtered FeCoSiN films with various Si concentrations were investigated. The soft magnetic properties with an induced in-plane uniaxial anisotropy can only be obtained within some composition ranges because of the formation of different granular microstructures. The permeability spectra measured without any external fields (He) were well fitted based on the phenomenological Landau-Lifshitz-Gilbert equation. Results show that with the increase in Si concentration, the saturated magnetization 4πMs, the resonance frequency fr, the permeability μ, and the qualify factor Q values decrease, while the damping coefficient α and resonant frequency linewidth Δf increase. The increase in Gilbert damping coefficient α or G is ascribed to the increase in mosaicity or magnetic ripples with higher volume proportion of Si-rich matrix. The investigations on Δf-He relations indicate the extrinsic damping contribution from the two-magnon scattering in FeCoSiN, which is suggested to be due to the change in the granular microstructures compared with FeCoN.

  17. Preparation and Characterization of RF Sputtered BARIUM(2) SILICON(2) Titanium OXYGEN(8) Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Yi.

    Thin films of barium titanium silicate ( Ba_2Si_2TiO_8) are grown on crystalline (100) Si at substrate temperatures raging from 750 to 955^circC by the radio-frequency triode sputtering technique. The chemical composition, microstructure, physical properties, and growth conditions of the deposited films are investigated by dc and high-frequency dielectric measurements, wavelength dispersive and energy dispersive x-ray spectrometries, x-ray diffraction spectrometry, and optical and scanning electron microscopies. The results of the x-ray diffraction analysis show that the Ba_2Si_2TiO _8 films deposited at the optimum condition of substrate temperature of 845^circ C, 4 cm source-substance distance, 50 W rf power, and 1.2 times 10^ {-3} torr pressure of Ar, are highly c -axis oriented. The as-deposited films are smooth, glossy, polycrystalline films, exhibiting a bulk resistivity range of 10^6 Omegacdotcm, and an isotropic surface resistivity of 1.5 times 10^3 Omegacdot cm. The relative dielectric constant is 0.05, and the dielectric loss is lower than 1.0, in the frequency band 9 ~ 1000 MHz. The high-frequency impedance of BST films, which is typical for piezoelectric materials, gives a minimum impedance frequency of 9.0 MHz and a series resonant frequency of 9.5 MHz. Optical and SEM observations show that the film texture is dependent on the substrate conditions. The non-liquid-like grain coalescence of the Ba_2Si_2TiO _8 grains is characteristic of a strong film -substrate interaction. The grain growth kinetics obtained from "short-time" sputtering gives an initial lateral grain growth rate of 770 nm/min at 845^circ C, which decreases with the grain size. The initial film growth rate in the direction of thickness, measured from SEM micrographs, is 1.95 nm/min, and decreases with sputtering time. The activation free energy for grain growth is 359 +/- 30 KJ/mol for the initial stage, decreasing to 148 +/- 20 KJ/mol for the final stage. The variation of the grain growth rate and the activation energy with grain size is the result of a combined nucleation and growth mechanism in the initial stage of the film growth, and a coalescence -dominated growth mechanism at longer sputtering time and at higher temperature. Film orientation is sensitive to the supersaturation adjacent to the film surface, which depends on the source-substrate distance and substrate temperature. The effect of the substrate temperature on the orientation of the film is investigated over a wide temperature range using (100) and (111) Si substrates. Several orientations for the BST films, including an amorphous state, are obtained with increasing substrate temperature. This is discussed in relation to the atomic plane density and the energetics for the deposition process.

  18. Spectroscopic analysis of temperature dependent growth of WO3 and W0.95Ti0.05O3 thin films

    NASA Astrophysics Data System (ADS)

    Yun, Young; Manciu, Felicia; William, Durrer; Howard, James; Ramana, Chintalapalle

    2011-10-01

    We present a comparative spectroscopic study of the morphology and composition of tungsten oxide WO3 and W0.95Ti0.05O3 thin films, grown by radio frequency magnetron reactive sputtering at substrate temperatures varied from room temperature (RT) to 500 ^oC, using Raman and X-ray photoelectron spectroscopy (XPS). The Raman results demonstrate the occurrence of a phase transformation from a monoclinic WO3 structure to an orthorhombic or tetragonal configuration in the W0.95Ti0.05O3 thin films. This remark is based on the observed shifting, with Ti doping, to lower frequencies of the Raman peaks corresponding to W-O-W stretching modes of WO3 at 806 and 711 cm-1, to 793 and 690 cm-1, respectively. Also, higher growth temperatures are required to obtain crystalline microstructure for Ti-doped WO3 films than for WO3 films. XPS data indicate that the doped material has a reduced WO3-x stoichiometry at the surface, with the presence of W^+6 and W^+5 tungsten oxidation states; this observation could also be related to the existence of a different structural phase of this material, corroborating with the Raman measurements.

  19. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    PubMed

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  20. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  1. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruth, A.; Manno, M.; Narasimhan, D.

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, wemore » report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.« less

  2. Synthesis and characterization of delafossite thin films by reactive RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Asmat Uceda, Martin Antonio

    This work presents a comparative study on optical and electrical properties of CuAlO2 thin films on sapphire (0001) substrates deposited with two different growth conditions using reactive RF-magnetron sputtering technique from metallic Cu and Al targets. CuAlO2 is a very promising material for transparent electronic applications, it is intended that comparison of results obtained from both approaches, could lead to optimization and control of the physical properties of this material, namely its electrical conductivity and optical transmittance. All samples were heat treated at 1100°C using rapid thermal annealing with varying time and rate of cooling. The effect of sputtering conditions and different annealing time on phase formation and evolution is studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that for most of the samples CuAlO2 phase is formed after 60 min of annealing time, but secondary phases were also present that depend on the deposition conditions. However, pure CuAlO2 phase was obtained for annealed CuO on sapphire films with annealing time of 60 min. The optical properties obtained from UV-Visible spectroscopic measurement reveals indirect and direct optical band gaps for CuAlO2 films and were found to be 2.58 and 3.72 eV respectively. The films show a transmittance of about 60% in the visible range. Hall effect measurements indicate p-type conductivity. Van der Pauw technique was used to measure resistivity of the samples. The highest electrical conductivity and charge carrier concentration obtained were of 1.01x10-1S.cm -1 and 3.63 x1018 cm-3 respectively.

  3. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less

  4. Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process

    NASA Astrophysics Data System (ADS)

    Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas

    2014-01-01

    Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.

  5. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punitha, K.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsingmore » frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.« less

  6. New PVD Technologies for New Ordnance Coatings

    DTIC Science & Technology

    2012-04-01

    characteristics using a Tantalum and a Chrome target; 4) Deposition of Ta coatings and reactive deposition of CrN; 5) Deposition parameters affecting film...Vapor Deposition (PVD); High Power Impulse Magnetron Sputtering (HIPIMS); Modulated Pulsed Power (MPP); Tantalum; Chrome ; Ta coatings; CrN; coating...The pre-production chemicals and acids are hazardous and hexavalent Cr is a known carcinogen. Significant annual expenditures are necessary to

  7. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    NASA Astrophysics Data System (ADS)

    Sharma, Saumya

    Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at +/-200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd). The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or +/-1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz. Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter. Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.

  8. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  9. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE PAGES

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.; ...

    2016-01-19

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  10. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  11. On Both Spatial And Velocity Distribution Of Sputtered Particles In Magnetron Discharge

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; Pohoata, V.; Tiron, V.; Costin, C.; Popa, G.

    2012-12-01

    The kinetics of the sputtered atoms from the metallic target as well as the time-space distribution of the argon metastable atoms have been investigated for DC and high power pulse magnetron discharge by means of Tunable Diode - Laser Absorption Spectroscopy (TD-LAS) and Tunable Diode - Laser Induced Fluorescence (TD-LIF). The discharge was operated in argon (5-30 mTorr) with two different targets, tungsten and aluminum, for pulses of 1 to 20 μs, at frequencies of 0.2 to 1 kHz. Peak current intensity of ~100 A has been attained at cathode peak voltage of ~1 kV. The mean velocity distribution functions and particle fluxes of the sputtered metal atoms, in parallel and perpendicular direction to the target, have been obtained and compared for DC and pulse mode.

  12. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  13. Properties of reactively sputtered AlxNy thin films for pyroelectric detectors

    NASA Astrophysics Data System (ADS)

    Calvano, Nicholas; Chrostoski, Philip; Voshell, Andrew; Braithwaite, Keesean; Rana, Mukti

    2017-08-01

    Uncooled infrared detectors are utilized in various radiometric devices and cameras because of their low cost, light weight and performance. A pyroelectric detector is a class of uncooled infrared detector whose polarization changes with change in temperature. Infrared radiation from objects falls on top of the sensing layer of the pyroelectric detector and the absorbed radiation causes the temperature of the sensing layer to change. This work describes the deposition and characterization of AlxNy thin films for using them as pyroelectric detector's sensing material. To test the sensitivity of infrared detection or pyroelectric effect of AlxNy thin films, capacitors of various sizes were fabricated. The diameter of the electrodes for capacitor used during testing of the device was 1100 μm while the distances between these two electrodes was 1100 μm. On a 3-inch diameter cleaned silicon wafer, 100 nm thick AlxNy thin films were deposited by radio frequency (RF) sputtering from an Al target in Ar: N2 environment. On top of this, a 100-nm thick Au layer was deposited and lifted off by using conventional photo lithography to form the electrodes of capacitors. All the layers were deposited by RF sputtering at room temperature. The thin film samples were annealed at 700 °C in N2 environment for 10 minutes. X-ray diffraction showed the films are poly-crystalline with peaks in (100), (002) and (101) directions. When the temperature varied between 303 K to 353 K, the pyroelectric coefficient was increased from 8.60 × 10-9 C/m2K to 3.76 × 10-8C/m2K with a room temperature pyroelectric coefficient value of 8.60×10-9C/m2K. The non-annealed films were found to be transparent between the wavelengths of 600 nm to 3000 nm. The refraction coefficient was found to be varied between 2.0 and 2.2 while the extinction coefficient was found to be zero. The optical bandgap determined using Tauc's equation was 1.65 eV.

  14. Mass sensing AlN sensors for waste water monitoring

    NASA Astrophysics Data System (ADS)

    Porrazzo, R.; Potter, G.; Lydecker, L.; Foraida, Z.; Gattu, S.; Tokranova, N.; Castracane, J.

    2014-08-01

    Monitoring the presence of nanomaterials in waste water from semiconductor facilities is a critical task for public health organizations. Advanced semiconductor technology allows the fabrication of sensitive piezoelectric-based mass sensors with a detection limit of less than 1.35 ng/cm2 of nanomaterials such as nanoparticles of alumina, amorphous silica, ceria, etc. The interactions between acoustic waves generated by the piezoelectric sensor and nanomaterial mass attached to its surface define the sensing response as a shift in the resonant frequency. In this article the development and characterization of a prototype AlN film bulk acoustic resonator (FBAR) are presented. DC reactive magnetron sputtering was used to create tilted c-axis oriented AlN films to generate shear waves which don't propagate in liquids thus minimizing the acoustic losses. The high acoustic velocity of AlN over quartz allows an increase in resonance frequency in comparison with a quartz crystal microbalance (QCM) and results in a higher frequency shift per mass change, and thus greater sensitivity. The membrane and electrodes were fabricated using state of the art semiconductor technology. The device surface functionalization was performed to demonstrate selectivity towards a specific nanomaterial. As a result, the devices were covered with a "docking" layer that allows the nanomaterials to be selectively attached to the surface. This was achieved using covalent modification of the surface, specifically targeting ZnO nanoparticles. Our functionalization approach was tested using two different types of nanoparticles, and binding specificity was confirmed with various analytical techniques.

  15. Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza

    2017-08-01

    In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.

  16. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  17. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of themore » essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.« less

  18. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  19. High Energy Density Polymer Film Capacitors

    DTIC Science & Technology

    2006-10-01

    abandoned when, under vacuum, a noticeable output frequency drift was observed, even when the tube ripple frequency was rejected by integrating over one...only minor circuitry and software changes. The selection of the light source proved more difficult. An earlier attempt to use a florescent tube was...bulb, which of course, led to a frequency drift interpretation by the sensor array (see graph 2). Even if the "self sputtering" behavior had not 14 been

  20. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

    NASA Astrophysics Data System (ADS)

    Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza

    2017-12-01

    Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.

  1. Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre; Slack, Jonathan

    2013-05-14

    A physical vapor deposition-based route for the fabrication of VO2 nanoparticles is demonstrated, consisting of reactive sputtering and vapor condensation at elevated pressures. The oxidation of vanadium atoms is an efficient heterogeneous nucleation method, leading to high nanoparticle throughtput. Fine control of the nanoparticle size and composition is obtained. Post growth annealing leads to crystalline VO2 nanoparticles with optimum thermocromic and plasmonic properties.

  2. Select Papers. Volume 1

    DTIC Science & Technology

    2011-08-01

    the Texture Evolution During Cold Rolling of Al –Mg Alloys . s.l.: Journal of Alloys and Compounds 2011, 508, 922–928. 11. Suhuddin, U.F.H.R.; Mironov...graphene onto a substrate with insulator properties . The current transfer process is still preliminary and presents a number of challenges. Since the...dimensions. The fabrication process flow for the stators uses chemical solution deposited PZT, metal sputtering and evaporation, reactive ion etching

  3. Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig

    NASA Technical Reports Server (NTRS)

    Thom, Robert L.

    1989-01-01

    Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.

  4. Silicon Oxycarbide Waveguides for Photonic Applications

    NASA Astrophysics Data System (ADS)

    Memon, Faisal Ahmed; Morichetti, Francesco; Melloni, Andrea

    2018-01-01

    Silicon oxycarbide thin films deposited with rf reactive magnetron sputtering a SiC target are exploited to demonstrate photonic waveguides with a high refractive index of 1.82 yielding an index contrast of 18% with silica glass. The propagation losses of the photonic waveguides are measured at the telecom wavelength of 1.55 μm by cut-back technique. The results demonstrate the potential of silicon oxycarbide for photonic applications.

  5. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1986-01-01

    A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.

  7. Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering

    NASA Astrophysics Data System (ADS)

    Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka

    2018-06-01

    Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.

  8. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in

    2016-05-06

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with differentmore » deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.« less

  9. Epitaxial growth of γ-Al{sub 2}O{sub 3} on Ti{sub 2}AlC(0001) by reactive high-power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eklund, Per, E-mail: perek@ifm.liu.se; Frodelius, Jenny; Hultman, Lars

    2014-01-15

    Al{sub 2}O{sub 3} was deposited by reactive high-power impulse magnetron sputtering at 600 °C onto pre-deposited Ti{sub 2}AlC(0001) thin films on α-Al{sub 2}O{sub 3}(0001) substrates. The Al{sub 2}O{sub 3} was deposited to a thickness of 65 nm and formed an adherent layer of epitaxial γ-Al{sub 2}O{sub 3}(111) as shown by transmission electron microscopy. The demonstration of epitaxial growth of γ-Al{sub 2}O{sub 3} on Ti{sub 2}AlC(0001) open prospects for growth of crystalline alumina as protective coatings on Ti{sub 2}AlC and related nanolaminated materials. The crystallographic orientation relationships are γ-Al{sub 2}O{sub 3}(111)//Ti{sub 2}AlC(0001) (out-of-plane) and γ- Al {sub 2}O{sub 3}(22{sup ¯}0)// Timore » {sub 2} AlC (112{sup ¯}0) (in-plane) as determined by electron diffraction. Annealing in vacuum at 900 °C resulted in partial decomposition of the Ti{sub 2}AlC by depletion of Al and diffusion into and through the γ-Al{sub 2}O{sub 3} layer.« less

  10. Heterojunction diodes in 3C-SiC/Si system grown by reactive magnetron sputtering: Effects of growth temperature on diode rectification and breakdown

    NASA Astrophysics Data System (ADS)

    Wahab, Q.; Karlsteen, M.; Nur, O.; Hultman, L.; Willander, M.; Sundgren, J.-E.

