Science.gov

Sample records for frequency reference cavities

  1. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  2. Thermal analysis and test of SUNLITE reference cavity for laser frequency stabilization

    NASA Technical Reports Server (NTRS)

    Amundsen, R. M.

    1992-01-01

    SUNLITE is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. This paper describes the thermal stability requirements on the cavity design and detailed thermal analysis performed, as well as thermal testing that was performed on a prototype. Analytical thermal models were correlated to the test data and additional modeling of the current design is presented. Suggestions for improving similar high-precision thermal tests are given.

  3. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; Shaddock, D.; Lam, T.

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  4. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  5. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  6. Hydrogen masers with cavity frequency switching servos

    NASA Technical Reports Server (NTRS)

    Peters, Harry E.; Owings, H. B.; Koppang, Paul A.

    1990-01-01

    The stability of the free-running hydrogen maser is limited by pulling of the unperturbed hydrogen transition frequency due to instability of the cavity resonance frequency. While automatic spin-exchange tuning is in principle the more basic and accurate method, the required beam intensity switching and the long servo time constant result in reduced stability for measuring intervals up to 10(exp 6) seconds. More importantly, the spin-exchange tuning method requires a second stable frequency source as a reference, ideally a second hydrogen maser, to get the best results. The cavity frequency switching servo, on the other hand, has very little effect on the maser short term stability, and is fast enough to correct for cavity drift while maintaining the cavity at the spin-exchange tuned offset required to minimize instability due to beam intensity fluctuations. Not only does the cavity frequency switching servo not require a second stable frequency source, but the frequency reference is the atomic hydrogen radiated beam signal, so that no extra RF connections need be made to the cavity, and externally generated signals that would perturb the hydrogen atom need not be transmitted through the cavity. The operation of the cavity frequency switching stabilization method is discussed and the transient response of the servo and certain other aspects of the technique that have potential for achieving improved basic accuracy are illustrated.

  7. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  8. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  9. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  10. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  11. Frequency-feedback cavity enhanced spectrometer

    SciTech Connect

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  12. Precision optical reference frequencies

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Schnatz, Harald; Zinner, G.; Trebst, Tilmann; Helmcke, Juergen

    1999-05-01

    Optical reference frequencies are provided by lasers of which the frequencies are stabilized to suitable absorption lines. Presently, twelve reference frequencies/wavelengths within the wavelengths range from 243 nm to 10.3 micrometers are recommended by the International Committee of Weights and Measures as references for the realization of the meter and scientific applications. As typical examples, we describe a diode-pumped, frequency doubled YAG-laser stabilized to an absorption line of molecular iodine and a Ca-stabilized laser. The latter one has been developed in two versions, a transportable system utilizing a small beam of thermal Ca atoms and a stationary standard based on laser cooled and trapped Ca atoms. The frequency of the Ca standard based on cold Ca atoms has been measured by a frequency chain allowing a phase-coherent comparison against the primary standard of time and frequency, the caesium clock. Its value is vCa equals 455 986 240 494.13 kHz with a relative standard uncertainty of 2.5 (DOT) 10-13.

  13. Iodine frequency references for space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Oswald, Markus; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2017-05-01

    Optical frequency references are a key element for the realization of future space missions. They are needed for missions related to tests of fundamental physics, gravitational wave detection, Earth observation and navigation and ranging. In missions such as GRACE follow-on or LISA the optical frequency reference is used as light source for high-sensitivity inter-satellite distance metrology. While cavity-based systems are current baseline e.g. for LISA, frequency stabilization on a hyperfine transition in molecular iodine near 532 nm is a promising alternative. Due to its absolute frequency, iodine standards crucially simplify the initial spacecraft acquisition procedures. Current setups fulfill the GRACE-FO and LISA frequency stability requirements and are realized near Engineering Model level. We present the current status of our developments on Elegant Breadboard (EBB) and Engineering Model (EM) level taking into account specific design criteria for space compatibility such as compactness (size iodine spectroscopy EM: 38 × 18 × 10 cm3) and robustness. Both setups achieved similar frequency stabilities of ˜ 1 · 10-14 at an integration time of 1 s and below 5 · 10-15 at integration times between 10 s and 1000 s. Furthermore, we present an even more compact design currently developed for a sounding rocket mission with launch in 2017.

  14. The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry-Perot cavity and an iodine saturated absorption line

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru; Kanaya, Takeshi; Nakagawa, Ken'ichi; Ueda, Ken-ichi

    2000-09-01

    We have developed a wideband frequency-stabilized injection-locked Nd:YAG laser as a light source for the laser interferometric gravitational wave detector, in which short-term frequency stability of the laser improves the sensitivity of the interferometer and the long-term frequency stability aims for the stable long-time operation of the interferometer. The frequency of a 2-W injection-locked laser is locked to both a rigid Fabry-Perot cavity with ULE spacer and saturated absorption line of 127I2 simultaneously with two nested servo loops, and the long-term as well as short-term frequency stability are obtained. The drift of the resonant frequency of the rigid Fabry-Perot cavity is measured and the stability of the Fabry-Perot cavity is estimated to be 20× f-1 [Hz/√Hz]. The predicted frequency stabilities of the present dual-reference-locked laser are numerically simulated. Our wideband frequency-stabilized laser is also available for the high-resolution spectroscopy.

  15. Frequency doubled, cavity dumped feedback laser

    NASA Technical Reports Server (NTRS)

    Sipes, Jr., Donald L. (Inventor); Robinson, Deborah L. (Inventor)

    1989-01-01

    Higher efficiency in cavity dumping and frequency doubling in a laser used to produce modulated output beam pulses is achieved by deflecting light out of the resonant cavity to a third mirror through a frequency doubler using an electro-optic modulator and a polarizing beamsplitter in the resonant cavity, or using just an acousto-optic modulator to deflect light out of the laser cavity in response to a control signal (electric or acoustic). The frequency doubler in front of the third mirror rotates the frequency doubled light so that it will pass out of the laser cavity through the polarizing beamsplitter, while undoubled frequency light is reflected by the polarizing beamsplitter back into the gain medium of the laser. In the case of using a type-II frequency doubler, a dichroic beamsplitter deflects out the frequency doubled light and passes the undoubled frequency light to the polarizing beamsplitter for return to the laser gain medium. If an acousto-optic modulator is used, it deflects light out of the primary laser cavity, so a polarizing beamsplitter is not needed, and only a dichroic beamsplitter is needed to separate frequency doubled light out of the path from the third mirror.

  16. Frequency References for Gravitational Wave Missions

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.

    2012-01-01

    The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.

  17. Nb3Sn for Radio Frequency Cavities

    SciTech Connect

    Godeke, A.

    2006-12-18

    In this article, the suitability of Nb3Sn to improve theperformance of superconducting Radio-Frequency (RF)cavities is discussed.The use of Nb3Sn in RF cavitiesis recognized as an enabling technology toretain a veryhigh cavity quality factor (Q0) at 4.2 K and tosignificantly improve the cavity accelerating efficiency per unitlength(Eacc). This potential arises through the fundamental properties ofNb3Sn. The properties that are extensively characterized in theliterature are, however, mainly related to improvements in currentcarrying capacity (Jc) in the vortex state. Much less is available forthe Meissner state, which is of key importance to cavities. Relevantdata, available for the Meissner state is summarized, and it is shown howthis already validates the use of Nb3Sn. In addition, missing knowledgeis highlighted and suggestions are given for further Meissner statespecific research.

  18. Whispering Gallery Mode Resonators as Optical Reference Cavities

    NASA Technical Reports Server (NTRS)

    Baumgartel, Lukas; Thompson, Rob; Strekalov, Dmitry; Grudinin, Ivan; Yu, Nan

    2011-01-01

    Highly stabilized lasers are an increasingly valuable tool for metrology. For many applications, however, existing Fabry Perot systems are too bulky and cumbersome. We are investigating the use of miniature monolithic whispering gallery mode resonators as reference cavities for laser stabilization. We seek to exploit the benefit of small size and vibration resistance by suppressing thermally induced frequency fluctuations. We have theoretically investigated the viability of using a thin-film coating to achieve temperature compensation. We have experimentally investigated an active temperature stabilization scheme based on birefringence in a crystalline resonator. We also report progress of laser locking to the resonators.

  19. Quantum frequency doubling based on tripartite entanglement with cavities

    NASA Astrophysics Data System (ADS)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang

    2016-02-01

    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  20. Thermal design and test results for SUNLITE ultra-stable reference cavity

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1991-01-01

    SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.

  1. Plasma processing of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  2. XUV Frequency Combs via Femtosecond Enhancement Cavities

    NASA Astrophysics Data System (ADS)

    Mills, Arthur

    2012-10-01

    We report on recent developments in tabletop extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC). The XUV frequency comb is produced via HHG at the full repetition rate of the mode-locked oscillator (typically >50 MHz), inside a passive enhancement cavity with an enhancement of a few hundred. Several technical challenges have recently been resolved, which have led to an increase in the generated photon flux in the XUV (10^14 photons/sec), and a substantial improvement in the operating time of these sources. XUV sources based on fsECs are now able to perform direct frequency comb spectroscopy with MHz precision in atomic systems at wavelengths down to 60 nm. Ongoing research is aimed at determining the ultimate frequency stability of these new XUV frequency comb sources. XUV fsEC sources are also promising for some applications that are typically performed with XUV light at advanced light sources. These applications include electronic structure of quantum material systems, such as angle-resolved photoemission spectroscopy (ARPES), size metrology of nano-aerosol particles, and potentially velocity map imaging for studies of chemical physical problems. In this talk, we present a brief introduction to XUV frequency comb sources and the technical challenges that have been overcome to achieve the current performance levels. We will also discuss our progress on ARPES experiments with a fsEC XUV source and our efforts toward increasing the energy resolution of the produced harmonics. Finally, we describe ongoing efforts to further increase the maximum photon energy and photon flux generated, and subsequently delivered to an experiment by fsEC XUV sources.

  3. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2004-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with t.he direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency- reference cavity of order 1 Hz/square root Hz(0.01 Hz/square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results.

  4. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2005-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.

  5. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2004-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with t.he direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency- reference cavity of order 1 Hz/square root Hz(0.01 Hz/square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results.

  6. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2005-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.

  7. Laser frequency modulator for modulating a laser cavity

    DOEpatents

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  8. Frequency combs for cavity cascades: OPO combs and graphene-coupled cavities

    NASA Astrophysics Data System (ADS)

    Lee, Kevin F.; Kowzan, Grzegorz; Lee, C.-C.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Schibli, T. R.; Maslowski, Piotr; Fermann, M. E.

    2017-01-01

    Frequency combs can be used directly, for example as a highly precise spectroscopic light source. They can also be used indirectly, as a bridge between devices whose high precision requirements would normally make them incompatible. Here, we demonstrate two ways that a frequency comb enables new technologies by matching optical cavities. One cavity is the laser oscillator. A second cavity is a low-threshold doubly-resonant optical parametric oscillator (OPO). Extending optical referencing to the doubly-resonant OPO turns the otherwise unstable device into an extremely precise midinfrared frequency comb. Another cavity is an optical enhancement cavity for amplifying spectral absorption in a gas. With the high speed of a graphene-modulated frequency comb, we can couple a frequency comb directly into a high-finesse cavity for trace gas detection.

  9. Cavities for electron spin resonance: predicting the resonant frequency

    NASA Astrophysics Data System (ADS)

    Colton, John; Miller, Kyle; Meehan, Michael; Spencer, Ross

    Microwave cavities are used in electron spin resonance to enhance magnetic fields. Dielectric resonators (DRs), pieces of high dielectric material, can be used to tailor the resonant frequency of a cavity. However, designing cavities with DRs to obtain desired frequencies is challenging and in general can only be done numerically with expensive software packages. We present a new method for calculating the resonant frequencies and corresponding field modes for cylindrically symmetric cavities and apply it to a cavity with vertically stacked DRs. The modes of an arbitrary cavity are expressed as an expansion of empty cavity modes. The wave equation for D gives rise to an eigenvalue equation whose eigenvalues are the resonant frequencies and whose eigenvectors yield the electric and magnetic fields of the mode. A test against theory for an infinitely long dielectric cylinder inside an infinite cavity yields an accuracy better than 0.4% for nearly all modes. Calculated resonant frequencies are also compared against experiment for quasi-TE011 modes in resonant cavities with ten different configurations of DRs; experimental results agree with predicted values with an accuracy better than 1.0%. MATLAB code is provided at http://www.physics.byu.edu/research/coltonlab/cavityresonance.

  10. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    SciTech Connect

    Lane, Peter Gwin

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  11. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  12. Frequency budget for the PoP cavity

    SciTech Connect

    Ratti, Alessandro

    1995-07-01

    The computer code superfish has been used in conjunction with measurements, to obtain a frequency budget for the PoP cavity. The goal of the exercise is to have a valid prediction of the natural resonant frequency of the final accelerating cavity to be built for RHIC. An estimation of the frequency shift due to the power coupling window is also included and compared with measurements.

  13. Design of an ultra-compact reference ULE cavity

    NASA Astrophysics Data System (ADS)

    Didier, Alexandre; Millo, Jacques; Lacroûte, Clément; Ouisse, Morvan; Delporte, Jérôme; Giordano, Vincent; Rubiola, Enrico; Kersalé, Yann

    2016-06-01

    This article presents the design and the conception of an ultra-compact Fabry-Pérot cavity which will be used to develop an ultra-stable laser. The proposed cavity is composed of a 25 mm long ULE spacer with fused silica mirrors. It leads to an expected fractional frequency stability of 1.5 x 10-15 limited by the thermal noise. The chosen geometry leads to an acceleration relative sensitivity below 10-12 /(m/s2) for all directions.

  14. Three-dimensional self-consistent simulations of multipacting in superconducting radio frequency cavities

    SciTech Connect

    Chet Nieter

    2010-12-01

    Superconducting radio frequency (SRF) cavities are a popular choice among researchers designing new accelerators because of the reduced power losses due to surface resistance. However, SRF cavities still have unresolved problems, including the loss of power to stray electrons. Sources of these electrons are field emission from the walls and ionization of background gas, but the predominant source is secondary emission yield (SEY) from electron impact. When the electron motion is in resonance with the cavity fields the electrons strike the cavity surface repeatedly creating a resonant build up of electrons referred to as multipacting. Cavity shaping has successfully reduced multipacting for cavities used in very high energy accelerators. However, multipacting is still a concern for the cavity power couplers, where shaping is not possible, and for cavities used to accelerate particles at moderate velocities. This Phase II project built upon existing models in the VORPAL simulation framework to allow for simulations of multipacting behavior in SRF cavities and their associated structures. The technical work involved allowed existing models of secondary electron generation to work with the complex boundary conditions needed to model the cavity structures. The types of data produced by VORPAL were also expanded to include data common used by cavity designers to evaluate cavity performance. Post-processing tools were also modified to provide information directly related to the conditions that produce multipacting. These new methods were demonstrated by running simulations of a cavity design being developed by researchers at Jefferson National Laboratory to attempt to identify the multipacting that would be an issue for the cavity design being considered. These simulations demonstrate that VORPAL now has the capabilities to assist researchers working with SRF cavities to understand and identify possible multipacting issues with their cavity designs.

  15. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  16. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  17. Cavity design for high-frequency axion dark matter detectors

    SciTech Connect

    Stern, I.; Chisholm, A. A.; Hoskins, J.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Carosi, G.; van Bibber, K.

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  18. Dielectric supported radio-frequency cavities

    DOEpatents

    Yu, David U. L.; Lee, Terry G.

    2000-01-01

    A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.

  19. Reference frequency transmission over optical fiber

    NASA Technical Reports Server (NTRS)

    Lutes, G.; Kirk, A.

    1986-01-01

    A 100-MHz reference frequency from a hydrogen maser frequency standard has been transmitted via optical fiber over a 14-km distance with a measured stability of 1.5 X 10 to the-15 power for 1000 seconds averaging time. This capability was demonstrated in a frequency distribution experiment performed in April, 1986. The reference frequency was transmitted over a single-mode fiber-optic link from Deep Space Station (DSS) 13 to DSS 12 and back. The background leading up to the experiment and the significance of stable reference frequency distribution in the Deep Space Network (DSN) is discussed. Also described are the experiment, including the fiber-optic link, the measurement method and equipment, and finally the results of the experiment.

  20. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  1. Mechanical properties of niobium radio-frequency cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.

  2. Stretchable photonic crystal cavity with wide frequency tunability.

    PubMed

    Yu, Chun L; Kim, Hyunwoo; de Leon, Nathalie; Frank, Ian W; Robinson, Jacob T; McCutcheon, Murray; Liu, Mingzhao; Lukin, Mikhail D; Loncar, Marko; Park, Hongkun

    2013-01-09

    We report a new approach for realizing a flexible photonic crystal (PC) cavity that enables wide-range tuning of its resonance frequency. Our PC cavity consists of a regular array of silicon nanowires embedded in a polydimethylsiloxane (PDMS) matrix and exhibits a cavity resonance in the telecommunication band that can be reversibly tuned over 60 nm via mechanical stretching-a record for two-dimensional (2D) PC structures. These mechanically reconfigurable devices could find potential applications in integrated photonics, sensing in biological systems, and smart materials.

  3. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  4. Digitally enhanced optical fiber frequency reference.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2014-04-01

    We use digitally enhanced heterodyne interferometry to measure the stability of optical fiber laser frequency references. Suppression of laser frequency noise by over four orders of magnitude is achieved using post processing time delay interferometry, allowing us to measure the mechanical stability for frequencies as low as 100 μHz. The performance of the digitally enhanced heterodyne interferometer platform used here is not practically limited by the dynamic range or bandwidth issues that can occur in feedback stabilization systems. This allows longer measurement times, better frequency discrimination, a reduction in spatially uncorrelated noise sources and an increase in interferometer sensitivity. An optical fiber frequency reference with the stability reported here, over a signal band of 20 mHz-1 Hz, has potential for use in demanding environments, such as space-based interferometry missions and optical flywheel applications.

  5. High-Performance Optical Frequency References for Space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  6. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  7. Surface processing for bulk niobium superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  8. Surface processing for bulk niobium superconducting radio frequency cavities

    DOE PAGES

    Kelly, M. P.; Reid, T.

    2017-02-21

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single-or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies onmore » real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and 'nitrogen doping' of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.« less

  9. Electrochemical system and method for electropolishing superconductive radio frequency cavities

    DOEpatents

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    2015-04-14

    An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.

  10. Cryogenic monocrystalline silicon Fabry-Perot cavity for the stabilization of laser frequency

    NASA Technical Reports Server (NTRS)

    Richard, J.-P.; Hamilton, J. J.

    1991-01-01

    A 1.6 kg silicon monocrystal was used to make a Fabry-Perot optical cavity operated at cryogenic temperatures. High-resolution thermal expansion measurements were made as the silicon cooled to 4.2 K, in order to characterize the cavity as a length reference standard. A helium-neon laser was then locked to a transmission resonance at liquid-helium temperatures, and the laser frequency tracked the cavity resonance with error fluctuations at the level of 10 Hz/sq rt Hz in the bandwidth dc to 1 Hz. Implications of the combined set of data, thermal expansion plus frequency-tracking fluctuations, for using such a system as a frequency standard are discussed.

  11. A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.

    PubMed

    Koga, Y; McNeilage, C; Searls, J H; Ohshima, S

    2001-01-01

    A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.

  12. External cavity diode laser with very-low frequency drift

    NASA Astrophysics Data System (ADS)

    Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi

    2016-03-01

    An external cavity diode laser with significant mechanical robustness was installed in a housing that was sealed from outside for eliminating variations in the refractive index of air. Using the feedback signal for a frequency lock, it was found that the variation in the laser frequency under free running was suppressed to 275 MHz over one month and depended on the room temperature. Moreover, the upper limit of the linear frequency drift rate was evaluated as intrinsically 40 Hz/s. The frequency lock is expected to be sustainable for more than 110 days with temperature-controlled housing.

  13. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-11-07

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  14. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  15. Frequency-Agile Differential Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph

    2015-06-01

    The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378

  16. Nonlinear cavity dumping of a high finesse frequency mixing module

    NASA Astrophysics Data System (ADS)

    Tidemand-Lichtenberg, Peter; Andersen, Martin T.; Johansson, Sandra; Canalias, Carlota; Laurell, Fredrik; Buchhave, Preben; Karamehmedovic, Emir; Pedersen, Christian

    2007-07-01

    We present a novel generic approach for pulsed light generation in the visible spectrum. We demonstrate how the circulating field of a high finesse laser can be efficiently cavity dumped through sum-frequency mixing with externally injected high peak power single pass pulses. Periodically poled KTP is used as the nonlinear medium to minimize the peak power requirement of the injected beam. The experimental setup consists of a high finesse 1342 nm Nd:YVO4 laser cavity and a passively Qswitched Nd:YAG laser. Yellow pulses at 593 nm are generated.

  17. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.

    PubMed

    Parker, B; Marra, G; Johnson, L A M; Margolis, H S; Webster, S A; Wright, L; Lea, S N; Gill, P; Bayvel, P

    2014-12-10

    We report the design and performance of a transportable laser system at 1543 nm, together with its application as the source for a demonstration of optical carrier frequency transmission over 118 km of an installed dark fiber network. The laser system is based around an optical reference cavity featuring an elastic mounting that bonds the cavity to its support, enabling the cavity to be transported without additional clamping. The cavity exhibits passive fractional frequency insensitivity to vibration along the optical axis of 2.0×10(-11)  m(-1) s(2). With active fiber noise cancellation, the optical carrier frequency transmission achieves a fractional frequency instability, measured at the user end, of 2.6×10(-16) at 1 s, averaging down to below 3×10(-18) after 20,000 s. The fractional frequency accuracy of the transfer is better than 3×10(-18). This level of performance is sufficient for comparison of state-of-the-art optical frequency standards and is achieved in an urban fiber environment.

  18. Fluid phase thermodynamics : I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore Allen

    Although fluids are typically the first systems studied in undergraduate thermodynamics classes, we still have only a rudimentary phenomenological understanding of these systems outside of the classical and equilibrium regimes. Two experiments will be presented. First, we present progress on precise measurements of helium-4 gas at low temperatures (1 K-5 K). We study helium because at low densities it is an approximately ideal gas but at high densities the thermodynamic properties can be predicted by numerical solutions of Schroedinger's equation. By utilizing the high resolution and stability in frequency of a superconducting microwave cavity resonator we can measure the dielectric constant of helium-4 to parts in 109, corresponding to an equivalent resolution in density. These data will be used to calculate the virial coefficients of the helium gas so that we may compare with numerical predictions from the literature. Additionally, our data may allow us to measure Boltzmann's constant to parts in 108, a factor of 100 improvement over previous measurements. This work contains a description of the nearly-completed apparatus and the methods of operation and data analysis for this experiment. Data will be taken by future researchers.The second experiment discussed is a study of nucleate pool boiling. To date, no adequate quantitative model exists of this everyday phenomenon. In our experiment, we vary one parameter inaccessible to most researchers, gravity, by applying a magnetic force to our test fluid, oxygen. Using this technique, we may apply effective gravities of 0-80 times Earth's gravitational acceleration (g). In this work we present heat transfer data for the boiling of oxygen at one atmosphere ambient pressure for effective gravity values between 1g and 16g . Our data describe two relationships between applied heat flux and temperature differential: at low heat flux the system obeys a power law and at high heat flux the behavior is linear. We find that the

  19. T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Xing, Junhong; Jiao, Mingxing; Liu, Yun

    2016-05-01

    A T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation is proposed, which consists of both p- and s-cavities sharing the same gain medium of Nd:YAG. Each cavity was not only able to select longitudinal mode but also tune frequency using an electro-optic birefringent filter polarization beam splitter + lithium niobate. The frequency difference of dual frequency was tuned through the whole gain bandwidth of Nd:YAG, which is far above the usually accepted free spectral range value in the case of a single-axis laser. As a result, the simultaneous operation of orthogonally and linearly polarized dual-frequency laser was obtained, which coincides with the theoretical analysis based on Jones matrices. The obtained frequency difference ranges from 0 to 132 GHz. This offers a simple and widely tunable source with potential for portable frequency reference applications in terahertz-wave generation and absolute-distance interferometry measurement areas.

  20. Compact microwave cavity for high performance rubidium frequency standards

    NASA Astrophysics Data System (ADS)

    Stefanucci, Camillo; Bandi, Thejesh; Merli, Francesco; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Skrivervik, Anja K.

    2012-10-01

    The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE011-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10-13 τ-1/2. The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

  1. Compact microwave cavity for high performance rubidium frequency standards.

    PubMed

    Stefanucci, Camillo; Bandi, Thejesh; Merli, Francesco; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Skrivervik, Anja K

    2012-10-01

    The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE(011)-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10(-13) τ(-1/2). The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

  2. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  3. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    PubMed

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

  4. Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun

    2010-06-01

    Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)

  5. Upgrading Emma to Use Low-Frequency RF Cavities

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Berg, J. Scott

    EMMA is an experiment to study beam dynamics in fixed field alternating gradient accelerators (FFAGs). It accelerates the beam in about 10 turns using 1.3 GHz cavities in a mode like that used for muon accelerators. Many applications of FFAGs prefer to have slower acceleration, typically thousands of turns. To do so in EMMA would require the RF system to be replaced with a low-frequency, high-gradient system. This paper describes the motivation for studying slow acceleration in EMMA and the required parameters for an RF system to do that. It then describes the technology needed for the RF system.

  6. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  7. Laser Frequency Stabilization and Control through Offset Sideband Locking to Optical Cavities

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.; Livas, J.; Numata, K.

    2008-01-01

    We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. In a laboratory investigation the sideband techniques were found to perform equally well as the standard, non-tunable Pound-Drever-Hall technique, each providing more than four decades of frequency noise suppression over the free-running noise. An application of a tunable system as a pre-stabilization stage in a phase-lock loop is also presented with the combined system achieving a frequency noise suppression of nearly twelve orders of magnitude.

  8. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization.

    PubMed

    Ricciardi, I; Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-10-15

    We stabilize the idler frequency of a singly resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10(3)  Hz(2)/Hz is reached on average, with a Gaussian linewidth of 920 Hz over 100 ms, which reveals the potential for reaching spectral purity down to the hertz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.

  9. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  10. A kind of magnetron cavity used in rubidium atomic frequency standards

    NASA Astrophysics Data System (ADS)

    Shiyu, Yang; Jingzhong, Cui; Jianhui, Tu; Yaoting, Liang

    2011-12-01

    Research on the magnetron cavity used in the rubidium atomic frequency standards is developed, through which the main characteristic parameters of the magnetron cavity are studied, mainly including the resonant frequency, quality factor and oscillation mode. The resonant frequency and quality factor of the magnetron cavity were calculated, and the test results of the resonant frequency agreed well with the calculation theory. The test results also show that the resonant frequency of the magnetron cavity can be attenuated to 6.835 GHz, which is the resonant frequency of the rubidium atoms, and the Q-factor can be attenuated to 500-1000. The oscillation mode is a typical TE011 mode and is the correct mode needed for the rubidium atomic frequency standard. Therefore these derivative magnetron cavities meet the requirements of the rubidium atomic frequency standards well.

  11. Electron density and collision frequency of microwave resonant cavity produced discharges. [Progress report

    SciTech Connect

    McColl, W.; Brooks, C.; Brake, M.L.

    1992-12-31

    This progress report consists of an article, the abstract of which follows, and apparently the references and vita from a proposal. A review of perturbation diagnostics applied to microwave resonant cavity discharges is presented. The classical microwave perturbation technique examines the shift in the resonant frequency and cavity quality factor of the resonant cavity caused by low electron density discharges. However, modifications presented here allow the analysis to be applied to discharges with electron densities beyond the limit predicted by perturbation theory. An {open_quote}exact{close_quote} perturbation analysis is presented which models the discharge as a separate dielectric, thereby removing the restrictions on electron density imposed by the classical technique. The {open_quote}exact{close_quote} method also uses measurements of the shifts in the resonant conditions of the cavity. Thirdly, an electromagnetic analysis is presented which uses a characteristic equation, based upon Maxwell`s laws, and predicts the discharge conductivity based upon measurements of a complex axial wave number. By allowing the axial wave number of the electromagnetic fields to be complex, the fields are experimentally and theoretically shown to be spatially attenuated. The diagnostics are applied to continuous-wave microwave (2.45 GHz) discharges produced in an Asmussen resonant cavity. Double Langmuir probes, placed directly in the discharge at the point where the radial electric field is zero, act as a comparison with the analytic diagnostics. Microwave powers ranging from 30 to 100 watts produce helium and nitrogen discharges with pressures ranging from 0.5 to 6 torr. Analysis of the data predicts electron temperatures from 5 to 20 eV, electron densities from 10{sup 11} to 3 {times} 10{sup 12} cm{sup {minus}3}, and collision frequencies from 10{sup 9} to 10{sup 11} sec{sup {minus}1}.

  12. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  13. Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Uetake, S.; Matsubara, K.; Ito, H.; Hayasaka, K.; Hosokawa, M.

    2009-10-01

    We report results of frequency stability measurements of an extended cavity diode laser (ECDL) whose frequency is stabilized by a non-evacuated scanning transfer cavity. The transfer cavity is locked to a commercial frequency stabilized helium-neon laser. Frequency stability is measured by use of an optical frequency comb. The environmental perturbations (variations of temperature, air pressure, and humidity) are also simultaneously measured. The observed frequency drift of the ECDL is well explained by environmental perturbations. An atmospheric pressure variation, which is difficult to control with a non-evacuated cavity, is mainly affected to the frequency stability. Thus we put the cavity into a simple O-ring sealed (non-evacuated) tube. With this simple O-ring sealed tube, the frequency drift is reduced by a factor of 3, and the Allan variance reaches a value of 2.4×10-10, corresponds to the frequency stability of 83 kHz, at the average time of 3000 s. Since the actual frequency drift is well estimated by simultaneous measurement of the ambient temperature, pressure, and humidity, a feed-forward compensation of frequency drifts is also feasible in order to achieve a higher frequency stability with a simple non-evacuated transfer cavity.

  14. Multiphysics Analysis of Frequency Detuning in Superconducting RF Cavities for Proton Particle Accelerators

    SciTech Connect

    Awida, M. H.; Gonin, I.; Passarelli, D.; Sukanov, A.; Khabiboulline, T.; Yakovlev, V.

    2016-01-22

    Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics and Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.

  15. Self-determining high-frequency oscillation from an external-cavity laser diode

    NASA Astrophysics Data System (ADS)

    Mercier, Émeric; Uy, Chi-Hak; Weicker, Lionel; Virte, Martin; Wolfersberger, Delphine; Sciamanna, Marc

    2016-12-01

    We report on a bifurcation mechanism following which an external-cavity laser diode emits regular oscillating output power at a high frequency. This frequency does not vary with the external-cavity length and it can be adjusted by varying the feedback strength. We observe this phenomenon numerically by investigating the external-cavity modes generated by a semiconductor laser subject to a phase-conjugate optical feedback. Particularly, we explore the effects of both the feedback rate and the time delay induced by the feedback on the frequency of the external-cavity modes. Counterintuitively, we evidence that having a short cavity does not necessarily yield oscillations at higher frequencies. We show that the key parameter in order to generate high-frequency solutions is the feedback rate. This parameter fixes the frequency of the solutions obtained independently of the time delay. We finally relate our observations to Hopf bifurcation phenomena.