    1996-09-01

    3C-SiC/Si heterojunction diodes were prepared by reactive magnetron sputtering of pure Si in CH4-Ar discharge on Si(111) substrates kept at temperatures (Ts) ranging from 800 to 1000°C. A good diode rectification process started for films grown at Ts≤900°C. Heterojunction diodes grown at Ts = 850°C showed the best performance with a saturation current density of 2.4 × 10-4 A cm-2. Diode reverse breakdown was obtained at a voltage of -110 V. The doping concentration (Nd) of the 3C-SiC films was calculated from 1/C2 vs V plot to be 3 × 1015 cm-3. Band offset values obtained were -0.27 and 1.35 eV for the conduction and valence band, respectively. X-ray diffraction analysis revealed the film grown at Ts = 850°C to be single-phase 3C-SiC. The full width at half maximum of the 3C-SiC(111) peak was only 0.25 degree. Cross-sectional transmission electron microscopy showed the film to be highly (111)-oriented with an epitaxial columnar structure of double positioning domain boundaries.

  11. Growth dynamics of reactive-sputtering-deposited AlN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, M.A.; Vazquez, L.; Sanchez, O.

    2005-06-15

    We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films aremore » homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent {beta}=0.37{+-}0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent {alpha}=1.2{+-}0.2 and {beta}=0.37{+-}0.03 and coarsening exponent 1/z=0.32{+-}0.05; (ii) local exponents: {alpha}{sub loc}=1, {beta}{sub loc}=0.32{+-}0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively.« less

  12. Photoreduction of CO{sub 2} by TiO{sub 2} nanocomposites synthesized through reactive direct current magnetron sputter deposition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Graham, M. E.; Li, G.

    The photoreduction of CO{sub 2} into methane provides a carbon-neutral energy alternative to fossil fuels, but its feasibility requires improvements in the photo-efficiency of materials tailored to this reaction. We hypothesize that mixed phase TiO{sub 2} nano-materials with high interfacial densities are extremely active photocatalysts well suited to solar fuel production by reducing CO{sub 2} to methane and shifting to visible light response. Mixed phase TiO{sub 2} films were synthesized by direct current (DC) magnetron sputtering and characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Bundles of anatase-rutile nano-columns havingmore » high densities of two kinds of interfaces (those among the bundles and those between the columns) are fabricated. Films sputtered at a low deposition angle showed the highest methane yield, compared to TiO{sub 2} fabricated under other sputtering conditions and commercial standard Degussa P25 under UV irradiation. The yield of methane could be significantly increased ({approx} 12% CO{sub 2} conversion) by increasing the CO{sub 2} to water ratio and temperature (< 100 C) as a combined effect. These films also displayed a light response strongly shifted into the visible range. This is explained by the creation of non-stoichiometric titania films having unique features that we can potentially tailor to the solar energy applications.« less

  13. Oxygen interaction with disordered and nanostructured Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.

    2001-08-01

    We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.

  14. Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices

    NASA Astrophysics Data System (ADS)

    Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.

    2000-01-01

    Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.

  15. ICRF-edge and surface interactions

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2011-08-01

    This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.

  16. Hexagonally ordered nanodots: Result of substrate rotation during oblique incidence low energy IBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debasree, E-mail: debasree.chowdhury@saha.ac.in; Ghose, Debabrata, E-mail: debasree.chowdhury@saha.ac.in

    The anisotropic regular patterns are often results during oblique incidence ion beam sputtering (IBS). Simultaneous substrate rotation (SR) during IBS can suppress surface roughening and removes anisotropic nature of surface pattern. Here, the evolution of Si surface morphology as result of with and without SR is studied during oblique incidence low energy Ar{sup +} sputtering. Resultant topography shows smooth surface to hexagonally ordered nanodots at different rotating conditions. Interestingly, surface roughness exhibits non-monotonic dependence on rotation frequency. The underlying mechanism for dot formation can be described within the framework of isotropic DKS equation.

  17. Raman spectroscopy of sputtered metal-graphene and metal-oxide-graphene interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Gajek, Marcin; Freitag, Marcus; Kuroda, Marcelo; Perebeinos, Vasili; Raoux, Simone

    2012-02-01

    In this talk, we report our recent development in sputtering deposition of magnetic and non-magnetic metal and metal-oxide thin films on graphene for applications in spintronics and nanoeleoctronics. TEM and SEM images demonstrate homogeneous coverage, uniform thickness, and good crystallinity of the sputtered films. Raman spectroscopy shows that the structure of the underlying graphene is well preserved, and the spectral weight of the defect D mode is comparable to that of the e-beam evaporated samples. Most significantly, we report the first observation of graphene-enhanced surface excitations of crystalline materials. Specifically, we discover two pronounced dispersive Raman modes at the interface of graphene and the nickel-oxide and cobalt-oxide films which we attribute to the strong light absorption and high-order resonant scattering process in the graphene layer. We will present the frequency-dependent, polarization-dependent Raman data of these two modes and discuss their microscopic origin.

  18. Investigation of electron beam lithography effects on metal-insulator transition behavior of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Yuce, H.; Alaboz, H.; Demirhan, Y.; Ozdemir, M.; Ozyuzer, L.; Aygun, G.

    2017-11-01

    Vanadium dioxide (VO2) shows metal-insulator phase transition at nearly 68 °C. This metal-insulator transition (MIT) in VO2 leads to a significant change in near-infrared transmittance and an abrupt change in the resistivity of VO2. Due to these characteristics, VO2 plays an important role on optic and electronic devices, such as thermochromic windows, meta-materials with tunable frequency, uncooled bolometers and switching devices. In this work, VO2 thin films were fabricated by reactive direct current magnetron sputtering in O2/Ar atmosphere on sapphire substrates without any further post annealing processes. The effect of sputtering parameters on optical characteristics and structural properties of grown thin films was investigated by SEM, XRD, Raman and UV/VIS spectrophotometer measurements. Patterning process of VO2 thin films was realized by e-beam lithography technique to monitor the temperature dependent electrical characterization. Electrical properties of VO2 samples were characterized using microprobe station in a vacuum system. MIT with hysteresis behavior was observed for the unpatterned square samples at around 68 °C. By four orders of magnitude of resistivity change was measured for the deposited VO2 thin films at transition temperature. After e-beam lithography process, substantial results in patterned VO2 thin films were observed. In this stage, for patterned VO2 thin films as stripes, the change in resistivity of VO2 was reduced by a factor of 10. As a consequence of electrical resistivity measurements, MIT temperature was shifted from 68 °C to 50 °C. The influence of e-beam process on the properties of VO2 thin films and the mechanism of the effects are discussed. The presented results contribute to the achievement of VO2 based thermochromic windows and bolometer applications.

  19. Multilayer ZnO/Pd/ZnO Structure as Sensing Membrane for Extended-Gate Field-Effect Transistor (EGFET) with High pH Sensitivity

    NASA Astrophysics Data System (ADS)

    Rasheed, Hiba S.; Ahmed, Naser M.; Matjafri, M. Z.; Al-Hardan, Naif H.; Almessiere, Munirah Abdullah; Sabah, Fayroz A.; Al-Hazeem, Nabeel Z.

    2017-10-01

    Metal oxide nanostructures have attracted considerable attention as pH-sensitive membranes because of their unique advantages. Specifically, the special properties of ZnO thin film, including high surface-to-volume ratio, nontoxicity, thermal stability, chemical stability, electrochemical activity, and high mechanical strength, have attracted massive interest. ZnO exhibits wide bandgap of 3.37 eV, good biocompatibility, high reactivity, robustness, and environmental stability. These unique properties explain why ZnO has the most applications among all nanostructured metal oxides based on its structure and properties. Moreover, ZnO has excellent electrical characteristics, enabling its use in accurate sensors with rapid response. ZnO nanostructures can be used in novel pH and biomedical sensing applications. However, ZnO thin film exhibits large sheet resistance and low conductivity. Increasing the conductivity or reducing the resistivity of ZnO sensing membranes is important to achieve low impedance. We propose herein a new design using a multilayer ZnO/Pd/ZnO structure as a pH-sensing membrane. Multiple layers were deposited by radio frequency (RF) sputtering for ZnO and direct current (DC) sputtering for Pd to achieve low sheet resistance. These multilayers with low sheet resistance of 15.8 Ω/sq were then successfully used to control the conductivity in extended-gate field-effect transistors (EGFETs). The resulting multilayered EGFET pH-sensor demonstrated improved sensing performance. The measured sensitivity of the pH sensor was 40 μA/pH and 52 mV/pH within the pH range from 2 to 12, rendering this structure suitable for use in various applications, including pH sensors and biosensors.

  20. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  1. Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered ZnO as electron transport layer [Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered inorganic electron transport layer

    DOE PAGES

    Subbiah, Anand S.; Agarwal, Sumanshu; Mahuli, Neha; ...

    2017-02-10

    Here, radio-frequency magnetron sputtering is demonstrated as an effective tool to deposit highly crystalline thin zinc oxide (ZnO) layer directly on perovskite absorber as an electron transport layer (ETL). As an absorber, formamidinium lead tribromide (FAPbBr 3) is fabricated through a modified single-step solution process using hydrogen bromide (HBr) as an additive resulting in complete surface coverage and highly crystalline material. A planar p-i-n device architecture with spin-coated poly-(3,4-ethylenedioxythiophene):poly-styrenesulfonic acid (PEDOT:PSS) as hole transport material (HTM) and sputtered ZnO as ETL results in a short circuit current density of 9.5 mA cm -2 and an open circuit potential of 1.19more » V. Numerical simulations are performed to validate the underlying loss mechanisms. The use of phenyl C 60 butyric acid methyl ester (PCBM) interface layer between FAPbBr 3 and sputter-coated ZnO offers shielding from potential plasma-related interface damage. The modified interface results in a better device efficiency of 8.3% with an open circuit potential of 1.35 V. Such devices offer better stability under continuous illumination under ambient conditions in comparison with the conventional organic ETL (PCBM)-based devices.« less

  2. Zero added oxygen for high quality sputtered ITO: A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    The authors demonstrate mobilities of >45 cm{sup 2}/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO{sub 2}, instead of the more conventional 8–10 wt. %, and had varying ZrO{sub 2} content from 0 to 3 wt. %, with a subsequent reduction in In{sub 2}O{sub 3} content. These films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions.more » However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. This result is attributed to the reduced concentration of SnO{sub 2}. The addition of ZrO{sub 2} yielded the highest mobilities at >55 cm{sup 2}/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  3. Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered ZnO as electron transport layer [Stable p-i-n FAPbBr 3 devices with improved efficiency using sputtered inorganic electron transport layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbiah, Anand S.; Agarwal, Sumanshu; Mahuli, Neha

    Here, radio-frequency magnetron sputtering is demonstrated as an effective tool to deposit highly crystalline thin zinc oxide (ZnO) layer directly on perovskite absorber as an electron transport layer (ETL). As an absorber, formamidinium lead tribromide (FAPbBr 3) is fabricated through a modified single-step solution process using hydrogen bromide (HBr) as an additive resulting in complete surface coverage and highly crystalline material. A planar p-i-n device architecture with spin-coated poly-(3,4-ethylenedioxythiophene):poly-styrenesulfonic acid (PEDOT:PSS) as hole transport material (HTM) and sputtered ZnO as ETL results in a short circuit current density of 9.5 mA cm -2 and an open circuit potential of 1.19more » V. Numerical simulations are performed to validate the underlying loss mechanisms. The use of phenyl C 60 butyric acid methyl ester (PCBM) interface layer between FAPbBr 3 and sputter-coated ZnO offers shielding from potential plasma-related interface damage. The modified interface results in a better device efficiency of 8.3% with an open circuit potential of 1.35 V. Such devices offer better stability under continuous illumination under ambient conditions in comparison with the conventional organic ETL (PCBM)-based devices.« less

  4. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  5. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  6. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  7. New Recording Layer of Recordable Digital Versatile Disc with CrOx Film Using Red Laser

    NASA Astrophysics Data System (ADS)

    Liu, Chung Ping; Hung, Yao Ti

    2006-03-01

    In this study, CrOx film deposited by rf magnetron reactive sputtering was used as a new recording layer for a recordable digital versatile disc (DVD-R) with a red laser. X-ray photoelectron spectroscopy (XPS) indicated the films have three major components: CrO2, CrO3, and Cr2O3. From disc dynamic tests and atomic force microscope (AFM) images of a polycarbonate (PC) substrate, a DVD-R structure of PC/ZnS-SiO2 (30 nm)/CrOx (120 nm)/ZnS-SiO2 (40 nm)/Ag (50 nm), deposited by sputtering at an O2/Ar flow rate ratio of 0.4, had an improved carrier-to-noise ratio (CNR). The principle of recording depends primarily on the explosive pressure of the O2 released due to laser heating of the annealed CrOx film.

  8. Superconductor-Insulator transition in sputtered amorphous MoRu and MoRuN thin films

    NASA Astrophysics Data System (ADS)

    Makise, K.; Shinozaki, B.; Ichikawa, F.

    2018-03-01

    This work shows the experimental results of the superconductor-insulator (S-I) transition for amorphous molybdenum ruthenium (MoRu) and molybdenum ruthenium nitride (MoRuN) films. These amorphous films onto c-plane sapphire substrates have been interpreted to be homogeneous by XRD and AFM measurements. Electrical and superconducting properties measurements were carried out on MoRu and MoRuN thin films deposited by reactive sputtering technique. We have analysed the data on R sq (T) based on excess conductivity of superconducting films by the AL and MT term and weak localization and electron-electron interaction for the conductance. MoRu films which offer the most homogeneous film morphology, showed a critical sheet resistance of transition, Rc, of ∼ 2 kΩ. This values is smaller than those previously our reported for quench-condensed MoRu films on SiO underlayer held at liquid He temperature.

  9. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinyu, E-mail: xinyu.zhang@anu.edu.au; Wan, Yimao; Bullock, James

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuO{sub x}:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuO{sub x}:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuO{sub x}:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contactmore » resistivity of ∼10 mΩ cm{sup 2} has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.« less

  10. Magnetic properties of epitaxial β-Nb2N thin film on SiC substrate

    NASA Astrophysics Data System (ADS)

    Yang, Zihao; Myers, Roberto; Katzer, D. Scott; Nepal, Neeraj; Meyer, David J.