  16. Coherent Frequency Reference System for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.

    2010-01-01

    The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.

  17. Efficient frequency doubling at 776 nm in a ring cavity

    NASA Astrophysics Data System (ADS)

    Han, Zhen-Hai; Liu, Shi-Long; Liu, Shi-Kai; Ding, Dong-Sheng; Zhou, Zhi-Yuan

    2017-08-01

    We report efficient frequency doubling (FD) at 776 nm using periodically poled LiNbO3 (PPLN) in a ring cavity pumped by a commercial erbium-doped fiber amplifier (EDFA) operating at 1552 nm. Two sets of input couplers are used that have been optimized to operate in the low pump and high pump regimes. The maximum conversion efficiencies measured for these couplers are 65.8% (transmittance T=4.5%) and 65.9% (T=9.1%). The internal conversion efficiencies are 85.0% and 88.2%, respectively, after the mode-matching efficiency and filtering transmittance have been taken into account. The maximum output powers obtained for the two couplers are 333 mW and 602 mW at pump powers of 535 mW and 999 mW, respectively. Coupling efficiency of more than 80% to single mode fibers indicates the high beam quality of the FD laser. This FD laser will be useful for quantum optics experiments in the telecommunications band and atomic physics experiments.

  18. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  19. An iodine-based frequency reference for space applications

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Johann, Ulrich; Doeringshoff, Klaus; Kovalchuk, Evgeny; Peters, Achim; Braxmaier, Claus; Pahl, Julia; Stuehler, Johannes; Franz, Matthias

    We present the development of an iodine-based frequency reference for future potential applications in space, including the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the mini SpaceTime Asymmetry Research (mSTAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission/NGGM (Next Generation Gravity Mission) exploring Earth's gravity. Based on a state-of-the-art laboratory iodine frequency reference, setups on elegant breadboard (EBB) and engineering model (EM) level were realized, taking into account specific design criteria for space compatibility such as compactness and robustness. Both setups employ modulation transfer spectroscopy (MTS) in combination with balanced detection. They use a baseplate made of glass material in combination with a dedicated easy-to-handle assembly-integration technology (adhesive bonding) ensuring high pointing stability of the two counter-propagating laser beams in the iodine cell and therefore high long-term stability. The EBB setup utilizes a commercial off-the-shelf 30 cm long iodine cell in triple-pass configuration, the EM setup a specifically designed and manufactured compact iodine cell made of fused silica in a nine-pass configuration with a specific robust cold finger design. Both setups were characterized in beat measurements with a ULE cavity setup. Similar frequency stabilities of about 1*10 (-14) at an integration time of 1 s and below 5*10 (-15) at integration times between 10 s and 100 s were demonstrated. These values are comparable to the currently best laboratory setups. The EM setup was further subjected to environmental testing including thermal cycling and vibrational testing. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant numbers 50 QT 1102 and 50 QT 1201 is highly appreciated. The authors thank Jan Hrabina and Josef Lazar

  20. A water-filled radio frequency accelerating cavity

    SciTech Connect

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to study water-filled resonant cavities as a high-energy density source to drive high-current accelerator configurations. Basic considerations lead to the expectation that a dielectric-filled cavity should be able to store up to e/e{sub o} as much energy as a vacuum one with the same dimensions and thus be capable of accelerating a proportionately larger amount of charge before cavity depletion occurs. During this project, we confirmed that water-filled cavities with e/e{sub o} = 60-80 did indeed behave with the expected characteristics, in terms of resonant TM modes and cavity Q. We accomplished this result with numerical cavity eigenvalue codes; fully electromagnetic, two-dimensional, particle-in-cell codes; and, most significantly, with scaled experiments performed in water-filled aluminum cavities. The low-power experiments showed excellent agreement with the numerical results. Simulations of the high-field, high-current mode of operation indicated that charged-particle loss on the dielectric windows, which separate the cavity from the beamline, must be carefully controlled to avoid significant distortion of the axial fields.

  1. Dynamics of a driven two-level atom coupled to a frequency-tunable cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1998-08-01

    A cavity-modified master equation is derived for a coherently driven two-level atom coupled to a single-mode cavity in the bad cavity limit, in which the cavity frequency is tuned to either the center or one of the sidebands of the Mollow triplet. The atomic populations in both the bare- and dressed-state representations are analyzed in terms of the cavity-modified transition rates. In the bare-state basis, the role of the cavity may be interpreted as enhancing the stimulated absorption of the atom while suppressing the stimulated emission. The bare-state population may thus be inverted under appropriate conditions. The dressed-state inversion, however, originates from the enhancement of the atom-cavity interaction when the cavity is resonant with the atomic dressed-state transition. We show that two-phase quadratures of the atomic polarization decay at different rates. The decay of the in-phase (or out-of-phase) quadrature may be greatly inhibited as the driving intensity increases, depending on the cavity resonant frequency. The spectrum of the atomic fluorescence emitted out the side of the cavity is also studied. The spectral profiles are sensitive to the cavity frequency. When the cavity frequency is tuned to the center of the Mollow resonances, the fluorescence spectrum is symmetrical with three peaks whose linewidths and heights are intensity dependent. When the cavity frequency is tuned to one of the Mollow sidebands, however, it is asymmetric, and the central peak and the sideband on resonance with the cavity can be significantly suppressed for strong driving fields. All three spectral lines can be narrowed by increasing the Rabi frequency. The physics of these striking spectral features is explored in the dressed-state basis. We also investigate the probe absorption spectrum. When the cavity frequency is tuned to the center of the Mollow fluorescence triplet, the central component exhibits a Lorentzian line shape, while the side bands show the Rayleigh

  2. Compact, low power radio frequency cavity for femtosecond electron microscopy

    SciTech Connect

    Lassise, A.; Mutsaers, P. H. A.; Luiten, O. J.

    2012-04-15

    Reported here is the design, construction, and characterization of a small, power efficient, tunable dielectric filled cavity for the creation of femtosecond electron bunches in an existing electron microscope without the mandatory use of femtosecond lasers. A 3 GHz pillbox cavity operating in the TM{sub 110} mode was specially designed for chopping the beam of a 30 keV scanning electron microscope. The dielectric material used is ZrTiO{sub 4}, chosen for the high relative permittivity ({epsilon}{sub r}= 37 at 10 GHz) and low loss tangent (tan {delta}= 2 x 10{sup -4}). This allows the cavity radius to be reduced by a factor of six, while the power consumption is reduced by an order of magnitude compared to a vacuum pillbox cavity. These features make this cavity ideal as a module for existing electron microscopes, and an alternative to femtosecond laser systems integrated with electron microscopes.

  3. Compact, low power radio frequency cavity for femtosecond electron microscopy.

    PubMed

    Lassise, A; Mutsaers, P H A; Luiten, O J

    2012-04-01

    Reported here is the design, construction, and characterization of a small, power efficient, tunable dielectric filled cavity for the creation of femtosecond electron bunches in an existing electron microscope without the mandatory use of femtosecond lasers. A 3 GHz pillbox cavity operating in the TM(110) mode was specially designed for chopping the beam of a 30 keV scanning electron microscope. The dielectric material used is ZrTiO(4), chosen for the high relative permittivity (ε(r) = 37 at 10 GHz) and low loss tangent (tan δ = 2 × 10(-4)). This allows the cavity radius to be reduced by a factor of six, while the power consumption is reduced by an order of magnitude compared to a vacuum pillbox cavity. These features make this cavity ideal as a module for existing electron microscopes, and an alternative to femtosecond laser systems integrated with electron microscopes.

  4. Non-intrusive Diagnosis of Individual Cell Frequencies in a Coupled Cavity Chain

    NASA Astrophysics Data System (ADS)

    Ni, Yi

    1997-05-01

    When tuning an accelerating cavity chain, the cell frequency must be measured cell by cell by inserting probes into the cavity. This process takes a very long time for long multicell or non-uniform chains. Moreover, the frequencies within a sealed cavity or a superconducting cavity in a liquid helium bath can not be diagnosed by inserting a probe. A method has been developed to estimate the frequency of each cell and neighbor couplings without introducing a probe into the cavity chain. This methold is based on the information obtained from an RF network analyzer. The data analysis program combines the Newton and Simplex methods;therefore, the program can accept a wide range of initial data, converges quickly.This program has been tested by experimental results and can be used as substitution for the measurements of accelerating cavity chain.

  5. Nonlinear frequency mixing in a resonant cavity: numerical simulations in a bubbly liquid.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé; Sinha, Dipen N

    2014-12-01

    The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented. Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the difference frequency. The analysis is carried out through numerical experiments, and both linear and nonlinear regimes are compared. The results show highly efficient generation of the difference frequency at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for the strong difference-frequency resonance also induces significant enhancement of the parametric frequency mixing effect to generate second harmonic of the difference frequency. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. VCSEL's frequency stabilization of an external cavity diode laser: countermeasures against atmospheric temperature variations

    NASA Astrophysics Data System (ADS)

    Motojima, Mutsuki; Doi, Kohei; Sato, Takashi; Ohkawa, Masashi; Suzuki, Takamasa

    2010-02-01

    We introduced the vertical cavity surface emitting laser (VCSEL) as the laser diode in tour external cavity system. Because VCSELs are now commercially available, and the External cavity diode laser (ECDL) systems using them are expected to improve their frequency stability, we have replaced a Fabry-Perot type laser diode with a VCSEL, and examined its oscillation-frequency stability. Therefore we were able to expect that the VCSELs with our double optical feedback system have good oscillation frequency stability. The obtained VCSEL's oscillation-frequency stability, i.e., the square root of Allan variance σ was 4×10-10, at an averaging time of τ=1 sec.

  7. Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity

    NASA Astrophysics Data System (ADS)

    Ares, N.; Pei, T.; Mavalankar, A.; Mergenthaler, M.; Warner, J. H.; Briggs, G. A. D.; Laird, E. A.

    2016-10-01

    In an optomechanical setup, the coupling between cavity and resonator can be increased by tuning them to the same frequency. We study this interaction between a carbon nanotube resonator and a radio-frequency tank circuit acting as a cavity. In this resonant regime, the vacuum optomechanical coupling is enhanced by the dc voltage coupling the cavity and the mechanical resonator. Using the cavity to detect the nanotube's motion, we observe and simulate interference between mechanical and electrical oscillations. We measure the mechanical ring down and show that further improvements to the system could enable the measurement of mechanical motion at the quantum limit.

  8. Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity.

    PubMed

    Ares, N; Pei, T; Mavalankar, A; Mergenthaler, M; Warner, J H; Briggs, G A D; Laird, E A

    2016-10-21

    In an optomechanical setup, the coupling between cavity and resonator can be increased by tuning them to the same frequency. We study this interaction between a carbon nanotube resonator and a radio-frequency tank circuit acting as a cavity. In this resonant regime, the vacuum optomechanical coupling is enhanced by the dc voltage coupling the cavity and the mechanical resonator. Using the cavity to detect the nanotube's motion, we observe and simulate interference between mechanical and electrical oscillations. We measure the mechanical ring down and show that further improvements to the system could enable the measurement of mechanical motion at the quantum limit.

  9. Response of a store with tunable natural frequencies in compressible cavity flow

    SciTech Connect

    Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell W.; Henfling, John F.

    2016-05-20

    Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies by about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.

  10. Response of a store with tunable natural frequencies in compressible cavity flow

    DOE PAGES

    Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; ...

    2016-05-20

    Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies bymore » about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.« less

  11. Response of a store with tunable natural frequencies in compressible cavity flow

    SciTech Connect

    Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell W.; Henfling, John F.

    2016-05-20

    Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies by about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.

  12. Frequency selection mechanisms in the flow of a laminar boundary layer over a shallow cavity

    NASA Astrophysics Data System (ADS)

    Qadri, Ubaid Ali; Schmid, Peter J.

    2017-01-01

    We investigate the flow over shallow cavities as a representative configuration for modeling small surface irregularities in wall-bounded shear flows. Due to the globally stable nature of the flow, we perform a frequency response analysis, which shows a significant potential for the amplification of disturbance kinetic energy by harmonic forcing within a certain frequency band. Shorter and more shallow cavities exhibit less amplified responses, while energy from the base flow can be extracted predominantly from forcing that impacts the cavity head on. A structural sensitivity analysis, combined with a componentwise decomposition of the sensitivity tensor, reveals the regions of the flow that act most effectively as amplifiers. We find that the flow inside the cavity plays a negligible role, whereas boundary layer modifications immediately upstream and downstream of the cavity edges contribute significantly to the frequency response. The same regions constitute preferred locations for implementing active or passive control strategies to manipulate the frequency response of the flow.

  13. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  14. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    SciTech Connect

    Roy, S. B.; Myneni, G. R.

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  15. Narrow linewidth single-frequency terahertz source based on difference frequency generation of vertical-external-cavity source-emitting lasers in an external resonance cavity.

    PubMed

    Paul, Justin R; Scheller, Maik; Laurain, Alexandre; Young, Abram; Koch, Stephan W; Moloney, Jerome

    2013-09-15

    We demonstrate a continuous wave, single-frequency terahertz (THz) source emitting 1.9 THz. The linewidth is less than 100 kHz and the generated THz output power exceeds 100 μW. The THz source is based on parametric difference frequency generation within a nonlinear crystal located in an optical enhancement cavity. Two single-frequency vertical-external-cavity source-emitting lasers with emission wavelengths spaced by 6.8 nm are phase locked to the external cavity and provide pump photons for the nonlinear downconversion. It is demonstrated that the THz source can be used as a local oscillator to drive a receiver used in astronomy applications.

  16. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    SciTech Connect

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  17. Study of influence of radial matcher section end shape on RFQ cavity frequency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou-Li; He, Yuan; Zhang, Bin; Li, De-Run; Shi, Ai-Min; Pan, Gang; Du, Xiao-Nan; Sun, Lie-Peng

    2014-07-01

    To investigate the feasibility of using a form cutter to machine the Radial Matcher Section (RMS) of the Radio Frequency Quadrupole (RFQ) for the Accelerator Driven System (ADS) project at Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS), the influence of RMS end shape on the RFQ cavity frequency is studied. The results indicate that using a form cutter to machine the RMS of an RFQ will indeed influence the cavity frequency. The RMS end shape will give more influence to a shorter RFQ cavity. For the 4.2 m ADS RFQ, the influence is negligible, which means that a form cutter can be used to machine the RMS.

  18. Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects

    NASA Astrophysics Data System (ADS)

    Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2015-11-01

    Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.

  19. Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects.

    PubMed

    Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2015-11-06

    Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.

  20. Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, Yan-Hui

    2015-01-01

    We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software. The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of 87Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made. Project supported by the National Natural Science Foundation of China (Grant No. 11174015).

  1. Response of a store with tunable natural frequencies in compressible cavity flow

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-01-07

    Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.94 and 1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of 7. Similar to previous studies using a cylindrical store, the aerodynamic store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Moreover, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response was much more limited.

  2. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    PubMed

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQm ∼ 2 × 10(12) Hz achieved here is larger than kBTbase/h, which may enable the future realization of Rabi oscillations in the quantum regime.

  3. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  4. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  5. A method to measure the frequencies of individual half cells in a dumbbell cavity.

    PubMed

    An, Sun; Liping, Zhang; Yazhe, Tang; Li, Ying-min; Cho, Yong-Sub

    2008-10-01

    Dumbbell fabrication is a midprocess for manufacturing an elliptical superconducting rf cavity. In order to understand how a welding shrinkage affects a dumbbell's frequencies and length, we need to measure the exact frequencies of each individual half cell of a dumbbell. To improve such a calculation precision and to simplify the calculation formulae, based on a two-coupled oscillator model and a cavity perturbation theory, a new formula to calculate the individual half-cell frequencies of a dumbbell or the individual cavity frequencies of a two-cavity coupling system has been developed, and its performance has been confirmed by using a dumbbell simulation. This formula can be applied to any kind of rf cavities with electric, magnetic, or electromagnetic coupling, if a coupling hole between two coupling cavities is small compared to the wavelength. Compared to other calculation formulae, this formula simplifies the calculation process of the individual resonator frequencies of a coupling system considerably, and it can also improve the calculation precision than that of a normal calculation method. Another advantage of this new method is that we do not need to consider a coupling factor between two resonators during a testing for an individual resonator frequency of an oscillator. The developed formula has been successfully used to tune the PEFP dumbbells.

  6. Dual frequency optical carrier technique for transmission of reference frequencies in dispersive media

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor)

    1993-01-01

    Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.

  7. Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS

    NASA Astrophysics Data System (ADS)

    Tao, Runzhe

    Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results

  8. Stabilization of a laser on a large-detuned atomic-reference frequency by resonant interferometry

    NASA Astrophysics Data System (ADS)

    Barboza, Priscila M. T.; Nascimento, Guilherme G.; Araújo, Michelle O.; da Silva, Cícero M.; Cavalcante, Hugo L. D. de S.; Oriá, Marcos; Chevrollier, Martine; Passerat de Silans, Thierry

    2016-04-01

    We report a simple technique for stabilization of a laser frequency at the wings of an atomic resonance. The reference signal used for stabilization issues from interference effects obtained in a low-quality cavity filled with a resonant atomic vapour. For a frequency detuned 2.6 GHz from the 133Cs D2 6S{}1/2 F = 4 to 6P{}3/2 F’ = 5 transition, the fractional frequency Allan deviation is 10-8 for averaging times of 300 s, corresponding to a frequency deviation of 4 MHz. Adequate choice of the atomic density and of the cell thickness allows locking the laser at detunings larger than 10 GHz. Such a simple technique does not require magnetic fields or signal modulation.

  9. Planar surface-micromachined pressure sensor with a sub-surface, embedded reference pressure cavity

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1996-09-01

    Planar, surface micromachined pressure sensors have been fabricated by an extension of the chemical-mechanical polishing (CMP) process. CMP eliminates many of the fabrication problems associated with the photolithography, dry etch, and metallization of non-planar devices. Furthermore, CMP adds additional design flexibility. The sensors are based upon deformable, silicon nitride diaphragms with polysilicon piezoresistors. Absolute pressure is detected by virtue of reference pressure cavities underneath the diaphragms. Process details are discussed and characteristics from many devices are presented.

  10. Two-frequency injection on a multimode vertical-cavity surface-emitting laser.

    PubMed

    Lin, Hong; Pierce, David W; Basnet, Amod J; Quirce, Ana; Zhang, Yu; Valle, Angel

    2011-11-07

    We have studied experimentally effects of two-frequency optical injection on a multimode vertical-cavity surface-emitting laser (VCSEL). The injected signal comes from another VCSEL. Polarization switching (PS) with and without frequency locking occurs for relatively small frequency detuning. Outside the regime of polarization switching, the VCSEL demonstrates two types of instabilities. The instability regions and boundaries of PS of each transverse mode are mapped in the parameter plane of frequency detuning versus injected power.

  11. Steady flows in rotating spherical cavity excited by multi-frequency oscillations of free inner core

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor G.; Kozlov, Nikolai V.; Subbotin, Stanislav V.

    2017-01-01

    Fluid motion in a rotating spherical cavity in the conditions of resonant oscillations of free inner core is experimentally investigated. The centrifugal force retains a solid core with density less than the fluid density near the center of the cavity. In the absence of external force field the system "solid core - liquid" performs solid body rotation. The oscillations of the core are excited by an external oscillating force field and this results in differential rotation of the core with respect to the cavity. The direction of rotation is determined by the ratio of the oscillation frequency to the cavity angular velocity. The core oscillations with the radian frequency, which exceeds the cavity angular velocity, are investigated. It is found that a steady flow in the form of a system of nested fluid columns of circular cross section, which rotate at different angular velocities, is generated in the cavity as a result of oscillations of the core and the fluid. It is shown that at simultaneous influence of several oscillating fields the resulting steady flow is determined by a linear superposition of the flows, which are excited by the oscillations of the inner core with different frequencies. At a certain ratio of the vibration frequency to the rotation one the transformation of the circular shape of the column into the elliptical one is observed.

  12. Efficient frequency doubling of femtosecond pulses with BIBO in an external synchronized cavity

    NASA Astrophysics Data System (ADS)

    Kanseri, Bhaskar; Bouillard, Martin; Tualle-Brouri, Rosa

    2016-12-01

    We experimentally demonstrate the second harmonic generation (SHG) of infrared femtosecond pulses using a BIBO crystal placed in an external ring cavity, synchronized with an input mode-locked laser at 78 MHz. A frequency doubling efficiency of 53% is achieved which is, to the best of our knowledge, the highest value ever reported for a low energy input beam of 1.4 nJ/pulse. Theoretical analysis of cavity related issues such as design, fundamental mode characteristics and fidelity against misalignments are also presented. The modeling of SHG cavity enables us to estimate the cavity losses and the mode matching visibility. Such synchronized SHG cavities in pulse domain, having higher SHG conversion efficiencies compared to their continuous wave counterparts, may find potential applications in scientific areas such as in photonics, and in quantum optics.

  13. Experimental observation of coherent cavity soliton frequency combs in silica microspheres

    NASA Astrophysics Data System (ADS)

    Webb, Karen E.; Erkintalo, Miro; Coen, Stéphane; Murdoch, Stuart G.

    2016-10-01

    We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.

  14. High-frequency limit of the longitudinal impedance of an array of cavities

    NASA Astrophysics Data System (ADS)

    Heifets, S. A.; Kheifets, S. A.

    1989-02-01

    The longitudinal impedance of an array of cylindrically symmetric cavities connected by side pipes is estimated in the high-frequency limit. The expression for the impedance is obtained for an arbitrary number of cavities. The transition from the case of a single cavity to a periodic structure is studied. The impedance per cell decreases with frequency ω as ω-1/2 for a small number of cells. For a large number of cells the impedance decreases as ω-1/2 or as ω-3/2 depending on a certain relation between the frequency and the number of cells. The parameter which governs the transition from one regime to the other is found. In particular, for the infinite periodic structure there is only the second regime and the impedance decreases as ω-3/2 for all frequencies.

  15. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  16. Broadband electron spin resonance at low frequency without resonant cavity

    SciTech Connect

    Jang, Z.; Suh, B.; Corti, M.; Cattaneo, L.; Hajny, D.; Borsa, F.; Luban, M.

    2008-04-09

    We have developed a nonconventional broadband electron spin resonance (ESR) spectrometer operating continuously in the frequency range from 0.5 to 9 GHz. Dual antenna structure and the microwave absorbing environment differentiate the setup from the conventional one and enable broadband operation with any combination of frequency or magnetic field modulation and frequency or magnetic field sweeping. Its performance has been tested with the measurements on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample and with the measurements on the single molecular magnet, V6, in solid state at low temperature.

  17. Two-tone frequency-modulation spectroscopy in off-axis cavity.

    PubMed

    Malara, P; Witinski, M F; Gagliardi, G; De Natale, P

    2013-11-15

    As opposed to a conventional optical resonator, an off-axis-aligned cavity is able to transmit without distortion radiation modulated at a frequency even far above the cavity bandpass. This allows us to implement a simple spectroscopic technique that combines the cavity path-length enhancement of integrated cavity output spectroscopy (ICOS) and the noise reduction associated with radio-frequency modulation (FM). An FM-ICOS spectrometer is demonstrated for the first time using a two-tone modulation technique. The performance is compared to the traditional ICOS by examining the acetylene absorption at 1543.77 nm. A signal-to-noise ratio improvement by a factor 3.5 is found with our proof-of-concept setup. Larger improvements are expected in a more optimized setup.

  18. Adaptive frequency comb illumination for interferometry in the case of nested two-beam cavities

    SciTech Connect

    Harder, Irina; Leuchs, Gerd; Mantel, Klaus; Schwider, Johannes

    2011-09-01

    The homogeneity test of glass plates in a Fizeau interferometer is hampered by the superposition of multiple interference signals coming from the surfaces of the glass plate as well as the empty Fizeau cavity. To evaluate interferograms resulting from such nested cavities, various approaches such as the use of broadband light sources have been applied. In this paper, we propose an adaptive frequency comb interferometer to accomplish the cavity selection. An adjustable Fabry-Perot resonator is used to generate a variable frequency comb that can be matched to the length of the desired cavity. Owing to its flexibility, the number of measurements needed for the homogeneity test can be reduced to four. Furthermore, compared to approaches using a two-beam interferometer as a filter for the broadband light source, the visibility of the fringe system is considerably higher if a Fabry-Perot filter is applied.

  19. Frequency response enhancement in integrated coupled-cavity DBR lasers.

    SciTech Connect

    Wendt, Joel Robert; Vawter, Gregory Allen; Tauke-Pedretti, Anna; Alford, Charles Fred; Skogen, Erik J.; Chow, Weng Wah; Cajas, Florante G.; Overberg, Mark E.; Torres, David L.; Yang, Zhenshan; Peake, Gregory Merwin

    2010-11-01

    We present a photonic integrated circuit (PIC) composed of two strongly coupled lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz.

  20. Red laser based on intra-cavity Nd:YAG/CH4 frequency doubled Raman lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yanchao; Wang, Pengyuan; Liu, Jinbo; Liu, Wanfa; Guo, Jingwei

    2017-01-01

    Stimulated Raman scattering (SRS) is a powerful tool for the extension of the spectral range of lasers. To obtain efficient Raman conversion in SRS, many researchers have studied different types of Raman laser configurations. Among these configurations, the intra-cavity type is particularly attractive. Intra-cavity SRS has the advantages of high intra-cavity laser intensity, low-SRS threshold, and high Raman conversion efficiency. In this paper, An Q-switched intra-cavity Nd: YAG/CH4 frequency-doubled Raman lasers is reported. A negative branch confocal resonator with M= 1.25 is used for the frequency-doubling of Nd: YAG laser. The consequent 532nm light is confined in intra- cavity SRS with travelling wave resonator, and the focal of one mirror of cavity is overlap with the center of the other mirror of the cavity. We found this design is especially efficient to reduce the threshold of SRS, and increase conversion efficiency. The threshold is measured to be 0.62 MW, and at the pump energy of 16.1 mJ, the conversion efficiency is 34%. With the smaller magnification M, the threshold could further decrease, and the conversion efficiency could be improved further. This is a successful try to extend the spectral range of a laser to the shorter wavelength by SRS, and this design may play an important role in the fulfillment of high power red lasers.

  1. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    SciTech Connect

    Yang, Jinghui E-mail: tg2342@columbia.edu; Gu, Tingyi E-mail: tg2342@columbia.edu; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-02-10

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters.

  2. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves.

    PubMed

    Tuerke, F; Sciamarella, D; Pastur, L R; Lusseyran, F; Artana, G

    2015-01-01

    We present an alternative perspective on nonharmonic mode coexistence, commonly found in the shear layer spectrum of open-cavity flows. Modes obtained by a local linear stability analysis of perturbations to a two-dimensional, incompressible, and inviscid sheared flow over a cavity of finite length and depth were conditioned by a so-called coincidence condition first proposed by Kulikowskii [J. Appl. Math. Mech. 30, 180 (1966)] which takes into account instability wave reflection within the cavity. The analysis yields a set of discrete, nonharmonic frequencies, which compare well with experimental results [Phys. Fluids 20, 114101 (2008); Exp. Fluids 50, 905 (2010)].

  3. Oscillation frequency stabilization and narrowing of a laser diode by using an external cavity

    NASA Astrophysics Data System (ADS)

    Iwahori, Minoru; Doi, Kohei; Arai, Hideaki; Sato, Takashi; Ohkawa, Masashi

    2012-02-01

    External cavity diode laser (ECDL) systems are presently experiencing a surge in popularity as laser light-sources, in advanced optical communications- and measurement-applications. Because such systems require that their external reflectors be precisely controlled, to eliminate low frequency fluctuations in optical output, we conducted experiments with a two-cavity version of the ECDL system for a vertical cavity surface emitting laser (VCSEL). This technique brings the added advantages of a narrower linewidth than would be achievable via a single optical feedback. VCSELs are characterized by wider oscillation linewidths than edge emitting types, so the larger effect of double optical feedback system is expected.

  4. Semi-monolithic cavity for external resonant frequency doubling and method of performing the same

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid (Inventor)

    1999-01-01

    The fabrication of an optical cavity for use in a laser, in a frequency doubling external cavity, or any other type of nonlinear optical device, can be simplified by providing the nonlinear crystal in combination with a surrounding glass having an index of refraction substantially equal to that of the nonlinear crystal. The closed optical path in this cavity is formed in the surrounding glass and through the nonlinear crystal which lies in one of the optical segments of the light path. The light is transmitted through interfaces between the surrounding glass in the nonlinear crystal through interfaces which are formed at the Brewster-angle to minimize or eliminate reflection.

  5. Analysis of frequency noise properties of 729nm extended cavity diode laser with unbalanced Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Pham, Tuan M.; Čížek, Martin; Hucl, Václav; Lazar, Josef; Hrabina, Jan; Řeřucha, Šimon; Lešundák, Adam; Obšil, Petr; Filip, Radim; Slodička, Lukáš; Číp, Ondřej

    2016-12-01

    We report on the frequency noise investigation of a linewidth-suppressed Extended Cavity Diode Laser (ECDL), working at 729 nm. Since the ECDL is intended as an excitation laser for the forbidden transition in a trapped and laser cooled 40Ca+ ion, an Hz-level linewidth is required. We present the experimental design that comprises a two-stage linewidth narrowing and a facility for frequency and noise analysis. The linewidth is first narrowed with a phase lock loop of the ECDL onto a selected component of an optical frequency comb where the frequency noise was suppressed with a fast electronic servo-loop controller that drives the laser injection current with a high bandwidth. The second stage comprises locking the laser onto a selected mode of a high-finesse passive optical cavity. The frequency analysis used an unbalanced Mach-Zehnder interferometer with a fiber spool inserted in the reference arm in order to give a general insight into the signal properties by mixing two separated beams, one of them delayed by the spool, and processing it with a spectral analyzer. Such a frequency noise analysis reveals what are the most significant noises contributions to the laser linewidth, which is a crucial information in field of ion trapping and cooling. The presented experimental results show the effect of the linewidth narrowing with the first stage, where the linewidth of ECDL was narrowed down to a kHz level.

  6. Role of thermal resistance on the performance of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2017-03-01

    Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q0(Bp) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. These results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q0(Bp) .

  7. Role of thermal resistance on the performance of superconducting radio frequency cavities

    DOE PAGES

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2017-03-07

    Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q0(Bp) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q0(Bp).« less

  8. Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities

    SciTech Connect

    Geng, Rongli; Clemens, William A.; Follkie, James E.; Harris, Teena M.; Kushnick, Peter W.; Machie, Danny; Martin, Robert E.; Palczewski, Ari D.; Perry, Era A.; Slack, Gary L.; Williams, R. S.; Adolphsen, C.; Li, Z.; Hao, J. K.; Li, Y. M.; Liu, K. X.

    2013-06-01

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2-10{sup 10} at 2K.

  9. Frequency characterization of a swept- and fixed-wavelength external-cavity quantum cascade laser by use of a frequency comb.

    PubMed

    Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Armacost, Chris M; Crivello, Sam; Radunsky, Michael B; Newbury, Nathan R

    2012-05-21

    The instantaneous optical frequency of an external-cavity quantum cascade laser (QCL) is characterized by comparison to a near-infrared frequency comb. Fluctuations in the instantaneous optical frequency are analyzed to determine the frequency-noise power spectral density for the external-cavity QCL both during fixed-wavelength and swept-wavelength operation. The noise performance of a near-infrared external-cavity diode laser is measured for comparison. In addition to providing basic frequency metrology of external-cavity QCLs, this comb-calibrated swept QCL system can be applied to rapid, precise broadband spectroscopy in the mid-infrared spectral region.

  10. Radio-frequency identification of surgical sponges in the abdominal cavity of pigs.

    PubMed

    Wiederkehr, Julio Cesar; Gama, Ricardo R; Wiederkehr, Henrique A; Stelmasuk, Kleber; Carvalho, Caroline A; Wiederkehr, Barbara A

    2014-06-01

    Counting the sponges is an important step in surgical procedures. A miscount may impact the patient's health, and it also has legal implications for the surgeon. This is an experimental study evaluating radio-frequency technology used in the perioperative period to identify surgical sponges left in the peritoneal cavity of swine. Radio-frequency labeled-disc identification tags were sewn into 40 surgical towels. Twenty labels had the ability to emit radio-frequency waves, and 20 labels were inert to radio-frequency identification. Twenty adult pigs that underwent laparotomy and randomly received two surgical sponges were scanned by a radio-frequency identification antenna. This method presented a positive predictive value of 100% and 100% specificity and sensitivity, as all of the tagged surgical sponges were detected. Radio-frequency identification has been proved to be a useful method for the identification of surgical sponges within the abdominal cavities of swine.

  11. Frequency-stabilised external-cavity semiconductor laser

    SciTech Connect

    Permyakova, O I; Yakovlev, A V; Chapovskii, Pavel L

    2005-05-31

    The design and characteristics of a semiconductor laser with the modified external Littrow resonator are described. The additional output mirror of the V-shaped resonator made the system more efficient and convenient. The laser radiation frequency is stabilised with the help of magnetooptical Faraday and circular dichroism effects in rubidium vapour. (diode lasers)

  12. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  13. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    NASA Astrophysics Data System (ADS)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  14. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, R.B.

    1991-05-21

    An accelerating cavity is disclosed having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps. 17 figures.

  15. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, Robert B.

    1991-01-01

    An accelerating cavity having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps.

  16. Frequency control in the process of a multicell superconducting cavity production.

    PubMed

    Shemelin, Valery; Carriere, Paul

    2012-04-01

    Modifications in the geometry of a superconducting RF cavity due to various processing procedures are presented in a convenient matrix formulation. Specifically, the effect of chemical etching, cooling down, and preloading are characterized, while the corresponding frequency shifts are calculated with a reliable software. This matrix method was used in the fabrication of the first cornell energy recovery linac (ERL) 7-cell cavity. Cavity fabrication can be broken down into three main stages: deep-drawing cups, welding the cups in pairs to obtain "dumbbells" and end groups, and, finally, welding the obtained components into a completed cavity. Frequency measurements and precise machining were implemented after the second stage. A custom RF fixture and data acquisition system were designed and validated for this purpose. The system comprised of a mechanical press with RF contacts, a network analyzer, a load cell and custom LABVIEW and MATLAB scripts. To extract the individual frequencies of the cups from these measurements, the established algorithm of calculations was analysed and corrected. Corrections for the ambient environment were also incorporated into the measurement protocol. Using the procedure presented, the frequency deviation of the completed 1.3 GHz 7-cell cavity was 360 kHz, corresponding to an average error about 75 μm in length for every cell.

  17. Frequency control in the process of a multicell superconducting cavity production

    NASA Astrophysics Data System (ADS)

    Shemelin, Valery; Carriere, Paul

    2012-04-01

    Modifications in the geometry of a superconducting RF cavity due to various processing procedures are presented in a convenient matrix formulation. Specifically, the effect of chemical etching, cooling down, and preloading are characterized, while the corresponding frequency shifts are calculated with a reliable software. This matrix method was used in the fabrication of the first cornell energy recovery linac (ERL) 7-cell cavity. Cavity fabrication can be broken down into three main stages: deep-drawing cups, welding the cups in pairs to obtain "dumbbells" and end groups, and, finally, welding the obtained components into a completed cavity. Frequency measurements and precise machining were implemented after the second stage. A custom RF fixture and data acquisition system were designed and validated for this purpose. The system comprised of a mechanical press with RF contacts, a network analyzer, a load cell and custom LABVIEW and MATLAB scripts. To extract the individual frequencies of the cups from these measurements, the established algorithm of calculations was analysed and corrected. Corrections for the ambient environment were also incorporated into the measurement protocol. Using the procedure presented, the frequency deviation of the completed 1.3 GHz 7-cell cavity was 360 kHz, corresponding to an average error about 75 μm in length for every cell.

  18. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity.

    PubMed

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-03-11

    We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M(2) = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO(3) crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO(3) crystal. The optical to optical conversion efficiency exceeds 30%.

  19. CONTROL OF LASER RADIATION PARAMETERS: Conditions for two-frequency lasing in coupled-cavity vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Logginov, Aleksandr S.; Rzhanov, A. G.; Skorov, D. V.

    2007-06-01

    A self-consistent model of a semiconductor coup-led-cavity vertical-cavity surface-emitting laser is presented. The electromagnetic field distribution in the laser is found by the effective-frequency method. The dynamic model is constructed on coupled rate equations for two active cavities. Dynamic, threshold and spectral parameters of the laser are studied. The applicability of the model is confirmed by the good agreement with the experimental data available in the literature.

  20. Computational imaging using a mode-mixing cavity at microwave frequencies

    SciTech Connect

    Fromenteze, Thomas; Decroze, Cyril; Carsenat, David; Yurduseven, Okan; Imani, Mohammadreza F.; Gollub, Jonah; Smith, David R.

    2015-05-11

    We present a 3D computational imaging system based on a mode-mixing cavity at microwave frequencies. The core component of this system is an electrically large rectangular cavity with one corner re-shaped to catalyze mode mixing, often called a Sinai Billiard. The front side of the cavity is perforated with a grid of periodic apertures that sample the cavity modes and project them into the imaging scene. The radiated fields are scattered by the scene and are measured by low gain probe antennas. The complex radiation patterns generated by the cavity thus encode the scene information onto a set of frequency modes. Assuming the first Born approximation for scattering dynamics, the received signal is processed using computational methods to reconstruct a 3D image of the scene with resolution determined by the diffraction limit. The proposed mode-mixing cavity is simple to fabricate, exhibits low losses, and can generate highly diverse measurement modes. The imaging system demonstrated in this letter can find application in security screening and medical diagnostic imaging.

  1. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    NASA Astrophysics Data System (ADS)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan

    2016-12-01

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes, four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Finally, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.

  2. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    SciTech Connect

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  3. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE PAGES

    Doleans, Marc

    2016-12-27

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  4. High-frequency RCS of open cavities with rectangular and circular cross sections

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Lee, Shung-Wu; Chou, Ri-Chee

    1989-01-01

    The radar cross-section (RCS) analysis of open-ended cavities with rectangular and circular cross sections is carried out using the waveguide modal approach and the shooting-and-bouncing ray (SBR) approach. For a cavity opening on the order of ten wavelengths or larger, the comparison between the two approaches is excellent. It is also observed that at lower frequencies the SBR results deviate from the more accurate modal results. On the other hand, the SBR approach allows for greater flexibility in geometrical modeling, and can be applied to problems where waveguide modes cannot be easily found. SBR results for an offset rectangular cavity and a circular cavity with rounded endplate are presented.

  5. High-frequency RCS of open cavities with rectangular and circular cross sections

    NASA Astrophysics Data System (ADS)

    Ling, Hao; Lee, Shung-Wu; Chou, Ri-Chee

    1989-05-01

    The radar cross-section (RCS) analysis of open-ended cavities with rectangular and circular cross sections is carried out using the waveguide modal approach and the shooting-and-bouncing ray (SBR) approach. For a cavity opening on the order of ten wavelengths or larger, the comparison between the two approaches is excellent. It is also observed that at lower frequencies the SBR results deviate from the more accurate modal results. On the other hand, the SBR approach allows for greater flexibility in geometrical modeling, and can be applied to problems where waveguide modes cannot be easily found. SBR results for an offset rectangular cavity and a circular cavity with rounded endplate are presented.

  6. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  7. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    SciTech Connect

    Doleans, Marc

    2016-12-27

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in each cell of the SNS cavities.

  8. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    SciTech Connect

    Ciovati, Gianluigi Dhakal, Pashupati Kneisel, Peter Myneni, Ganapati R.

    2015-12-04

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  9. External cavity diode laser with frequency drift following natural variation in air pressure.

    PubMed

    Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi; Kawabata, Ryuzo

    2015-06-20

    A compact and mechanically very robust external cavity diode laser was made by removing any position adjusters such as precision screws and piezo actuators, taking advantage of a cat's eye retroreflector insensitive to misalignment. Under free-running operation during 150 h, the frequency drift followed natural variation in air pressure with a ratio of -66.6±0.1  MHz/hPa in a range between 1001.5 and 1013.6 hPa. The ratio was in good agreement with that estimated from variation in the effective cavity length derived from the relation between the pressure and the refractive index of air. These results indicate that an external cavity diode laser with predictable frequency drift was successfully created.

  10. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Myneni, Ganapati R.

    2015-12-01

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ˜1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR˜260 and RRR˜100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  11. Cavity-backed metasurface antennas and their application to frequency diversity imaging.

    PubMed

    Marks, Daniel L; Yurduseven, Okan; Smith, David R

    2017-04-01

    Frequency diversity antennas with spatially structured radiation patterns reduce the reliance on actively switched elements for beamforming which become increasingly expensive and impractical as frequency increases. As the quality factor Q of a frequency diverse antenna increases, the antenna samples more spatial structure as the number of unique radiated coded spatial patterns correspondingly increases. Antennas that combine hollow cavities and metamaterial apertures achieve both large fractional bandwidth, in excess of 40%, and a high Q of 1600, so that each antenna radiates over 640 unique coded patterns. As compared to switched active antennas, such a passive antenna replaces the 50 antennas and switches that would produce at most (50/2)2=625 unique patterns. Furthermore, the engineered metamaterial apertures enable a radiation efficiency exceeding 60% to be achieved in a single desired polarization. The theory of cavity-backed metasurface antennas is explained, and frequency diverse imaging is demonstrated with a pair of these antennas.

  12. Frequency stabilization of an external cavity diode laser to molecular iodine at 657.483 nm.

    PubMed

    Fang, Hui-Mei; Wang, Shing-Chung; Shy, Jow-Tsong

    2006-05-01

    The saturation spectrum of the P(84) 5-5 transition of 127I2 at 657.483 nm is obtained with the third-harmonic demodulation method using an external cavity diode laser. The laser frequency is modulated by modulating the diode current instead of modulating the cavity length with a piezoelectric transducer (PZT). Current modulation allows a modulation frequency that is higher than PZT modulation. The signal-to-noise ratio of 1000 is better than previous results presented in the literature. The laser is frequency stabilized to the hyperfine component o of the P(84) 5-5 transition with a frequency stability of better than 10 kHz (2.2 x 10(-11) relative stability).

  13. Intracavity Frequency Doubling of a Diode-Pumped, External Cavity, Surface Emitting Semiconductor Laser

    SciTech Connect

    Alford, W.J.; Allerman, A.A.; Crawford, M.H.; Raymond, T.D.

    1999-04-22

    The authors present a compact, robust, solid-state blue light (490 nm) source capable of greater than 5 mW of output in a TEM{sub 00} mode. This device is an optically pumped, vertical external-cavity surface-emitting laser (VECSEL) with an intracavity frequency doubling crystal.

  14. Generation of broadband ultraviolet frequency-entangled photons using cavity quantum plasmonics.

    PubMed

    Oka, Hisaki

    2017-08-14

    Application of quantum entangled photons is now extending to various fields in physics, chemistry and biology. In particular, in terms of application to molecular science, broadband ultraviolet frequency-entangled photons are desired because molecules inducing photochemical reactions of interest often have electronic transition energies in the ultraviolet region. Recent standard method for generating such entangled photons is a chirped quasi-phase-matching method, however this method is not suitable for the generation of ultraviolet frequency-entangled photons because it requires down-conversion of a photon with a wavelength shorter than ultraviolet into an entangled photon pair. Here we propose a simple method for generating broadband ultraviolet frequency-entangled photons using cavity quantum plasmonics, in which conventional cavity quantum electrodynamics theory is applied to quantum plasmonics. We introduce a cavity-plasmon system in which localised surface plasmon (LSP) is coupled to the cavity fields of a state-of-the-art microcavity. Using this system, we theoretically show that broadband ultraviolet frequency-entangled photons can be generated simply by utilising the absorption saturation effect of LSP.

  15. Gas-lens effect and cavity design of some frequency-stabilized He-Ne lasers.

    PubMed

    Cérez, P; Felder, R

    1983-04-15

    It is shown that there exists an optimal cavity length which should minimize the frequency shifts induced by lenslike effects in intracavity saturated absorption lasers. Ideas are developed which provide a satisfactory explanation for the dispersion in modulation shifts observed in some recent laser intercomparisons.

  16. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  17. Stabilized Fiber-Optic Distribution of Reference Frequency

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Tjoelker, Robert; Diener, William; Dick, G. John; Wang, Rabi; Kirk, Albert

    2003-01-01

    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment.

  18. Homodyne digital interferometry for a sensitive fiber frequency reference.

    PubMed

    Ngo, Silvie; McRae, Terry G; Gray, Malcolm B; Shaddock, Daniel A

    2014-07-28

    Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10(-17) for an integration time of 55 seconds.

  19. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    SciTech Connect

    Ahmed, Shahid; Mammosser, John D.

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  20. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100-150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  1. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  2. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb ofmore » medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.« less

  3. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  4. Measurement of Frequency, Temperature, RF Field Dependence of Surface Resistance of Superconductors Using a Half Wave Cavity

    NASA Astrophysics Data System (ADS)

    Park, Hyekyoung; Delayen, Jean

    2017-01-01

    A theory of surface resistance of superconductor was rigorously formulated by Bardeen, Cooper, Schrieffer more than 50 years ago. Since then the accelerator community has been used the theory as a guideline to improve the surface resistance of the superconducting cavity. It has been observed that the surface resistance is dependent on frequency, temperature and rf field strength, and surface preparation. To verify these dependences, a well-controlled study is required. Although many different types of cavities have been tested, the typical superconducting cavities are built for specific frequencies of their application. They do not provide data other than at its own frequency. A superconducting half wave cavity is a cavity that enables us to collect the surface resistance data across frequencies of interest for particle accelerators and evaluate preparation techniques. This paper will present the design of the half wave cavity, its electromagnetic mode characteristics and experimental results. Research supported by NSF Award PHY-1416051.

  5. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    DOE PAGES

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  6. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    SciTech Connect

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  7. Telecom-band degenerate-frequency photon pair generation in silicon microring cavities.

    PubMed

    Guo, Yuan; Zhang, Wei; Dong, Shuai; Huang, Yidong; Peng, Jiangde

    2014-04-15

    In this Letter, telecom-band degenerate-frequency photon pairs are generated in a specific mode of a silicon microring cavity by the nondegenerate spontaneous four-wave mixing (SFWM) process, under two continuous-wave pumps at resonance wavelength of two different cavity modes. The ratio of coincidence to accidental coincidence is up to 100 under a time bin width of 5 ns, showing their characteristics of quantum correlation. Their quantum interference in balanced and unbalanced Mach-Zehnder interferometers is investigated theoretically and experimentally, and the results show potential in quantum metrology and quantum information.

  8. Self-organization in Kerr-cavity-soliton formation in parametric frequency combs

    NASA Astrophysics Data System (ADS)

    Wen, Y. Henry; Lamont, Michael R. E.; Strogatz, Steven H.; Gaeta, Alexander L.

    2016-12-01

    We show that self-organization and synchronization underlie Kerr-cavity-soliton formation in parametric frequency combs. By reducing the Lugiato-Lefever equation to a set of phase equations, we find that self-organization arises from a two-stage process via pump-degenerate and pump-nondegenerate four-wave mixing. The reduced phase equations are akin to the Kuramoto model of coupled oscillators and intuitively explain the origin of the pump phase offset, predict antisymmetrization of the intracavity field before phase synchronization, and clarify the role of chaos in Kerr-cavity-soliton formation in parametric combs.

  9. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2009-06-08

    We demonstrate high power high efficiency (0:3 W) low noise single frequency operation of a compact extended-cavity surface-emitting-semiconductor-laser exhibiting a continuous tunability over 0:84 THz with high beam quality. We took advantage of thermal lens-based stability to develop a short (< 3 mm) plano-plano external cavity without any intracavity filter. The structure is optically pumped by a 1 W commercial 830 nm multimode diode laser. No heat management was required. We measured a low divergence circular TEM(00) beam at the diffraction limit (M(2) < 1:05) with a linear light polarization (> 37 dB). The side mode suppression ratio is 60 dB. The free running laser linewidth is 850 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting a low intensity noise, with a cutoff frequency approximately 250 MHz above which the shot noise level is reached. We show that pump properties define the cavity design and laser coherence.

  10. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    PubMed

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  11. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  12. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing.

    PubMed

    Wang, Weiqiang; Chu, Sai T; Little, Brent E; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-24

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  13. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  14. Frequency stabilization of an external cavity diode laser: countermeasures against atmospheric temperature variations

    NASA Astrophysics Data System (ADS)

    Minabe, Yuta; Doi, Kohei; Sato, Takashi; Maruyama, Takeo; Ohkawa, Masashi; Tsubokawa, Tsuneya

    2008-02-01

    External cavity diode lasers (ECDL) are presently experiencing a surge in popularity, as laser light-sources for advanced optical measurement systems. While these devices normally require external optical-output controls, we simplified the setup, a bit, by adding a second external cavity. This technique boasts the added advantage of having a narrower oscillation-linewidth than would be achievable, using a single optical feedback. Because drive-current and atmospheric temperature directly impact the ECDL systems' oscillation frequency, during frequency stability checks, it was necessary, in this instance, to construct a slightly smaller ECDL system, which we mounted on a Super-Invar board, to minimize the influence of thermal expansion. Taking these and other aggressive and timely measures to prevent atmospheric temperature-related changes allowed us to achieve an improvement in oscillation-frequency stability, i.e., to obtain the square root of Allan variance σ =2×10 -10, at averaging time τ =10 -1. We introduced a vertical-cavity surface-emitting laser (VCSEL) to the setup, for the simple reason that its frequency is far less susceptible to changes in temperature, than other lasers of its type. And, because VCSELs are widely available, and the ECDL systems that use them improve frequency stability, we replaced the Fabry-Perot semiconductor laser with a VCSEL.

  15. Trimming algorithm of frequency modulation for CIAE-230 MeV proton superconducting synchrocyclotron model cavity

    NASA Astrophysics Data System (ADS)

    Li, Pengzhan; Zhang, Tianjue; Ji, Bin; Hou, Shigang; Guo, Juanjuan; Yin, Meng; Xing, Jiansheng; Lv, Yinlong; Guan, Fengping; Lin, Jun

    2017-01-01

    A new project, the 230 MeV proton superconducting synchrocyclotron for cancer therapy, was proposed at CIAE in 2013. A model cavity is designed to verify the frequency modulation trimming algorithm featuring a half-wave structure and eight sets of rotating blades for 1 kHz frequency modulation. Based on the electromagnetic (EM) field distribution analysis of the model cavity, the variable capacitor works as a function of time and the frequency can be written in Maclaurin series. Curve fitting is applied for theoretical frequency and original simulation frequency. The second-order fitting excels at the approximation given its minimum variance. Constant equivalent inductance is considered as an important condition in the calculation. The equivalent parameters of theoretical frequency can be achieved through this conversion. Then the trimming formula for rotor blade outer radius is found by discretization in time domain. Simulation verification has been performed and the results show that the calculation radius with minus 0.012 m yields an acceptable result. The trimming amendment in the time range of 0.328-0.4 ms helps to reduce the frequency error to 0.69% in Simulation C with an increment of 0.075 mm/0.001 ms, which is half of the error in Simulation A (constant radius in 0.328-0.4 ms). The verification confirms the feasibility of the trimming algorithm for synchrocyclotron frequency modulation.

  16. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Chu, K. R.; Thumm, M.

    2015-01-01

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.

  17. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  18. Investigation of the resonance frequency and performance of a partially plasma filled reconfigurable cylindrical TE111 mode cavity

    NASA Astrophysics Data System (ADS)

    Hadaegh, Mostafa; Mohajeri, Farzad

    2017-05-01

    A partially plasma filled reconfigurable cylindrical cavity is proposed. Plasma offers an encouraging alternative to metal for a wide variety of microwave engineering applications. Implementation of a low-cost plasma element permits the resonant frequency to be changed electrically. The level of the resonant frequency shifts toward the empty-cavity resonant frequency and depends on certain parameters, such as the plasma diameter, relative permittivity and thickness of the plasma tube. In this article, we first introduce the partially plasma filled reconfigurable cylindrical cavity; then, the resonant frequency equation of the cavity is obtained by variational methods. Finally, we plot the resonant frequency versus different parameters of the cavity, which we compare with the results of the CST software. We show that the two results are compatible with each other.

  19. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser.

    PubMed

    Bayrakli, Ismail

    2016-03-20

    A simple external cavity diode laser (ECDL) in a Littrow configuration was established and actively frequency-stabilized by using a side-of-fringe stabilization technique. A wavelength tuning range of 60 nm for the spectral range between 1000 and 1060 nm was demonstrated by rotating the diffraction grating. A sub-kilohertz frequency stabilization of the ECDL was achieved. The linewidth of the laser was narrowed from 160 kHz to 400 Hz by laser frequency locking to a flank of a Fabry-Perot interferometer peak.

  20. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves

    NASA Astrophysics Data System (ADS)

    Tuerke, F.; Sciamarella, D.; Pastur, L. R.; Lusseyran, F.; Artana, G.

    2015-01-01

    We present an alternative perspective on nonharmonic mode coexistence, commonly found in the shear layer spectrum of open-cavity flows. Modes obtained by a local linear stability analysis of perturbations to a two-dimensional, incompressible, and inviscid sheared flow over a cavity of finite length and depth were conditioned by a so-called coincidence condition first proposed by Kulikowskii [J. Appl. Math. Mech. 30, 180 (1966), 10.1016/0021-8928(66)90066-9] which takes into account instability wave reflection within the cavity. The analysis yields a set of discrete, nonharmonic frequencies, which compare well with experimental results [Phys. Fluids 20, 114101 (2008), 10.1063/1.3005435; Exp. Fluids 50, 905 (2010), 10.1007/s00348-010-0942-9].

  1. Broadband cavity-enhanced molecular spectra from Vernier filtering of a complete frequency comb.

    PubMed

    Rutkowski, Lucile; Morville, Jérôme

    2014-12-01

    We present a new approach to cavity enhanced-direct frequency comb spectroscopy where the full emission bandwidth of a titanium:sapphire laser is exploited, currently at gigahertz resolution. The technique is based on low-resolution Vernier filtering obtained with an appreciable actively stabilized mismatch between the cavity-free spectral range and the laser repetition rate, using a diffraction grating and a split-photodiode. Spectra covering 1300  cm⁻¹ (40 THz) are acquired in less than 100 ms, and a baseline noise of 1.7×10⁻⁸ cm⁻¹ is reached with a cavity finesse of only 300, providing an absorption figure of merit M=6×10⁻¹¹ cm⁻¹·Hz(-1/2).

  2. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    SciTech Connect

    Romanenko, A. Grassellino, A.; Barkov, F.; Suter, A.; Salman, Z.; Prokscha, T.

    2014-02-17

    We investigate “hot” regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λ{sub L}=23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ>100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.

  3. Alignment sensing for optical cavities using radio-frequency jitter modulation.

    PubMed

    Fulda, P; Voss, D; Mueller, C; Ortega, L F; Ciani, G; Mueller, G; Tanner, D B

    2017-05-01

    Alignment sensing is often required in precision interferometry applications such as Advanced LIGO in order to achieve the optimum performance. Currently favored sensing schemes rely on the use of two separate radio-frequency (RF) quadrant photodetectors and Gouy phase telescopes to determine the alignment of a beam relative to an optical cavity axis. In this paper, we demonstrate an alternative sensing scheme that has potential advantages over the current standard schemes. We show that by using electro-optic beam deflectors to impose RF jitter sidebands on a beam, it is possible to extract full alignment signals for two in-line optical cavities from just one single-element photodetector in reflection of each cavity.

  4. Global stability and frequency response of boundary layers developing over shallow cavities

    NASA Astrophysics Data System (ADS)

    Qadri, Ubaid; Schmid, Peter

    2014-11-01

    In the presence of surface imperfections, the boundary layer developing over an aircraft wing can separate and reattach, leading to a small separation bubble. We study the flow over a shallow rectangular cavity at Reynolds numbers at which the boundary layer is unstable to Tollmien-Schlichting waves. We obtain steady two-dimensional solutions to the incompressible Navier-Stokes equations and study the growth of three-dimensional perturbations on top of these steady base flows. We use the linearized Navier-Stokes operator to identify how the dominant modes of instability vary with the thickness of the upstream boundary layer and with the cavity aspect ratio. We calculate the global frequency response and optimal forcing to map out the influence of the cavity on the growth of TS-waves. Finally, we compare the results with those for boundary layers developing over backward-facing and forward-facing steps.

  5. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level.

  6. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...

    2016-12-09

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less

  7. High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1989-01-01

    Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.

  8. Investigation of niobium surface structure and composition for improvement of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Trenikhina, Yulia

    Nano-scale investigation of intrinsic properties of niobium near-surface is a key to control performance of niobium superconducting radio-frequency cavities. Mechanisms responsible for the performance limitations and their empirical remedies needs to be justified in order to reproducibly control fabrication of SRF cavities with desired characteristics. The high field Q-slope and mechanism behind its cure (120°C mild bake) were investigated by comparison of the samples cut out of the cavities with high and low dissipation regions. Material evolution during mild field Q-slope nitrogen treatment was characterized using the coupon samples as well as samples cut out of nitrogen treated cavity. Evaluation of niobium near-surface state after some typical and novel cavity treatments was accomplished. Various TEM techniques, SEM, XPS, AES, XRD were used for the structural and chemical characterization of niobium near-surface. Combination of thermometry and structural temperature-dependent comparison of the cavity cutouts with different dissipation characteristics revealed precipitation of niobium hydrides to be the reason for medium and high field Q-slopes. Step-by-step effect of the nitrogen treatment processing on niobium surface was studied by analytical and structural characterization of the cavity cutout and niobium samples, which were subject to the treatment. Low concentration nitrogen doping is proposed to explain the benefit of nitrogen treatment. Chemical characterization of niobium samples before and after various surface processing (Electropolishing (EP), 800°C bake, hydrofluoric acid (HF) rinsing) showed the differences that can help to reveal the microscopic effects behind these treatments as well as possible sources of surface contamination.

  9. Studies of radiation fields of LCLS-II super conducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Santana Leitner, M.; Ge, L.; Li, Z.; Xu, C.; Adolphsen, C.; Ross, M.; Carrasco, M.

    2016-09-01

    The Linac Coherent Light Source II (LCLS-II) will be a hard X-ray Free Electron Laser whose linac can deliver a 1.2 MW CW electron beam with bunch rates up to 1 MHz. To efficiently generate such a high power beam, Super-Conducting Radio-Frequency (SCRF) cavities will be installed in the upstream portion of the existing 3 km Linac at the SLAC National Accelerator Laboratory. The 9-cell niobium cavities will be cooled at 2K inside 35 cryomodules, each containing a string of eight of those cavities followed by a quadrupole. The strong electromagnetic fields in the SCRF cavities will extract electrons from the cavity walls that may be accelerated. Most such dark current will be deposited locally, although some electrons may reach several neighboring cryomodules, gaining substantial energy before they hit a collimator or other aperture. The power deposited by the field emitted electrons and the associated showers may pose radiation and machine protection issues at the cryomodules and also in other areas of the accelerator. Simulation of these effects is therefore crucial for the design of the machine. The in-house code Track3P was used to simulate field emitted electrons from the LCLS-II cavities, and a sophisticated 3D model of the cryomodules including all cavities was written to transport radiation with the Fluka Monte Carlo code, which was linked to Track3P through custom-made routines. This setup was used to compute power deposition in components, prompt and residual radiation fields, and radioisotope inventories.

  10. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  11. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    SciTech Connect

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  12. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  13. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity.

    PubMed

    Zhang, Haiyang; Brunel, Marc; Romanelli, Marco; Vallet, Marc

    2016-04-01

    This paper investigates the radio frequency (RF) up-conversion properties of a frequency-shifting external cavity on a laser beam. We consider an infrared passively Q-switched pulsed laser whose intensity modulation results from the multiple round-trips in the external cavity, which contains a frequency shifter. The output beam undergoes optical second-harmonic generation necessary to reach the green wavelength. We model the pulse train using a rate-equation model to simulate the laser pulses, together with a time-delayed interference calculation taking both the diffraction efficiency and the Gaussian beam propagation into account. The predictions are verified experimentally using a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG whose pulse train makes multiple round-trips in a mode-matched external cavity containing an acousto-optic frequency shifter driven at 85 MHz. Second-harmonic generation is realized in a KTP crystal, yielding RF-modulated pulses at 532 nm with a modulation contrast of almost 100%. RF harmonics up to the 6th order (1.020 GHz) are observed in the green output pulses. Such a RF-modulated green laser may find applications in underwater detection and ranging.

  14. An ac method for the precise measurement of Q-factor and resonance frequency of a microwave cavity

    NASA Astrophysics Data System (ADS)

    Nebendahl, B.; Peligrad, D.-N.; Požek, M.; Dulčić, A.; Mehring, M.

    2001-03-01

    We have developed a new and fast method for the determination of the complex frequency shift of a microwave resonant cavity. The method is based on frequency modulation of the microwave source around the cavity resonance and detection of the 2nd and 4th harmonic of the modulation frequency. With this procedure the static measurement of the response amplitude is not necessary and all the data are obtained through a single ac channel. The optimal frequency deviation is shown to be comparable to the cavity resonance width.

  15. The importance of the electron mean free path for superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Maniscalco, J. T.; Gonnella, D.; Liepe, M.