    Previously superconductivity in Nb2N was studied in thin films synthesized by reactive magnetron sputtering or pulsed laser deposition. Recently, Nb2N was synthesized by molecular beam epitaxy (MBE). Here, we report on the magnetic properties of MBE grown Nb2N measured by SQUID magnetometry. The single hexagonal β phase Nb2N is grown on a semi-insulating Si-face 4H SiC (0001) substrate in nitrogen rich conditions at a substrate temperature of 850 °C. In-plane magnetization as a function of magnetic field measured at 5 K shows type-II superconductivity with critical fields Hc1 and Hc2 of 300 Oe and 10 kOe, respectively. In-plane field-cooled and zero-field-cooled a critical temperature (Tc) of 11.5 K, higher than in sputtered Nb2N films. This work was supported by Army Research Office and the Office of Naval Research.

  11. Development of an inductively coupled impulse sputtering source for coating deposition

    NASA Astrophysics Data System (ADS)

    Loch, Daniel Alexander Llewellyn

    In recent years, highly ionised pulsed plasma processes have had a great impact on improving the coating performance of various applications, such as for cutting tools and ITO coatings, allowing for a longer service life and improved defect densities. These improvements stem from the higher ionisation degree of the sputtered material in these processes and with this the possibility of controlling the flux of sputtered material, allowing the regulation of the hardness and density of coatings and the ability to sputter onto complex contoured substrates. The development of Inductively Coupled Impulse Sputtering (ICIS) is aimed at the potential of utilising the advantages of highly ionised plasma for the sputtering of ferromagnetic material. In traditional magnetron based sputter processes ferromagnetic materials would shunt the magnetic field of the magnetron, thus reducing the sputter yield and ionisation efficiency. By generating the plasma within a high power pulsed radio frequency (RF) driven coil in front of the cathode, it is possible to remove the need for a magnetron by applying a high voltage pulsed direct current to the cathode attracting argon ions from the plasma to initiate sputtering. This is the first time that ICIS technology has been deployed in a sputter coating system. To study the characteristics of ICIS, current and voltage waveforms have been measured to examine the effect of increasing RF-power. Plasma analysis has been conducted by optical emission spectroscopy to investigate the excitation mechanisms and the emission intensity. These are correlated to the set RF-power by modelling assumptions based on electron collisions. Mass spectroscopy is used to measure the plasma potential and ion energy distribution function. Pure copper, titanium and nickel coatings have been deposited on silicon with high aspect ratio via to measure the deposition rate and characterise the microstructure. For titanium and nickel the emission modelling results are in good agreement with the model expectations showing that electron collisions are the main excitation mechanism. The plasma potential was measured as 20 eV, this is an ideal level for good adatom mobility with reduced lattice defects. All surfaces in the via were coated, perpendicular column growth on the sidewalls indicates a predominantly ionised metal flux to the substrate and the deposition rates agree with the literature value of the sputter yield of the materials. The results of the studies show that ICIS is a viable process for the deposition of magnetic coatings with high ionisation in the plasma.

  12. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum under increasing loads revealed high critical load values for failure (>15 N) for the bcc coatings versus the low load values (<9 N) for the beta coatings. The coating deposited on TaN interlayers on sputter-etched steel had better adhesion than those on steel surface without sputter etching. The results for this work have demonstrated that by controlling the various process parameters of do magnetron sputtering, high quality bcc Ta coatings of multi-micron thickness with excellent adhesion to steel can be made. An important contribution of this dissertation is in the enhancing an understanding of this process. The impact of this research will be in a number of fields where superior protective castings are needed. These include military applications, electronic components, chemical processing, and others.

  13. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Power, Thermal and Control Technologies and Processes Experimental Research

    DTIC Science & Technology

    2015-08-01

    and (b) physical property data collection Following film deposition (via PLD or radio frequency magnetron sputtering), to prevent unwanted...carried out using an in-house radio frequency induction hot press under vacuum at ~1 mTorr and temperatures of 650, 750 and 850 °C. Sintering time was 2...tape thickness 23 µm, lamination stack thickness 11 mm). Simulated magnetic flux density inside the core was ~0.1 T, and operating frequency was

  14. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J. C.; Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3A 3A7; Jha, S. K., E-mail: skylec@gmail.com, E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  15. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  16. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.

    2016-05-23

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  17. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Zhou, Xue

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  18. Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions

    NASA Astrophysics Data System (ADS)

    Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.

    2001-10-01

    Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.

  19. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  20. Re-Active Passive devices for control of noise transmission through a panel

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan

    2008-01-01

    Re-Active Passive devices have been developed to control low-frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (<150 Hz). The actuator was applied to control noise transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  1. Heterogeneous processes in CF4/O2 plasmas probed using laser-induced fluorescence of CF2

    NASA Astrophysics Data System (ADS)

    Hansen, S. G.; Luckman, G.; Nieman, George C.; Colson, Steven D.

    1990-09-01

    Laser-induced fluorescence of CF2 is used to monitor heterogeneous processes in ≊300 mTorr CF4/O2 plasmas. CF2 is rapidly removed at fluorinated copper and silver surfaces in 13.56-MHz rf discharges as judged by a distinct dip in its spatial distribution. These metals, when employed as etch masks, are known to accelerate plasma etching of silicon, and the present results suggest catalytic dehalogenation of CF2 is involved in this process. In contrast, aluminum and silicon dioxide exhibit negligible reactivity with CF2, which suggests that aluminum masks will not appreciably accelerate silicon etching and that ground state CF2 does not efficiently etch silicon dioxide. Measurement of CF2 decay in a pulsed discharge coupled with direct laser sputtering of metal into the gas phase indicates the interaction between CF2 and the active metals is purely heterogeneous. Aluminum does, however, exhibit homogeneous reactivity with CF2. Redistribution of active metal by plasma sputtering readily occurs; silicon etch rates may also be enhanced by the metal's presence on the silicon surface. Polymers contribute CF2 to the plasma as they etch. The observation of an induction period suggests fluorination of the polymer surface is the first step in its degradation. Polymeric etch masks can therefore depress the silicon etch rate by removal of F atoms, the primary etchants.

  2. Effects of 200 keV Ar-ions irradiation on the structural and optical properties of reactively sputtered CrN films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Modification in structural and optical properties of chromium-nitride (CrN) films induced by argon ion irradiation and thermal annealings were investigated using various experimental techniques. CrN films deposited by d. c. reactive sputtering on Si substrate were implanted with 200 keV argon ions, at fluences of 5-20 × 1015 ions/cm2. As-implanted samples were then annealed in vacuum, for 2 h at 700 °C. Rutherford backscattering spectrometry, X-ray diffraction, cross-sectional (high-resolution) transmission electron microscopy and spectroscopic ellipsometry (SE) measurements were carried out in order to study structural and optical properties of the layers. After irradiation with 200 keV Ar ions a damaged surface layer of nanocrystalline structure was generated, which extended beyond the implantation profile, but left an undamaged bottom zone. Partial loss of columnar structure observed in implanted samples was recovered after annealing at 700 °C and CrN started to decompose to Cr2N. This layer geometry determined from transmission electron microscopy was inferred in the analysis of SE data using the combined Drude and Tauc-Lorentz model, and the variation of the optical bandgap was deduced. The results are discussed on the basis of the changes induced in the microstructure. It was found that the optical properties of the layers are strongly dependent on the defects' concentration of CrN.

  3. Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Ghosh, Moumita; Shashidhara; Ramakrishna, Raja; Rajam, K. S.

    2010-08-01

    This work reports the performance of high speed steel drill bits coated with TiAlSiN nanocomposite coating at different Si contents (5.5-8.1 at.%) prepared using a four-cathode reactive pulsed direct current unbalanced magnetron sputtering system. The surface morphology of the as-deposited coatings was characterized using field emission scanning electron microscopy. The crystallographic structure, chemical composition and bonding structure were evaluated using X-ray diffraction, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, respectively. The corrosion behavior, mechanical properties and thermal stability of TiAlSiN nanocomposite coatings were also studied using potentiodynamic polarization, nanoindentation and Raman spectroscopy, respectively. The TiAlSiN coating thickness was approximately 2.5-2.9 μm. These coatings exhibited a maximum hardness of 38 GPa at a silicon content of approximately 6.9 at.% and were stable in air up to 850 °C. For the performance evaluation, the TiAlSiN coated drills were tested under accelerated machining conditions by drilling a 12 mm thick 304 stainless steel plate. Under dry conditions the uncoated drill bits failed after drilling 50 holes, whereas, TiAlSiN coated drill bits (Si = 5.5 at.%) drilled 714 holes before failure. Results indicated that for TiAlSiN coated drill bits the tool life increased by a factor of more than 14.

  4. Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency

    NASA Astrophysics Data System (ADS)

    Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.

    2012-10-01

    Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.

  5. Fabrication of thin ZnO films with wide-range tuned optical properties by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Davydova, A.; Tselikov, G.; Dilone, D.; Rao, K. V.; Kabashin, A. V.; Belova, L.

    2018-02-01

    We report the manufacturing of thin zinc oxide films by reactive magnetron sputtering at room temperature, and examine their structural and optical properties. We show that the partial oxygen pressure in DC mode can have dramatic effect on absorption and refractive index (RI) of the films in a broad spectral range. In particular, the change of the oxygen pressure from 7% to 5% can lead to either conventional crystalline ZnO films having low absorption and characteristic descending dependence of RI from 2.4-2.7 RIU in the visible to 1.8-2 RIU in the near-infrared (1600 nm) range, or to untypical films, composed of ZnO nano-crystals embedded into amorphous matrix, exhibiting unexpectedly high absorption in the visible-infrared region and ascending dependence of RI with values varying from 1.5 RIU in the visible to 4 RIU in the IR (1600 nm), respectively. Untypical optical characteristics in the second case are explained by defects in ZnO structure arising due to under-oxidation of ZnO crystals. We also show that the observed defect-related film structure remains stable even after annealing of films under relatively high temperatures (30 min under 450 °C). We assume that both types of films can be of importance for photovoltaic (as contact or active layers, respectively), as well as for chemical or biological sensing, optoelectronics etc.

  6. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    NASA Astrophysics Data System (ADS)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  7. Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Aoki, H.; Masuzawa, T.

    2010-09-01

    Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized under hydrothermal conditions at 110-170 °C at pH values of 7.0 and 9.5. The crystallite size, the remnant film thickness, and the surface morphology of the films were observed using X-ray diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The crystallite size increased with the process temperature, and reached 123.6 nm (pH 9.5 and 170 °C) after 24 h. All of the crystallite sizes of the film treated at pH 9.5 were higher than those treated at pH 7.0 at each process temperature. The film treated at pH 9.5 retained more than 90% of the initial film thickness at any process temperature. The ratio of the film treated at pH 7.0 did not reached 90% at less than 150 °C, and tended to increase with the process temperature.

  8. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  9. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-06-01

    p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.

  10. Improved Battery Performance of Nanocrystalline Si Anodes Utilized by Radio Frequency (RF) Sputtered Multifunctional Amorphous Si Coating Layers.

    PubMed

    Ahn, In-Kyoung; Lee, Young-Joo; Na, Sekwon; Lee, So-Yeon; Nam, Dae-Hyun; Lee, Ji-Hoon; Joo, Young-Chang

    2018-01-24

    Despite the high theoretical specific capacity of Si, commercial Li-ion batteries (LIBs) based on Si are still not feasible because of unsatisfactory cycling stability. Herein, amorphous Si (a-Si)-coated nanocrystalline Si (nc-Si) formed by versatile radio frequency (RF) sputtering systems is proposed as a promising anode material for LIBs. Compared to uncoated nc-Si (retention of 0.6% and Coulombic efficiency (CE) of 79.7%), the a-Si-coated nc-Si (nc-Si@a-Si) anodes show greatly improved cycling retention (C 50th /C first ) of ∼50% and a first CE of 86.6%. From the ex situ investigation with electrochemical impedance spectroscopy (EIS) and cracked morphology during cycling, the a-Si layer was found to be highly effective at protecting the surface of the nc-Si from the formation of solid-state electrolyte interphases (SEI) and to dissipate the mechanical stress upon de/lithiation due to the high fracture toughness.

  11. Ultra-high resistive and anisotropic CoPd-CaF2 nanogranular soft magnetic films prepared by tandem-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Naoe, Masayuki; Kobayashi, Nobukiyo; Ohnuma, Shigehiro; Iwasa, Tadayoshi; Arai, Ken-Ichi; Masumoto, Hiroshi

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF2 matrix, and a specimen having a composition of (Co0.69Pd0.31)52-(Ca0.31F0.69)48 exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau-Lifshitz-Gilbert equation. Furthermore, it was clarified that the CaF2-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF2 matrix.

  12. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Donguk; Park, Young; Kim, Minha

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity,more » surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.« less

  13. Thickness and surface roughness study of co-sputtered nanostructured alumina/tungsten (Al2O3/W) thin films

    NASA Astrophysics Data System (ADS)

    Naveen, A.; Krishnamurthy, L.; Shridhar, T. N.

    2018-04-01

    Tungsten (W) and Alumina (Al2O3) thin films have been developed using co-sputtering technique on SS304, Copper (Cu) and Glass slides using Direct Current magnetron sputtering (DC) and Radio Frequency (RF) magnetron sputtering methods respectively. Central Composite Design (CCD) method approach has been adopted to determine the number of experimental plans for deposition and DC power, RF power and Argon gas flow rate have been input parameters, each at 5 levels for development of thin films. In this research paper, study has been carried out determine the optimized condition of deposition parameters for thickness and surface roughness of the thin films. Thickness and average Surface roughness in terms of nanometer (nm) have been characterized by thickness profilometer and atomic force microscopy respectively. The maximum and minimum average thickness observed to be 445 nm and 130 respectively. The optimum deposition condition for W/Al2O3 thin film growth was determined to be at 1000 watts of DC power and 800 watts of RF power, 20 minutes of deposition time, and almost 300 Standard Cubic Centimeter(SCCM) of Argon gas flow. It was observed that average roughness difference found to be less than one nanometer on SS substrate and one nanometer on copper approximately.

  14. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Surmeneva, M. A.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Prymak, O.; Epple, M.; Chaikina, M. V.; Surmenev, R. A.

    2016-01-01

    As a measure of the prevention of implant associated infections, a number of strategies have been recently applied. Silver-containing materials possessing antibacterial activity as expected might have wide applications in orthopedics and dentistry. The present work focuses on the physico-chemical characterization of silver-containing hydroxyapatite (Ag-HA) coating obtained by radio frequency (RF) magnetron sputtering. Mechanochemically synthesized Ag-HA powder (Ca10⿿xAgx(PO4)6(OH)2⿿x, x = 1.5) was used as a precursor for sputtering target preparation. Morphology, composition, crystallinity, physico-mechanical features (Young's modulus and nanohardness) of the deposited Ag-HA coatings were investigated. The sputtering of the nanostructured multicomponent target at the applied process conditions allowed to deposit crystalline Ag-HA coating which was confirmed by XRD and FTIR data. The SEM results revealed the formation of the coating with the grain morphology and columnar cross-section structure. The EDX analysis confirmed that Ag-HA coating contained Ca, P, O and Ag with the Ca/P ratio of 1.6 ± 0.1. The evolution of the mechanical properties allowed to conclude that addition of silver to HA film caused increase of the coating nanohardness and elastic modulus compared with those of pure HA thin films deposited under the same deposition conditions.