    2017-01-01

    Impurity-doping of niobium is an exciting new technology in the field of superconducting radio-frequency accelerators, producing cavities with record-high quality factor Q0 and Bardeen-Cooper-Schrieffer surface resistance that decreases with increasing radio-frequency field. Recent theoretical work has offered a promising explanation for this so-called "anti-Q-slope," but the link between the decreasing surface resistance and the shortened electron mean free path of doped cavities has remained elusive. In this work, we investigate this link, finding that the magnitude of this decrease varies directly with the mean free path: shorter mean free paths correspond to stronger anti-Q-slopes. We draw a theoretical connection between the mean free path and the overheating of the quasiparticles, which leads to the reduction of the anti-Q-slope towards the normal Q-slope of long-mean-free-path cavities. We also investigate the sensitivity of the residual resistance to trapped magnetic flux, a property that is greatly enhanced for doped cavities, and calculate an optimal doping regime for a given amount of trapped flux.

  16. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide

    PubMed Central

    Huang, Zhilei; Cui, Kaiyu; Bai, Guoren; Feng, Xue; Liu, Fang; Zhang, Wei; Huang, Yidong

    2016-01-01

    Optomechanical crystals have attracted great attention recently for their ability to realize strong photon-phonon interaction in cavity optomechanical systems. By far, the operation of cavity optomechanical systems with high mechanical frequency has to employ tapered fibres or one-sided waveguides with circulators to couple the light into and out of the cavities, which hinders their on-chip applications. Here, we demonstrate larger-centre-hole nanobeam structures with on-chip transmission-coupling waveguide. The measured mechanical frequency is up to 4.47 GHz, with a high mechanical Q-factor of 1.4 × 103 in the ambient environment. The corresponding optomechanical coupling rate is calculated and measured to be 836 kHz and 1.2 MHz, respectively, while the effective mass is estimated to be 136 fg. With the transmission waveguide coupled structure and a small footprint of 3.4 μm2, this simple cavity can be directly used as functional components or integrated with other on-chip devices in future practical applications. PMID:27686419

  17. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    NASA Astrophysics Data System (ADS)

    Hansson, Tobias; Wabnitz, Stefan

    2015-07-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  18. Parametric generation of radiation in a dynamic cavity with frequency dispersion

    SciTech Connect

    Rosanov, N N; Fedorov, E G; Matskovsky, A A

    2016-01-31

    A numerical simulation of the parametric generation of electromagnetic radiation in a cavity with periodically oscillating mirrors and Lorentz-type frequency dispersion has been performed. It is shown that initially weak seed radiation can be transformed into intense short pulses, the shape of which under steady-state conditions changes periodically when reflecting from mirrors and, depending on the dispersion characteristics, corresponds to uni- or bipolar pulses. (letters)

  19. Lasic -Cavity-enhanced molecular iodine laser frequency stabilization for space projects

    NASA Astrophysics Data System (ADS)

    Turazza, Oscar; Acef, O.; Auger, G.; Halloin, H.; Duburck, F.; Plagnol, E.; Holleville, D.; Dimarcq, N.; Binetruy, P.; Brillet, A.; Lemonde, P.; Devismes, E.; Prat, P.; Lours, M.; Tuckey, P.; Argence, B.

    We present work in progress at SYRTE, APC and ARTEMIS aiming at stabilizing the frequency of a Nd:YAG laser using saturated absorption spectroscopy of molecular iodine 127I2. The novel design of the LASIC project allows for robustness and compacity while achieving high-performance phase noise suppression. The project is a follow-up of the laser stabilization work started at Artemis and continued at APC. The use of a low-finesse bow-tie optical cavity around the iodine absorber, combined with an adapted high-frequency modulation of the laser phase -NICE-OHMS technique-yields shot-noise limited saturated absorption signals with cavity-enhanced signal-to-noise ratios. Residual fractional frequency instability in terms of Allan Std. Deviation is expected below 10-14 @1s integration time and down to 10-15 over several hours. The compact iodine / cavity design, and performance well above LISA requirements make this project an interesting candidate for the space-based Gravitational Waves detector. We discuss the scientific background and outline of this project within the LISA framework, as well as its potential impact on other stringent technical requirements of the LISA project (e.g. U.S.O. clock-stability, arm-length measurements. . . ). We also present other possible applications for space projects involving interferometry, laser ranging or onboard ultrastable oscillators.

  20. Compact double optical feedback external-cavity diode laser system and its frequency stabilization

    NASA Astrophysics Data System (ADS)

    Doi, Kohei; Minabe, Yuta; Sato, Takashi; Maruyama, Takeo; Ohkawa, Masashi; Tsubokawa, Tsuneya

    2007-02-01

    External cavity diode laser (ECDL) systems are presently experiencing a surge in popularity as laser light-sources, in advanced optical communications- and measurement-systems. Because such systems require that their external reflectors be precisely controlled, to eliminate low frequency fluctuations (LFF) in optical output, we conducted experiments with a two-cavity version, which easily eliminated LFFs, as expected. The technique has the added advantage of a narrower oscillation-linewidth than would be achievable, using a single optical feedback. However, the ECDL's oscillation frequency is susceptible to the influences of the drive-current, as well as changes, both in the refractive index, and the overall length of the external reflector that results from fluctuations in atmospheric temperature. We made every effort to maintain the length of the ECDL cavity, while evaluating oscillation-frequency stability. We used a Super-Invar board as the platform for our compact ECDL system to minimize the influence of thermal expansion, because of its low expansion coefficient. We then compared the effect of atmospheric temperature variations between two experimental conditions, with the Super-invar board and without it, and finally took note of the improvement in performance, using the board.

  1. New generation of one-dimensional photonic crystal cavities as robust high-efficient frequency converter

    NASA Astrophysics Data System (ADS)

    Parvini, T. S.; Tehranchi, M. M.; Hamidi, S. M.

    2017-07-01

    An effective method is proposed to design finite one-dimensional photonic crystal cavities (PhCCs) as robust high-efficient frequency converter. For this purpose, we consider two groups of PhCCs which are constructed by stacking m nonlinear (LiNbO3) and n linear (air) layers with variable thicknesses. In the first group, the number of linear layers is less than the nonlinear layers by one and in the second group by two. The conversion efficiency is calculated as a function of the arrangement and thicknesses of the linear and nonlinear layers by benefiting from nonlinear transfer matrix method. Our numerical simulations show that for each group of PhCCs, there is a structural formula by which the configurations with the highest efficiency can be constructed for any values of m and n (i.e. any number of layers). The efficient configurations are equivalent to Fabry-Pérot cavities that depend on the relationship between m and n and the mirrors in two sides of these cavities can be periodic or nonperiodic. The conversion efficiencies of these designed PhCCs are more than 5 orders of magnitude higher than the perfect ones which satisfy photonic bandgap edge and quasi-phase matching. Moreover, the results reveal that conversion efficiencies of Fabry-Pérot cavities with non-periodic mirrors are one order of magnitude higher than those with periodic mirrors. The major physical mechanisms of the enhancement are quasi-phase matching effect, cavity effect induced by dispersive mirrors, and double resonance for the pump and the harmonic fields in defect state. We believe that this method is very beneficial to the design of high-efficient compact optical frequency converters.

  2. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE PAGES

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; ...

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  3. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N.

    2009-07-20

    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  4. Acoustic hologram formation with a frequency shifted reference beam.

    PubMed

    Whitman, R L

    1970-06-01

    This paper discusses an interference technique that makes it possible to directly observe and record the usually very weak light diffracted by an acoustical surface perturbation. This is accomplished by using spatial filtering techniques in combination with a frequency shifted reference beam. It is shown that the acoustically diffracted light may be visualized even in the presence of statically scattered light of much higher intensity. An experiment is described in which this technique is used to view the surface perturbations of piezoelectric ceramic material caused by acoustic surface waves. The application of this system to acoustic holography is discussed in detail. This application makes use of the fact that bulk acoustic waves in a material, upon striking the surface at some acute angle, cause surface ripple patterns which form a dynamic hologram of the acoustic field. A photographic image of this hologram frozen in time may then be recorded using the process discussed above.

  5. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    NASA Astrophysics Data System (ADS)

    Jiang, Jiulong; Yao, Hong; Du, Jun; Zhao, Jinbo

    2016-11-01

    A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM) and electric circuit analogy (ECA). Low frequency band-gap can be opened through the dual influence of the coupling's resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  6. High frequency computation in wave equations and optimal design for a cavity

    NASA Astrophysics Data System (ADS)

    Lai, Jun

    Two types of problems are studied in this thesis. One part of the thesis is devoted to high frequency computation. Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods which were originally designed for initial value problems of wave equations in the high frequency regime, we develop fast multiscale Gaussian beam methods for wave equations in bounded convex domains in the high frequency regime. To compute the wave propagation in bounded convex domains, we have to take into account reflecting multiscale Gaussian beams, which are accomplished by enforcing reflecting boundary conditions during beam propagation and carrying out suitable reflecting beam summation. To propagate multiscale beams efficiently, we prove that the ratio of the squared magnitude of beam amplitude and the beam width is roughly conserved, and accordingly we propose an effective indicator to identify significant beams. We also prove that the resulting multiscale Gaussian beam methods converge asymptotically. Numerical examples demonstrate the accuracy and efficiency of the method. The second part of the thesis studies the reduction of backscatter radar cross section (RCS) for a cavity embedded in the ground plane. One approach for RCS reduction is through the coating material. Assume the bottom of the cavity is coated by a thin, multilayered radar absorbing material (RAM) with possibly different permittivities. The objective is to minimize the backscatter RCS by the incidence of a plane wave over a single or a set of incident angles and frequencies. By formulating the scattering problem as a Helmholtz equation with artificial boundary condition, the gradient with respect to the material permittivities is determined efficiently by the adjoint state method, which is integrated into a nonlinear optimization scheme. Numerical example shows the RCS may be significantly reduced. Another approach is through shape optimization. By introducing a transparent

  7. Advances in development of Nb3Sn superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Posen, Sam; Liepe, Matthias

    2014-11-01

    A 1.3 GHz Nb3Sn superconducting radio-frequency cavity prepared with a modified annealing step reached Bp k>50 mT , well above Bc 1=25 ±7 mT , without the strong Q -slope observed in previous Nb3Sn cavities. At 4.2 K, it has a Q0 of approximately 1 ×1 010 at >10 MV /m , far outperforming Nb at useable gradients. At 2 K, quench occurred at ˜55 mT , apparently due to a defect, so additional treatment may increase the maximum gradient. Material parameters of the coating were extracted from Q vs T data, including a Tc of 18.0 ±0.1 K , close to the maximum literature value. High power pulses were used to reach fields far higher than in CW measurements, and near Tc, quench fields close to the superheating field were observed. Based on a review of previous experience with Nb3Sn cavities, a speculative mechanism involving weak link grain boundaries is presented to explain how the modified annealing step could be the cause of the absence of strong Q -slope. Finally, an analysis of the progress to date provides hints that the path forward for Nb3Sn cavities should focus on minimizing defects.

  8. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    SciTech Connect

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  9. Frequency and Intensity Stabilization of Planar Waveguide-External Cavity Lasers

    NASA Astrophysics Data System (ADS)

    Tellez, Gregorio; Shoen, Steven; Quetschke, Volker

    2012-02-01

    Planar Waveguide External Cavity Lasers (PW-ECL) show an immense potential for use in precision measurement tasks and space missions because of its compactness and simple design. We show the techniques used to frequency and intensity stabilize a PW-ECL 1550nm laser system with the goal of achieving a frequency stability of 30 Hz/sqrt(Hz) and a RIN of less than 10-6. These PW-ECL systems are a potential replacement for Non-Planar Ring Oscillator (NPRO) laser systems, which have become a standard for low-noise interferometric applications, if the PW-ECL can meet the required stability. We present the initial experimental results of the intensity and frequency stabilization setup and we show a comparison between PW-ECL lasers and NPRO lasers with respect to measurements and applications requiring a high frequency and intensity stability.

  10. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates

  11. LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies

    NASA Astrophysics Data System (ADS)

    Kokotanekov, G.; Wise, M.; Heald, G. H.; McKean, J. P.; Bîrzan, L.; Rafferty, D. A.; Godfrey, L. E. H.; de Vries, M.; Intema, H. T.; Broderick, J. W.; Hardcastle, M. J.; Bonafede, A.; Clarke, A. O.; van Weeren, R. J.; Röttgering, H. J. A.; Pizzo, R.; Iacobelli, M.; Orrú, E.; Shulevski, A.; Riseley, C. J.; Breton, R. P.; Nikiel-Wroczyński, B.; Sridhar, S. S.; Stewart, A. J.; Rowlinson, A.; van der Horst, A. J.; Harwood, J. J.; Gürkan, G.; Carbone, D.; Pandey-Pommier, M.; Tasse, C.; Scaife, A. M. M.; Pratley, L.; Ferrari, C.; Croston, J. H.; Pandey, V. N.; Jurusik, W.; Mulcahy, D. D.

    2017-09-01

    We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We studied the correlation at low radio frequencies using two new surveys - the first alternative data release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR's firstall-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation Pcav ∝ Lβ148, with a logarithmic slope of β = 0.51 ± 0.14, which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. Previous studies have shown that the magnitude of this scatter can be reduced when bolometric radio luminosity corrected for spectral aging is used. We show that including additional measurements at 148 MHz alone is insufficient to improve this correction and further reduce the scatter in the correlation. For a subset of four well-resolved sources, we examined the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In the case of Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X

  12. Numerical evaluation of aperture coupling in resonant cavities and frequency perturbation analysis

    NASA Astrophysics Data System (ADS)

    Dash, R.; Nayak, B.; Sharma, A.; Mittal, K. C.

    2014-01-01

    This paper presents a general formulation for numerical evaluation of the coupling between two identical resonant cavities by a small elliptical aperture in a plane common wall of arbitrary thickness. It is organized into two parts. In the first one we discuss the aperture coupling that is expressed in terms of electric and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical integrals. Carlson integrals have been numerically evaluated and under zero thickness approximation, the results match with the complete elliptical integrals of first and second kind. It is found that with zero wall thickness, the results obtained are the same as those of Bethe and Collin for an elliptical and circular aperture of zero thickness. In the second part, Slater's perturbation method is applied to find the frequency changes due to apertures of finite thickness on the cavity wall.

  13. Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    NASA Astrophysics Data System (ADS)

    Schütte, Dirk; Hassen, S. Z. Sayed; Karvinen, Kai S.; Boyson, Toby K.; Kallapur, Abhijit G.; Song, Hongbin; Petersen, Ian R.; Huntington, Elanor H.; Heurs, Michèle

    2016-01-01

    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve.

  14. Surface Science Laboratory for Studying the Surfaces of Superconducting Radio Frequency Cavities

    SciTech Connect

    Andy Wu

    2003-09-01

    A Surface Science Laboratory (SSL) has been established at JLab to study surfaces relevant to superconducting radio frequency (SRF) cavities. Current operational facilities include a scanning electron microscope equipped with energy dispersive x-ray analysis, a secondary ion mass spectrometry, a metallographic optical microscope, a transmission electron microscope, a high precision and large scan area 3-D profilometer, a scanning field emission microscope, and a fully equipped sample preparation room. A scanning Auger microscope is being commissioned, and will be available for routine usage soon. Results from typical examples of the R&D projects on SRF cavities that were supported in the past through the use of the facilities in the SSL will be briefly reported.

  15. Effective index model predicts modal frequencies of vertical-cavity lasers

    SciTech Connect

    SERKLAND,DARWIN K.; HADLEY,G. RONALD; CHOQUETTE,KENT D.; GEIB,KENT M.; ALLERMAN,ANDREW A.

    2000-04-18

    Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

  16. Multi-cavity coupling acoustic metamaterials with low-frequency broad band gaps based on negative mass density

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhui; Wu, Jiu Hui; Cao, Songhua; Jing, Li

    2016-08-01

    This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0-1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.

  17. Investigation of the superconducting properties of niobium radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi

    Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and improve the cavity's quality factor. Several models have been proposed to explain the cause of the Q-drop and the baking effect. We investigated the effect of baking on niobium material parameters by measuring the temperature dependence of a cavity's surface impedance and comparing it with the Bardeen-Cooper-Schrieffer's theory of superconductivity. It was found that baking allows interstitial oxygen to diffuse from the surface deeper into the bulk. This produces a significant reduction of the normal electrons' mean free path, which causes an increase of the quality factor. The optimum baking parameters are 120°C for 24-48 h. We were also able to identify the origin of the Q-drop as due to a high magnetic field, rather then electric field, by measuring the quality factor of a cavity as function of the rf field in a resonant mode with only magnetic field present on the surface. With the aid of a thermometry system, we were able to localize the losses in the high magnetic field region. We measured the Q-drop in cavities which had undergone different treatments, such as anodization, electropolishing and post-purification, and with different metallurgical properties and we study the effectiveness of baking in each case. As a result, none of the models proposed so far can explain all the experimental observations. We

  18. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  19. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    SciTech Connect

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-06-29

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps.

  20. Phase and frequency dynamics of a short cavity swept-source OCT laser

    NASA Astrophysics Data System (ADS)

    Butler, T.; Goulding, D.; Slepneva, S.; O'Shaughnessy, B.; Kelleher, B.; Lyu, H.-C.; Hegarty, S. P.; Vladimirov, A. G.; Karnowski, K.; Wojtkowski, M.; Huyet, G.

    2015-03-01

    We analyse the dynamical behaviour of a short cavity OCT swept-source laser experimentally and theoretically. Mode-hopping, sliding frequency mode-locking and chaos are all observed during the laser sweep period. Hetero- dyne measurements of laser dynamics allows some insight into the behaviour of the laser, while interferometric techniques allow the full phase reconstruction of the laser electric field. A delay differential equation enables modelling of the laser output, and laser parameters can be altered to provide optimisation conditions for future laser designs.

  1. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Morville, Jérôme

    2017-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique which allows us to record broadband spectra at high sensitivity and GHz resolution (Rutkowski and Morville, 2014) [1]. We discuss here the effect of Vernier filtering on the observed lineshapes in the 3 ν + δ band of water vapor and the entire A-band of oxygen around 800 nm in ambient air. We derive expressions for the absorption profiles resulting from the continuous Vernier filtering method, testing them on spectra covering more than 2000 cm-1 around 12,500 cm-1. With 31,300 independent spectral elements acquired at the second time scale, an absorption baseline noise of 2 ×10-8cm-1 is obtained, providing a figure of merit of 1.1×10-10 cm-1/√{ Hz } per spectral element with a cavity finesse of 3000 and a cavity round-trip length around 3.3 m.

  2. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    SciTech Connect

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  3. Surface Characterization of Impurities in Superconducting Niobium for Radio Frequency (RF) Cavities used in Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Maheshwari, Prateek

    Niobium (Nb) is the material of choice for Superconducting Radio Frequency (SRF) Cavities used in particle accelerators owing to its high critical temperature (Tc = 9.2 K) and critical magnetic field (≈ 200mT). However, niobium tends to harbor interstitial impurities such as H, C, O and N, which are detrimental to cavity performance. Since the magnetic field penetration depth (lambda) of niobium is 40nm, it is important to characterize these impurities using surface characterization techniques. Also, it is known that certain heat treatments improve cavity efficiency via interstitial impurity removal from the surface of niobium. Thus, a systematic study on the effect of these heat treatments on the surface impurity levels is needed. In this work, surface analysis of both heat treated and non heat treated (120°C-1400°C) large grain (single crystal) bulk niobium samples was performed using secondary ion mass spectrometry (SIMS) and Transmission Electron Microscopy (TEM). Impurity levels were compared on the surface using SIMS after various types of heat treatments expected to improve cavity performance, and the effect of these heat treatments on the surface impurities were examined. SIMS characterization of ion implanted standards of C, N, O, D showed that quantification of C, N and O impurities in Nb is achievable and indicated that H is very mobile in Nb. It was hence determined that quantification of H in Nb is not possible using SIMS due to its high diffusivity in Nb. However, a comparative study of the high temperature heat treated (600°C-1400°C) and non heat treated (control) samples revealed that hydrogen levels decreased by upto a factor of 100. This is attributed to the dissociation of the niobium surface oxide layer, which acts as a passivating film on the surface, and subsequent desorption of hydrogen. Reformation of this oxide layer on cool down disallows any re-absorption of hydrogen, indicating that the oxide acts as a surface barrier for

  4. Q-switched mode-locking of an erbium-doped fiber laser using cavity modulation frequency detuning.

    PubMed

    Chang, You Min; Lee, Junsu; Jhon, Young Min; Lee, Ju Han

    2012-07-20

    We present the results of an investigation regarding a Q-switched mode-locked fiber laser scheme based on a cavity modulation frequency detuning technique. The approach is based on undamped laser relaxation oscillations occurring due to frequency detuning in the fundamental cavity resonance frequency. Through a range of experiments with an erbium-doped, fiber-based, ring-cavity laser, this approach has been shown to be capable of generating high-quality Q-switched mode-locked pulses from an optical fiber-based laser. The maximum frequency detuning range for a stable Q-switched mode-locking operation has been observed to vary depending on the pump power used. We found that the highest pulse peak power was obtained at the frequency detuning threshold at which the operation changed from the mode-locking to the Q-switched mode-locking regime.

  5. Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: Material and device optimization

    NASA Astrophysics Data System (ADS)

    Bottger, Thomas

    2002-01-01

    Narrow spectral holes in the absorption lines of Er3+ doped crystals have been explored as references for frequency stabilizing external cavity diode lasers at the important 1.5 mum optical communication wavelength. Allan deviations of the beat signal between two independent stabilized lasers as low as 200 Hz over 10 ms integration time have been achieved using regenerative spectral holes in Er3+:Y2SiO5 and Er3+:KTP, while drift was reduced to ˜7 kHz/min by incorporating the inhomogeneous absorption line as a fixed reference. During active stabilization, the transient spectral hole was continuously regenerated as hole burning balanced relaxation. In contrast, persistent spectral holes in Er3+:D-:CaF2, with lifetimes of several weeks, provided programmable and transportable secondary frequency references that maintained sub-kilohertz stability over several seconds and enabled 6 kHz stability over 1.6 x 103 s. The error signal was derived from the spectral hole transmission using frequency modulation spectroscopy. A servo amplifier applied fast frequency corrections to the injection current of the laser diode and slower adjustments to the piezo-driven feedback prism plate. These stabilized lasers provide ideal sources for spectral hole burning applications based on optical coherent transients, where laser stability is required over the storage time of the material. Since the lifetime of the frequency reference is exactly the material storage time, this requirement is automatically met by using our technique. This was demonstrated in Er 3+:Y2SiO5 and successfully transferred to high-bandwidth signal processing applications. The material Er3+:Y2SiO5 was optimized for these applications. The 4I15/2 and 4 I13/2 crystal field levels were site-selectively determined by absorption and fluorescence spectroscopy. The excited state lifetime was measured to be 11.4 ms for site 1 and 9.2 ms for site 2. Zeeman experiments and two-pulse photon echo spectroscopy as a function of

  6. Frequency-doubled vertical-external-cavity surface-emitting laser

    DOEpatents

    Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.

    2002-01-01

    A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

  7. Disk patch resonators for cavity quantum electrodynamics at the terahertz frequency.

    PubMed

    Derntl, Christian G; Bachmann, Dominic; Unterrainer, Karl; Darmo, Juraj

    2017-05-29

    We designed disk patch resonators to meet the requirements for enhanced coupling of optical cavities to intersubband transitions in heterostructures in the terahertz frequency regime. We applied modifications to the standard patch resonator in the form of a chain of holes and slits to control the resonator eigenmodes featuring quality factors ωFWHM/ω0 as high as 40. Due to the broken rotational symmetry of the resonators the individual eigenmodes can be accessed selectively depending on the incidence and the polarization of the THz wave. The demonstrated post-process blue-shifting of the resonance frequency up to 50% is a key tuning knob for an optimization of light-matter interaction in a quantum system.

  8. Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation

    NASA Astrophysics Data System (ADS)

    Parra-Rivas, P.; Gomila, D.; Gelens, L.

    2016-04-01

    In this work we present a detailed analysis of bifurcation structures of cavity solitons (CSs) and determine the different dynamical regimes in the Lugiato-Lefever (LL) equation in the presence of anomalous and normal chromatic dispersion regimes. Such an analysis has been shown to also increase our understanding of frequency combs (FCs). A FC consists in a set of equidistant spectral lines that can be used to measure light frequencies and time intervals more easily and precisely than ever before. Due to the duality between CSs in microcavities and FCs, we can gain information about the behavior of FCs by analyzing the dynamics of CSs. In the anomalous dispersion case bright CSs are organized in what is known as a homoclinic snaking bifurcation structure. In contrast, in the normal dispersion regime dark CSs are organized differently, in a structure known as collapsing snaking. Despite the differences in bifurcation scenarios, both types of CSs present similar temporal instabilities.

  9. Long-term frequency stabilization system for external cavity diode laser based on mode boundary detection.

    PubMed

    Xu, Zhouxiang; Huang, Kaikai; Jiang, Yunfeng; Lu, Xuanhui

    2011-12-01

    We have realized a long-term frequency stabilization system for external cavity diode laser (ECDL) based on mode boundary detection method. In this system, the saturated absorption spectroscopy was used. The current and the grating of the ECDL were controlled by a computer-based feedback control system. By checking if there are mode boundaries in the spectrum, the control system determined how to adjust current to avoid mode hopping. This procedure was executed periodically to ensure the long-term stabilization of ECDL in the absence of mode hops. This diode laser system with non-antireflection coating had operated in the condition of long-term mode-hop-free stabilization for almost 400 h, which is a significant improvement of ECDL frequency stabilization system.

  10. Long-term frequency stabilization system for external cavity diode laser based on mode boundary detection

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Huang, Kaikai; Jiang, Yunfeng; Lu, Xuanhui

    2011-12-01

    We have realized a long-term frequency stabilization system for external cavity diode laser (ECDL) based on mode boundary detection method. In this system, the saturated absorption spectroscopy was used. The current and the grating of the ECDL were controlled by a computer-based feedback control system. By checking if there are mode boundaries in the spectrum, the control system determined how to adjust current to avoid mode hopping. This procedure was executed periodically to ensure the long-term stabilization of ECDL in the absence of mode hops. This diode laser system with non-antireflection coating had operated in the condition of long-term mode-hop-free stabilization for almost 400 h, which is a significant improvement of ECDL frequency stabilization system.

  11. Frequency stabilization of an external-cavity diode laser to metastable argon atoms in a discharge.

    PubMed

    Douglas, P; Maher-McWilliams, C; Barker, P F

    2012-06-01

    A laser stabilization scheme using magnetic dichroism in a RF plasma discharge is presented. This method has been used to provide a frequency stable external-cavity diode laser that is locked to the 4s[3/2](2) → 4p[5/2](3) argon laser cooling transition at 811.53 nm. Using saturated absorption spectroscopy, we lock the laser to a Doppler free peak which gave a locking range of 20 MHz when the slope of the error signal was maximized. The stability of the laser was characterized by determining the square root Allan variance of laser frequency fluctuations when the laser was locked. A stability of 129 kHz was measured at 1 s averaging time for data acquired over 6000 s.

  12. Highly Accurate Frequency Calculations of Crab Cavities Using the VORPAL Computational Framework

    SciTech Connect

    Austin, T.M.; Cary, J.R.; Bellantoni, L.; /Argonne

    2009-05-01

    We have applied the Werner-Cary method [J. Comp. Phys. 227, 5200-5214 (2008)] for extracting modes and mode frequencies from time-domain simulations of crab cavities, as are needed for the ILC and the beam delivery system of the LHC. This method for frequency extraction relies on a small number of simulations, and post-processing using the SVD algorithm with Tikhonov regularization. The time-domain simulations were carried out using the VORPAL computational framework, which is based on the eminently scalable finite-difference time-domain algorithm. A validation study was performed on an aluminum model of the 3.9 GHz RF separators built originally at Fermi National Accelerator Laboratory in the US. Comparisons with measurements of the A15 cavity show that this method can provide accuracy to within 0.01% of experimental results after accounting for manufacturing imperfections. To capture the near degeneracies two simulations, requiring in total a few hours on 600 processors were employed. This method has applications across many areas including obtaining MHD spectra from time-domain simulations.

  13. Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping

    NASA Astrophysics Data System (ADS)

    Lebreuilly, José; Wouters, Michiel; Carusotto, Iacopo

    2016-10-01

    We report a theoretical study of a quantum optical model consisting of an array of strongly nonlinear cavities incoherently pumped by an ensemble of population-inverted two-level atoms. Projective methods are used to eliminate the atomic dynamics and write a generalized master equation for the photonic degrees of freedom only, where the frequency-dependence of gain introduces non-Markovian features. In the simplest single cavity configuration, this pumping scheme gives novel optical bistability effects and allows for the selective generation of Fock states with a well-defined photon number. For many cavities in a weakly non-Markovian limit, the non-equilibrium steady state recovers a Grand-Canonical statistical ensemble at a temperature determined by the effective atomic linewidth. For a two-cavity system in the strongly nonlinear regime, signatures of a Mott state with one photon per cavity are found. xml:lang="fr"

  14. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  15. A Wide Spaced Femtosecond Ti:Sapphire Frequency Comb at 15 GHz by a Fabry—Pérot Filter Cavity

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Han, Hai-Nian; Zhang, Jin-Wei; Li, De-Hua; Wei, Zhi-Yi

    2013-10-01

    We realize a wide spaced frequency comb by using an external low-fineness Fabry—Pérot (F-P) cavity to filter few-cycle laser pulses from a Kerr-lens mode-locked Ti:sapphire laser at the fundamental repetition rate of 350MHz. Mode spacing as wide as 15 GHz with spectrum covered from 690 nm to 710 nm is demonstrated, corresponding to a filter multiple of about 43. The scanning transmission peaks after the F-P cavity with cavity lengths are also simulated numerically, and the results are in agreement with the experiment.

  16. Cavity-assisted atomic frequency comb memory in an isotopically pure 143Nd3+ :YLiF4 crystal

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, R. A.; Gushchin, L. A.; Kalachev, A. A.; Nizov, N. A.; Nizov, V. A.; Sobgayda, D. A.; Zelensky, I. V.

    2016-11-01

    In this work we present an implementation of cavity-assisted atomic frequency comb (AFC) memory protocol in an isotopically pure 143Nd3+ :YLiF4 crystal. We use a tunable confocal Fabry-Perot cavity that is placed inside the cryostat. For a 1 mm thick sample with optical depth of 0.2 we obtain total storage efficiency of 3%, which is a 15-fold enhancement compared to the no cavity case. The memory bandwidth is limited by the inhomogeneous broadening of the optical transition and allows us to store short 30 ns pulses.

  17. Spectrum of the cavity-QED microlaser: strong coupling effects in the frequency pulling at off resonance.

    PubMed

    Hong, H-G; Seo, W; Song, Y; Lee, M; Jeong, H; Shin, Y; Choi, W; Dasari, R R; An, K

    2012-12-14

    We report the first experimental observation of the cavity-QED microlaser spectrum, specifically the unconventional frequency pulling brought by a strong atom-cavity coupling at off resonance. The pulling is enhanced quadratically by the atom-cavity coupling to result in a sensitive response to the number of pumping atoms (2.1 kHz per atom maximally). Periodic variation of the pulling due to the coherent Rabi oscillation is also observed as the number of pumping atoms is increased across multiple thresholds.

  18. [THE FREQUENCY OF FACTORS CONTRIBUTING TO THE FORMATION OF ADHESIONS IN THE ABDOMINAL CAVITY IN WOMEN].

    PubMed

    Akhmedov, F

    2017-01-01

    To determine the major factor that contributed to the formation of adhesions in the abdominal cavity in women with a history of surgical interventions, examined 86 women with adhesive disease (main group) in the past have suffered various surgeries. The average age of patients was 35,7±5,6 years. Clinical examination of patients included a collection of complaints, anamnesis of disease and life, physical examination. The degree of adhesion process in the abdominal cavity was evaluated according to the classification of the American Fertility Society (R-AFS, 1985) and the macroscopic scale proposed by N.I. Ayushinova and co-authors. I severity of adhesions was detected in 32 (37.2%) II stage - in 13 (15.1%), grade III - 14 (16.3%) and IV degree in 27 (31.4%) patients. The duration of the adhesive process averaged 6.3±0.6 years. Adhesions lasting 1-3 years met in 43.0% of cases, 4-5 years - in 31.4% of cases and more than 5 years - in 25.6% of cases. The reason for the formation of adhesions served as inflammatory diseases - at 39.5%, gynecological surgeries - in 32.7% of patients, appendectomy - 20.9%, surgery for acute intestinal obstruction - in 5.8% of patients. After laparotomy adhesions of grade III-IV were formed in 62.5% after laparoscopy - in 33.0% of cases, ie, in 1,9 times less (p <0,05). Adhesions in the abdominal cavity occurs in 39.5% of patients after salpingoophoritis and sexually transmitted infections, as well as in 32.7% women undergoing gynecological surgery. In 32.0% of patients with salpingoophoritis and 44.4% of STIs, there is a III-IV degree of adhesion. The frequency of high adhesion after laparotomy is 62.5%, after laparoscopy - 33.3%.

  19. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; ...

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  20. Locking the frequency of lasers to an optical cavity at the 1.6×10-17 relative instability level

    NASA Astrophysics Data System (ADS)

    Chen, Q.-F.; Nevsky, A.; Schiller, S.

    2012-06-01

    We stabilized the frequencies of two independent Nd:YAG lasers to two adjacent longitudinal modes of a high-finesse Fabry-Pérot resonator and obtained a beat frequency instability of 6.3 mHz at an integration time of 40 s. Referred to a single laser, this is 1.6×10-17 relative to the laser frequency, and 1.3×10-6 relative to the full width at half maximum of the cavity resonance. The amplitude spectrum of the beat signal had a FWHM of 7.8 mHz. This stable frequency locking is of importance for next-generation optical clock interrogation lasers and fundamental physics tests.

  1. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    SciTech Connect

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs.

  2. Relative frequency stabilization of extended-cavity diode lasers for the re-pumping of Ca ion

    SciTech Connect

    Minamino, K.; Hasegawa, S.

    2009-03-17

    Traditional stabilization methods of multiple lasers using Fabry-Perot interferometers need several optical devices for combining and separating the laser beams. Therefore, laser beams with similar frequencies are difficult to stabilize because they cannot be easily optically separated. For this reason, we built a new laser frequency stabilization system which does not require the optical separation of the laser beams. We achieved the frequency stabilization of two extended-cavity diode lasers using an FPI within {+-}5 MHz per hour.

  3. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    SciTech Connect

    Ford, Denise Christine

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  4. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Ford, Denise Christine

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic

  5. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    SciTech Connect

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  6. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    SciTech Connect

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  7. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  8. Approach to high-frequency, cavity-enhanced Faraday rotation in fluids.

    PubMed

    Pagliero, D; Li, Y; Fisher, S; Meriles, C A

    2011-02-10

    Recent work demonstrating detection of nuclear spin magnetization via Faraday rotation in transparent fluids promises novel opportunities for magnetic resonance imaging and spectroscopy. Unfortunately, low sensitivity is a serious concern. With this motivation in mind, we explore the use of an optical cavity to augment the Faraday rotation experienced by a linearly polarized beam traversing a sample fluid. Relying on a setup that affords reduced sample size and high-frequency modulation, we demonstrate amplification of regular (i.e., nonnuclear) Faraday rotation of order 20. Extensions of the present methodology that take into account the geometric constraints imposed by a high-field magnet may open the way to high-sensitivity, optically-detected magnetic resonance in the liquid state.

  9. Characterization of spatiotemporal chaos in a Kerr optical frequency comb and in all fiber cavities

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ouali, M.; Coulibaly, S.; Clerc, M. G.; Taki, M.; Tlidi, M.

    2017-03-01

    Complex spatiotemporal dynamics have been a subject of recent experimental investigations in optical frequency comb microresonators and in driven fiber cavities with a Kerr-type media. We show that this complex behavior has a spatiotemporal chaotic nature. We determine numerically the Lyapunov spectra, allowing to characterize different dynamical behavior occurring in these simple devices. The Yorke-Kaplan dimension is used as an order parameter to characterize the bifurcation diagram. We identify a wide regime of parameters where the system exhibits a coexistence between the spatiotemporal chaos, the oscillatory localized structure, and the homogeneous steady state. The destabilization of an oscillatory localized state through radiation of counter propagative fronts between the homogeneous and the spatiotemporal chaotic states is analyzed. To characterize better the spatiotemporal chaos, we estimate the front speed as a function of the pump intensity.

  10. Cavity-enhanced optical Hall effect in two-dimensional free charge carrier gases detected at terahertz frequencies.

    PubMed

    Knight, S; Schöche, S; Darakchieva, V; Kühne, P; Carlin, J-F; Grandjean, N; Herzinger, C M; Schubert, M; Hofmann, T

    2015-06-15

    The effect of a tunable, externally coupled Fabry-Perot cavity to resonantly enhance the optical Hall effect signatures at terahertz frequencies produced by a traditional Drude-like two-dimensional electron gas is shown and discussed in this Letter. As a result, the detection of optical Hall effect signatures at conveniently obtainable magnetic fields, for example, by neodymium permanent magnets, is demonstrated. An AlInN/GaN-based high-electron mobility transistor structure grown on a sapphire substrate is used for the experiment. The optical Hall effect signatures and their dispersions, which are governed by the frequency and the reflectance minima and maxima of the externally coupled Fabry-Perot cavity, are presented and discussed. Tuning the externally coupled Fabry-Perot cavity strongly modifies the optical Hall effect signatures, which provides a new degree of freedom for optical Hall effect experiments in addition to frequency, angle of incidence, and magnetic field direction and strength.

  11. Evaluation of thermal expansion coefficient of Fabry-Perot cavity using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindřich; Šmíd, Radek; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Jedlička, Petr; Lazar, Josef; Číp, Ondřej

    2011-05-01

    In construction of highly mechanically stable measuring devices like AFM microscopes or nano-comparators the use of low expansion materials is very necessary. We can find Zerodur ceramics or ULE glasses used as a frame or basement of these devices. The expansion coefficient of such low-expansion materials is lower than 0.01 x 10-6 m•K-1. For example in case of a frame or basement 20 cm long it leads to a dilatation approximately 4 nm per 1 K. For calculation of the total uncertainty of the mentioned measuring devices the knowledge of the thermal expansion coefficient of the frame or basement is necessary. In this work we present a method, where small distance changes are transformed into rf-frequency signal. The frequency of this signal is detected by a counter which measures the value of the frequency with respect to an ultra-stable time-base. This method uses a Fabry-Perot cavity as a distance measuring tool. The spacer of the optical resonator is made from the investigated low-expansion material. It is placed into a vacuum chamber where the inside temperature is controlled. A selected mode of the femtosecond frequency of the femtosecond comb which represent the distance changes of the optical resonator. The frequency is measured by the rf-counter which is synchronized by a time-base signal from an atomic clock. The first results show the resolution of the method in the 0.1 nm order. Therefore the method has a potential in characterisation of materials in the nanoworld.

  12. Experimental and Numerical Analysis of Hydroformed Tubular Materials for Superconducting Radio Frequency (SRF) Cavities

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Sung

    Superconducting radio frequency (SRF) cavities represent a well established technology benefiting from some 40 years of research and development. An increasing demand for electron and positron accelerators leads to a continuing interest in improved cavity performance and fabrication techniques. Therefore, several seamless cavity fabrication techniques have been proposed for eliminating the multitude of electron-beam welded seams that contribute to the introduction of performance-reducing defects. Among them, hydroforming using hydraulic pressure is a promising fabrication technique for producing the desired seamless cavities while at the same time reducing manufacturing cost. This study focused on experimental and numerical analysis of hydroformed niobium (Nb) tubes for the successful application of hydroforming technique to the seamless fabrication of multi-cell SRF cavities for particle acceleration. The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to both provide starting data for models of hydroforming of Nb tube into seamless SRF cavities. Based on the results of these experiments, numerical analyses using finite element modeling were conducted for a bulge deformation of Cu and Nb. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio (RRR) measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. For numerical analysis of hydroforming process, two different simulation approaches were used. The first model was the macro-scale continuum model using the constitutive equations (stress-strain relationship) as an input of the simulation. The constitutive equations were obtained from the experimental procedure including tensile and tube bulge tests in order to investigate the influence of loading

  13. Reliable and integrated technique for determining resonant frequency in radio frequency resonators. Application to a high-precision resonant cavity-based displacement sensor.

    PubMed

    Jauregui, Rigoberto; Asua, Estibaliz; Portilla, Joaquin; Etxebarria, Victor

    2015-03-01

    This paper presents a reliable and integrated technique for determining the resonant frequency of radio frequency resonators, which can be of interest for different purposes. The approach uses a heterodyne scheme as phase detector coupled to a voltage-controlled oscillator. The system seeks the oscillator frequency that produces a phase null in the resonator, which corresponds to the resonant frequency. A complete explanation of the technique to determine the resonant frequency is presented and experimentally tested. The method has been applied to a high-precision displacement sensor based on resonant cavity, obtaining a theoretical nanometric precision.

  14. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    PubMed

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations.

  15. A novel approach to a PPM-modulated frequency-doubled electro-optic cavity-dumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.

    1989-01-01

    A technique which can provide frequency doubling, with high efficiency, while cavity dumping a laser for pulse position M-ary modulation while being used for an optical communication link is discussed. This approach uses a secondary cavity that provides feedback of the undoubled fundamental light, which is normally lost, into the primary cavity to be recirculated and frequency doubled. Specific operations of the electrooptic modulator and frequency-doubling crystal are described along with the overall modulation scheme and experimental setup.

  16. A reference frequency database of 15 autosomal STRs in Chile.

    PubMed

    Toscanini, Ulises; Moreno, Fabián; Pantoja-Astudillo, Jaime A; Morales, Eugenia Aguirre; Bustos, Patricio; Salas, Antonio

    2015-11-01

    We estimated the allele frequencies for the 15 autosomal STR loci included in the AmpFlSTR(®) Identifiler (Applied Biosystems, USA) in a sample of 986 unrelated non-Native American individuals collected at five different localities from Chile, namely, Iquique, Santiago, Concepción, Temuco and Punta Arenas. Frequency distributions and several forensic parameters were estimated at each recruitment site. In addition, analyses were carried out merging the data into five sample locations. No significant statistical differences could be detected between different regions in Chile. These data represent one of the very few studies performed on autosomal STRs in Chile and therefore provide a useful tool for forensic casework carried out in the country.

  17. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source

    NASA Astrophysics Data System (ADS)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry-Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry-Perot cavities with a tunable spacing and Pound-Drever-Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry-Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  18. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    SciTech Connect

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-II superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.

  19. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    SciTech Connect

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  20. System and method for tuning adjusting the central frequency of a laser while maintaining frequency stabilization to an external reference

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)

    2011-01-01

    A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)

  1. Simultaneous fundamental and subharmonic/ harmonic frequency signals generation from a dual-cavity fiber laser based on regenerative mode-locking and active mode-locking

    NASA Astrophysics Data System (ADS)

    Zi, Yuejiao; Jiang, Yang; Tian, Jing; Bai, Guangfu; Xia, Yi; He, Yutong; Zhang, Xiaoyu

    2017-07-01

    This paper presents a dual-cavity mode-locked laser, which is able to simultaneously output two optical pulses with different wavelengths and frequency. In this dual-cavity configuration, one cavity works as a regenerative mode-locked laser and outputs signal with a fundamental repetition frequency, the other one acts as an active mode-locked laser and generates signal with subharmonic or harmonic frequency by fine tuning the cavity length. In experimental demonstration, 5 GHz signal from regenerative mode-locked cavity and 2.5/ 5/ 10/ 15/ 20 GHz signal from active mode-locked cavity are simultaneously obtained. Additionally, signals in active mode-locked cavity get further super-mode suppression.

  2. A Novel Micro- and Nano-Scale Positioning Sensor Based on Radio Frequency Resonant Cavities

    PubMed Central

    Asua, Estibaliz; Etxebarria, Victor; García-Arribas, Alfredo; Feutchwanger, Jorge; Portilla, Joaquín; Lucas, Julio

    2014-01-01

    In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces. PMID:24887041

  3. A novel micro- and nano-scale positioning sensor based on radio frequency resonant cavities.

    PubMed

    Asua, Estibaliz; Etxebarria, Victor; García-Arribas, Alfredo; Feutchwanger, Jorge; Portilla, Joaquín; Lucas, Julio

    2014-05-30

    In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.

  4. Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2010-07-05

    We demonstrate high power (2.1W) low noise single frequency operation of a tunable compact verical-external-cavity surface-emitting- laser exhibiting a high beam quality. We took advantage of thermal lens-based stability to develop a short (3-10 mm) plano-plano external cavity without any intracavity filter. The semiconductor structure emitting at 1microm is optically pumped by a 8W commercial 808 nm multimode diode laser at large incidence angle. For heat management purpose the GaAs-based VECSEL membrane was bonded on a SiC substrate. We measured a low divergence quasi-circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (>30 dB).We simulated the steady state laser beam of this unstable cavity using Fresnel diffraction. The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (< 0.1%), with a cutoff frequency approximately 41MHz above which the shot noise level is reached. The key parameters limiting the laser power and coherence are studied. This design/properties can be extended to other wavelengths.

  5. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform.

    PubMed

    Zhang, Wang; Su, Tao

    2016-09-22

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  6. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    PubMed Central

    Zhang, Wang; Su, Tao

    2016-01-01

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed. PMID:27669242

  7. A numerical study of the effect of frequency of pulsed flow control applied to a rectangular cavity in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Stanek, Michael J.

    Stabilization of turbulent free shear flows is a poorly understood, and recently discovered flow phenomenon, not described in modern textbooks on fluid dynamics. This dissertation describes the design and large-scale experimental test of one type of flow control actuator, a rod in crossflow, which is shown to pulse at high frequency (relative to the dominant instabilities of a turbulent free shear layer), and in the process, locally stabilizes that shear layer. The shear layer in question spans a cavity (representative of a 1/10th scale modern aircraft weapons bay) in supersonic (Mach 1.2) crossflow. Without the high frequency flow control, the cavity experiences acoustic resonance (and the creation of large coherent vortical structures), which creates sound pressure levels high enough to fatigue aircraft components. With the high frequency control (and the local shear layer stabilization), the sound pressure levels are rendered benign. Evidence of suppression due to other types of high frequency pulsing devices (primarily resonance tube type designs) is also presented. A numerical study is undertaken to investigate the nature of the stabilization and acoustic suppression. An implicit, 2nd-order in space and time flow solver, coupled with a recently-developed hybrid RANS-LES turbulence model by Nichols, is utilized in a Chimera-based parallel format, to numerically simulate both the unsuppressed cavity in resonance, as well as the effect of pulsing flow control. Due to the limited ability to vary frequency using a rod in crossflow type device, a pulsed jet device is simulated instead. Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0 Hz (steady) up to 5000 Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. The observed local stabilization of the cavity turbulent shear layer is shown in simulation to be the result of a violent instability

  8. Superconducting Storage Cavity for RHIC

    SciTech Connect

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  9. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior

    SciTech Connect

    Kalaria, P. C. Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2016-09-15

    High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power with an interaction efficiency of 36% including the considerations of realistic beam parameters.

  10. Phase-locked 10 MHz reference signal for frequency domain time-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Smith, Trevor A.; Bird, Damian K.; Nuske, John W.

    2007-05-01

    A complete electronic system that is suitable for use in megahertz frequency domain time-resolved fluorescence instruments based on mode-locked lasers is described. The circuit produces a 10MHz signal, phase locked to the mode-locked laser pulse frequency, which is required by many commercial frequency synthesizers as the external reference signal. This device is particularly useful in conjunction with ultrafast gated intensified charge coupled device cameras capable of being frequency modulated for time-resolved fluorescence imaging.

  11. Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket

    NASA Astrophysics Data System (ADS)

    Dinkelaker, Aline N.; Schiemangk, Max; Schkolnik, Vladimir; Kenyon, Andrew; Lampmann, Kai; Wenzlawski, André; Windpassinger, Patrick; Hellmig, Ortwin; Wendrich, Thijs; Rasel, Ernst M.; Giunta, Michele; Deutsch, Christian; Kürbis, Christian; Smol, Robert; Wicht, Andreas; Krutzik, Markus; Peters, Achim

    2017-02-01

    We have developed, assembled, and flight-proven a stable, compact, and autonomous extended cavity diode laser (ECDL) system designed for atomic physics experiments in space. To that end, two micro-integrated ECDLs at 766.7 nm were frequency stabilized during a sounding rocket flight by means of frequency modulation spectroscopy (FMS) of 39^K and offset locking techniques based on the beat note of the two ECDLs. The frequency stabilization as well as additional hard- and software to test hot redundancy mechanisms were implemented as part of a state-machine, which controlled the experiment completely autonomously throughout the entire flight mission.

  12. Astronomical Verification of a Stabilized Frequency Reference Transfer System for the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Gozzard, David R.; Schediwy, Sascha W.; Dodson, Richard; Rioja, María J.; Hill, Mike; Lennon, Brett; McFee, Jock; Mirtschin, Peter; Stevens, Jamie; Grainge, Keith

    2017-07-01

    In order to meet its cutting-edge scientific objectives, the Square Kilometre Array (SKA) telescope requires high-precision frequency references to be distributed to each of its antennas. The frequency references are distributed via fiber-optic links and must be actively stabilized to compensate for phase noise imposed on the signals by environmental perturbations on the links. SKA engineering requirements demand that any proposed frequency reference distribution system be proved in “astronomical verification” tests. We present results of the astronomical verification of a stabilized frequency reference transfer system proposed for SKA-mid. The dual-receiver architecture of the Australia Telescope Compact Array was exploited to subtract the phase noise of the sky signal from the data, allowing the phase noise of observations performed using a standard frequency reference, as well as the stabilized frequency reference transfer system transmitting over 77 km of fiber-optic cable, to be directly compared. Results are presented for the fractional frequency stability and phase drift of the stabilized frequency reference transfer system for celestial calibrator observations at 5 and 25 GHz. These observations plus additional laboratory results for the transferred signal stability over a 166 km metropolitan fiber-optic link are used to show that the stabilized transfer system under test exceeds all SKA phase-stability requirements within a broad range of observing conditions. Furthermore, we have shown that alternative reference dissemination systems that use multiple synthesizers to supply reference signals to sub-sections of an array may limit the imaging capability of the telescope.

  13. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    DOE PAGES

    Ciovati, G.; Geng, R.; Lushtak, Y.; ...

    2016-10-28

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF testsmore » of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. Here, the results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.« less

  14. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    SciTech Connect

    Ciovati, G.; Geng, R.; Lushtak, Y.; Manini, P.; Maccallini, E.; Stutzman, M.

    2016-10-28

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF tests of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. Here, the results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.

  15. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  16. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  17. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Foltynowicz, A.; Masłowski, P.; Fleisher, A. J.; Bjork, B. J.; Ye, J.

    2013-02-01

    We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10-9 cm-1 Hz-1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10-11 cm-1 Hz-1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.

  18. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-07-15

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. An output power of 1.54 W is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. To our knowledge, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America

  19. Suppressing gate errors in frequency-domain quantum computation through extra physical systems coupled to a cavity

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi; Goto, Hayato; Kujiraoka, Mamiko; Ichimura, Kouichi

    2016-12-01

    We propose a scheme for frequency-domain quantum computation (FDQC) in which the errors due to crosstalk are suppressed using extra physical systems coupled to a cavity. FDQC is a promising method to realize large-scale quantum computation, but crosstalk is a major problem. When physical systems employed as qubits satisfy specific resonance conditions, gate errors due to crosstalk increase. In our scheme, the errors are suppressed by controlling the resonance conditions using extra physical systems.

  20. LASERS: Low-frequency power and pointing noises of a spectrally-selective external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Bruevich, V. V.; Elizarov, S. G.; Parashchuk, D. Yu

    2006-05-01

    The spectral density of low-frequency power noise and pointing noises of an external cavity AlGaAs/GaAs laser in Littman—Metcalf configuration is studied in the frequency region up to 1 kHz. The relative level of the power and pointing noises in the laser operating on a single longitudinal mode of the external resonator was ~10-6 Hz-1/2 and did not change substantially when the feedback was switched off. Long-term intensity fluctuations caused by intermode switchings did not exceed 2%.

  1. Low-frequency power and pointing noises of a spectrally-selective external-cavity diode laser

    SciTech Connect

    Bruevich, V V; Elizarov, S G; Parashchuk, D Yu

    2006-05-31

    The spectral density of low-frequency power noise and pointing noises of an external cavity AlGaAs/GaAs laser in Littman-Metcalf configuration is studied in the frequency region up to 1 kHz. The relative level of the power and pointing noises in the laser operating on a single longitudinal mode of the external resonator was {approx}10{sup -6} Hz{sup -1/2} and did not change substantially when the feedback was switched off. Long-term intensity fluctuations caused by intermode switchings did not exceed 2%. (lasers)

  2. Frequency scanning interferometry with nanometer precision using a vertical-cavity surface-emitting laser diode under scanning speed control

    NASA Astrophysics Data System (ADS)

    Kakuma, Seiichi

    2015-12-01

    Frequency scanning interferometry technique with a nanometer precision using a vertical-cavity surface-emitting laser diode (VCSEL) is presented. Since the frequency scanning of the VCSEL is linearized by the phase-locked-loop technique, the gradient of the interference fringe order can be precisely determined using linear least squares fitting. This enables a length measurement with a precision better than a quarter wavelength, and the absolute fringe number including the integer part at the atomic transition spectrum (rubidium-D2 line) is accurately determined. The validity of the method is demonstrated by excellent results of block gauge measurement with a root mean square error better than 5 nm.

  3. Heating properties of the re-entrant type cavity applicator for brain tumor with several resonant frequencies.

    PubMed

    Suzuki, M; Kato, K; Hirashima, T; Shindo, Y; Uzuka, T; Takahashi, H; Fujii, Y

    2009-01-01

    We have proposed the re-entrant resonant cavity applicator system for non-invasive brain tumor hyperthermia treatment. In this method, a human head is placed in the gap of the inner electrodes. A brain tumor is heated with the electromagnetic field stimulated in the cavity without contact between the human head and the applicator. We have already presented the effectiveness of the heating properties of this system with cylinder-type agar phantoms and by computer simulations. This paper discusses the heating properties of the developed system with the human head-type agar phantom for brain tumor hyperthermia treatment. First, in order to heat deep brain tumors, we tried to heat the human head-type agar phantom by using several electromagnetic field patterns of the resonant frequency. We found that the temperature distributions can be controlled inside the agar phantom by changing the resonant frequencies. Second, to heat local and deep areas of the agar phantom, we tried to achieve heating using the two different resonant frequencies. We found distinct heating properties by changing the electromagnetic field patterns of resonant frequencies. From these results, it was found that our developed heating system can be applied to hyperthermia treatments of deep-seated brain tumors. Further, by changing resonant frequency, treatment can very correspond to the size and the position of a tumor.

  4. A single-frequency, diode-pumped Nd:YLF laser at 657 nm: a frequency and intensity noise comparison with an extended cavity diode laser

    NASA Astrophysics Data System (ADS)

    Nunez Portela, M.; Wetter, N. U.; Zondy, J. J.; Cruz, F. C.

    2013-02-01

    We report on a continuous wave, diode-pumped, intracavity frequency-doubled Nd:YLF (yttrium lithium fluoride) single-frequency ring laser designed for high-resolution spectroscopy of the calcium intercombination transition at 657 nm. We measured its frequency modulation (FM) and amplitude modulation (AM) noise and compared it with an extended cavity diode laser (ECDL). The Nd:YLF laser has much lower FM noise, extending to 50 kHz in comparison with 5 MHz for the ECDL, and slightly higher AM noise, transferred from the pump diode laser. This characterization is important for the design of servo-systems for frequency or intensity stabilization, and also for quantum optics experiments. A Nd:YLF laser at 657 nm can become an attractive high-power ‘local oscillator’ for a calcium optical clock, with a fundamental ‘telecom wavelength’ that can be directly used for remote transfer in optical fibers.

  5. Coherent-state storage and retrieval between superconducting cavities using parametric frequency conversion

    SciTech Connect

    Sirois, A. J.; Castellanos-Beltran, M. A.; DeFeo, M. P.; Ranzani, L.; Lecocq, F.; Simmonds, R. W.; Teufel, J. D.; Aumentado, J.

    2015-04-27

    In superconducting quantum information, machined aluminum superconducting cavities have proven to be a well-controlled, low-dissipation electromagnetic environment for quantum circuits such as qubits. They can possess large internal quality factors, Q{sub int} > 10{sup 8}, and present the possibility of storing quantum information for times far exceeding those of microfabricated circuits. However, in order to be useful as a storage element, these cavities require a fast “read/write” mechanism—in other words, they require tunable coupling between other systems of interest such as other cavity modes and qubits, as well as any associated readout hardware. In this work, we demonstrate these qualities in a simple dual cavity architecture in which a low-Q “readout” mode is parametrically coupled to a high-Q “storage” mode, allowing us to store and retrieve classical information. Specifically, we employ a flux-driven Josephson junction-based coupling scheme to controllably swap coherent states between two cavities, demonstrating full, sequenced control over the coupling rates between modes.

  6. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Wenskat, M.

    2017-05-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.

  7. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  8. Microresonator-stabilized extended-cavity diode laser for supercavity frequency stabilization

    NASA Astrophysics Data System (ADS)

    Lim, Jinkang; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Huang, Shu-Wei; Maleki, Lute; Wong, Chee Wei

    2017-04-01

    We demonstrate a simple, compact, and cost-effective laser noise reduction method for stabilizing an extended cavity diode laser to a 3x105 finesse mirror Fabry-P\\'erot (F-P) cavity corresponding to resonance linewidth of 10 kHz using a crystalline MgF2 whispering gallery mode microresonator (WGMR). The laser linewidth is reduced to sub-kHz such that a stable Pound-Drever-Hall (PDH) error signal is built up. The wavelength of the pre-stabilized laser is tunable within a large bandwidth covering the high reflection mirror coating of a F-P supercavity.

  9. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Sabry; Simbula, Angelica; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald

    2017-03-01

    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10-3 W-1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  10. Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization.

    PubMed

    Schwettmann, Arne; Sedlacek, Jonathon; Shaffer, James P

    2011-10-01

    We present a locking circuit for external cavity diode lasers implemented on a field-programmable gate array (FPGA). The main advantages over traditional non-FPGA-based locking circuits are rapid reconfigurability without any soldering and a friendly user interface. We characterize the lock quality by measuring the linewidth of a locked laser using electromagnetically induced transparency in a Rb vapor cell.

  11. Study of Gain in C-Band Deflection Cavities for a Frequency-Doubling Magnicon Amplifier

    DTIC Science & Technology

    1993-03-26

    surface cleanliness , and background vacuum pressure. The threshold for multipactor in the drive cavity, in the presence of the axial magnetic field, was...different degrees of surface cleanliness . In order to make an unambiguous test of the linear interaction theory, the experimental gain measurements were

  12. Real-time drift error compensation in a self-reference frequency-scanning fiber interferometer

    NASA Astrophysics Data System (ADS)

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Liu, Zhe; Hong, Jun

    2017-01-01

    In order to eliminate the fiber drift errors in a frequency-scanning fiber interferometer, we propose a self-reference frequency-scanning fiber interferometer composed of two fiber Michelson interferometers sharing common optical paths of fibers. One interferometer defined as reference interferometer is used to monitor the optical path length drift in real time and establish a measurement fixed origin. The other is used as a measurement interferometer to acquire the information from the target. Because the measured optical path differences of the reference and measurement interferometers by frequency-scanning interferometry include the same fiber drift errors, the errors can be eliminated by subtraction of the former optical path difference from the latter optical path difference. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability.

  13. Interferometric determination of the silicon sphere diameter using a laser frequency tuning system calibrated by a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Wu, Xuejian; Zhang, Jitao; Wei, Haoyun; Li, Yan

    2012-11-01

    In order to obtain an accurate Avogadro constant with a relative uncertainty of 1×10-8 to redefine the kilogram, the diameter of a perfect single crystal silicon sphere is required with the measurement uncertainty of 0.3 nm using the X-ray crystal density method. To achieve this, phase-shifting interferometers have been developed. A laser frequency tuning system calibrated by a Fabry-Perot cavity is proposed to improve the laser wavelength and the phase-shift accuracy. The laser frequency standard deviation of the beat frequency is 85 kHz with a gate time of 0.1 s. The gap distances in the diameter determination interferometer are measured based on the laser tuning system, which are 275.3 nm and 110.5 nm, respectively.

  14. Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity

    NASA Astrophysics Data System (ADS)

    Jones, R. Jason; Moll, Kevin D.; Thorpe, Michael J.; Ye, Jun

    2005-05-01

    We demonstrate the generation of phase-coherent frequency combs in the vacuum utraviolet spectral region. The output from a mode-locked laser is stabilized to a femtosecond enhancement cavity with a gas jet at the intracavity focus. The resulting high-peak power of the intracavity pulse enables efficient high-harmonic generation by utilizing the full repetition rate of the laser. Optical-heterodyne-based measurements reveal that the coherent frequency comb structure of the original laser is fully preserved in the high-harmonic generation process. These results open the door for precision frequency metrology at extreme ultraviolet wavelengths and permit the efficient generation of phase-coherent high-order harmonics using only a standard laser oscillator without active amplification of single pulses.

  15. Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer.

    PubMed

    Wei, Fang; Chen, Dijun; Fang, Zujie; Cai, Haiwen; Qu, Ronghui

    2010-11-15

    We propose a modulation-free technique for frequency stabilization of an external-cavity diode laser (ECDL) by using a phase-difference biased Sagnac interferometer to produce dispersion spectroscopic error signals. A half-wave plate and a total internal reflection prism are inserted into the loop to provide a phase-difference bias between the clockwise and counterclockwise beams with perpendicular polarizations, instead of the previous method with misaligned optical paths. In the experiments, the frequency of the Littman-Metcalf configuration ECDL is locked at the transition of the Rb atomic vapor, and the frequency fluctuation is suppressed from 8 to less than 0.5 MHz peak to peak. It is shown that this scheme is simple, robust, low cost, and it shows promise for use in a variety of related applications.