  15. Etude de L'interface Or/silicium Par Analyse de Surface et Microscopie Electronique

    NASA Astrophysics Data System (ADS)

    Lamontagne, Boris

    In order to start with the cleanest c-Si surface achievable, two cleaning procedures have been used and compared: aqueous chemical cleaning with HF, and sputter cleaning followed by high temperature annealing; the former is found to be the most efficient of the two. We have observed the formation of Si-C bonds induced by energetic particles associated to sputtering and sputter deposition. One of the main objectives of this work was to compare the Au/Si interfaces obtained by e-beam evaporation and by sputter deposition; Ag/Si, Cu/Si and Al/Si interfaces have also been examined. X-ray photoelectron diffraction has allowed us to judge the quality of the substrate crystallinity under the metallic overlayer, a method which readily showed the amorphisation of the c-Si substrate induced by sputter deposition. Moreover, XPD has indicated the Au overlayer to be amorphous, while the Ag and Cu appear to grow heteroepitaxially on c-Si(100). A new XPS parameter has been developed to characterize the metal/Si interface state, in particular, broadening of the interface induced by the sputter deposition. For the case of evaporated layers, it indicates that Au/Si and Cu/Si interfaces are diffuse, while Ag/Si and Al/Si interfaces are abrupt. Atomic force microscopy has revealed that sputter deposition reduces the tendency to form metal islands, characteristic of some overlayer/substrate systems such as Ag/Si. Our experiments have illustrated the role of two "new" parameters which lead to better knowledge and control of the sputter deposition process, namely the ion masses and the sample position relative to that of the target position. In the scientific literature, the value of the critical thickness, d_{rm c} , for reaction between Au and Si is still a controversial issue, probably on account of calibration problems. By using newly observed XPS discontinuities, corresponding to the completion of the first and second Au monolayers, we have been able to resolve this problem, and thereby precisely evaluate the critical thickness, d_ {rm c} = 2 ML. We obtained various new information about the Au/Si interface using complementary methods (XPD, XPS, TEM, AFM, etc.) information from which we developed a new model of the Au/Si interface; this so called "cluster model" correlates the observed overlayer structural transition with the beginning of the reaction between Au and Si. It suggests that reconstruction of the overlayer at 2 ML thickness activates the reaction between Si and Au (Si-Si bonds disruption, followed by Si outdiffusion). This model seems to be the only one capable of explaining the difference in reactivity between Au/Si and Ag/Si interfaces. (Abstract shortened by UMI.).

  16. Properties of planar structures based on Policluster films of diamond and AlN

    NASA Astrophysics Data System (ADS)

    Belyanin, A. F.; Luchnikov, A. P.; Nalimov, S. A.; Bagdasarian, A. S.

    2018-01-01

    AlN films doped with zinc were grown on Si substrates by RF magnetron reactive sputtering of a compound target. Policluster films of diamond doped with boron were formed on layered Si/AlN substrates from the gas phase hydrogen and methane, activated arc discharge. By electron microscopy, X-ray diffraction and Raman spectroscopy the composition and structure of synthetic policluster films of diamond and AlN films were studied. Photovoltaic devices based on the AlN/PFD layered structure are presented.

  17. The friction and wear properties of sputtered hard refractory compounds

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1978-01-01

    Several refractory silicide, boride, and carbide coatings were examined. The coatings were applied to type 440C steel surfaces by radio-frequency sputtering. The friction and wear properties of the coatings were found to be related to stoichiometry and impurity content of the bulk coating as well as the degree of interfacial adherence between coating and substrate. Bulk coating stoichiometry could to a large extent be controlled by the application of a negative bias voltage during deposition. Adherence was promoted by the formation of an oxidized layer at the interface. Deliberate preoxidizing of the 440C produced enhanced adherence for many compounds which are related to the formation of a mixed oxide transition region.

  18. Effect of assistant rf field on phase composition of iron nitride film prepared by magnetron sputtering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.L.; Zheng, F.; Fei, W.D.

    2006-01-15

    Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.

  19. High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehiasarian, A. P.; New, R.; Hecimovic, A.

    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in E-vectorxB-vector direction at velocities of {approx}10 km s{sup -1} and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasmamore » conductivity speeds it up.« less

  20. Material properties of Cd1-xMgxO alloys synthesized by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Guibin; Yu, K. M.; Reichertz, L. A.; Walukiewicz, W.

    2013-07-01

    We have studied structural, electrical, and optical properties of sputter deposited ternary CdMgO alloy thin films with total Mg concentration as high as 44%. We found that only a fraction (50%-60%) of Mg is incorporated as substitutional Mg contributing to the modification of the electronic structures of the alloys. The electrical and optical results of the Cd1-xMgxO alloys are analyzed in terms of a large upward shift of the conduction band edge with increasing Mg concentration. With the increase of the intrinsic bandgap, appropriately doped Cd-rich CdMgO alloys can be potentially useful as transparent conductors for photovoltaics.

  1. Hafnium oxide films for application as gate dielectrics

    NASA Astrophysics Data System (ADS)

    Hsu, Shuo-Lin

    The deposition and characterization of HfO2 films for potential application as a high-kappa gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-kappa, films. The changes in the film properties due to the annealing are also discussed in this work. Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposited films exhibit an amorphous, regardless of the film thickness. During post-deposition annealing, the thicker films crystallized at lower temperature (< 600°C), and ultra-thin (5.8 nm) film crystallized at higher temperature (600--720°C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the 10--20 nm annealed films, and high temperature phase (tetragonal) formed in the ultra-thin annealed HfO2 film. TEM cross-section studies of as deposited samples show that an interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment. I-V measurements show the leakage current density of the Al/as deposited-HfO 2/Si MOS diode is of the order of 10-3 A/cm 2, two orders of magnitude lower than that of a ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky emission at lower electric fields, and by Frenkel-Poole emission in the higher electric field region. After annealing, the leakage current density decreases significantly as the structure remains amorphous structure. It is suggested that this decrease is assorted with the densification and defect healing which accures when the porous as-deposited amorphous structure is annealed. The leakage current density increases of the HfO2 layer crystallizes on annealing, which is attributed to the presence of grain boundaries. C-V measurements of the as deposited film shows typical C-V characteristics, with negligible hystersis, a small flat band voltage shift, but great frequency dispersion. The relative permittivity of HfO2/interfacial layer stack obtained from the capacitance at accumulation is 15, which corresponds to an EOT (equivalent oxide thickness) = 1.66 nm. After annealing, the frequency dispersion is greatly enhanced, and the C-V curve is shifted toward the negative voltage. Reliability tests show that the HfO2 films which remain amorphous after annealing possess superior resistance to constant voltage stress and ambient aging. This study concluded that the sputtered HfO 2 films exhibit an amorphous as deposited. Postdeposition annealing alters the crystallinity, interfacial properties, and electrical characteristics. The HfO2 films which remain amorphous structure after annealing possess the best electrical properties.

  2. Single-crystal and polycrystalline diamond erosion studies in Pilot-PSI

    NASA Astrophysics Data System (ADS)

    Kogut, D.; Aussems, D.; Ning, N.; Bystrov, K.; Gicquel, A.; Achard, J.; Brinza, O.; Addab, Y.; Martin, C.; Pardanaud, C.; Khrapak, S.; Cartry, G.

    2018-03-01

    Diamond is a promising candidate for enhancing the negative-ion surface production in the ion sources for neutral injection in fusion reactors; hence evaluation of its reactivity towards hydrogen plasma is of high importance. Single crystal and polycrystalline diamond samples were exposed in Pilot-PSI with the D+ flux of (4‒7)·1024 m-2s-1 and the impact energy of 7-9 eV per deuteron at different surface temperatures; under such conditions physical sputtering is negligible, however chemical sputtering is important. Net chemical sputtering yield Y = 9.7·10-3 at/ion at 800 °C was precisely measured ex-situ using a protective platinum mask (5 × 10 × 2 μm) deposited beforehand on a single crystal followed by the post-mortem analysis using Transmission Electron Microscopy (TEM). The structural properties of the exposed diamond surface were analyzed by Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Gross chemical sputtering yields were determined in-situ by means of optical emission spectroscopy of the molecular CH A-X band for several surface temperatures. A bell-shaped dependence of the erosion yield versus temperature between 400 °C and 1200 °C was observed, with a maximum yield of ∼1.5·10-2 at/ion attained at 900 °C. The yields obtained for diamond are relatively high (0.5-1.5)·10-2 at/ion, comparable with those of graphite. XPS analysis shows amorphization of diamond surface within 1 nm depth, in a good agreement with molecular dynamics (MD) simulation. MD was also applied to study the hydrogen impact energy threshold for erosion of [100] diamond surface at different temperatures.

  3. Deuterium uptake and sputtering of simultaneous lithiated, boronized, and oxidized carbon surfaces irradiated by low-energy deuterium

    NASA Astrophysics Data System (ADS)

    Domínguez-Gutiérrez, F. J.; Krstić, P. S.; Allain, J. P.; Bedoya, F.; Islam, M. M.; Lotfi, R.; van Duin, A. C. T.

    2018-05-01

    We study the effects of deuterium irradiation on D-uptake by simultaneously boronized, lithiated, oxidized, and deuterated carbon surfaces. We present analysis of the bonding chemistry of D for various concentrations of boron, lithium, oxygen, and deuterium on carbon surfaces using molecular dynamics with reactive force field potentials, which are here adapted to include the interaction of boron and lithium. We calculate D retention and sputtering yields of each constituent of the Li-C-B-O mixture and discuss the role of oxygen in these processes. The extent of the qualitative agreement between new experimental data for B-C-O-D obtained in this paper and computational data is provided. As in the case of the Li-C-O system, comparative studies where experimental and computational data complement each other (in this case on the B-Li-C-O system) provide deeper insights into the mechanisms behind the role that O plays in the retention of D, a relevant issue in fusion machines.

  4. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit

    PubMed Central

    Kneiβ, Max; Lorenz, Michael

    2016-01-01

    A degenerate p-type conduction of cuprous iodide (CuI) thin films is achieved at the iodine-rich growth condition, allowing for the record high room-temperature conductivity of ∼156 S/cm for as-deposited CuI and ∼283 S/cm for I-doped CuI. At the same time, the films appear clear and exhibit a high transmission of 60–85% in the visible spectral range. The realization of such simultaneously high conductivity and transparency boosts the figure of merit of a p-type TC: its value jumps from ∼200 to ∼17,000 MΩ−1. Polycrystalline CuI thin films were deposited at room temperature by reactive sputtering. Their electrical and optical properties are examined relative to other p-type transparent conductors. The transport properties of CuI thin films were investigated by temperature-dependent conductivity measurements, which reveal a semiconductor–metal transition depending on the iodine/argon ratio in the sputtering gas. PMID:27807139

  5. Properties of WO3-x Electrochromic Thin Film Prepared by Reactive Sputtering with Various Post Annealing Temperatures

    NASA Astrophysics Data System (ADS)

    Kim, Min Hong; Choi, Hyung Wook; Kim, Kyung Hwan

    2013-11-01

    The WO3-x thin films were prepared on indium tin oxide (ITO) coated glass at 0.7 oxygen flow ratio [O2/(Ar+O2)] using the facing targets sputtering (FTS) system at room temperature. In order to obtain the annealing effect, as-deposited thin films were annealed at temperatures of 100, 200, 300, 400, and 500 °C for 1 h in open air. The structural properties of the WO3-x thin film were measured using an X-ray diffractometer. The WO3-x thin films annealed at up to 300 °C indicated amorphous properties, while those annealed above 400 °C indicated crystalline properties. The electrochemical and optical properties of WO3-x thin films were measured using cyclic voltammetry and a UV/vis spectrometer. The maximum value of coloration efficiency obtained was 34.09 cm2/C for thin film annealed at 200 °C. The WO3-x thin film annealed at 200 °C showed superior electrochromic properties.

  6. Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhan, Guanghui; Liu, Jingquan; Yang, Bin; Xu, Bin; Feng, Jie; Chen, Xiang; Yang, Chunsheng

    2015-10-01

    Zirconium oxynitrides thin film thermometers were demonstrated to be useful temperature sensors. However, the basic conduction mechanism of zirconium oxynitrides films has been a long-standing issue, which hinders the prediction and optimization of their ultimate performance. In this letter, zirconium oxynitrides films were grown on sapphire substrates by magnetron sputtering and their electric transport mechanism has been systemically investigated. It was found that in high temperatures region (>150 K) the electrical conductivity was dominated by thermal activation for all samples. In the low temperatures range, while Mott variable hopping conduction (VRH) was dominated the transport for films with relatively low resistance, a crossover from Mott VRH conduction to Efros-Shklovskii (ES) VRH was observed for films with relatively high resistance. This low temperature crossover from Mott to ES VRH indicates the presence of a Coulomb gap (~7 meV). These results demonstrate the competing and tunable conduction mechanism in zirconium oxynitrides thin films, which would be helpful for optimizing the performance of zirconium oxynitrides thermometer.

  7. Carbon-based sputtered coatings for enhanced chitosan-based films properties

    NASA Astrophysics Data System (ADS)

    Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.

    2018-03-01

    In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.

  8. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    PubMed

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  9. Effect of aluminum contents on sputter deposited CrAlN thin films

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Zhou, Z. F.; Shen, Y. G.

    2018-02-01

    Pure CrN and CrAlN films with varied Al concentrations were prepared onto Si(100) substrates by an unbalanced reactive dc-magnetron sputtering system. The crystal structure, chemical states, and microstructure of the films were characterized by X-ray diffraction, X-ray photoelectron microscopy, transmission electron microscopy whereas mechanical properties were determined by nano-indentation measurements. XRD results showed a prominent (200) reflection in both CrN and CrAlN films. Results demonstrate that CrAlN films formed a solid solution and doping of Al atoms replace the Cr atoms affecting the lattice parameter and crystallization of the films. All Al doped films were of B1 NaCl-type structure, demonstrating that CrAlN films primarily crystallized in cubic structure. Microstructural investigation by TEM for a CrAlN film containing Al content of 24.1 at.%, revealed that there exists an amorphous/nanocrystalline domains (grains of about ∼ 11 nm) and hardness increases 22% when compared with pure CrN film.

  10. Thermal characterization of TiCxOy thin films

    NASA Astrophysics Data System (ADS)

    Fernandes, A. C.; Vaz, F.; Gören, A.; Junge, K. H.; Gibkes, J.; Bein, B. K.; Macedo, F.

    2008-01-01

    Thermal wave characterization of thin films used in industrial applications can be a useful tool, not just to get information on the films' thermal properties, but to get information on structural-physical parameters, e.g. crystalline structure and surface roughness, and on the film deposition conditions, since the thermal film properties are directly related to the structural-physical parameters and to the deposition conditions. Different sets of TiCXOY thin films, deposited by reactive magnetron sputtering on steel, have been prepared, changing only one deposition parameter at a time. Here, the effect of the oxygen flow on the thermal film properties is studied. The thermal waves have been measured by modulated IR radiometry, and the phase lag data have been interpreted using an Extremum method by which the thermal coating parameters are directly related to the values and modulation frequencies of the relative extrema of the inverse calibrated thermal wave phases. Structural/morphological characterization has been done using X-ray diffraction (XRD) and atomic force microscopy (AFM). The characterization of the films also includes thickness, hardness, and electric resistivity measurements. The results obtained so far indicate strong correlations between the thermal diffusivity and conductivity, on the one hand, and the oxygen flow on the other hand.