  16. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications.

    PubMed

    Paquet, Romain; Blin, Stéphane; Myara, Mikhaël; Gratiet, Luc Le; Sellahi, Mohamed; Chomet, Baptiste; Beaudoin, Grégoire; Sagnes, Isabelle; Garnache, Arnaud

    2016-08-15

    We report a continuous-wave highly-coherent and tunable dual-frequency laser emitting at two frequencies separated by 30 GHz to 3 THz, based on compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology. The concept is based on the stable simultaneous operation of two Laguerre-Gauss transverse modes in a single-axis short cavity, using an integrated sub-wavelength-thick metallic mask. Simultaneous operation is demonstrated theoretically and experimentally by recording intensity noises and beat frequency, and time-resolved optical spectra. We demonstrated a >80  mW output power, diffraction-limited beam, narrow linewidth of <300  kHz, linear polarization state (>45  dB), and low intensity noise class-A dynamics of <0.3% rms, thus opening the path to a compact low-cost coherent GHz to THz source development.

  17. Tilted-reference-beam lateral shearing interferometer utilizing carrier-frequency photography.

    PubMed

    Hong, Y M

    1975-03-01

    Double-exposure carrier-frequency photography where the grating is rotated between exposures is used for observing phase objects. The resulting interferogram is similar to those obtained from interferometers using a tilted reference beam. Positive and negative gradients of the phase variation can be distinguished. Furthermore, it is shown that the image of a grating in carrier-frequency photography can be achieved by using an image-forming lens or by using the self-imaging property of the grating.

  18. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  19. Efficient frequency generation in phoXonic cavities based on hollow whispering gallery mode resonators

    PubMed Central

    Farnesi, Daniele; Righini, Giancarlo; Nunzi Conti, Gualtiero; Soria, Silvia

    2017-01-01

    We report on nonlinear optical effects on phoxonic cavities based on hollow whispering gallery mode resonators pumped with a continuous wave laser. We observed stimulated scattering effects such as Brillouin and Raman, Kerr effects such as degenerated and non-degenerated four wave mixing, and dispersive wave generation. These effects happened concomitantly. Hollow resonators give rise to a very rich nonlinear scenario due to the coexistence of several family modes. PMID:28266641

  20. Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers

    SciTech Connect

    Ackemann, T.; Sondermann, M.

    2001-06-04

    Polarization selection in small-area vertical-cavity surface-emitting lasers is studied experimentally in dependence of injection current and substrate temperature in the vicinity of the minimum threshold condition. Polarization switching from the low to the high frequency fundamental spatial mode is demonstrated. The effective birefringence displays a minimum in the transition region. The observation of dynamical transition states hints to the relevance of nonlinear effects. A comparison to the predictions of the San Miguel{endash}Feng{endash}Moloney model based on phase-amplitude coupling is given. {copyright} 2001 American Institute of Physics.

  1. Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities

    DOE PAGES

    Xu, Chen; Tantawi, Sami

    2016-02-25

    This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S(1,1) varying from 0 to -30 db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. As a result, the coupling mechanism to the cavity is also discussed.

  2. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    SciTech Connect

    Becker, Chaoyue; Posen, Sam; Hall, Daniel Leslie; Groll, Nickolas; Proslier, Thomas; Cook, Russell; Schlepütz, Christian M.; Liepe, Matthias; Pellin, Michael; Zasadzinski, John

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  3. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    DOE PAGES

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; ...

    2015-02-23

    Here, we present an analysis of Nb3Sn surface layers grown on a bulk Nb coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveal a well developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperature's (Tc) up to 16.3K. Transmission electron microscopy (TEM) performed on cross sections of the sample's surface shows a ~ 2 microns thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio ofmore » 3:1 with buried substoichiometric regions with a ratio of 5:1. Synchrotron diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupies about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn -coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.« less

  4. Measuring the dispersive frequency shift of a rectangular microwave cavity induced by an ensemble of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stammeier, M.; Garcia, S.; Thiele, T.; Deiglmayr, J.; Agner, J. A.; Schmutz, H.; Merkt, F.; Wallraff, A.

    2017-05-01

    In recent years the interest in studying interactions of Rydberg atoms or ensembles thereof with optical and microwave frequency fields has steadily increased, both in the context of basic research and for potential applications in quantum information processing. We present measurements of the dispersive interaction between an ensemble of helium atoms in the 37 s Rydberg state and a single resonator mode by extracting the amplitude and phase change of a weak microwave probe tone transmitted through the cavity. The results are in quantitative agreement with predictions made on the basis of the dispersive Tavis-Cummings Hamiltonian. We study this system with the goal of realizing a hybrid between superconducting circuits and Rydberg atoms. We measure maximal collective coupling strengths of 1 MHz, corresponding to 3 ×103 Rydberg atoms coupled to the cavity. As expected, the dispersive shift is found to be inversely proportional to the atom-cavity detuning and proportional to the number of Rydberg atoms. This possibility of measuring the number of Rydberg atoms in a nondestructive manner is relevant for quantitatively evaluating scattering cross sections in experiments with Rydberg atoms.

  5. Broad-band magnetic induction probe calibration using a frequency-corrected reference probe.

    PubMed

    Hill, Carrie

    2013-10-01

    Finite impedances of magnetic induction probes attenuate and shift the field fluctuations measured by the probe so that they differ from the measured signal at the digitizer. These effects vary with frequency. Traditionally, impedance effects have been accounted for in the calibration process by sweeping the frequency of the magnetic field source through a range of frequencies. Situations arise where the conventional calibration method is not feasible due to probe geometry or hardware constraints. A new calibration technique is presented in this paper which calibrates the probe in situ at a single frequency and uses impedance measurements of the probe assembly across the desired frequency range to account for broad-band effects. The in situ calibration technique requires a reference probe with a known proportionality constant NA and known impedances. Impedance effects are corrected in the probe signal using broad-band impedance measurements included in a transfer function in frequency space. The in situ calibration technique is shown to be complicated by capacitive coupling between the probes and the high voltage source coil. Circuit modeling demonstrates that this coupling introduces negligible attenuation and a small phase-delay so that the relative phase-delay between the reference and target probe signals can be corrected by shifting the signals in time. In summary, this calibration method extends traditional single-frequency calibration techniques to broad-band applications, accounting for important non-ideal effects to improve the accuracy of the magnetic field measurement.

  6. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  7. Square Kilometre Array Telescope—Precision Reference Frequency Synchronisation via 1f-2f Dissemination

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zhu, X.; Gao, C.; Bai, Y.; Dong, J. W.; Wang, L. J.

    2015-09-01

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements.

  8. Square Kilometre Array Telescope--Precision Reference Frequency Synchronisation via 1f-2f Dissemination.

    PubMed

    Wang, B; Zhu, X; Gao, C; Bai, Y; Dong, J W; Wang, L J

    2015-09-09

    The Square Kilometre Array (SKA) project is an international effort to build the world's largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements.

  9. Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE with Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1997-01-01

    Application of Asymptotic Waveform Evaluation (AWE) is presented in conjunction with a hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique to calculate the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FEM/MoM technique is used to form an integro-partial-differential equation to compute the electric field distribution of the cavity-backed aperture antenna. The electric field, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of 'Taylor series (called 'moments') are obtained using the frequency derivatives of the integro-partial-differential Equation formed by the hybrid FEM/MoM technique. Using the moments, the electric field in the cavity is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency band. Numerical results for an open coaxial line, probe fed cavity, and cavity-backed microstrip patch antennas are presented. Good agreement between AWE and the exact solution over the frequency range is observed.

  10. Vortex Ring Formation Characteristics in Synthetic Jet due to Changes of Excitation Frequency in the ½-Ball Cavity Actuator

    NASA Astrophysics Data System (ADS)

    Kosasih, Engkos A.; Harinaldi; Trisno, Ramon

    2017-04-01

    A jet flow that contains vortex ring has a large energy compared to a regular jet. As one of the causes of the aerodynamic drag to the vehicle, the flow separation that occurs behind the bluff body must be controlled, so that aerodynamic drag can be significantly reduced. This study is a basic work on the development of turbulent flow separation control for aerodynamic purpose, especially in the design of the vehicle body. The main objective of this study is to analyze the performance of the synthetic jet (SJA) as one of flow control tool to reduce separation area. To get the maximum performance of the synthetic jet actuator, the research starts by characterizing the actuator. Characterization of ½ ball-shaped cavity is done with excitation frequency changes and orifice diameter of 3, 5 and 8 mm. The study was conducted using computational and experimental methods. The experimental data was obtained by testing synthetic jet actuator with providing sinusoidal signal to drive the membrane and at the orifice end a hotwire probe that is set and plugged into a CTA (Constant Temperature Anemometry) to obtain the speed velocity of the exhaust jet. Computational methods used a commercial CFD software (FLUENT 6.3) with a Reynolds Stress Model as a model of turbulence. Each of these calculations or measurements was conducted under the same conditions. The research result is displayed in frequency testing curve to get the maximum velocity of the jet stream. The results are further indicative of the synthetic jet actuator capability to generate vortex rings. In the experimental results, the determination of ring vortex formation taken from the calculation of the flow velocity, while the CFD simulations, the formation of vortex rings can be seen from the visualization of the flow contour. Vortex ring formed from this ½ -ball cavity, occurred at 3 mm and 5 mm orifice diameter, while the 8 mm orifice diameter cavity cannot form a ring vortex.

  11. Development of multi-frequency ESR/EDMR system using a rectangular cavity equipped with waveguide window.

    PubMed

    Fukuda, Kunito; Asakawa, Naoki

    2016-11-01

    A straightforward method for a variable frequency electron spin resonance/electrically detected magnetic resonance (ESR/EDMR) spectroscopy using a C-band microwave cavity equipped with waveguide windows is presented. The method enables us to perform quasi-continuous multiple resonance frequency (MF-ESR/EDMR) experiments for electronic devices. The C-band microwave circuitry was selected because of larger available sample volume than that for conventional X-band one. All the measurements were performed using a combined sample of 2,2-diphenyl-1-picrylhydrazyl/ pn-junction Si diode. The present simple MF-ESR/EDMR method will be useful for the characterization of electronic and optoelectronic devices.

  12. Development of multi-frequency ESR/EDMR system using a rectangular cavity equipped with waveguide window

    NASA Astrophysics Data System (ADS)

    Fukuda, Kunito; Asakawa, Naoki

    2016-11-01

    A straightforward method for a variable frequency electron spin resonance/electrically detected magnetic resonance (ESR/EDMR) spectroscopy using a C-band microwave cavity equipped with waveguide windows is presented. The method enables us to perform quasi-continuous multiple resonance frequency (MF-ESR/EDMR) experiments for electronic devices. The C-band microwave circuitry was selected because of larger available sample volume than that for conventional X-band one. All the measurements were performed using a combined sample of 2,2-diphenyl-1-picrylhydrazyl/ pn-junction Si diode. The present simple MF-ESR/EDMR method will be useful for the characterization of electronic and optoelectronic devices.

  13. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  14. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  15. 532-nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Shchegrov, Andrei V.; Umbrasas, Arvydas; Watson, Jason P.; Lee, Dicky; Amsden, Charles A.; Ha, Wonill; Carey, Glen P.; Doan, Vincent V.; Moran, Bryan; Lewis, Alan; Mooradian, Aram

    2004-07-01

    We introduce a novel type of cw green laser source, the Protera 532, based on the intracavity frequency doubling of an extended-cavity, surface-emitting diode laser. The distinguishing characteristics of this platform are high compactness and efficiency in a stable, single-longitudinal mode with beam quality M2 < 1.2. The laser design is based on the previously reported NECSEL architecture used for 488nm lasers, and includes several novel features to accommodate different types of nonlinear optical materials. The infrared laser die wavelength is increased from 976nm to 1064nm without compromising performance or reliability. The intracavity frequency doubling to 532nm has been demonstrated with both bulk and periodically poled nonlinear materials, with single-ended cw power outputs of greater than 30 mW.

  16. An ultra-wide-band optical frequency comb generator based on semiconductor quantum dot F-P cavity

    NASA Astrophysics Data System (ADS)

    Sun, Wenhui; Liu, Jianguo; Wang, Wenting; Guo, Jinjin; Chen, Wei; Zhu, Ninghua

    2014-11-01

    An ultra wideband optical frequency comb (OFC) generator based on semiconductor Quantum dot F-P cavity is packaged by our group. The free spectral rage (FSR) of the OFC can be tunable from 97GHz to 100GHz and the pulse width of the 100GHz OFC is 1.2ps.The full span of the OFC spectra is 80nm with a Gaussian shaped, and in span of 10nm, the flatness of the OFC can be limited to 1.7dB. The OFC has the advantages of small volume, simple and compact structure, low power dissipation, and has an ultra-wide bandwidth and flat spectrum, which can be used in the field of arbitrary waveform generation, channel information processing, and optical frequency division multiplexing.

  17. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  18. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  19. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    SciTech Connect

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  20. Dual-Frequency Operation in a Short-Cavity Ytterbium-Doped Fiber Laser

    SciTech Connect

    Guan, W.; Maricante, J.R.

    2007-02-15

    A dual-frequency 2-cm silica fiber laser with a wavelength spacing of 0.3 nm has been demonstrated using a polarization-maintaining (PM) fiber-Bragg-grating (FBG) reflector. The birefringence of the PM FBG was used to generate the two single-mode (SM) lasing frequencies of orthogonal polarizations. The SM operation in each wavelength has been verified.

  1. High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator.

    SciTech Connect

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2005-02-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803{approx}nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency {lambda} = 320 nm pulses with energies up to 140 mJ.

  2. High efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Armstrong, Darrell J.; Smith, Arlee V.

    2005-03-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803~nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency λ = 320 nm pulses with energies up to 140 mJ.

  3. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    DOE PAGES

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; ...

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level.more » We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake.« less

  4. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    SciTech Connect

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  5. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-01

    Nanoscale defect structure within the magnetic penetration depth of ˜100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  6. High-efficiency frequency upconversion of 1.5 μm laser based on a doubly resonant external ring cavity with a low finesse for signal field

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Qiu, Xiaodong; Zhao, Gang; Jia, Mengyuan; Ma, Weiguang; Yan, Xiaojuan; Dong, Lei; Zhang, Lei; Tong, Zhaomin; Yin, Wangbao; Feng, Xiaoxia; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2017-02-01

    A doubly resonant external ring cavity with a low finesse for the signal field is used to improve the frequency upconversion efficiency of a weak 1583 nm signal laser to 636 nm by mixing with a resonance power enhanced 1064 nm pump laser in a 25 mm periodically poled lithium niobate crystal. The process of frequency upconversion is described and optimized by the doubly resonant cavity-enhanced sum frequency generation theory under the condition of undepleted pump approximation. By selecting the suitable reflectivity of the signal input mirror and the incident pump power, a cavity-enhanced frequency conversion efficiency of 94.6% was obtained for signal powers up to 25 mW with an input pump power of 780 mW.

  7. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    PubMed Central

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  8. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10‑9 fs2/Hz (equivalent to ‑174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

  9. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  10. Synthesis of Optical Frequencies and Ultrastable Femtosecond Pulse Trains from an Optical Reference Oscillator

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Ramond, T. M.; Diddams, S. A.; Hollberg, L.

    Recently, atomic clocks based on optical frequency standards have been demonstrated [1,2]. A key element in these clocks is a femtosecond laser that downconverts the petahertz oscillation rate into countable ticks at 1 GHz. When compared to current microwave standards, these new optical clocks are expected to yield an improvement in stability and accuracy by roughly a factor of 1000. Furthermore, it is possible that the lowest noise microwave sources will soon be based on atomically-stabilized optical oscillators that have their frequency converted to the microwave domain via a femtosecond laser. Here, we present tests of the ability of femtosecond lasers to transfer stability from an optical oscillator to their repetition rates as well as to the associated broadband frequency comb. In a first experiment, we phase-lock two lasers to a stabilized laser diode and find that the relative timing jitter in their pulse trains can be on the order of 1 femtosecond in a 100 kHz bandwidth. It is important to distinguish this technique from previous work where a femtosecond laser has been stabilized to a microwave standard [3,4] or another femtosecond laser [5]. Furthermore, we extract highly stable microwave signals with a fractional frequency instability of 2×10-14 in 1 s by photodetection of the laser pulse trains. In a second experiment, we similarly phase-lock the femtosecond laser to an optical oscillator with linewidth less than 1 Hz [6]. The precision with which we can make the femtosecond frequency comb track this reference oscillator is then tested by a heterodyne measurement between a second stable optical oscillator and a mode of the frequency comb that is displaced 76 THz from the 1 Hz-wide reference. From this heterodyne signal we place an upper limit of 150 Hz on the linewidth of the elements of the frequency comb, limited by the noise in the measurement itself.

  11. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    SciTech Connect

    Beringer, D. B.; Roach, W. M.; Clavero, C.; Reece, C. E.; Lukaszew, R. A.

    2013-02-05

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ~500 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [ Appl. Phys. Lett. 88 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  12. THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II

    SciTech Connect

    Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

  13. Low-frequency fluctuations in an external-cavity laser leading to extreme events

    NASA Astrophysics Data System (ADS)

    Choi, Daeyoung; Wishon, Michael J.; Barnoud, J.; Chang, C. Y.; Bouazizi, Y.; Locquet, A.; Citrin, D. S.

    2016-04-01

    We experimentally investigate the dynamical regimes of a laser diode subject to external optical feedback in light of extreme-event (EE) analysis. We observe EEs in the low-frequency fluctuations (LFFs) regime. This number decreases to negligible values when the laser transitions towards fully developed coherence collapse as the injection current is increased. Moreover, we show that EEs observed in the LFF regime are linked to high-frequency pulsing events observed after a power dropout. Finally, we prove experimentally that the observation of EEs in the LFF regimes is robust to changes in operational parameters.

  14. Low-frequency fluctuations in an external-cavity laser leading to extreme events.

    PubMed

    Choi, Daeyoung; Wishon, Michael J; Barnoud, J; Chang, C Y; Bouazizi, Y; Locquet, A; Citrin, D S

    2016-04-01

    We experimentally investigate the dynamical regimes of a laser diode subject to external optical feedback in light of extreme-event (EE) analysis. We observe EEs in the low-frequency fluctuations (LFFs) regime. This number decreases to negligible values when the laser transitions towards fully developed coherence collapse as the injection current is increased. Moreover, we show that EEs observed in the LFF regime are linked to high-frequency pulsing events observed after a power dropout. Finally, we prove experimentally that the observation of EEs in the LFF regimes is robust to changes in operational parameters.

  15. Intra-cavity frequency doubled Nd:YAG laser with dual-stability-range cavity emitting high power near-diffraction-limited radiation in CW and Q-switched mode

    NASA Astrophysics Data System (ADS)

    Woll, Dirk; Gregg, Jeffrey; Lefort, James; Morehead, James J.; Lindahl, Jennifer

    2010-02-01

    A diode-pumped frequency-doubled Nd:YAG laser has been demonstrated which emits 7.2 W of 532-nm radiation in the CW mode as well as 23 ns, 2.7 mJ pulses at a repetition rate of 10 kHz in the Q-switched mode. The high power in both modes was achieved by intra-cavity second harmonic generation in lithium triborate. The nonlinear output coupling through SHG in this laser causes a factor of 5.7 change of intra-cavity power between the CW and the Q-switched mode. The resulting variation of the thermal lens in the laser rod makes it challenging to maintain a geometrically stable cavity in both operation regimes, which is essential for diffraction limited beam quality. Diffraction limited beam quality with M2 values of less than 1.1 in the CW and less than 1.2 in the Q-switched regime was achieved by a novel dual-stabilityrange cavity-design. This design provides geometrically stable cavity configurations in both operation regimes, which are separated by an unstable region. This cavity makes it possible to switch between the two operation regimes without any moving components.

  16. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: theoretical and experimental studies.

    PubMed

    Dai, J; Belomestnykh, S; Ben-Zvi, I; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 10(4) to 10(9) provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  17. Ultrafast direct modulation of transverse-mode coupled-cavity VCSELs far beyond the relaxation oscillation frequency

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Koyama, Fumio

    2014-02-01

    A novel approach for bandwidth augmentation for direct modulation of VCSELs using transverse-coupled-cavity (TCC) scheme is raised, which enables us to tailor the modulation-transfer function. The base structure is similar to that of 3QW VCSELs with 980 nm wavelength operation. While the bandwidth of conventional VCSELs was limited by 9-10 GHz, the 3-dB bandwidth of TCC VCSEL with aperture diameters of 8.5×8.5μm2 and 3×3μm2 are increased by a factor of 3 far beyond the relaxation-oscillation frequency. Our current bandwidth achievement on the larger aperture size is 29 GHz which is limited by the used photo-detector. To the best of our knowledge this is the fastest 980 nm VCSEL.

  18. A study on the effect of tantalum-impurity content on the superconducting properties of niobium materials used for making superconducting radio frequency cavities

    SciTech Connect

    S B Roy, L S Sharath Chandra, M K Chattopadhyay, M K Tiwari, G S Lodha, G R Myneni

    2012-10-01

    Niobium materials in highly pure form are used in the fabrication of superconducting radio frequency cavities. We present here a study of the superconducting properties of such niobium materials that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities after determining their tantalum-impurity contents using a synchrotron-based x-ray fluorescence spectroscopy technique. Our results show that there is a small change in superconducting parameters such as T{sub C},H{sub C1} and H{sub C2} when the tantalum-impurity content varies from ≈150 to ≈1300 ppm. In contrast, a buffered chemical polishing of the same niobium samples changes all these superconducting parameters more significantly. The implications of these results on the performance of niobium superconducting radio frequency cavities are discussed.

  19. An ultra-stable iodine-based frequency reference for space applications

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Braxmaier, Claus; Doeringshoff, Klaus; Keetman, Anja; Reggentin, Matthias; Kovalchuk, Evgeny; Peters, Achim

    2012-07-01

    Future space missions require for ultra-stable optical frequency references. Examples are the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the SpaceTime Asymmetry Research (STAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission exploring Earth's gravity. As high long-term frequency stability is required, lasers stabilized to atomic or molecular transitions are preferred, also offering an absolute frequency reference. Frequency stabilities in the 10 ^{-15} domains at longer integration times (up to several hours) are demonstrated in laboratory experiments using setups based on Doppler-free spectroscopy. Such setups with a frequency stability comparable to the hydrogen maser in the microwave domain, have the potential to be developed space compatible on a relatively short time scale. Here, we present the development of ultra-stable optical frequency references based on modulation-transfer spectroscopy of molecular iodine. Noise levels of 2\\cdot10 ^{-14} at an integration time of 1 s and below 3\\cdot10 ^{-15} at integration times between 100 s and 1000 s are demonstrated with a laboratory setup using an 80 cm long iodine cell in single-pass configuration in combination with a frequency-doubled Nd:YAG laser and standard optical components and optomechanic mounts. The frequency stability at longer integration times is (amongst other things) limited by the dimensional stability of the optical setup, i.e. by th pointing stability of the two counter-propagating beams overlapped in the iodine cell. With the goal of a future space compatible setup, a compact frequency standard on EBB (elegant breadboard) level was realized. The spectroscopy unit utilizes a baseplate made of Clearceram-HS, a glass ceramics with an ultra-low coefficient of thermal expansion of 2\\cdot10 ^{-8} K ^{-1}. The optical components are joint to the baseplate using adhesive bonding technology

  20. Operational parameters for the superconducting cavity maser

    NASA Astrophysics Data System (ADS)

    Wang, R. T.; Dick, G. J.; Strayer, D. M.

    1989-05-01

    Tests of the superconducting cavity maser (SCM) ultra-stable frequency source have been made for the first time using a hydrogen maser for a frequency reference. In addition to characterizing the frequency stability, the sensitivity of the output frequency to several crucial parameters was determined for various operating conditions. Based on this determination, the refrigeration and thermal control systems of the SCM were modified. Subsequent tests showed substantially improved performance, especially at the longest averaging times.

  1. Operational parameters for the superconducting cavity maser

    NASA Technical Reports Server (NTRS)

    Wang, R. T.; Dick, G. J.; Strayer, D. M.

    1989-01-01

    Tests of the superconducting cavity maser (SCM) ultra-stable frequency source have been made for the first time using a hydrogen maser for a frequency reference. In addition to characterizing the frequency stability, the sensitivity of the output frequency to several crucial parameters was determined for various operating conditions. Based on this determination, the refrigeration and thermal control systems of the SCM were modified. Subsequent tests showed substantially improved performance, especially at the longest averaging times.

  2. Application of Model Based Parameter Estimation for Fast Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy C. J.

    1998-01-01

    Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.

  3. Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity.

    PubMed

    Kraetschmer, Thilo; Walewski, Joachim W; Sanders, Scott T

    2006-11-01

    A dispersive grating compressor was included in a fiber ring laser to generate an unequally spaced frequency comb spanning approximately 1549-1552 nm. Beating of nearby modes in the comb naturally assigns unique amplitude modulation frequencies to each spectral component emitted. The source contains no moving parts. The single-mode fiber-coupled output is directed through hydrogen cyanide gas and detected by a photodiode. A Fourier transform of a 1 ms record yields a spectrum that agrees with results from a grating spectrometer at 0.06 nm resolution. By engineering stable, broadband combs, the technique could result in a universal and simple approach for spectroscopy at almost arbitrary measurement speeds and spectral resolutions limited only by Fourier principles.

  4. Hollow-core photonic-crystal-fiber-based optical frequency references

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2016-12-01

    This research deals with preparation of an optical frequency references based on hollow-core photonic crystal fibers (HC-PCF). This fiber-based type of absorption cells represents a effiecient way how to replace classic bulky and fragile glass made tubes references with low-weight and low-volume optical fibers. This approach allows not only to increase possible interaction length between incident light and absorption media but it also carries a possibility of manufacturing of easy-operable reference which is set up just by plugging-in of optical connectors into the optical setup. We present the results of preparation, manufacturing and filling of a set of fiber-based cells intended for lasers frequency stabilization. The work deals with setting and optimalization of HC-PCF splicing processes, minimalization of optical losses between HC-PCF and SMF fiber transitions and finishing of HC-PCF spliced ends with special care for optimal closing of hollow-core structure needed for avoiding of absorption media leakage.

  5. Operation of a frequency-narrowed high-beam quality broad-area laser by a passively stabilized external cavity technique

    NASA Astrophysics Data System (ADS)

    Bayram, S. B.; Coons, R. W.

    2007-11-01

    The average spectral bandwidth of a 2W broad-area diode laser was narrowed to 5GHz with wavelength tunability of up to 12nm at a center wavelength of 790nm with the use of a Littman-Metcalf external cavity in a displaced configuration. The use of lens and combined lens-laser transformation systems allowed precise alignment of the beam shaping optics, which led to significant improvements of the beam quality and an enhanced suppression of the free-running laser modes. We characterize the spatial beam quality of our external cavity diode laser by measuring the M2 quality factor and relate this to our measured bandwidths. Our external cavity can be configured over a range of cavity lengths and is modular in design, enabling access to a broad frequency spectrum for a wide range of applications that require high-power, narrow bandwidth operation.

  6. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    NASA Astrophysics Data System (ADS)

    Lim, Jinkang; Huang, Shu-Wei; Vinod, Abhinav K.; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute; Wong, Chee Wei

    2016-08-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  7. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator.

    PubMed

    Lim, Jinkang; Huang, Shu-Wei; Vinod, Abhinav K; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2016-08-15

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step toward miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for a comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  8. Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells.

    PubMed

    Wang, Chenchen; Wheeler, Natalie V; Fourcade-Dutin, Coralie; Grogan, Michael; Bradley, Thomas D; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2013-08-01

    Gas-filled hollow optical fiber references based on the P(13) transition of the ν1+ν3 band of 12C2H2 promise portability with moderate accuracy and stability. Previous realizations are corrected (<1σ) by using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell is characterized on the 12C2H2 ν1+ν3 P(23) transition with somewhat reduced accuracy and stability. Effects of the photonic crystal fiber, including surface modes, are explored. Both polarization-maintaining (PM) and non-PM 7-cell photonic bandgap fiber are shown to be unsuitable for kilohertz-level frequency references.

  9. Coherent reference generator phase stability. [Deep Space Network's frequency and timing subsystem

    NASA Technical Reports Server (NTRS)

    Korwar, V. N.

    1981-01-01

    Approximate phase stability estimates for the coherent reference generator (CRG) unit in the DSN's Frequency and Timing Subsystem (FTS) are calculated. The method used involves estimating the phase noise introduced by CRG components based upon measurements made in the past on similar components in other parts of the FTS and obtaining the CRG phase noise from the component phase noises. Three estimates of phase stability are calculated: the fractional frequency change for a 5 C step in temperature, the phase noise spectral density, and the Allan standard deviation. It is found from these estimates that the CRG phase stability is better than that of the H-maser physics unit + receiver. Thus, the first step in improving FTS phase stability would be to make improvements in the H-maser physics unit + receiver. These results are corroborated by indirect clock stability estimates calculated from Doppler data.

  10. Design of a standing-wave multicell radio frequency cavity beam monitor for simultaneous position and emittance measurement

    SciTech Connect

    Kim, Jin-Soo; Miller, Roger; Nantista, Christopher

    2005-07-15

    High precision, nondisruptive emittance measurement through second moment monitoring requires precise beam position at the measurement location. We present the design and analysis of a multicavity standing wave structure for a pulse-to-pulse beam position-emittance measurement system in which the quadrupole and the dipole standing wave modes resonate at harmonics of a presumed beam bunch train frequency. As an application for the Next Linear Collider (NLC) beams, an optimized nine-cavity standing-wave structure is designed for simultaneous high precision beam position and emittance measurement. It operates with the {pi}-phase advance quadrupole mode resonating at the 16th harmonic (11.424 GHz) of the NLC bunch frequency and the 3{pi}/4-phase advance dipole mode at the 12th harmonic (8.568 GHz). The output powers from these modes are estimated for the NLC beams. Measurement resolution is estimated to be on the micron scale for rms beam size and on the nanometer scale for beam position.

  11. Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection

    SciTech Connect

    Gatare, I.; Panajotov, K.; Sciamanna, M.

    2007-02-15

    We report theoretically on a pure frequency-induced polarization bistability in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection, i.e., the master laser light polarization is orthogonal to that of the slave VCSEL. As the frequency detuning is scanned from negative to positive values and for a fixed injected power, the VCSEL exhibits two successive and possibly bistable polarization switchings. The first switching (from the slave laser polarization to the injected light polarization) exhibits a bistable region whose width is maximum for a given value of the injected power. Such a dependency of hysteresis width on the injected power is similar to that recently found experimentally by Hong et al.[Electron. Lett. 36, 2019 (2000)]. The bistability accompanying the second switching (from the injected light polarization back to the slave laser free-running polarization) exhibits, however, significantly different features related to the occurrence of optical chaos. Interestingly, the width of the bistable region can be tuned over a large range not only by modifying the injection parameters but also by modifying the device parameters, in particular the VCSEL linewidth enhancement factor.