  11. Low-loss and tunable near-zero-epsilon titanium nitride

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Schmidt, E.; Schöppe, P.; Bibić, N.; Ronning, C.; Rakočević, Z.

    2017-10-01

    Titanium nitride (TiN) has emerged as alternative plasmonic material in the visible and near-infrared spectral range due to its metallic properties. We studied the influence of silver ion implantation (fluence range from 0.5 × 1016-6 × 1016 ions/cm2) on the structural and optical properties of reactively sputtered 260 nm thick TiN films. The columnar structure was partially destroyed by the irradiation and up to 5 at.% of Ag was incorporated into the films within the projected ion range. The formation of cubic Ag nanoparticles with size of 1-2 nm was observed by high resolution transmission electron microscopy and subsequent fast Fourier transform analysis. This presence of Ag within the TiN matrix drastically changes both the real and imaginary component of the dielectric function and provides low optical losses. A Drude Lorentz dielectric analysis based on free electron and oscillator model are carried out to describe the silver influence on the optical behavior of TiN. With increasing ion fluence, the unscreened plasma frequency decreased and broadening increased. The energy, strength and broadening of the interband transitions were studied with respect to the silver ion fluence and correlated with the microstructural changes induced in TiN films.

  12. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-01

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  13. Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise.

    PubMed

    Granata, Massimo; Craig, Kieran; Cagnoli, Gianpietro; Carcy, Cécile; Cunningham, William; Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Hart, Martin; Hennig, Jan-Simon; Hough, James; MacLaren, Ian; Martin, Iain William; Michel, Christophe; Morgado, Nazario; Otmani, Salim; Pinard, Laurent; Rowan, Sheila

    2013-12-15

    We report on low-frequency measurements of the mechanical loss of a high-quality (transmissivity T<5 ppm at λ(0)=1064 nm, absorption loss <0.5 ppm) multilayer dielectric coating of ion-beam-sputtered fused silica and titanium-doped tantala in the 10-300 K temperature range. A useful parameter for the computation of coating thermal noise on different substrates is derived as a function of temperature and frequency.

  14. Driving ferromagnetic resonance frequency of FeCoB/PZN-PT multiferroic heterostructures to Ku-band via two-step climbing: composition gradient sputtering and magnetoelectric coupling

    PubMed Central

    Li, Shandong; Xue, Qian; Duh, Jenq-Gong; Du, Honglei; Xu, Jie; Wan, Yong; Li, Qiang; Lü, Yueguang

    2014-01-01

    RF/microwave soft magnetic films (SMFs) are key materials for miniaturization and multifunctionalization of monolithic microwave integrated circuits (MMICs) and their components, which demand that the SMFs should have higher self-bias ferromagnetic resonance frequency fFMR, and can be fabricated in an IC compatible process. However, self-biased metallic SMFs working at X-band or higher frequency were rarely reported, even though there are urgent demands. In this paper, we report an IC compatible process with two-step superposition to prepare SMFs, where the FeCoB SMFs were deposited on (011) lead zinc niobate–lead titanate substrates using a composition gradient sputtering method. As a result, a giant magnetic anisotropy field of 1498 Oe, 1–2 orders of magnitude larger than that by conventional magnetic annealing method, and an ultrahigh fFMR of up to 12.96 GHz reaching Ku-band, were obtained at zero magnetic bias field in the as-deposited films. These ultrahigh microwave performances can be attributed to the superposition of two effects: uniaxial stress induced by composition gradient and magnetoelectric coupling. This two-step superposition method paves a way for SMFs to surpass X-band by two-step or multi-step, where a variety of magnetic anisotropy field enhancing methods can be cumulated together to get higher ferromagnetic resonance frequency. PMID:25491374

  15. Physical vapor deposition and metalorganic chemical vapor deposition of yttria-stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Kaufman, David Y.

    Two vapor deposition techniques, dual magnetron oblique sputtering (DMOS) and metalorganic chemical vapor deposition (MOCVD), have been developed to produce yttria-stabilized zirconia (YSZ) films with unique microstructures. In particular, biaxially textured thin films on amorphous substrates and dense thin films on porous substrates have been fabricated by DMOS and MOCVD, respectively. DMOS YSZ thin films were deposited by reactive sputtering onto Si (native oxide surface) substrates positioned equidistant between two magnetron sources such that the fluxes arrived at oblique angles with respect to the substrate normal. Incident fluxes from two complimentary oblique directions were necessary for the development of biaxial texture. The films displayed a strong [001] out-of-plane orientation with the <110> direction in the film aligned with the incident flux. Biaxial texture improved with increasing oblique angle and film thickness, and was stronger for films deposited with Ne than with Ar. The films displayed a columnar microstructure with grain bundling perpendicular to the projected flux direction, the degree of which increased with oblique angle and thickness. The texture decreased by sputtering at pressures at which the flux of sputtered atoms was thermalized. These results suggested that grain alignment is due to directed impingement of both sputtered atoms and reflected energetic neutrals. The best texture, a {111} phi FWHM of 23°, was obtained in a 4.8 mum thick film deposited at an oblique angle of 56°. MOCVD YSZ thin films were deposited in a vertical cold-wall reactor using Zr(tmhd)4 and Y(tmhd)3 precursors. Fully stabilized YSZ films with 9 mol% could be deposited by controlling the bubbler temperatures. YSZ films on Si substrates displayed a transition at 525°C from surface kinetic limited growth, with an activation energy of 5.5 kJ/mole, to mass transport limited growth. Modifying the reactor by lowering the inlet height and introducing an Ar baffle ring increased the growth rates to 2.5 mum/hr. Dense, gas impermeable 4-6 mum YSZ thin films were deposited on porous (La,Sr)Mno3 cathode substrates. Solid oxide fuel cells, fabricated by sputtering on a Ni-YSZ anode, achieved open circuit voltages ≥94% theoretical, and maximum power densities at 750°C comparable with commercial conventional SOFC's operated at higher temperatures.

  16. CO2 electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition

    NASA Astrophysics Data System (ADS)

    Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru

    2018-03-01

    The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.

  17. Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films

    NASA Astrophysics Data System (ADS)

    Murphy, N. R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, C. V.

    2014-05-01

    Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50-1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.

  18. Thermochromic VO2 Films Deposited by RF Magnetron Sputtering Using V2O3 or V2O5 Targets

    NASA Astrophysics Data System (ADS)

    Shigesato, Yuzo; Enomoto, Mikiko; Odaka, Hidehumi

    2000-10-01

    Thermochromic monoclinic-tetragonal VO2 films were successfully deposited on glass substrates with high reproducibility by rf magnetron sputtering using V2O3 or V2O5 targets. In the case of reactive sputtering using a V-metal target, the VO2 films could be obtained only under the very narrow deposition conditions of the “transition region” where the deposition rate decreases drastically with increasing oxygen gas flow rate. In the case of a V2O3 target, polycrystalline VO2 films with a thickness of 400 to 500 nm were obtained by the introduction of oxygen gas [O2/(Ar+O2)=1--1.5%], whereas hydrogen gas [H2/(Ar+H2)=2.5--10%] was introduced in the case of a V2O5 target. Furthermore, the VO2 films were successfully grown heteroepitaxially on a single-crystal sapphire [α-Al2O3(001)] substrate, where the epitaxial relationship was confirmed to be VO2(010)[100]\\parallelAl2O3(001)[100], [010], [\\bar{1}\\bar{1}0] by an X-ray diffraction pole figure measurement. The resistivity ratio between semiconductor and metal phases for the heteroepitaxial VO2 films was much larger than the ratio of the polycrystalline films on glass substrates under the same deposition conditions.

  19. Applications of remanent supermirror polarizers

    NASA Astrophysics Data System (ADS)

    Böni, P.; Clemens, D.; Kumar, M. Senthil; Pappas, C.

    1999-06-01

    Recent developments in sputtering techniques allow the fabrication of multilayers with a high degree of perfection over large areas. We show, that using reactive sputtering, it is possible to adjust the index of refraction for neutrons, ni, of the individual layers. This property is particularly important for polarizing mirrors, where nnm for the non-magnetic layers can be matched to nm of the magnetic layers such that neutrons for one spin-eigenstate are not reflected by the coating, whereas the reflectivity is high for the other spin-eigenstate. In addition, by using anisotropic sputtering conditions it is possible to orient the easy axis of magnetization within the plane of the mirrors in any particular direction resulting in a simultaneous appearance of a pronounced remanence and coercivity. Remanent polarizers can be used as broad band spin selectors at continuous and in particular at pulsed neutron sources thus eliminating the need of spin flippers, whose performance depends on the wavelength of the neutrons and is often strongly influenced by stray magnetic fields from the sample environment. The possibility to operate remanent supermirrors in arbitrary small fields leads to attractive applications of polarizing devices in low field environments such as they occur in neutron-spin-echo or in spin selective neutron guides. We present applications, where several tasks like polarizing, focusing and spin selection are performed in one single device thus reducing the problem of phase space matching between different neutron optical components.

  20. Effects of post-deposition annealing on sputtered SiO2/4H-SiC metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Lee, Suhyeong; Kim, Young Seok; Kang, Hong Jeon; Kim, Hyunwoo; Ha, Min-Woo; Kim, Hyeong Joon

    2018-01-01

    Reactive sputtering followed by N2, NH3, O2, and NO post-deposition annealing (PDA) of SiO2 on 4H-SiC was investigated in this study. The results of ellipsometry, an etching test, and X-ray photoemission spectroscopy showed that N2 and NH3 PDA nitrified the SiO2. Devices using N2 and NH3 PDA exhibited a high gate leakage current and low breakdown field due to oxygen vacancies and incomplete oxynitride. SiO2/4H-SiC MOS capacitors were also fabricated and their electrical characteristics measured. The average breakdown fields of the devices using N2, NH3, O2, and NO PDA were 0.12, 0.17, 4.71 and 2.63 MV/cm, respectively. The shifts in the flat-band voltage after O2 and NO PDA were 0.95 and -2.56 V, respectively, compared with the theoretical value. The extracted effective oxide charge was -4.11 × 1011 cm-2 for O2 PDA and 1.11 × 1012 cm-2 for NO PDA. NO PDA for 2 h at 1200 °C shifted the capacitance-voltage curve in the negative direction. The oxygen containing PDA showed better electrical properties than non-oxygen PDA. The sputtering method described can be applied to 4H-SiC MOS fabrication.

  1. Surface reactions of ethanol over UO 2(100) thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Senanayake; Mudiyanselage, K.; Burrell, A. K.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure, and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO 3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH 3CH 2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C 1s, O 1s, and U 4f to investigate the bondingmore » mode, surface composition, electronic structure, and probable chemical changes to the stoichiometric-UO 2(100) [smooth-UO 2(100)] and Ar +-sputtered UO 2(100) [rough-UO 2(100)] surfaces. Unlike UO 2(111) single crystal and UO 2 thin film, Ar-ion-sputtering of this UO 2(100) did not result in noticeable reduction of U cations. Upon ethanol adsorption (saturation occurred at 0.5 ML), only the ethoxy (CH 3CH 2O –) species is formed on smooth-UO 2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO–) on the Ar +-sputtered UO 2(100) surface. Furthermore, all ethoxy and acetate species are removed from the surface between 600 and 700 K.« less

  2. Microstructures and properties of superconducting Y-ErBaCuO thin films obtained from disordered Y-ErBaF2Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.

    1991-01-01

    The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.

  3. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

  4. The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods - comparative studies

    NASA Astrophysics Data System (ADS)

    Kądzioła, Kinga; Piwoński, Ireneusz; Kisielewska, Aneta; Szczukocki, Dominik; Krawczyk, Barbara; Sielski, Jan

    2014-01-01

    Titanium dioxide coatings were deposited on silicon substrates using two different methods: sol-gel dip-coating (SG) and reactive magnetron sputtering (MS). In order to obtain anatase phase, as-prepared coatings were calcined at 500 °C in air. Subsequently, silver nanoparticles (AgNPs) were grown on the surface of TiO2 coatings by photoreduction of silver ions, initiated by illumination of the UV lamp operated at λ = 365 nm. The concentrations of silver ions were 0.1 mmol dm-3 and 1.0 mmol dm-3. Coatings immersed in these solutions were illuminated during 5 min and 30 min. The coating thicknesses, evaluated by ellipsometry, were 118 nm and 147 nm for SG and MS methods, respectively. Atomic force microscopy (AFM) imaging revealed that the surface roughness of TiO2 coating prepared by MS is about 6 times larger as compared to coatings prepared by SG method. The size of AgNPs deposited on SG and MS coatings were in the range of 17-132 nm and 54-103 nm respectively. The photoactivity of AgNPs/TiO2 coatings was determined by the measurement of the decomposition rate of bisphenol A (BPA). The concentration of BPA before and after illumination under UV light (λ = 365 nm) was monitored by high-performance liquid chromatography (HPLC). It was found that AgNPs enhance the photoactivity of the TiO2 coatings.

  5. Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang

    2017-03-01

    Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1-xGaxSe2-ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (-1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.

  6. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  7. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  8. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge

    NASA Astrophysics Data System (ADS)

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K.; Rosen, Johanna

    2017-05-01

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ({{P}\\text{S{{\\text{F}}\\text{6}}}} ). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased {{P}\\text{S{{\\text{F}}\\text{6}}}} leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  9. Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus.

    PubMed

    Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi; Geertsema, Roger; Hsiang, Chinhui; Brown, Don; BenMohamed, Lbachir; Wechsler, Steven L

    2016-01-01

    Recurrent herpetic stromal keratitis (rHSK), due to an immune response to reactivation of herpes simplex virus (HSV-1), can cause corneal blindness. The development of therapeutic interventions such as drugs and vaccines to decrease rHSK have been hampered by the lack of a small and reliable animal model in which rHSK occurs at a high frequency during HSV-1 latency. The aim of this study is to develop a rabbit model of rHSK in which stress from elevated temperatures increases the frequency of HSV-1 reactivations and rHSK. Rabbits latently infected with HSV-1 were subjected to elevated temperatures and the frequency of viral reactivations and rHSK were determined. In an experiment in which rabbits latently infected with HSV-1 were subjected to ill-defined stress as a result of failure of the vivarium air conditioning system, reactivation of HSV-1 occurred at over twice the normal frequency. In addition, 60% of eyes developed severe rHSK compared to <1% of eyes normally. All episodes of rHSK were preceded four to five days prior by an unusually large amount of reactivated virus in the tears of that eye and whenever this unusually large amount of reactivated virus was detected in tears, rHSK always appeared 4-5 days later. In subsequent experiments using well defined heat stress the reactivation frequency was similarly increased, but no eyes developed rHSK. The results reported here support the hypothesis that rHSK is associated not simply with elevated reactivation frequency, but rather with rare episodes of very high levels of reactivated virus in tears 4-5 days earlier.

  10. Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus

    PubMed Central

    Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi; Geertsema, Roger; Hsiang, Chinhui; Brown, Don; BenMohamed, Lbachir; Wechsler, Steven L.

    2017-01-01

    Aim Recurrent herpetic stromal keratitis (rHSK), due to an immune response to reactivation of herpes simplex virus (HSV-1), can cause corneal blindness. The development of therapeutic interventions such as drugs and vaccines to decrease rHSK have been hampered by the lack of a small and reliable animal model in which rHSK occurs at a high frequency during HSV-1 latency. The aim of this study is to develop a rabbit model of rHSK in which stress from elevated temperatures increases the frequency of HSV-1 reactivations and rHSK. Materials and methods Rabbits latently infected with HSV-1 were subjected to elevated temperatures and the frequency of viral reactivations and rHSK were determined. Results In an experiment in which rabbits latently infected with HSV-1 were subjected to ill-defined stress as a result of failure of the vivarium air conditioning system, reactivation of HSV-1 occurred at over twice the normal frequency. In addition, 60% of eyes developed severe rHSK compared to <1% of eyes normally. All episodes of rHSK were preceded four to five days prior by an unusually large amount of reactivated virus in the tears of that eye and whenever this unusually large amount of reactivated virus was detected in tears, rHSK always appeared 4–5 days later. In subsequent experiments using well defined heat stress the reactivation frequency was similarly increased, but no eyes developed rHSK. Conclusions The results reported here support the hypothesis that rHSK is associated not simply with elevated reactivation frequency, but rather with rare episodes of very high levels of reactivated virus in tears 4–5 days earlier. PMID:25859798

  11. The Lamont--Doherty Geological Observatory Isolab 54 isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    England, J. G.; Zindler, A.; Reisberg, L. C.; Rubenstone, J. L.; Salters, V.; Marcantonio, F.; Bourdon, B.; Brueckner, H.; Turner, P. J.; Weaver, S.; Read, P.

    1992-12-01

    The Lamont--Doherty Geological Observatory (LDGO) Isolab 54 is a double focussing isotope ratio mass spectrometer that allows the measurement of thermal ions produced on a hot filament, (thermal-ionization mass spectrometry (TIMS)), secondary ions produced by sputtering a sample using a primary ion beam, (secondary ion mass spectrometry (SIMS)), and sputtered neutrals resonantly ionized using laser radiation, (sputter-induced resonance ionization mass spectrometry (SIRIMS)). Sputtering is carried out using an Ar primary beam generated in a duoplasmatron and focussed onto the sample using a two-lens column. Resonance ionization is accomplished using a frequency-doubled dye laser pumped by an excimer laser. The Isolab's forward geometry analyzer, consisting of an electrostatic followed by a magnetic sector, allows the simultaneous collection of different isotopes of the same element. This instrument is the first to have a multicollector that contains an ion-counting system based on a microchannel plate as well as traditional Faraday cups. A second electrostatic sector after the multicollector is equipped with an ion-counting Daly detector to allow high abundance sensitivity for measurements of large dynamics range. Selectable source, collector, [alpha] and energy slits on the instrument allow analyses to be made over a range of mass resolving powers and analyzer acceptances. Recent applications of the instrument have included the analyses of U by TIMS, Hf, Th and Re by SIMS and Re and Os by SIRIMS.

  12. Self-focused ZnO transducers for ultrasonic biomicroscopy

    NASA Astrophysics Data System (ADS)

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-04-01

    A simple fabrication technique was developed to produce high frequency (100MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18μm thick ZnO layer on 2mm diameter aluminum rods with ends shaped and polished to produce a 2mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4μm Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101MHz with a -6dB bandwidth of 49%. The measured two way insertion loss was 44dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.

  13. Effect of nitrogen doping on structural, morphological, optical and electrical properties of radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-06-01

    Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.

  14. Characterization of Gold-Sputtered Zinc Oxide Nanorods-a Potential Hybrid Material.

    PubMed

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Rajintra Prasad, Haarindraprasad; Wei-Wen, Liu; Balakrishnan, S R; Vijayakumar, Thivina; Rahim, Ruslinda Abdul

    2016-12-01

    Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.

  15. An XPS study of the adherence of refractory carbide, silicide, and boride RF-sputtered wear-resistant coatings. [X-ray Photoelectron Spectroscopy of steel surfaces

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1978-01-01

    Radio frequency sputtering was used to deposit refractory carbide, silicide, and boride coatings on 440-C steel substrates. Both sputter etched and pre-oxidized substrates were used and the films were deposited with and without a substrate bias. The composition of the coatings was determined as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. Friction and wear tests were conducted to evaluate coating adherence. In the interfacial region there was evidence that bias may produce a graded interface for some compounds. Biasing, while generally improving bulk film stoichiometry, can adversely affect adherence by removing interfacial oxide layers. Oxides of all film constituents except carbon and iron were present in all cases but the iron oxide coverage was only complete on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 films. In the case of mixed oxides, preoxidation enhanced film adherence. In the layered case it did not.

  16. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction method.

  17. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction (XRD) method.

  18. Analyse de l'interface cuivre/Teflon AF1600 par spectroscopie des photoelectrons rayons x

    NASA Astrophysics Data System (ADS)

    Popovici, Dan

    The speed of electrical signals through the microelectronic multilevel interconnects depends of the delay time R x C. In order to improve the transmission speed of future microdevices, the microelectronics industry requires the use of metals having lower resistivities and insulators having lower permittivities. Copper and fluoropolymers are interesting candidates for the replacement of the presently used Al/polyimide technology. This thesis presents an X-ray photoelectron spectroscopy (XPS) analysis of the Cu/Teflon AF1600 interface, in order to have a better understanding of those interfacial interactions leading to improved adhesion. Several deposition methods, such as evaporation, sputtering and laser-induced chemical deposition were analyzed and compared. X-ray photoelectron spectroscopy (XPS) was used as the primary characterization technique of the different surfaces and interfaces. In the case of evaporation and sputtering, the loss of fluorine and oxygen atoms leads to graphitization and the crosslinking of carbon chains. The extent of damage caused by copper deposition is higher for sputter deposition because of the higher energies of the incidents atoms. This energy (two orders of magnitude higher than the energy involved in the evaporation) is also responsible for the total reaction of Cu with F and C. For the physical depositions (sputtering and evaporation), an angle-resolved XPS diffusion study showed the copper distribution as a function of depth. (i) For sputter deposition, this distribution is uniform. (ii) In the case of evaporation, we computed the concentration profile using the inverse Laplace transform. Several samples, annealed at different temperatures, were used to calculate the diffusion coefficients for the Cu/Teflon AF1600 interface. The study of interactions at the interface between Teflon AF1600 and copper deposited by different metallization techniques permitted us to elucidate some aspects related to the chemistry and structure of the interface. The presence of the strong Cu-C bond may lead to an enhanced adhesion but a pretreatment (plasma RF, X-ray or excimer laser) is necessary to increase the surface concentration of reactive groups. (Abstract shortened by UMI.)

  19. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  20. Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2012-03-01

    We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.

  1. Investigation of titanium-nitride layers for solar-cell contacts

    NASA Technical Reports Server (NTRS)

    Von Seefeld, H.; Cheung, N. W.; Nicolet, M.-A.; Maenpaa, M.

    1980-01-01

    Reactively sputtered titanium-nitride layers have been incorporated as diffusion barriers in a titanium-silver metallization scheme on silicon. Backscattering analysis (2-MeV He/+/, RBS) indicates that the integrity of the system is basically preserved during annealing at 600 C for 10 min. Electrical properties were determined for titanium-nitride layers prepared under different deposition conditions. Resistivity and Hall mobility appear to depend on the oxygen contamination of the deposited material. For the lowest oxygen concentration (less than 5 at %) a resistivity of 170 microohms/cm has been found.

  2. Physical properties of the heterojunction MoOx/n-CdTe as a function of the parameters of CdTe crystals

    NASA Astrophysics Data System (ADS)

    Mostovyi, Andrii I.; Solovan, Mykhailo M.; Brus, Viktor V.; Pullerits, Toǧnu; Maryanchuk, Pavlo D.

    2018-01-01

    MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto three different n-type CdTe substrates (ρ1=0.4 Ωṡcm, ρ2=10 Ωṡcm, ρ3=40 Ωṡcm) by DC reactive magnetron sputtering. The height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases.

  3. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  4. Variation of superconducting transition temperature by proximity effect in NbN/FeN bilayers

    NASA Astrophysics Data System (ADS)

    Hwang, Tae-Jong; Kim, Dong-Ho

    2017-09-01

    We report on the proximity effect in superconductor/ferromagnet bilayers made of a new combination of NbN for the superconductor and FeN for the ferromagnet. The bilayers were prepared by reactive magnetron sputtering on a thermally oxidized Si substrate. For a constant NbN layer thickness, the superconducting transition temperatures of the bilayers exhibited a nonmonotonic dependence on the thickness of the FeN layer. The results were interpreted in terms of the proximity effect between the superconductor and ferromagnetic materials.

  5. Correlation Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeO x) Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Neil R.; Grant, J. T.; Sun, L.

    2014-03-18

    Germanium oxide (GeO x) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O 2/(Ar + O 2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO 2 and then finally to GeO 2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeO x films grown were amorphous. The opticalmore » properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeO x films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO 2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50–1.00, where the films become GeO 2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeO x films is presented and discussed.« less

  6. Optical and hydrophobic properties of co-sputtered chromium and titanium oxynitride films

    NASA Astrophysics Data System (ADS)

    Rawal, Sushant K.; Chawla, Amit Kumar; Jayaganthan, R.; Chandra, Ramesh

    2011-08-01

    The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin 2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.

  7. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less

  8. Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films

    DOE PAGES

    Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; ...

    2009-01-01

    Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less

  9. Effect of Homo-buffer Layers on the Properties of Sputtering Deposited Ga2O3 Films

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Bing; Ma, Yuncheng; Tang, Ke; Huang, Haofei; Hu, Yan; Zou, Tianyu; Wang, Linjun

    2018-05-01

    β- Ga2O3 films were grown by radio-frequency magnetron sputtering method. The influence of Ga2O3 buffer layers and annealing treatment on the structural, optical, morphological and electrical properties of Ga2O3 films was studied. The results revealed an improvement of crystalline quality and transmittance of annealed β- Ga2O3 films prepared with homo-buffer layers. Ga2O3 film UV photodetectors were fabricated with a new B and Ga co-doped ZnO films (BGZO)/Au interdigitated electrode. A good ohmic contact was formed between the film and the electrode. For the detector based on Ga2O3 films with buffer layers, a higher value of photo response and faster response times was obtained.

  10. Optimization of process parameters for RF sputter deposition of tin-nitride thin-films

    NASA Astrophysics Data System (ADS)

    Jangid, Teena; Rao, G. Mohan

    2018-05-01

    Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.

  11. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  12. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  13. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sonny Xiao-zhe

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO 2 plasma or by N + implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn i, a native shallow donor. In NO 2-grown ZnO films, the n-type conductivity is attributed to (N 2) O, a shallow double donor. In NO 2-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N 2O and N 2. Upon annealing, N 2O decomposes intomore » N 2 and O 2. In furnace-annealed samples N 2 redistributes diffusively and forms gaseous N 2 bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N + implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N 2) O and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.« less

  15. Decay-ratio calculation in the frequency domain with the LAPUR code using 1D-kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Cobo, J. L.; Escriva, A.; Garcia, C.

    This paper deals with the problem of computing the Decay Ratio in the frequency domain codes as the LAPUR code. First, it is explained how to calculate the feedback reactivity in the frequency domain using slab-geometry i.e. 1D kinetics, also we show how to perform the coupling of the 1D kinetics with the thermal-hydraulic part of the LAPUR code in order to obtain the reactivity feedback coefficients for the different channels. In addition, we show how to obtain the reactivity variation in the complex domain by solving the eigenvalue equation in the frequency domain and we compare this result withmore » the reactivity variation obtained in first order perturbation theory using the 1D neutron fluxes of the base case. Because LAPUR works in the linear regime, it is assumed that in general the perturbations are small. There is also a section devoted to the reactivity weighting factors used to couple the reactivity contribution from the different channels to the reactivity of the entire reactor core in point kinetics and 1D kinetics. Finally we analyze the effects of the different approaches on the DR value. (authors)« less

  16. Structural and gasochromic properties of WO3 films prepared by reactive sputtering deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Hakoda, T.; Miyashita, A.; Yoshikawa, M.

    2015-02-01

    The effects of deposition temperature and film thickness on the structural and gasochromic properties of tungsten trioxide (WO3) films used for the optical detection of diluted cyclohexane gas have been investigated. The WO3 films were prepared on SiO2 substrates by magnetron sputtering, with the deposition temperature ranging from 300 to 550 °C in an Ar and O2 gas mixture. The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Rutherford backscattering spectroscopy (RBS). The gasochromic properties of the WO3 films, coated with a catalytic Pt layer, were examined by exposing them to up to 5% cyclohexane in N2 gas. It was found that (001)-oriented monoclinic WO3 films, with a columnar structure, grew at deposition temperatures between 400 and 450 °C. Furthermore, (010)-oriented WO3 films were preferably formed at deposition temperatures higher than 500 °C. The gasochromic characterization of the Pt/WO3 films revealed that (001)-oriented WO3 films, with cauliflower-like surface morphology, were appropriate for the optical detection of cyclohexane gas.

  17. Preparation and investigation of sputtered vanadium dioxide films with large phase-transition hysteresis loops

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; He, Qiong; Jiang, Yadong

    2013-07-01

    Vanadium dioxide (VO2) films with large phase-transition hysteresis loops were fabricated on glass substrates by reactive direct current (DC) magnetron sputtering in Ar/O2 atmosphere and subsequent in situ annealing process in pure oxygen. The crystal structure, chemical composition, morphology and metal-insulator transition (MIT) properties of the deposited films were investigated. The results reveal that the films show a polycrystalline nature with a (0 1 1) preferred orientation and consist of small spheroidal nanoparticles. All the deposited VO2 films show large hysteresis loops due to the small density of nucleating defects and the large interfacial energies, which are determined by the characteristics of the particles in the films, namely the small transversal grain size and the spheroidal shape. The film comprising the smallest spheroidal nanoparticles not only shows a large hysteresis width of 36.3 °C but also shows a low transition temperature of 32.2 °C upon cooling. This experiment facilitates the civilian applications of the VO2 films on glass substrates in optical storage-type devices.

  18. Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus

    NASA Astrophysics Data System (ADS)

    Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline

    Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.

  19. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  20. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  1. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  2. Stress controlled pulsed direct current co-sputtered Al{sub 1−x}Sc{sub x}N as piezoelectric phase for micromechanical sensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fichtner, Simon, E-mail: sif@tf.uni-kiel.de; Reimer, Tim; Chemnitz, Steffen

    2015-11-01

    Scandium alloyed aluminum nitride (Al{sub 1−x}Sc{sub x}N) thin films were fabricated by reactive pulsed direct current co-sputtering of separate scandium and aluminum targets with x ≤ 0.37. A significant improvement of the clamped transversal piezoelectric response to strain e{sub 31,f} from −1.28 C/m{sup 2} to −3.01 C/m{sup 2} was recorded, while dielectric constant and loss angle remain low. Further, the built-in stress level of Al{sub 1−x}Sc{sub x}N was found to be tuneable by varying pressure, Ar/N{sub 2} ratio, and Sc content. The thus resulting enhancement of the expectable signal to noise ratio by a factor of 2.1 and the abilitymore » to control built-in stress make the integration of Al{sub 1−x}Sc{sub x}N as the piezoelectric phase of micro-electro-mechanical system sensor applications highly attractive.« less

  3. Excitons emissions and Raman scattering of ZnO nanoparticles embedded in BaF2 matrices by reactive magnetron sputtering.