  12. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y. Ron; Tian, Chuanshan

    2016-06-01

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water.

  13. Characteristic analysis of the optical delay in frequency response of resonant cavity enhanced (RCE) photodetectors

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chuan; Zuo, Yu-Hua; Zhang, Yun; Ding, Wu-Chang; Cheng, Bu-Wen; Yu, Jin-Zhong; Wang, Qi-Ming

    2009-06-01

    With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected lightwaves. For the first time, the optical delay, another important factor limiting the electrical bandwidth of RCE p-i-n PD excluding the transit time of the carriers and RCd response of the photodetector, is analyzed and discussed in detail. The optical delay dominates the bandwidth of RCE p-i-n PD when its active layer is thinner than several 10 nm. These three limiting factors must be considered exactly for design of ultra-high-speed RCE p-i-n PD.

  14. Continuous-wave sum-frequency generation near 194 nm in beta-BaB(2)O(4) crystals with an enhancement cavity.

    PubMed

    Watanabe, M; Hayasaka, K; Imajo, H; Urabe, S

    1992-01-01

    Continuous-wave coherent radiation tunable near 194 nm has been generated by sum-frequency generation in beta-BaB(2)O(4) placed inside an external enhancement cavity. An output power of 16 microW has been obtained with a walk-off-compensated configuration of beta-BaB(2)O(4) crystals.

  15. ATOMIC AND MOLECULAR PHYSICS: Stabilization and Shift of Frequency in an External Cavity Diode Laser with Solenoid-Assisted Saturated Absorption

    NASA Astrophysics Data System (ADS)

    Han, Shun-Li; Cheng, Bing; Zhang, Jing-Fang; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2009-06-01

    A simple method to realize both stabilization and shift of the frequency in an external cavity diode laser (ECDL) is reported. Due to the Zeeman effect, the saturated absorption spectrum of Rb atoms in a magnetic field is shifted. This shift can be used to detune the frequency of the ECDL, which is locked to the saturated absorption spectrum. The frequency shift amount can be controlled by changing the magnetic field for a specific polarization state of the laser beam. The advantages of this tunable frequency lock include low laser power requirement, without additional power loss, cheapness, and so on.

  16. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm

    NASA Astrophysics Data System (ADS)

    Döringshoff, K.; Schuldt, T.; Kovalchuk, E. V.; Stühler, J.; Braxmaier, C.; Peters, A.

    2017-06-01

    We present an absolute optical frequency reference based on precision spectroscopy of hyperfine transitions in molecular iodine ^{127}I_2 for laser systems operating at 1064 nm. A quasi-monolithic spectroscopy setup was developed, integrated, and tested with respect to potential deployment in space missions that require frequency stable laser systems. We report on environmental tests of the setup and its frequency stability and reproducibility before and after each test. Furthermore, we report on the first measurements of the frequency stability of the iodine reference with an unsaturated absorption cell which will greatly simplify its application in space missions. Our frequency reference fulfills the requirements on the frequency stability for planned space missions such as LISA or NGGM.

  17. Reconfigurable Microwave Phase Delay Element for Frequency Reference and Phase-Shifter Applications

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Stevenson, Thomas; Jhabvala, Christine; Wollack, Edward; U-Yen, Kongpop

    2011-01-01

    A technique was developed to provide a reconfigurable high-precision micro - wave electrical phase delay for resonators and phase shifters. The invention employs multiple branches of transmission lines with open-ended or ground-ended terminations as configurable bits or digits. This technique minimizes the errors due to limited precision of switching devices. In addition, the proposed linear analytical approach significantly produces a much simpler design than that of other prior inventions at the time of this reporting. Microwave components such as filters, phase delay elements, or resonators require a method that can accurately adjust their frequency responses. Most tuning techniques offer very wide frequency tuning range; however, it is often difficult and expensive to tune their response in a very narrow operating frequency, especially when the tuning element reaches its minimum discrete step due to fabrication tolerances. The problem becomes worse as the operating frequency is in mm-wave frequency range (>26 GHz). The electrical tuning sensitivity of a microwave line is dependent on the position of the tuning element with respect to the reference termination. By placing this tuning element away from this reference with the main transmission line connecting the two elements together the sensitivity of the tuning element can change significantly. This concept can be used in the system that requires multiple tuning sensitivities. In this case, multiple tuning branches are superimposed in the main transmission line. The proposed invention allows the transmission-line electrical length to be accurately programmed using switching elements that have limited accuracy. The invention consists of multiple branches of transmission lines connected to discrete switching devices with open-ended terminations. They are used as discrete tuning elements. These elements are connected to the main microwave transmission line and are separated by a well-defined electrical degree

  18. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators.

    PubMed

    Ricker, R E; Myneni, G R

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles.

  19. Characteristics of bistable localized emission states in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback

    SciTech Connect

    Tanguy, Y.; Ackemann, T.; Jaeger, R.

    2006-11-15

    Small-area bistable lasing spots (about 10 {mu}m full width at half maximum) can be created at different positions within the aperture of a broad-area vertical-cavity surface-emitting laser (aperture diameter 80 {mu}m) with frequency-selective feedback from a grating in Littrow configuration, and an additional pinhole localizing feedback to a part of the laser. Their characteristics are analyzed depending on the grating tuning, injection current, and feedback strength. These spots are considered to be good candidates for self-localized cavity solitons, if the perturbation by boundaries can be reduced using devices with larger diameter.

  20. Gain chip design, power scaling and intra-cavity frequency doubling with LBO of optically pumped red-emitting AlGaInP-VECSELs

    NASA Astrophysics Data System (ADS)

    Kahle, Hermann; Mateo, Cherry M. N.; Brauch, Uwe; Bek, Roman; Schwarzbäck, Thomas; Jetter, Michael; Graf, Thomas; Michler, Peter

    2016-03-01

    The wide range of applications in biophotonics, television or projectors, spectroscopy and lithography made the optically-pumped semiconductor (OPS) vertical external cavity surface-emitting lasers (VECSELs) an important category of power scalable lasers. The possibility of bandgap engineering, inserting frequency selective and converting elements into the open laser cavity and laser emission in the fundamental Gaussian mode leads to ongoing growth of the area of applications for tuneable laser sources. We present an AlGaInP-VECSEL system with a multi quantum well structure consisting of compressively strained GaInP quantum wells in an AlxGa1-xInP separate confinement heterostructure with an emission wavelength around 665 nm. The VECSEL chip with its n-λ cavity is pumped by a 532nm Nd:YAG laser under an angle to the normal incidence of 50°. In comparison, a gain chip design for high absorption values at pump wavelengths around 640nm with the use of quantum dot layers as active material is also presented. Frequency doubling is now realized with an antireflection coated lithium borate crystal, while a birefringent filter, placed inside the laser cavity under Brewster's angle, is used for frequency tuning. Further, power-scaling methods like in-well pumping as well as embedding the active region of a VECSEL between two transparent ic heaspreaders are under investigation.

  1. Multiple-Antenna Receiving and Frequency Domain Equalization in Transmitted-Reference UWB Systems

    NASA Astrophysics Data System (ADS)

    Liao, Xuewen; Zhu, Shihua; Zeng, Erlin

    A multiple-antenna receiving and combining scheme is proposed for high-data-rate transmitted-reference (TR) Ultra-Wideband (UWB) systems. The nonlinearity of the inter-symbol interference (IST) model is alleviated via simple antenna combining. Under the simplified ISI model, frequency domain equalization (FDE) is adopted and greatly reduces the complexity of the equalizer. A simple estimation algorithm for the simplified ISI model is presented. Simulation results demonstrate that compared to the single receive antenna scheme, the proposed method can obtain a significant diversity gain and eliminate the BER floor effect. Moreover, compared to the complex second-order time domain equalizer, FDE showed better performance robustness in the case of imperfect model estimation.

  2. Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics

    SciTech Connect

    Wergifosse, Marc de; Champagne, Benoît; Castet, Frédéric

    2015-05-21

    The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (β{sub HRS}) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of β{sub HRS} in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new β{sub xyz} value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.

  3. Fast Computation of Frequency Response of Cavity-Backed Apertures Using MBPE in Conjunction with Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    2004-01-01

    The hybrid Finite Element Method(FEM)/Method of Moments(MoM) technique has become popular over the last few years due to its flexibility to handle arbitrarily shaped objects with complex materials. One of the disadvantages of this technique, however, is the computational cost involved in obtaining solutions over a frequency range as computations are repeated for each frequency. In this paper, the application of Model Based Parameter Estimation (MBPE) method[1] with the hybrid FEM/MoM technique is presented for fast computation of frequency response of cavity-backed apertures[2,3]. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency-derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. Using the rational function approximation, the electric field is calculated at different frequencies from which the frequency response is obtained.

  4. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity

    NASA Astrophysics Data System (ADS)

    Kakuma, Seiichi

    2017-02-01

    A frequency-modulated continuous-wave (FMCW) laser radar capable of real-time displaying the distance to a target object and its radial velocity as their corresponding frequency spectra is developed. The system employs a pair of oppositely frequency-swept vertical-cavity surface-emitting laser diodes (VCSELs). This makes possible simultaneous detection of beat signals induced by the increment (up-ramp) and decrement (down-ramp) in laser frequencies. By mixing these two beat signals, their sum and difference frequencies are directly obtained without arithmetic processing such as averaging and subtraction. Results of the test experiments adopting axially moving block gauges as target objects show that both the distance and given velocities are accurately determined from the spectrum of the frequency mixer.

  5. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.

    PubMed

    Sesek, Aleksander; Zemva, Andrej; Trontelj, Janez

    2017-07-04

    The THz sensors using microbolometers as a sensing element are reported as one of the most sensitive room-temperature THz detectors suitable for THz imaging and spectroscopic applications. Microbolometer detectors are usually fabricated using different types of the MEMS technology. The patent for the detection system presented in this paper describes a method for microbolometer fabrication using a standard CMOS technology with advanced micromachining techniques. The measured sensitivity of the sensors fabricated by the patented method is 1000 V/W at an optimal frequency and is determined by the performance of a double-dipole antenna and quarter-wavelength resonant cavity. The paper presents a patented method for fabrication of a microbolometer system for radiation detection in the THz frequency range (16). The method is divided in several stages regarding the current silicon micromachining process. Main stages are fabrication of supporting structures for micro bridge, creation of micro cavities and fabrication of Aluminum antenna and Titanium microbolometer. Additional method for encapsulation in the vacuum is described which additionally improves the performance of bolometer. The CMOS technology is utilized for fabrication as it is cost effective and providing the possibility of larger sensor systems integration with included amplification. At other wavelengths (e.g. IR region) thermistors are usually also the receivers with the sensor resistance change provoked by self-heating. In the THz region the energy is received by an antenna coupled to a thermistor. Depending on the specific application requirement, two types of the antenna were designed and used; a narrow-band dipole antenna and a wideband log-periodic antenna. With method described in the paper the microbolometer detector reach sensitivities up to 500 V/W and noise equivalent power (NEP) down to 10 pW/√Hz. Additional encapsulation in the vacuum improves its performance at least by a factor of 2

  6. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement.

    PubMed

    Nakajima, Yoshiaki; Minoshima, Kaoru

    2015-10-05

    An optical frequency comb interferometer with a 342-m-long fiber-based optical reference path was developed. The long fiber-based reference path was stabilized to 10(-12)-order stability by using a fiber noise cancellation technique, and small temperature changes on the millikelvin order were detected by measuring an interferometric phase signal. Pulse number differences of 30 and 61 between the measurement and reference paths were determined precisely, with slight tuning of the 53.4 MHz repetition frequency. Moreover, with pulse number difference of 61, a 6.4-m-wide scanning for the relative pulse position is possible only by 1 MHz repetition frequency tuning, which makes pulses overlapped for arbitrary distance. Such wide-range high-precision delay length scanning can be used to measure arbitrary distances by using a highly stabilized long fiber-based reference path.

  7. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators

    PubMed Central

    Ricker, R. E.; Myneni, G. R.

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles. PMID:27134791

  8. Precise and Stable Frequency Source, and Measurement of 130Te_2 Reference Lines from 443 TO 451 NM

    NASA Astrophysics Data System (ADS)

    Coker, James; La Mantia, David; Furneaux, John; Gillean, Jeffrey

    2014-06-01

    A precise, repeatable and stable optical frequency source is required for many modern spectroscopy experiments. Frequency combs have proven invaluable to many, but are not obtainable for others due to their high cost. Using a GPS disciplined oscillator, a stabilized Fabry-Pérot cavity, a relatively low-cost wavemeter and standard RF equipment, we have achieved a reliable laser system with a 10-9 or better frequency uncertainty at a fraction of the cost. With this system we have measured approximately 3000 transitions in 130Te_2 continuously between 664 and 676 THz to ˜ 0.0001 cm-1 precision. The system is described in detail, and the possibility of improving our knowledge of the excited states of 130Te_2 is considered.

  9. Symmetrical SOI MESFET with a dual cavity region (DCR-SOI MESFET) to promote high-voltage and radio-frequency performances

    NASA Astrophysics Data System (ADS)

    Anvarifard, Mohammad K.

    2016-10-01

    A novel symmetrical SOI-MESFET is reported to enhance high-voltage and radio-frequency performances, successfully. Two p-type cavity regions with certain features are embedded in the proposed structure to control the channel region. The cavity regions absorb the channel potential lines resulting in an evener potential profile throughout the channel region. Hence, the critical electric field at the end of gate edge near the drain will be considerably reduced thus increasing the breakdown voltage, finally. A comprehensive comparison in terms of breakdown voltage, radio-frequency parameters, drain-source conductance and minimum noise figure shows that the reported new device reaches a superior electrical performance when compared with a conventional SOI MESFET.

  10. Numerical models for the study of the nonlinear frequency mixing in two and three-dimensional resonant cavities filled with a bubbly liquid.

    PubMed

    Tejedor Sastre, María Teresa; Vanhille, Christian

    2017-11-01

    The objective of this work is to develop versatile numerical models to study the nonlinear distortion of ultrasounds and the generation of low-ultrasonic frequency signals by nonlinear frequency mixing in two and three-dimensional resonators filled with bubbly liquids. The interaction of the acoustic field and the bubble vibrations is modeled through a coupled differential system formed by the multi-dimensional wave equation and a Rayleigh-Plesset equation. The numerical models we develop are based on multi-dimensional finite-volume techniques and a time discretization carried out by finite differences. Numerical experiments are performed for complex modes in many different cavities considering different kinds of boundary conditions and taking advantage of the dispersive character of the bubbly fluid to match specific resonances of the cavities. Results show the distribution of fundamental and harmonics for single frequency excitation and difference-frequency component for two-frequency excitation that are promoted by the strong nonlinearity of the bubbly medium. The numerous simulations analyzed suggest that the new numerical models developed and proposed in this paper are useful to understand the behavior of ultrasounds in bubbly liquids for sonochemical processes and applications of nonlinear frequency mixing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    NASA Astrophysics Data System (ADS)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to <2.4MHz (stabilized). The 2.05 μm laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  12. Analysis of bistability conditions between lasing and nonlasing states for a vertical-cavity surface-emitting laser with frequency-selective optical feedback using an envelope approximation

    SciTech Connect

    Naumenko, A. V.; Loiko, N. A.; Ackemann, T.

    2007-08-15

    The emission characteristics of a vertical-cavity surface-emitting laser (VCSEL) coupled to an external cavity with a diffraction grating as a frequency-selective element are theoretically analyzed. We introduce envelope functions for the set of external-cavity modes based on the loci of modes with extremal gain or frequency in the proper parameter space. Replacing the set of discrete stationary solutions by these envelope functions, simple analytical expressions are derived for the existence of bistability between a lasing state strongly affected by the feedback and a state close to the solitary laser emission (in particular the nonlasing state) and for the frequency of the VCSEL in the grating-controlled regime. It is shown how the initial jump of the laser intensity during abrupt turn-on can be maximized. By a control of the feedback change, the width of the hysteresis loop can be increased significantly. The scheme under consideration can be useful in all-optical photonic switching applications.

  13. Changes in the frequency of food intake among children and teenagers: monitoring in a reference service.

    PubMed

    Mariz, Larissa Soares; Medeiros, Carla Campos Muniz; Vieira, Caroline Evelin Nascimento Kluczynik; Enders, Bertha Cruz; Coura, Alexsandro Silva

    2013-01-01

    to identify changes in the food intake patterns among overweight children and teenagers, treated at a reference medical centre. the method used is that of a cohort study, between April 2010 and April 2011. A total of 109 children and teenagers, either obese or overweight, took part in the study. The population was divided into two subgroups depending on the permanence period (more than 6 months, and less than 6 months off the treatment). The chi-square test and logistic regression were carried out. the group which had been longer off the treatment tended to consume more soft drinks, pasta and fried foods, and less fruit and vegetables. The group with less time showed an improvement, with a reduction of consumption of soft drinks and other goodies. There was confirmation of an increased risk for consumption of soft drinks, pasta and goodies in general, as also detachment from the treatment in adolescence. The group with a longer period of monitoring has had a positive change in food intake frequency. The main contribution made by this study is that of showing that multiprofessional treatment, including some nursing care, is efficient in progressively changing the food intake of children and adolescents who are overweight.

  14. Long-term frequency instability of atomic frequency references based on coherent population trapping and microfabricated vapor cells

    SciTech Connect

    Gerginov, Vladislav; Knappe, Svenja; Shah, Vishal; Schwindt, Peter D. D.; Hollberg, Leo; Kitching, John

    2006-04-15

    We present an evaluation of the long-term frequency instability and environmental sensitivity of a chip-scale atomic clock based on coherent population trapping, particularly as affected by the light-source subassembly. The long-term frequency stability of this type of device can be dramatically improved by judicious choice of operating parameters of the light-source subassembly. We find that the clock frequency is influenced by the laser-injection current, the laser temperature, and the rf modulation index. The sensitivity of the clock frequency to changes in the laser-injection current or the substrate temperature can be significantly reduced through adjustment of the rf modulation index. This makes the requirements imposed on the laser-temperature stabilization, in order to achieve a given frequency stability, less severe. The clock-frequency instability due to variations in local oscillator power is shown to be reduced through the choice of an appropriate light intensity inside the cell. The importance of these parameters with regard to the long-term stability of such systems is discussed.

  15. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  16. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T{sub c}

    SciTech Connect

    Romanenko, A. Grassellino, A. Melnychuk, O.; Sergatskov, D. A.

    2014-05-14

    We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  17. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    DOE PAGES

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement ofmore » 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  18. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    SciTech Connect

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; Benmokhtar, Fatiha; Camsonne, Alexandre; Cates, Gordon D.; Dalton, Mark M.; Franklin, Gregg B.; Friend, Megan L.; Michaels, Robert W.; Nelyubin, Vladimir V.; Parno, Diana S.; Paschke, Kent D.; Quinn, Brian P.; Souder, Paul A.; Tobias, W. Al

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.

  19. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Rakhman, A.; Hafez, M.; Nanda, S.; Benmokhtar, F.; Camsonne, A.; Cates, G. D.; Dalton, M. M.; Franklin, G. B.; Friend, M.; Michaels, R. W.; Nelyubin, V.; Parno, D. S.; Paschke, K. D.; Quinn, B. P.; Souder, P. A.; Tobias, W. A.

    2016-06-01

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  20. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    SciTech Connect

    Dhakal, P.; Ciovati, G.; Myneni, G. R.; Gray, K. E.; Groll, N.; Maheshwari, P.; McRae, D. M.; Pike, R.; Proslier, T.; Stevie, F.; Walsh, R. P.; Yang, Q.; Zasadzinzki, J.

    2013-04-01

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800–1400°C was done in a newly designed vacuum induction furnace. Q{sub 0} values of the order of 2×10{sup 10} at 2.0 K and peak surface magnetic field (B{sub p}) of 90 mT were achieved reproducibly. A Q{sub 0} value of (5±1)×10{sup 10} at 2.0 K and B{sub p}=90mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  1. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  2. Flow-induced resonance of screen-covered cavities

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1990-01-01

    An experimental study of screen-covered cavities exposed to airflow tangent to the screen is described. The term screen refers to a thin metal plate perforated with a repetitive pattern of round holes. The purpose was to find the detailed aerodynamic and acoustic mechanisms responsible for screen-covered cavity resonance and to find ways to control the pressure oscillations. Results indicate that strong cavity acoustic resonances are created by screen orifices that shed vortices which couple resonance by choosing hole spacings such that shed vortices do not arrive at a downstream orifice in synchronization with cavity pressure oscillations. The proper hole pattern is effective at all airspeeds. It was also discovered that a reduction of orifice size tended to weaken the screen/cavity interaction regardless of hole pattern, probably because of viscous flow losses at the orifices. The screened cavities that resonated did so at much higher frequencies than the equivalent open cavity. The classical large eddy phenomenon occurs at the relatively small scale of the orifices (the excitation is typically of high frequency). The wind tunnel study was made at airspeeds from 0 to 100m/sec. The 457-mm-long by 1.09-m-high rectangular cavities had length-to-depth ratios greater than one, which is indicative of shallow cavities. The cavity screens were perforated in straight rows and columns with hole diameters ranging from 1.59 to 6.35 mm and with porosities from 2.6 to 19.6 percent.

  3. Multilayer coating for higher accelerating fields in superconducting radio-frequency cavities: a review of theoretical aspects

    NASA Astrophysics Data System (ADS)

    Kubo, Takayuki

    2017-02-01

    The theory of the superconductor-insulator-superconductor (SIS) multilayer structure for application in superconducting accelerating cavities is reviewed. The theoretical field limit, optimum layer thicknesses and material combination, and surface resistance are discussed for the SIS structure and are also reviewed for the superconductor-superconductor bilayer structure.

  4. Systematical study on superconducting radio frequency elliptic cavity shapes applicable to future high energy accelerators and energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Shemelin, Valery; Zadeh, Shahnam Gorgi; Heller, Johann; van Rienen, Ursula

    2016-10-01

    Elliptic cavities at medium- and high-β range are receiving broader use in the particle accelerator applications. Optimizing the shape of these cavities is a complex and demanding process. In this paper we propose an optimization approach to minimize the ratio of peak magnetic field to the acceleration field Hpk/Eacc while keeping the ratio of peak surface electric field to the accelerating field Epk/Eacc, aperture radius and wall slope angle α at some permitted values. We show that it is possible to substantially vary the cavity geometry without violating the constraints or deteriorating the objective of the optimization. This gives us freedom in designing the geometry to overcome problems such as multipactor while maintaining the minimal Hpk/Eacc . The optimization is then performed to find a set of optimized geometries with minimum Hpk/Eacc for different β 's ranging from 0.4 to 1, different peak surface electric fields, wall slope angles and aperture radii. These data could be generally used as a suitable starting point in designing elliptic cavities.

  5. Active Control of Multi-Tonal Noise with Reference Generator Based on On-Line Frequency Estimation

    NASA Astrophysics Data System (ADS)

    KIM, S.; PARK, Y.

    1999-10-01

    In this paper, a novel active noise control (ANC) structure with a frequency estimator is proposed for systems with multi-tonal noise. The conventional feedforward ANC algorithms need a measured reference signal to calculate the gradient of the squared error and filter coefficients. For ANC systems applied to aircraft or passenger ships, which reference signals are usually measured are so far from seats where engines from the main part of controllers is placed that the scheme might be difficult to implement or very costly. Feedback ANC algorithms which do not require a measure of reference signals, use error signals alone to update the filter and are usually sensitive to measurement noise and unexpected transient noise such as a sneeze, clapping of hands and so on.The proposed algorithm, which estimates frequencies of the multi-tonal noise in real time using adaptive notch filter (ANF), improves convergence rate, threshold SNR and computational efficiency compared with the conventional ones. The reference signal needed for the feedforward control is not measured directly, but is generated with the estimated frequencies. It has a strong similarity to the conventional IMC-based feedback control because the reference is generated from the error signal in both cases. The proposed ANC algorithm is compared with the conventional IMC-based feedback control algorithm.Cascade ANF, which has a low computational burden, is used to implement the ANC system in real time. Experiments for verifying efficacy of the proposed algorithm are carried out in the laboratory.

  6. Digital Cavity Resonance Monitor, alternative method of measuring cavity microphonics

    SciTech Connect

    Tomasz Plawski; G. Davis; Hai Dong; J. Hovater; John Musson; Thomas Powers

    2005-09-20

    As is well known, mechanical vibration or microphonics in a cryomodule causes the cavity resonance frequency to change at the vibration frequency. One way to measure the cavity microphonics is to drive the cavity with a Phase Locked Loop. Measurement of the instantaneous frequency or PLL error signal provides information about the cavity microphonic frequencies. Although the PLL error signal is available directly, precision frequency measurements require additional instrumentation, a Cavity Resonance Monitor (CRM). The analog version of such a device has been successfully used for several cavity tests [1]. In this paper we present a prototype of a Digital Cavity Resonance Monitor designed and built in the last year. The hardware of this instrument consists of an RF downconverter, digital quadrature demodulator and digital processor motherboard (Altera FPGA). The motherboard processes received data and computes frequency changes with a resolution of 0.2 Hz, with a 3 kHz output bandwidth.

  7. Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Wójtewicz, S.; Miller, C. E.; Hodges, J. T.

    2015-08-01

    We present new high accuracy measurements of the (30012)←(00001) CO2 band near 1575 nm recorded with a frequency-agile, rapid scanning cavity ring-down spectrometer. The resulting spectra were fit with the partially correlated, quadratic-speed-dependent Nelkin-Ghatak profile with line mixing. Significant differences were observed between the fitted line shape parameters and those found in existing databases, which are based upon more simplistic line profiles. Absolute transition frequencies, which were referenced to an optical frequency comb, are given, as well as the other line shape parameters needed to model this line profile. These high accuracy measurements should allow for improved atmospheric retrievals of greenhouse gas concentrations by current and future remote sensing missions.

  8. Reference values for frequency volume chart and uroflowmetry parameters in adolescent and adult enuresis patients.

    PubMed

    Hofmeester, Ilse; Brinker, Astrid E; Steffens, Martijn G; Mulder, Zwaan; van Capelle, Jan Willem; Feitz, Wout F J; Blanker, Marco H

    2017-02-01

    Reference values of Frequency Volume Chart (FVC) and uroflowmetry parameters for adolescent and adult enuresis patients are lacking. In this study, we aim to describe those parameters, in order to interpret findings from FVCs and uroflowmetries in those patients. Retrospective, descriptive cohort study, concerning 907 patients aged 11 years and older, suffering from enuresis of at least one wet night per fortnight, treated in a secondary/tertiary centre, between 2003 and 2013. The main FVC parameters of interest were: maximum voided volume (MVV), 24 hr urine production and nocturnal urine volume (NUV) including first morning void (FMV). Nocturnal polyuria (NP) was defined based on both International Children's Continence Society (ICCS, 2014) and International Continence Society (ICS, 2002) definitions. Data of all patients were collected from the medical files. Age had an impact on diurnal and nocturnal FVC parameters. Median MVV excluding FMV was 250 ml in the youngest, 11-year-old males and 363 ml in the eldest, ≥18-yr-old males. For females, these values were 230 ml and 310 ml. Median 24 hr urine production increased from 1,025 ml to 1,502 ml (males) and from 1,007 ml to 1,557 ml (females). Median NUV showed an increase from 387 ml to 519 ml (males) and from 393 ml to 525 (females). Forty-two percent of men and 30% of women had a small MVV (for age). Prevalence of NP differed when assessed by the ICS or the ICCS definition: following ICS guidelines, NP was present in 96% of our male and 93% of our female population, compared to 27% and 41%, respectively, following ICCS guidelines. Both small MVV and NP were found frequently in our adolescent and adult enuresis patients, which is in line with the current thoughts on causal factors. NP prevalence is quite different when using ICS or ICCS definitions, respectively. We would like to encourage the development of an unambiguous definition of NP to use both in pediatric and adult urology

  9. Progress Report on a Portable TI:SAPPHIRE Comb Laser with Frequencies Referring to Cesium Atom Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Cheng, Wang-Yau; Wu, Chien-Ming; Liu, Tz-Wei; Chen, Yo-Huan

    2010-06-01

    A portable Ti:sapphire comb laser would contribute significantly to generalize comb-laser applications, such as the astro-comb missions or other interdisciplinary collaborations. To develop a portable comb laser, three barriers lie ahead: one is to miniaturize and robotize the frequency reference system of the comb laser; the second is to ensure the long-term frequency accuracy without satellite connection, and the third is to miniaturize the pumping laser system. We developed two hand-size cesium-stabilized diode lasers at 822 nm and 884 nm to serve as frequency references for a comb laser and we carried out a comb-laser-based CPT experiment with one single cesium cell that might offer a locking procedure for long-term comb laser accuracy. We will also report our plans and progress on a fiber laser pumped Ti:sapphire comb laser.

  10. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration

    NASA Astrophysics Data System (ADS)

    Portuondo-Campa, E.; Bennès, J.; Balet, L.; Kundermann, S.; Merenda, F.; Boer, G.; Lecomte, S.

    2016-07-01

    Two commercial femtosecond laser sources have been used to implement a dual-comb spectrometer tuneable across a spectral range from 1.5 to 2.2 μm. The optical linewidth of the comb modes was characterized for different time scales in order to estimate the achievable spectral resolution for an optimal acquisition time. The transmission spectra of three different gas samples were recorded, demonstrating good agreement with reference data. Frequency axis calibration was provided via the parallel monitoring of a reference sample. This technique allows an accurate calibration of the frequency axis of the spectrometer, with no need for stabilization or optical referencing of the frequency combs. Our set-up represents a good compromise for a compact and versatile dual-comb spectrometer based on commercially available parts with possible applications in trace-gas monitoring, remote sensing and spectroscopy of short-lived processes.

  11. Frequency management engineering principles spectrum measurements (reference order 6050.23)

    NASA Astrophysics Data System (ADS)

    Fretz, J. D.

    1982-08-01

    Federal Aviation Administration personnel are frequently involved in the resolution of interference complaints. The skillful use of measurement equipment can be essential to the successful resolution of such complaints. This report provides a summary of the spectrum measurement techniques applicable to Federal Aviation Administration facilities using the radio frequency spectrum. It is oriented toward electromagnetic compatibility measurements made by frequency management engineers but is of interest to anyone involved in radio frequency measurements.

  12. CAVITY EXCITATION CIRCUIT

    DOEpatents

    Franck, J.V.

    1959-10-20

    An electronic oscillator is described for energizing a resonant cavity and to a system for stabilizing the operatin g frequency of the oscillator at the particular frequency necessary to establish a particular preferred field configuration or mode in the cavity, in this instance a linear accelerator. A freely rnnning oscillator has an output coupled to a resonant cavity wherein a field may be built up at any one of several adjacent frequencies. A pickup loop in the cavity is suitably shielded and positioned in the cavity so that only energy at the panticular desired frequency is fed back to stabilize the oscillator. A phase and gain control is in cluded in the feedback line.