    PubMed

    Zang, C H; Su, J F; Liu, Y C; Tang, C J; Fang, S J; Zhang, D M; Zhang, Y S

    2011-11-01

    ZnO nanoparticles embedded in BaF2 matrix were fabricated by rf magnetic sputtering technology. The optical properties of high quality ZnO nanoparticles, thermally post treated in a N2 atmosphere, were investigated by temperature-dependence photoluminescence measurement. Free exciton and localized exciton were observed at the low temperature. Free exciton peak was at 3.374 eV and localized exciton peak was at 3.420 eV, dominating the PL spectrum at 77 K. Free exciton transition was observed at 3.310 eV at room temperature, whereas the localized exciton transition was at 3.378 eV. The multiple-phonon Raman scattering spectrum showed that ZnO nanoparticles embedded in BaF2 matrix had a large deformation energy originated from lattice mismatch between ZnO and BaF2 matrix. Analysis of the fitting results from the temperature dependence of FWHM of ZnO exciton illustrated that the large value of gamma(ph) was good qualitative agreement with the large deformation potential.

  4. Crystallization of Sr0.5Ba0.5Nb2O6 Thin Films on LaNiO3 Electrodes by RF Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Jong, Chao-An; Gan, Jon-Yiew

    2000-02-01

    Strontium barium niobium (Sr0.5Ba0.5Nb2O6) (SBN) thin films are prepared on conductive-oxide LNO (LaNiO3) electrodes by the rf magnetron sputtering system. Instead of conventional furnace annealing, SBN thin films are crystallized by rapid thermal annealing (RTA) above 700°C for 5 min. The textured SBN films are crystallized with two orientations: one is the (001) or (310) direction, and the other is the (002) or (620) direction. Films compositions measured by the electron spectroscopy of chemical analysis (ESCA) quantitative analysis method show nearly the same stoichiometric ratio as the target. The depth profiles of SBN films and the target are examined by secondary ion mass spectrometer (SIMS). The concentrations of the films are quite uniform. After being heat treated at 800°C for 5 min by RTA, La and Ni diffuse into the SBN film. The diffusion coefficient of La in SBN films is also calculated.

  5. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  6. Fabrication and properties of multilayer structures

    NASA Astrophysics Data System (ADS)

    Tiller, W. A.

    1983-09-01

    The synthesis of SiC films and Pd2Si films via single source and dual source sputtering, respectively, has been experimentally investigated while the reactive sputter deposition of SiO sub x films has been theoretically analyzed. The SiO sub x film data requires a mobile precursor adsorption process to be operative for the oxygen and an oxygen sticking coefficient of between 1.56 x 10 to the minus 3rd power and 4.17 x 10 to the minus 3rd power. An analysis of in-situ electrical diagnostics of the films via a non-contact technique shows the method to be of marginal accuracy for the example selected. An important new formulation of the stress and elastic constant tensors in the vicinity of interfaces has been developed and applied to the simple example of adsorbed layer/substrate interactions via a parametric analysis. Atomic modeling of the SiO system yields peroxide bond formation for oxygen-rich (100) alpha-cristobalite surfaces. Radial distribution function and angular distribution function data have been calculated for bulk alpha-quartz and bulk alpha-cristobalite in good agreement with experiment.

  7. Light-controlled resistive switching characteristics in ZnO/BiFeO3/ZnO thin film

    NASA Astrophysics Data System (ADS)

    Liang, Dandan; Li, Xiaoping; Wang, Junshuai; Wu, Liangchen; Chen, Peng

    2018-07-01

    ZnO/BiFeO3/ZnO multilayer was fabricated on silicon (Si) substrate by radio-frequency magnetron sputtering system. The resistive switching characteristics in ZnO/BiFeO3/ZnO devices are observed, and the resistive switching behavior can be modulated by white light.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tushar; Basak, Durga

    A rapid dark thermal annealing process at 800 deg. C of radio frequency sputtered P doped ZnO thin films have resulted in improved electrical transport properties with hole concentration of 1 x 1018 cm-3, mobility 4.37 cm2/Vs and resistivity 1.4 {Omega}-cm. X-ray photoelectron spectroscopy shows the presence of inactivated P in as-grown ZnO films.

  9. Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

    NASA Astrophysics Data System (ADS)

    Biro, D.; Barna, P. B.; Székely, L.; Geszti, O.; Hattori, T.; Devenyi, A.

    2008-06-01

    The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on <1 0 0> Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS 2 layer.

  10. Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics

    NASA Astrophysics Data System (ADS)

    Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.

    2004-03-01

    A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .

  11. Co-sputtered amorphous Ge-Sb-Se thin films: optical properties and structure

    NASA Astrophysics Data System (ADS)

    Halenkovič, Tomáš; Němec, Petr; Gutwirth, Jan; Baudet, Emeline; Specht, Marion; Gueguen, Yann; Sangleboeuf, J.-C.; Nazabal, Virginie

    2017-05-01

    The unique properties of amorphous chalcogenides such as wide transparency in the infrared region, low phonon energy, photosensitivity and high linear and nonlinear refractive index, make them prospective materials for photonics devices. The important question is whether the chalcogenides are stable enough or how the photosensitivity could be exacerbated for demanded applications. Of this view, the Ge-Sb-Se system is undoubtedly an interesting glassy system given the antinomic behavior of germanium and antimony with respect to photosensitivity. The amorphous Ge-Sb-Se thin films were fabricated by a rf-magnetron co-sputtering technique employing the following cathodes: GeSe2, Sb2Se3 and Ge28Sb12Se60. Radio-frequency sputtering is widely used for film fabrication due to its relative simplicity, easy control, and often stoichiometric material transfer from target to substrate. The advantage of this technique is the ability to explore a wide range of chalcogenide film composition by means of adjusting the contribution of each target. This makes the technique considerably effective for the exploration of properties mentioned above. In the present work, the influence of the composition determined by energy-dispersive X-ray spectroscopy on the optical properties was studied. Optical bandgap energy Egopt was determined using variable angle spectroscopic ellipsometry. The morphology and topography of the selenide sputtered films was studied by scanning electron microscopy and atomic force microscopy. The films structure was determined using Raman scattering spectroscopy.

  12. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  13. Piezoelectric characterization of Sc0.26Al0.74N layers on Si (001) substrates

    NASA Astrophysics Data System (ADS)

    Sinusía Lozano, M.; Pérez-Campos, A.; Reusch, M.; Kirste, L.; Fuchs, Th; Žukauskaitė, A.; Chen, Z.; Iriarte, G. F.

    2018-03-01

    Scandium aluminum nitride (ScAlN) films have been synthesized by pulsed-DC reactive magnetron sputtering. The degree of c-axis orientation as well as piezoelectric characteristics of the Sc0.26Al0.74N thin films grown on Si (001) at various discharge powers and processing pressures values have been investigated. According to x-ray diffraction (XRD) measurements, the texture of the as-grown Sc0.26Al0.74N thin films becomes more prominent in the [0001]-direction at the highest target power (700 W) and at the lowest processing pressure (4 mTorr). The piezoelectric response, as determined by measuring the d33 piezoelectric constant, shows a maximum value of -12 pC/N also at 4 mTorr and 700 W, confirming a direct correlation between the d33 piezoelectric constant and the degree of orientation in the [0001]-direction. The atomic concentration of Sc and Al in the synthesized ScAlN thin film, determined by secondary ion mass spectroscopy (SIMS), reveals a Sc concentration lower than in the ScAl alloy target. The piezoresponse force microscopy (PFM) shows homogeneous polarity distribution with no inversion domains. The piezoelectric layers have been used to fabricate and measure surface acoustic wave (SAW) resonators on a Sc0.26Al0.74N/Si (001) bilayer system with resonance frequency of 1.4 GHz and coupling coefficient of 0.567. Such characteristic in the frequency response reveals the potential of these materials for advanced SAW devices in applications such as next generation (5 G) wireless communication systems.

  14. Mechanisms of the formation of low spatial frequency LIPSS on Ni/  Ti reactive multilayers

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Cavaleiro, André J.; Morgiel, Jerzy; Vilar, Rui

    2016-09-01

    The present paper aims at investigating the mechanisms of imprinting LIPSS (laser-induced periodic surface structures), arrangements of parallel ripples with a periodicity slightly smaller than the radiation wavelength, on metallic surfaces. To this end, Ni/Ti multi-layered samples produced by magnetron sputtering were textured with LIPSS using a 1030 nm, 560 fs pulse duration laser and pulse frequency of 1 kHz, and the resulting surfaces were investigated by scanning and transmission electron microscopies. The results obtained show that the core of the ripples remains in the solid state during the laser treatment, except for a layer of material about 30 nm thick at the valleys and 65-130 nm thick at the top of the crests, which melts and solidifies forming NiTi with an amorphous structure. A layer of ablation debris composed of amorphous NiTi nanoparticles was redeposited on the LIPSS crests. The results achieved indicate that the periodic variation of the absorbed radiation intensity leads to a variation of the predominant ablation mechanisms and, consequently, of the ablation rate, thus explaining the rippled surface topography. The comparison with theoretical predictions suggests that in the intensity maxima (corresponding to the valleys) the material is removed by liquid spallation, while at its minima (the crests) the predominant material removal mechanism is melting and vaporization. These results support Sipe et al LIPSS formation theory and are in contradiction with the theories that explain the formation of LIPSS by convective fluid flow or self-organized mass transport of a laser-induced instability.

  15. Materials Study of NbN and Ta x N Thin Films for SNS Josephson Junctions

    DOE PAGES

    Missert, Nancy; Brunke, Lyle; Henry, Michael D.; ...

    2017-02-15

    We investigated properties of NbN and Ta xN thin films grown at ambient temperatures on SiO 2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N 2 gas flow. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N 2 gas flow during growth. High crystalline quality, (111) oriented NbN films with T c up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the Ta xN films depended upon both the N 2 partial pressure usedmore » during growth and the film thickness. Furthermore, the root mean square surface roughness of Ta xN films grown by MS increased as the film thickness decreased down to 10 nm.« less

  16. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  17. Processing and property evaluation of tungsten-based mixed oxides for photovoltaics and optoelectronics

    NASA Astrophysics Data System (ADS)

    Vargas, Mirella

    Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement of the physio-chemical and optical properties. In the present case, WO3 and TiO2 composite films have been fabricated by reactive magnetron sputtering employing W/Ti alloy targets, and individual W and Ti targets for co-sputtering. Composite WO3-TiO2 films were fabricated with variable chemical composition and the effect of variable bulk chemistry on film structure, surface/interface chemistry and chemical valence state of the W and Ti cations was investigated in detail. The process-property relationships between composition and physical properties for the films deposited by using W/Ti alloy targets of variable Ti content are associated with decreases in the deposition rate of the WO3-TiO2 films due to the lower sputter yield of the strongly bonded TiO2 formed on the target surface. Additionally, for the co-sputtered films using variable tungsten power, the optical properties demonstrate unique optical modulation. The changes associated with the physical color of the films demonstrate the potential to tailor the optical behavior for the design and fabrication of multilayer photovoltaic and catalytic devices. The process-structure-property correlation derived in this work will provide a road-map to optimize and produce W-Ti-O thin films with desired properties for a given technological application.

  18. The effect of changing the magnetic field strength on HiPIMS deposition rates

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Mishra, A.; Kelly, P. J.

    2015-06-01

    The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ~25-40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B. These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B. From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ~0.9 to ~0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates.

  19. Magnetic field effect on spoke behaviour

    NASA Astrophysics Data System (ADS)

    Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr

    2016-09-01

    The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.

  20. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  1. Oleophobic optical coating deposited by magnetron PVD

    NASA Astrophysics Data System (ADS)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  2. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  3. Structural and magnetic properties of non-stoichiometric Fe1-xO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-04-01

    The Fe1-xO thin films of various iron deficiencies (x) have been grown at ambient temperature by reactive dc magnetron sputtering technique and their structural and magnetic properties are studied. The structural study shows that the films are polycrystalline. As the iron content (1-x) varies from 0.924 to 0.855 a clear consistent change in the preferential orientation of the grains from [111] to the [200] direction is observed. The magnetization measurements show the possible existence of small superparamagnetic defect clusters at 300 K and large spinel-type defect clusters below the Neel temperature.

  4. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films

    PubMed Central

    Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai

    2015-01-01

    Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728

  5. Sputtering. [as deposition technique in mechanical engineering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  6. Barium-Dispenser Thermionic Cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  7. Characterization of La-doped xBiInO3(1 - x)PbTiO3 Piezoelectric Films Deposited by the Radio-Frequency Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Ke-Xue, Sun; Shu-Yi, Zhang; Kiyotaka, Wasa; Xiu-Ji, Shui

    2016-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11174142 and 11304160, the National Basic Research Program of China under Grant No 2012CB921504, and the Special Fund for Public Interest of China under Grant No 201510068.

  8. High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Maurya, Sandeep Kumar; Liu, Ya; Xu, Xiaojie; Woods-Robinson, Rachel; Das, Chandan; Ager, Joel W., III; Balasubramaniam, K. R.

    2017-12-01

    p-type transparent conducting Cu alloyed ZnS thin films from Cu{x} Zn{1-x} S targets (x = 0.1 , 0.2, 0.3, 0.4, and 0.5) were deposited on glass substrates via radio frequency sputtering. x-ray diffraction and TEM-SAED analysis show that all the films have sphalerite ZnS as the majority crystalline phase. In addition, films with 30% and 40% Cu show the presence of increasing amounts of crystalline Cu2S phase. Conductivity values  ⩾400 S cm-1 were obtained for the films having 30% and 40% Cu, with the maximum conductivity of 752 S cm-1 obtained for the film with 40% Cu. Temperature dependent electrical transport measurements indicate metallic as well as degenerate hole conductivity in the deposited films. The reflection-corrected transmittance of this Cu alloyed ZnS (40% Cu) film was determined to be  ⩾75% at 550 nm. The transparent conductor figure of merit (ΦTC ) of the Cu alloyed ZnS (40% Cu), calculated with the average value of transmittance between 1.5 to 2.5 eV, was  ≈276 μS .

  9. Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S.

    2011-12-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 °C. Post-growth annealing in air was carried out up to a temperature of 1000 °C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 °C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 × 1017 cm-3 at the annealing temperature of 600 °C. The origin of the p-type conductivity was consistent with the AsZn(VZn)2 shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the AsZn(VZn)2 acceptor and the creation of the deep level defect giving rise to the green luminescence.

  10. Spatial structure of radio frequency ring-shaped magnetized discharge sputtering plasma using two facing ZnO/Al2O3 cylindrical targets for Al-doped ZnO thin film preparation

    NASA Astrophysics Data System (ADS)

    Sumiyama, Takashi; Fukumoto, Takaya; Ohtsu, Yasunori; Tabaru, Tatsuo

    2017-05-01

    Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO) thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 - 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002) axis.

  11. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  12. Relationship between plasma parameters and film microstructure in radio frequency magnetron sputter deposition of barium strontium titanate

    NASA Astrophysics Data System (ADS)

    Panda, B.; Dhar, A.; Nigam, G. D.; Bhattacharya, D.; Ray, S. K.

    1998-01-01

    Radio frequency magnetron sputtered Ba0.8Sr0.2TiO3 thin films have been deposited on silicon and Si/SiO2/SiN/Pt substrates. The analysis of plasma discharge has been carried out using the Langmuir probe technique. Both the pressure and power have been found to influence the ion density and self-bias of the target. Introduction of oxygen into the discharge effectively decreases the ion density. The structural and electrical properties have been investigated using x-ray diffraction, atomic force microscopy of deposited films and capacitance-voltage, conductance-voltage, and current density-electric field characteristics of fabricated capacitors. The growth and orientation of the films have been found to depend upon the type of substrates and deposition temperatures. The <100> texture in the film is promoted at a pressure 0.25 Torr with a moderately high value of ion density and low ion bombardment energy. Films deposited on Si/SiO2/SiN/Pt substrate have shown higher dielectric constant (191) and lower leakage current density (2.8×10-6 A/cm2 at 100 kV/cm) compared to that on silicon.

  13. Ion induced crystallization and grain growth of hafnium oxide nano-particles in thin-films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dhanunjaya, M.; Khan, S. A.; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2017-12-01

    We report on the swift heavy ion (SHI) irradiation induced crystallization and grain growth of HfO2 nanoparticles (NPs) within the HfO2 thin-films deposited by radio frequency (RF) magnetron sputtering technique. As grown films consisted of amorphous clusters of non-spherical HfO2 NPs. These amorphous clusters are transformed to crystalline grains under 100 MeV Ag ion irradiation. These crystallites are found to be spherical in shape and are well dispersed within the films. The average size of these crystallites is found to increase with fluence. Pristine and irradiated films have been characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), grazing incident x-ray diffraction (GIXRD) and photo luminescence (PL) measurements. The PL measurements suggested the existence of different types of oxygen related defects in pristine and irradiated samples. The observed results on crystallization and grain growth under the influence of SHI are explained within the framework of thermal spike model. The results are expected to provide useful information for understanding the electronic excitation induced crystallization of nanoparticles and can lead to useful applications in electronic and photonic devices.

  14. Structural and spectroscopic analysis of ex-situ annealed RF sputtered aluminium doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel

    2017-08-01

    Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.

  15. Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.

    2018-05-01

    Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.

  16. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  17. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research; Liu, Z. G.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated withmore » conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.« less

  18. Assessing the impact of atomic oxygen in the damage threshold and stress of Hafnia films grown by ion beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Patel, D.; Wang, Y.; Larotonda, M.; Lovewell, J.; Jensen, J.; Hsiao, K. J.; Krous, E.; Rocca, J. J.; Menoni, C. S.; Tomasel, F.; Kholi, S.; McCurdy, P.

    2007-01-01

    Hafnium oxide (HfO II) is undoubtedly one of the most desirable high-index optical coatings for high power laser applications. One of the key goals in the fabrication of oxide films with high Laser Induced Damage Threshold (LIDT) is to minimize the number of film imperfections, in particular stoichiometric defects. For HfO II films deposited by ion beam (reactive) sputtering (IBS) of a hafnium metal target, stoichiometry is controlled by the injection of molecular oxygen, either close to the substrate or mixed with the sputtering gas or some other combination. Good stoichiometry is important to reduce the density of unoxidized particles buried in the coatings, which affect the LIDT. This work evaluates the potential advantages of using pre-activation of oxygen in the IBS of HfO II, with special emphasis on its impact on LIDT and film stress. For the experiments, oxygen was activated by an independent plasma source and then introduced into a commercial IBS chamber. The optical properties of the films were characterized using spectrophotometry and ellipsometry. Their structural quality and composition were determined from x-ray diffraction and x-ray photoelectron emission spectroscopy. The stress was determined from interferometer measurements. For optimized conditions, 2.5 J/cm2 LIDT was measured on HfO II films at λ=800 nm with 1 ps and 25 mJ pulses from a chirped amplification Ti:Sapphire laser. In the range of oxygen variations under consideration the effects on LIDT are shown to be minimal.

  19. Selective deposition of a crystalline Si film by a chemical sputtering process in a high pressure hydrogen plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmi, Hiromasa, E-mail: ohmi@prec.eng.osaka-u.ac.jp; Yasutake, Kiyoshi; Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

    2015-07-28

    The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (R{sub d}) is dependent upon the substrate type. At the initial stage of Si film formation, R{sub d} on glass substrates increased with elapsed time and reached to a constant value. In contrast, R{sub d} on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (T{sub sub}) and hydrogen concentration (C{sub H2}) in the process atmosphere.more » For any given deposition time, it was found that an optimum C{sub H2} exists for a given T{sub sub} to realize the selective deposition of a Si film, and the optimum T{sub sub} value tends to increase with decreasing C{sub H2}. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH{sub 2}, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.« less

  20. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate.

    PubMed

    Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-04-13

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8-210 μA/cm²) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm -2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8-15 μC/cm². When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10 -2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10 -3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  1. Preferred orientation in Cr- and Co-based thin films and its effects on the read/write performance of the media

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-chu; Lal, Brij B.; Eltoukhy, Atef

    1992-04-01

    This work investigates the formation of preferred crystallographic orientation (PO) in Cr underlayer as well as CoCrTa and CoCrPtTa thin films and its effects on the recording performance of longitudinal media. The results show that the thin-film media with comparable coercivity but different crystalline PO as measured by x-ray diffraction exhibit significant difference in high-frequency signal amplitude, pulse width, and signal-to-noise ratio. To illustrate the effect of PO on parametric performance, CoCrTa/Cr and CoCrPtTa/Cr media were sputtered on different substrates and/or using special sputtering processes to achieve comparable coercivity but different PO in the films. A PO of Cr(200), which normally occurs on the NiP/Al substrates under adequate sputtering conditions, is found to be the key to obtaining a PO of Co(11.0) in Co-alloy media. The consequence of preferred in-plane c-axis orientation is a higher coercivity and better parametric performance of the medium. The formation of PO in the Cr underlayer is found to be related to the substrate material and the oxygen content in the sputtered films. The nonmetallic canasite substrates tend to promote PO of more stable Cr(110) rather than Cr(200). Consequently, this leads to a PO of out-of-plane c axis on the following Co films. The PO of magnetic layer appears to be an important factor in determining the parametric performance of the media.

  2. Catalytic activity and stability of nanometic Rh overlayers prepared by pulsed arc-plasma deposition and r.f. magnetron-sputtering

    NASA Astrophysics Data System (ADS)

    Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato

    2018-01-01

    50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.

  3. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    PubMed Central

    Reynolds, Glyn J.; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-01-01

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities. PMID:28817001

  4. Contributions of solar-wind induced potential sputtering to the lunar surface erosion rate and it's exosphere

    NASA Astrophysics Data System (ADS)

    Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.

    2018-04-01

    Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.

  5. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  6. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.

    PubMed

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal-oxide-semiconductor-compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm 2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance.

  7. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

    PubMed Central

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    Abstract For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal–oxide–semiconductor–compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance. PMID:29868148

  8. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER

    NASA Astrophysics Data System (ADS)

    Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2018-04-01

    The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.

  9. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  10. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGES

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  11. Ultra-High Frequency Superconductive Devices

    DTIC Science & Technology

    1991-05-01

    indicate that NbN, -,C sputtered from a Nb target in an Ar/ N1 /C4 ambient 4.s with inctions can be successfully employed as local oscillators at no...oic h eie austoe deece . Figurue oesotu o ja aA-te 3.riato Measehloa osciors sina htigh L eletoe tion~~~~~~~~~~~~~n frqunc ofqunc the shw nfgr

  12. Advances and challenges in the field of plasma polymer nanoparticles

    PubMed Central

    Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847

  13. Advances and challenges in the field of plasma polymer nanoparticles.

    PubMed

    Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  14. Nanoscale multilayer Me-graphite coatings grown by combined steered cathodic arc/unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kok, Yin Nan

    Low friction, nanoscale multilayer carbon/chromium (C/Cr) coatings were successfully deposited by the combined steered cathodic arc/unbalanced magnetron sputtering technique (also known as Arc Bond Sputtering or ABS) using a Hauzer HTC 1000-4 PVD coater. The work described in this thesis has been directed towards understanding the effect of ion irradiation on the composition, microstructure, and functional properties of C/Cr coatings. This has been achieved by varying the bias voltage, U[B], over a wide range between -65 V and -550 V. C/Cr coatings were deposited in three major steps: (i) Cr+ ion etching using a steered cathodic arc discharge at a substrate bias voltage of -1200 V, (ii) deposition of a 0.25 mum thick CrN base layer by reactive unbalanced magnetron sputtering to enhance the adhesion, and (iii) deposition of C/Cr coatings by unbalanced magnetron sputtering from three graphite targets and one chromium target at 260°C. The coatings were deposited at different bias voltages (U[B]) from -65 V to -550 V in a non-reactive Ar atmosphere.C/Cr coatings exhibit excellent adhesion (critical load, L[C] > 70 N), with hardness ranging from 6.8 to 25.1 GPa depending on the bias voltage. The friction coefficient of C/Cr coatings was found to reduce from 0.22 to 0.16 when the bias voltage was increased from U[B] = -65 to -95 V. The relevance of C/Cr coatings for actual practical applications was demonstrated using dry high-speed milling trials on automotive aluminium alloy (Al-Si8Cu3Fe). The results showed that C/Cr coated cemented carbide ball-nose end mills prepared at U[B] = -95 V (70 at.% C, 30 at.% Cr) enhance the tool performance and the tool life compared to the uncoated tools by a factor of two, suggesting the potential for use in dry high-speed machining of "sticky" alloys such as aluminum. Different film morphologies were observed in the investigated bias voltage range between U[B] = -65 and -550 V using XTEM. With increasing bias voltage from U[B] = -65 to -95 V, the structure changed from columnar, with carbon accumulated at the column boundaries, to a dense structure which comprised randomly distributed onionlike carbon clusters. A novel nanostructure was observed within this bias voltage range, in which the basic nano-lamellae obtained as a result of substrate rotation in front of the C and Cr targets were modified by an ion-irradiation induced nanocolumnar structure. Further increases in the bias voltage to U[B] = -350 V and U[B] = -450 V led to segregation and self-organisation of the carbon atoms induced by the high energy ion bombardment and, finally, to the formation of a new type of self-organised multilayer structure. A coating growth model accounting for the influence of ion bombardment on the growing C/Cr film was introduced to explain the phase separation and formation of the selforganised layered nanostructure.A novel experimental set-up for the investigation of tribocorrosion was built based on a modification of the conventional Scanning Reference Electrode Technique (SRET). The device comprises a ball on rotating cylinder contact configuration combined with a SRET electrochemical device. This combination may contribute significantly to the understanding of wear-corrosion synergism.

  15. A hermetic and room-temperature wafer bonding technique based on integrated reactive multilayer systems

    NASA Astrophysics Data System (ADS)

    Braeuer, J.; Gessner, T.

    2014-11-01

    This paper focuses on direct deposition and patterning of reactive and nano-scale multilayer films at wafer level. These multilayer structures are called integrated reactive material systems (iRMS). In contrast to the typically used nickel (Ni)/ aluminum (Al) systems, in this work we needed to have our total multilayer film thicknesses smaller than 2.5 µm to reduce stress within the multilayer as well as deposition costs. Thus, we introduced new high energetic iRMS. These films were deposited by using alternating magnetron sputtering from high purity Al- and palladium (Pd)-targets to obtain films with a defined Al:Pd atomic ratio. In this paper, we present the result for reaction characteristics and reaction velocities which were up to 72.5 m s-1 for bond frames with lateral dimensions as low as 20 µm. Furthermore, the feasibility of silicon (Si)-Si, Si-glass as well as Si-ceramic hermetic and metallic wafer bonding at room temperature is presented. We show that by using this bond technology, strong (maximum shear strengths of 235 MPa) and hermetically sealed bond interfaces can be achieved without any additional solder material.

  16. Experimental analysis of silicon oxycarbide thin films and waveguides

    NASA Astrophysics Data System (ADS)

    Memon, Faisal Ahmed; Morichetti, Francesco; Somaschini, Claudio; Iseni, Giosue; Melloni, Andrea

    2017-05-01

    Silicon oxycarbide (SiOC) thin films are produced with reactive rf magnetron sputtering of a silicon carbide (SiC) target on Si (100) and SiO2/Si substrates under varying deposition conditions. The optical properties of the deposited SiOC thin films are characterized with spectroscopic ellispometry at multiple angles of incidence over a wavelength range 300- 1600 nm. The derived optical constants of the SiOC films are modeled with Tauc-Lorentz model. The refractive index n of the SiOC films range from 1.45 to 1.85 @ 1550 nm and the extinction coefficient k is estimated to be less than 10-4 in the near-infrared region above 1000 nm. The topography of SiOC films is studied with SEM and AFM giving rms roughness of 0.9 nm. Channel waveguides with a SiOC core with a refractive index of 1.7 have been fabricated to demonstrate the potential of sputtered SiOC for integrated photonics applications. Propagation loss as low as 0.39 +/- 0.05 dB/mm for TE and 0.41 +/- 0.05 dB/mm for TM polarizations at telecommunication wavelength 1550 nm is demonstrated.

  17. Plasma Oxidation Of Silver And Zinc In Low-Emissivity Stacks

    NASA Astrophysics Data System (ADS)

    Ross, R. C.; Sherman, R.,; Bunger, R. A.; Nadel, S. J.

    1987-11-01

    The oxidation of silver and zinc films was studied by exposing metallic films to low-power 02 plasmas and analyzing the reacted films. This type of oxidation is an important phenomenon near the barrier layer in sputter-deposited metal-oxide/Ag/metal-oxide low-emissivity (low-e) coatings. Barrier layers generally are deposited on the Ag layer to prevent its degradation during subsequent 02 reactive sputtering. Both individual layers and complete stacks were studied. In addition, the thermal stability of plasma-oxidized Ag was examined. There are several important findings for the individual layers. Ag oxidizes rapidly in the plasma, forming Ag≍1.70 after complete reaction. Relative to the original Ag, the 9ide has -l.7 times greater thick-ness, >10 times higher electrical resistiv-ity (p), and increased surface roughness. Zn oxidizes slowly, at only -1% to 0.1% times the rate for Ag, and is thus more difficult to characterize. The results for individual layers are discussed as they relate to practical pro-perties of low-e stacks: the difficulty of obtaining complete barrier layer oxidation without partially degrading the Ag layer as well as the effects of heat treatment and aging.

  18. Tribological Testing, Analysis and Characterization of D.C. Magnetron Sputtered Ti-Nb-N Thin Film Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Joshi, Prathmesh

    To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.

  19. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  20. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

Top