  13. Frequency and Informativeness of Gestural Cues Accompanying Generic and Particular Reference

    ERIC Educational Resources Information Center

    Meyer, Meredith; Gelman, Susan A.; Stilwell, Sarah M.

    2015-01-01

    Generic noun phrases, or generics, refer to abstract categories ("Dogs" bark) rather than particular individuals ("Those dogs" bark). Study 1 investigated how parents use gestures in association with generic versus particular reference during naturalistic interactions with their 2- and 3-year-old children. Parents provided…

  14. Frequency and Informativeness of Gestural Cues Accompanying Generic and Particular Reference

    ERIC Educational Resources Information Center

    Meyer, Meredith; Gelman, Susan A.; Stilwell, Sarah M.

    2015-01-01

    Generic noun phrases, or generics, refer to abstract categories ("Dogs" bark) rather than particular individuals ("Those dogs" bark). Study 1 investigated how parents use gestures in association with generic versus particular reference during naturalistic interactions with their 2- and 3-year-old children. Parents provided…

  15. Application of AWE Along with a Combined FEM/MoM Technique to Compute RCS of a Cavity-Backed Aperture in an Infinite Ground Plane Over a Frequency Range

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M.D.

    1997-01-01

    A hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique in conjunction with the Asymptotic Waveform Evaluation (AWE) technique is applied to obtain radar cross section (RCS) of a cavity-backed aperture in an infinite ground plane over a frequency range. The hybrid FEM/MoM technique when applied to the cavity-backed aperture results in an integro-differential equation with electric field as the unknown variable, the electric field obtained from the solution of the integro-differential equation is expanded in Taylor series. The coefficients of the Taylor series are obtained using the frequency derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. The series is then matched via the Pade approximation to a rational polynomial, which can be used to extrapolate the electric field over a frequency range. The RCS of the cavity-backed aperture is calculated using the electric field at different frequencies. Numerical results for a rectangular cavity, a circular cavity, and a material filled cavity are presented over a frequency range. Good agreement between AWE and the exact solution over the frequency range is obtained.

  16. Highly-efficient continuous-wave intra-cavity frequency-doubled Yb:LuAG thin-disk laser with 1 kW of output power.

    PubMed

    Dietrich, Tom; Piehler, Stefan; Rumpel, Martin; Villeval, Philippe; Lupinski, Dominique; Abdou-Ahmed, Marwan; Graf, Thomas

    2017-03-06

    We report on the generation of continuous-wave, intra-cavity frequency-doubled, multi-mode laser radiation in an Yb:LuAG thin-disk laser. Output powers of up to 1 kW at a wavelength of 515 nm were achieved at an unprecedented optical efficiency of 51.6% with respect to the pumping power of the thin-disk laser. The wavelength stabilization and spectral narrowing as well as the polarization selection, which is necessary for a stable and efficient second-harmonic generation, was achieved by the integration of a diffraction grating into the dielectric end mirror of the cavity, which exhibits a diffraction efficiency of 99.8%. At a frequency-doubled output power of 820 W the peak-to-valley power fluctuations measured during 100 minutes of laser operation amounted to only 8.2 W (1.0%). The beam parameter product of the frequency-doubled output was 3.4 mm·mrad (M2 ≈ 20), which is suitable for standard beam delivery using fibers with a core diameter of 100 µm and a NA of 0.2.

  17. Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation.

    PubMed

    Leo, F; Hansson, T; Ricciardi, I; De Rosa, M; Coen, S; Wabnitz, S; Erkintalo, M

    2016-01-22

    We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behavior. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems. We expect our findings to have wide impact on the study of temporal and spectral dynamics in a diverse range of dispersive, quadratically nonlinear resonators.

  18. High-precision, accurate optical frequency reference using a Fabry-Perót diode laser

    NASA Astrophysics Data System (ADS)

    Chang, Hongrok; Myneni, Krishna; Smith, David D.; Liaghati-Mobarhan, Hassan R.

    2017-06-01

    We show that the optical output of a temperature and current-tuned Fabry-Perót diode laser system, with no external optical feedback and in which the frequency is locked to Doppler-free hyperfine resonances of the 87Rb D2 line, can achieve high frequency stability and accuracy. Experimental results are presented for the spectral linewidth, frequency stability, and frequency accuracy of the source. Although our optical source is limited by a short-term spectral linewidth greater than 2 MHz, beat signal measurements from two such sources demonstrate a frequency stability of 1.1 kHz, or minimum Allan deviation of 4 ×1 0-12, at an integration time τ =15 s and with a frequency accuracy of 60 kHz at τ =300 s. We demonstrate the use of the optical source for the precision measurement of hyperfine level frequency spacings in the 5 P3 /2 excited state of 87Rb and provide an accurate frequency scale for optical spectroscopy.

  19. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  20. Blue light generated by intra-cavity frequency doubling of an edge-emitting diode laser with a periodically poled LiNbO3 crystal.

    PubMed

    Li, Kang; Yao, Aiyun; Copner, N J; Gawith, C B E; Knight, Ian G; Pfeiffer, Hans-Ulrich; Musk, Bob

    2009-11-23

    We demonstrate for the first time to our knowledge intra-cavity frequency doubling (ICFD) of an edge-emitter diode laser using a 10 mm-long 5.0 microm periodically poled LiNbO(3) (PPLN) crystal. An optical output power of 33 mW second harmonic blue light at 490.5 nm is generated at 1.0 A injection current, equivalent to an overall wall-plug efficiency of 1.8%. The measured M(2) values of blue beam are 1.7 and 2.4 along the fast and slow axis.

  1. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    SciTech Connect

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-23

    Here, we present an analysis of Nb3Sn surface layers grown on a bulk Nb coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveal a well developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperature's (Tc) up to 16.3K. Transmission electron microscopy (TEM) performed on cross sections of the sample's surface shows a ~ 2 microns thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 with buried substoichiometric regions with a ratio of 5:1. Synchrotron diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupies about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn -coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  2. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination

    NASA Astrophysics Data System (ADS)

    Zhao, Zeyu; Luo, Yunfei; Zhang, Wei; Wang, Changtao; Gao, Ping; Wang, Yanqin; Pu, Mingbo; Yao, Na; Zhao, Chengwei; Luo, Xiangang

    2015-10-01

    For near-field imaging optics, minimum resolvable feature size is highly constrained by the near-field diffraction limit associated with the illumination light wavelength and the air distance between the imaging devices and objects. In this study, a plasmonic cavity lens composed of Ag-photoresist-Ag form incorporating high spatial frequency spectrum off-axis illumination (OAI) is proposed to realize deep subwavelength imaging far beyond the near-field diffraction limit. This approach benefits from the resonance effect of the plasmonic cavity lens and the wavevector shifting behavior via OAI, which remarkably enhances the object’s subwavelength information and damps negative imaging contribution from the longitudinal electric field component in imaging region. Experimental images of well resolved 60-nm half-pitch patterns under 365-nm ultra-violet light are demonstrated at air distance of 80 nm between the mask patterns and plasmonic cavity lens, approximately four-fold longer than that in the conventional near-field lithography and superlens scheme. The ultimate air distance for the 60-nm half-pitch object could be theoretically extended to 120 nm. Moreover, two-dimensional L-shape patterns and deep subwavelength patterns are illustrated via simulations and experiments. This study promises the significant potential to make plasmonic lithography as a practical, cost-effective, simple and parallel nano-fabrication approach.

  3. Laser Frequency Stabilization for Coherent Lidar Applications using Novel All-Fiber Gas Reference Cell Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.

    2008-01-01

    Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.

  4. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source.

    SciTech Connect

    Chen, Z.

    2001-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.

  5. Basic Restriction and Reference Level in Anatomically-based Japanese Models for Low-Frequency Electric and Magnetic Field Exposures

    NASA Astrophysics Data System (ADS)

    Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu

    Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.

  6. Absence of nonlinear responses in cells and tissues exposed to RF energy at mobile phone frequencies using a doubly resonant cavity.

    PubMed

    Kowalczuk, Christine; Yarwood, Gemma; Blackwell, Roger; Priestner, Marisa; Sienkiewicz, Zenon; Bouffler, Simon; Ahmed, Iftekhar; Abd-Alhameed, Raed; Excell, Peter; Hodzic, Vildana; Davis, Christopher; Gammon, Robert; Balzano, Quirino

    2010-10-01

    A doubly resonant cavity was used to search for nonlinear radiofrequency (RF) energy conversion in a range of biological preparations, thereby testing the hypothesis that living tissue can demodulate RF carriers and generate baseband signals. The samples comprised high-density cell suspensions (human lymphocytes and mouse bone marrow cells); adherent cells (IMR-32 human neuroblastoma, G361 human melanoma, HF-19 human fibroblasts, N2a murine neuroblastoma (differentiated and non-differentiated) and Chinese hamster ovary (CHO) cells) and thin sections or slices of mouse tissues (brain, kidney, muscle, liver, spleen, testis, heart and diaphragm). Viable and non-viable (heat killed or metabolically impaired) samples were tested. Over 500 cell and tissue samples were placed within the cavity, exposed to continuous wave (CW) fields at the resonant frequency (f) of the loaded cavity (near 883 MHz) using input powers of 0.1 or 1 mW, and monitored for second harmonic generation by inspection of the output at 2f. Unwanted signals were minimised using low pass filters (≤ 1 GHz) at the input to, and high pass filters (≥ 1 GHz) at the output from, the cavity. A tuned low noise amplifier allowed detection of second harmonic signals above a noise floor as low as -169 dBm. No consistent second harmonic of the incident CW signals was detected. Therefore, these results do not support the hypothesis that living cells can demodulate RF energy, since second harmonic generation is the necessary and sufficient condition for demodulation.

  7. Assessment of the Performance of a Dual-Frequency Surface Reference Technique

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang; Tanelli, Simone; Durden, Stephen

    2013-01-01

    The high correlation of the rain-free surface cross sections at two frequencies implies that the estimate of differential path integrated attenuation (PIA) caused by precipitation along the radar beam can be obtained to a higher degree of accuracy than the path-attenuation at either frequency. We explore this finding first analytically and then by examining data from the JPL dual-frequency airborne radar using measurements from the TC4 experiment obtained during July-August 2007. Despite this improvement in the accuracy of the differential path attenuation, solving the constrained dual-wavelength radar equations for parameters of the particle size distribution requires not only this quantity but the single-wavelength path attenuation as well. We investigate a simple method of estimating the single-frequency path attenuation from the differential attenuation and compare this with the estimate derived directly from the surface return.

  8. Sub-MHz accuracy measurement of the S(2) 2-0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy

    NASA Astrophysics Data System (ADS)

    Mondelain, D.; Kassi, S.; Sala, T.; Romanini, D.; Gatti, D.; Campargue, A.

    2016-08-01

    The line position of the very weak S(2) transition of deuterium in the 2-0 band has been measured with a Comb-Assisted Cavity Ring Down spectrometer. The high sensitivity spectra were recorded at 5 and 10 mbar with a Noise Equivalent Absorption, αmin, of 8 × 10-11 cm-1. The line positions at 5 and 10 mbar were measured with sub-MHz accuracy (460 and 260 kHz, respectively). After correction of the line pressure-shift, the frequency at zero pressure of the S(2) transition of the first overtone band was determined to be 187 104 299.51 ± 0.50 MHz. This value agrees within 1.7 MHz with the frequency obtained from the best available ab initio calculations and corresponds to only 15% of the claimed theoretical uncertainty.

  9. Trace measurement of BrO at the ppt level by a transportable mode-locked frequency-doubled cavity-enhanced spectrometer

    NASA Astrophysics Data System (ADS)

    Grilli, R.; Méjean, G.; Kassi, S.; Ventrillard, I.; Abd-Alrahman, C.; Fasci, E.; Romanini, D.

    2012-04-01

    Pptv levels of BrO radical have been detected around 338.5-nm wavelength probing a rotationally structured A←X (7,0) electronic transition using mode-locked cavity-enhanced spectroscopy (ML-CEAS). The spectrometer is composed by a widely tunable, broadband frequency-doubled Ti:Sa mode-locked frequency comb laser injected into a high-finesse optical cavity and a high-resolution spectrometer based on a high-order diffraction grating and a high-sensitivity back-thinned CCD camera. A typical minimum detectable absorption coefficient of 1×10-9 cm-1 in 30 s of acquisition has been achieved, leading to a detection limit of 1.7 parts per trillion of BrO at atmospheric pressure. The compact and robust ultrasensitive broadband UV spectrometer is intended to be employed for in situ long-term direct measurements of BrO and other halogenated radicals, thus responding to the lack of analytical techniques to monitor the concentrations of such highly chemically reactive species.

  10. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

    2016-06-01

    The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  11. A high gradient test of a single-cell superconducting radio frequency cavity with a feedback waveguide

    NASA Astrophysics Data System (ADS)

    Kostin, Roman; Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav; Kazakov, Sergey; Wu, Genfa; Khabiboulline, Timergali; Rowe, Allan; Rathke, John

    2015-09-01

    The most severe problem of the international linear collider (ILC-type) is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the collider. In current technology, the maximum acceleration gradient in superconducting (SC) structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, a superconducting traveling wave accelerating (STWA) structure is suggested. Utilization of STWA structure with small phase advance per cell for future high energy linear colliders such as ILCs may provide an accelerating gradient 1.2-1.4 times larger [1] than a standing wave structure. However, STWA structure requires a feedback waveguide for power redirecting from the end of the structure back to the front end of accelerating structure. Recent tests of a 1.3 GHz model of a single-cell cavity with waveguide feedback demonstrated an accelerating gradient comparable to the gradient of a single-cell ILC-type cavity from the same manufacturer [2]. In the present paper, high gradient test results are presented.

  12. Reference-free quantification of EEG spectra: combining current source density (CSD) and frequency principal components analysis (fPCA).

    PubMed

    Tenke, Craig E; Kayser, Jürgen

    2005-12-01

    Definition of appropriate frequency bands and choice of recording reference limit the interpretability of quantitative EEG, which may be further compromised by distorted topographies or inverted hemispheric asymmetries when employing conventional (non-linear) power spectra. In contrast, fPCA factors conform to the spectral structure of empirical data, and a surface Laplacian (2-dimensional CSD) simplifies topographies by minimizing volume-conducted activity. Conciseness and interpretability of EEG and CSD fPCA solutions were compared for three common scaling methods. Resting EEG and CSD (30 channels, nose reference, eyes open/closed) from 51 healthy and 93 clinically-depressed adults were simplified as power, log power, and amplitude spectra, and summarized using unrestricted, Varimax-rotated, covariance-based fPCA. Multiple alpha factors were separable from artifact and reproducible across subgroups. Power spectra produced numerous, sharply-defined factors emphasizing low frequencies. Log power spectra produced fewer, broader factors emphasizing high frequencies. Solutions for amplitude spectra showed optimal intermediate tuning, particularly when derived from CSD rather than EEG spectra. These solutions were topographically distinct, detecting multiple posterior alpha generators but excluding the dorsal surface of the frontal lobes. Instead a low alpha/theta factor showed a secondary topography along the frontal midline. CSD amplitude spectrum fPCA solutions provide simpler, reference-independent measures that more directly reflect neuronal activity. A new quantitative EEG approach affording spectral components is developed that closely parallels the concept of an ERP component in the temporal domain.

  13. Mineral concentrations in hair of Belgian elementary school girls: reference values and relationship with food consumption frequencies.

    PubMed

    Vanaelst, Barbara; Huybrechts, Inge; Michels, Nathalie; Vyncke, Krishna; Sioen, Isabelle; De Vriendt, Tineke; Flórez, Maria R; Aramendía, Maite; Balcaen, Lieve; Resano, Martin; Vanhaecke, Frank; De Henauw, Stefaan

    2012-12-01

    Although evidence suggests that hair elements may reflect dietary habits and/or mineral intake, this topic remains controversial. This study therefore presents age-specific reference values for hair concentrations of Ca, Cu, Fe, Na, Mg, P and Zn using the LMS method of Cole, and investigates the relationship between dietary habits (i.e. food consumption frequencies) and hair mineral concentrations in 218 Belgian elementary school girls by reduced rank regression (RRR). Hair minerals were quantitatively determined via inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of 6-cm long vertex posterior hair samples. The Children's Eating Habits Questionnaire-Food Frequency Questionnaire was used to obtain information on food consumption frequency of 43 food items in the month preceding hair collection. The established reference ranges were in line with data for other childhood or adolescent populations. The retained RRR factors explained 40, 50, 45, 46, 44 and 48 % of the variation of Ca, Cu, Fe, Mg, P and Zn concentrations in hair, respectively. Although this study demonstrated that a large proportion of hair mineral variation may be influenced by food consumption frequencies in elementary school girls, a number of food groups known to be rich sources of minerals did not show a relation with certain hair minerals. Future research should focus on mechanisms and processes involved in mineral incorporation and accumulation in scalp hair, in order to fully understand the importance and influence of diet on hair minerals.

  14. Ultraclean wafer-level vacuum-encapsulated silicon ring resonators for timing and frequency references

    NASA Astrophysics Data System (ADS)

    Xereas, George; Chodavarapu, Vamsy P.

    2016-07-01

    We present the design and development of breath-mode silicon ring resonators fabricated using a commercial pure-play microfabrication process that provides ultraclean wafer-level vacuum-encapsulation. The micromechanical resonators are fabricated in MEMS integrated design for inertial sensors process that is developed by Teledyne DALSA Semiconductor Inc. The ring resonators are designed to operate with a relatively low DC polarization voltage, starting at 5 V, while providing a high frequency-quality factor product. We study the quality of the vacuum packaging using an automated testing setup over an extended time period. We study the effect of motional resistance on the performance of MEMS resonators. The fabricated devices had a resonant frequency of 10 MHz with the quality factor exceeding 8.4×104.

  15. Development of a compact optical absolute frequency reference for space with 10-15 instability.

    PubMed

    Schuldt, Thilo; Döringshoff, Klaus; Kovalchuk, Evgeny V; Keetman, Anja; Pahl, Julia; Peters, Achim; Braxmaier, Claus

    2017-02-01

    We report on a compact and ruggedized setup for laser frequency stabilization employing Doppler-free spectroscopy of molecular iodine near 532 nm. Using a 30 cm long iodine cell in a triple-pass configuration in combination with noise-canceling detection and residual amplitude modulation control, a frequency instability of 6×10-15 at 1 s integration time and a Flicker noise floor below 3×10-15 for integration times between 100 and 1000 s was found. A specific assembly-integration technology was applied for the realization of the spectroscopy setup, ensuring high beam pointing stability and high thermal and mechanical rigidity. The setup was developed with respect to future applications in space, including high-sensitivity interspacecraft interferometry, tests of fundamental physics, and navigation and ranging.

  16. Analysis of Optical Frequency Locked Loop (OFLL) for Laser Communications Using Finite Response-Time Cavity Model

    NASA Technical Reports Server (NTRS)

    Win, Moe Z.; Bartman, Randy

    1994-01-01

    Frequency stabilization plays a very critical role in diverse applications such as long distanc fiber and free space optical communications, interferometric sensing, optical gyroscopes, squeezed states of light, atomic beam trapping, and gravity wave detection.

  17. Diode Laser Optically Injected by Resonance of a Monolithic Cavity

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Zhao, Yang; Li, Ye; Yang, Tao; Cao, Jian-Ping; Fang, Zhan-Jun; Zang, Er-Jun

    2011-11-01

    We demonstrate a self-injection locking extended cavity diode laser (ECDL) using resonant optical feedback from the p-polarization of a monolithic folded Fabry—Perot parallel cavity (MFC). The full width at half maximum of the MFC resonance is 31 MHz. With the help of a narrow-linewidth reference laser, the linewidth of the ECDL is measured to be about 7 kHz. The frequency of the laser could be tuned at 160 MHz with an amplitude of 40 V by a PZT mounted on the monolithic cavity and the voltage tuning coefficient is about 4 MHz/V.

  18. Design and performance of the LCLS cavity BPM system.

    SciTech Connect

    Lill, R.; Norum, E.; Morrison, L.; Sereno, N.; Waldschmidt, G.; Walters, D.; Smith, S.; Straumann, T.; SLAC

    2008-01-01

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low- noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  19. Electromagnetic SCRF Cavity Tuner

    SciTech Connect

    Kashikhin, V.; Borissov, E.; Foster, G.W.; Makulski, A.; Pischalnikov, Y.; Khabiboulline, T.; /Fermilab

    2009-05-01

    A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving {+-} 1 mm and producing a longitudinal force up to {+-} 1.5 kN. The static force applied to the RF cavity flanges provides a long-term cavity geometry tuning to a nominal frequency. The same coil powered by fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested.

  20. All-fiber versatile laser frequency reference at 2 μm for CO2 space-borne lidar applications

    NASA Astrophysics Data System (ADS)

    Schilt, Stéphane; Matthey, Renaud; Hey Tow, Kenny; Thévenaz, Luc; Südmeyer, Thomas

    2017-06-01

    We present a frequency stabilized laser at 2051 nm based on a versatile all-fibered stabilization setup. A modulation sideband locking technique is implemented to lock the laser at a controlled frequency detuning from the center of the CO2 R(30) transition envisaged for space-borne differential absorption lidar (DIAL) applications. This method relies on the use of a compact all-fibered gas reference cell that makes the setup robust and immune to mechanically induced optical misalignments. The gas cell is fabricated using a hollow-core photonic crystal fiber filled with pure CO2 at a low pressure of 20 mbar and hermetically sealed at both ends by splices to silica fibers. Different configurations of this fibered cell have been developed and are presented. With this technique, frequency stabilities below 40 kHz at 1-s integration time and <100 kHz up to 1000-s averaging time were achieved for a laser detuning by around 1 GHz from the center of the CO2 transition. These stabilities are compliant with typical requirements for the reference seed source for a space CO2 DIAL.

  1. Efficient frequency doubler of 1560 nm laser based on a semi-monolithic resonant cavity with a PPKTP crystal

    NASA Astrophysics Data System (ADS)

    Wang, Junmin; Zhang, Kong; Ge, Yulong; Guo, Shanlong

    2016-06-01

    We have demonstrated 1.61 W of 780 nm single-frequency continuous-wave laser output with a semi-monolithic periodically poled potassium titanyl phosphate (PPKTP) crystal doubler pumped by a 2-W erbium-doped fiber amplifier boosted 1560 nm diode laser. The measured maximum doubling efficiency is 77%, and the practical value should be 80% when taking into account the fundamental-wave mode matching efficiency. The measured beam quality factor of 780 nm output, M2, is better than 1.04. Typical root-mean-square fluctuation of 780 nm output is less than 0.5% in 30 minutes. This compact frequency doubler has good mechanical stability, and can be employed for many applications, such as laser cooling and trapping, atomic coherent control, atomic interferometer, and quantum frequency standard with rubidium atoms.

  2. Aging of the HF-H2SO4 electrolyte used for the electropolishing of niobium superconducting radio frequency cavities: Origins and cure

    NASA Astrophysics Data System (ADS)

    Eozénou, F.; Berry, S.; Antoine, C.; Gasser, Y.; Charrier, J.-P.; Malki, B.

    2010-08-01

    Electropolishing (EP) in the HF-H2SO4 electrolyte is the most desirable surface treatment for niobium superconducting radio frequency cavities yet demonstrated, in terms of performance and surface finish. However, the efficiency of the electrolyte declines quickly with time (decrease in removal rate, deterioration of the niobium surface, increased sulfur generation). Previous studies at CEA Saclay have highlighted the impact of the water content in EP mixtures rather than the content of dissolved niobium. Knowledge of the electrochemical system was improved thanks to studies using a rotating disk electrode (RDE). Measurements with a RDE give precious information concerning mass transport of the different ionic groups present in the solution. The performed measurements prove that EP is controlled by the diffusion of fluorine ions and the value of the related diffusion coefficient DF- was estimated for different mixtures. Electrochemical impedance spectroscopy (EIS) measurements were also performed with different EP mixtures. Both volt ampere metric and EIS measurements prove the central role of fluorine during EP and show that EP mechanisms evolve with the aging of the bath. Another major problem related to electrolytes is the formation of impurities such as sulfur. We have proved that working at a reduced voltage of 5 V does not alter cavity performance and makes it possible to reduce the undesirable particulate contamination in electrolytes and to increase their lifetime.

  3. Approximate formulas for the resonance frequency shift in cavities with big variations of parameters inside small regions

    SciTech Connect

    Dodonov, V. V.

    2010-10-15

    The Mueller-Bethe-Schwinger-Casimir formulas for the frequency shift in electromagnetic resonators are generalized to the case of big variations of electric permittivity inside small regions. These formulas are important, in particular, for the studies of the dynamical Casimir effect.

  4. Specificity, Size, and Frequency of Spaces That Characterize the Mechanism of Bulk Transepithelial Transport of Prions in the Nasal Cavities of Hamsters and Mice

    PubMed Central

    Ayers, J. I.; Bartz, J. C.

    2016-01-01

    ABSTRACT Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731–12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 μm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. IMPORTANCE The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels

  5. Specificity, Size, and Frequency of Spaces That Characterize the Mechanism of Bulk Transepithelial Transport of Prions in the Nasal Cavities of Hamsters and Mice.

    PubMed

    Kincaid, A E; Ayers, J I; Bartz, J C

    2016-09-15

    Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731-12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 μm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels following inhalation

  6. Line-shape study of self-broadened O{sub 2} transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy

    SciTech Connect

    Wojtewicz, S.; Lisak, D.; Cygan, A.; Domyslawska, J.; Trawinski, R. S.; Ciurylo, R.

    2011-09-15

    We present high-sensitivity and high-spectral-resolution line-shape and line-intensity measurements of self-broadened O{sub 2} b {sup 1}{Sigma}{sub g}{sup +}(v=1)(leftarrow)X {sup 3}{Sigma}{sub g}{sup -}(v=0) band transitions measured using the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy technique. We give collisional broadening parameters and take into account the line-narrowing effects described by Dicke narrowing or the speed dependence of collisional broadening. We compare line intensities measured with relative uncertainties below 0.4% to data available in the HITRAN spectroscopic database.

  7. Broadband cavity electromagnetically induced transparency

    SciTech Connect

    Wei Xiaogang; Wang Yanhua; Zhang Jiepeng; Zhu Yifu

    2011-10-15

    Cavity electromagnetically induced transparency (EIT) is created in a three-level atomic system confined in a cavity and coupled to a free-space control laser and is manifested as a narrow transmission peak of a probe laser coupled into the cavity mode and tuned to the two-photon Raman resonance with the control laser. Cavity EIT can be observed with a control laser detuned from the atomic transition frequency in a range limited by the vacuum Rabi splitting of two cavity-atom normal modes. This leads to the broadband cavity EIT obtained in the coupled-cavity-atom system with a free-space, broadband control laser. We report an experimental observation of broadband cavity EIT in cold Rb atoms with a frequency-modulated control laser and discuss its application in multichannel and multifrequency light memory.

  8. Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data

    PubMed Central

    Brandt, Débora Y. C.; Aguiar, Vitor R. C.; Bitarello, Bárbara D.; Nunes, Kelly; Goudet, Jérôme; Meyer, Diogo

    2015-01-01

    Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity. PMID:25787242

  9. Periodic and non-periodic frequency selection in an erbium doped fiber laser by silica microdisk optical cavity filters.

    PubMed

    Bergeron, Sacha; Saïdi, Samir; Peter, Yves-Alain

    2010-08-02

    Integrated silica microdisk resonators can be used to create a variety of very high performance spectral filters. These filters can control the spectral emission of an erbium doped fiber laser. By modifying the number and sizes of the microdisks constituting these filters it is possible to produce single wavelength, periodic multi-frequency and non-periodic multi-wavelength fiber lasers. Channel spacing as low as 0.28 nm and non-periodic four wavelength lasers were demonstrated.

  10. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  11. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  12. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    PubMed Central

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L.; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Al Turki, Saeed; Amuzu, Antoinette; Anderson, Carl A.; Anney, Richard; Antony, Dinu; Artigas, María Soler; Ayub, Muhammad; Bala, Senduran; Barrett, Jeffrey C.; Barroso, Inês; Beales, Phil; Benn, Marianne; Bentham, Jamie; Bhattacharya, Shoumo; Birney, Ewan; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick F.; Bounds, Rebecca; Boustred, Chris; Breen, Gerome; Calissano, Mattia; Carss, Keren; Pablo Casas, Juan; Chambers, John C.; Charlton, Ruth; Chatterjee, Krishna; Chen, Lu; Ciampi, Antonio; Cirak, Sebahattin; Clapham, Peter; Clement, Gail; Coates, Guy; Cocca, Massimiliano; Collier, David A.; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Day, Ian N. M.; Day-Williams, Aaron; Dedoussis, George; Down, Thomas; Du, Yuanping; van Duijn, Cornelia M.; Dunham, Ian; Edkins, Sarah; Ekong, Rosemary; Ellis, Peter; Evans, David M.; Farooqi, I. Sadaf; Fitzpatrick, David R.; Flicek, Paul; Floyd, James; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Gasparini, Paolo; Gaunt, Tom R.; Geihs, Matthias; Geschwind, Daniel; Greenwood, Celia; Griffin, Heather; Grozeva, Detelina; Guo, Xiaosen; Guo, Xueqin; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey E.; Holmans, Peter; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro; Iotchkova, Valentina; Isaacs, Aaron; Jackson, David K.; Jamshidi, Yalda; Johnson, Jon; Joyce, Chris; Karczewski, Konrad J.; Kaye, Jane; Keane, Thomas; Kemp, John P.; Kennedy, Karen; Kent, Alastair; Keogh, Julia; Khawaja, Farrah; Kleber, Marcus E.; van Kogelenberg, Margriet; Kolb-Kokocinski, Anja; Kooner, Jaspal S.; Lachance, Genevieve; Langenberg, Claudia; Langford, Cordelia; Lawson, Daniel; Lee, Irene; van Leeuwen, Elisabeth M.; Lek, Monkol; Li, Rui; Li, Yingrui; Liang, Jieqin; Lin, Hong; Liu, Ryan; Lönnqvist, Jouko; Lopes, Luis R.; Lopes, Margarida; Luan, Jian'an; MacArthur, Daniel G.; Mangino, Massimo; Marenne, Gaëlle; März, Winfried; Maslen, John; Matchan, Angela; Mathieson, Iain; McGuffin, Peter; McIntosh, Andrew M.; McKechanie, Andrew G.; McQuillin, Andrew; Metrustry, Sarah; Migone, Nicola; Mitchison, Hannah M.; Moayyeri, Alireza; Morris, James; Morris, Richard; Muddyman, Dawn; Muntoni, Francesco; Nordestgaard, Børge G.; Northstone, Kate; O'Donovan, Michael C.; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael J.; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Payne, Stewart J.; Perry, John R. B.; Pietilainen, Olli; Plagnol, Vincent; Pollitt, Rebecca C.; Povey, Sue; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Ridout, Cheryl K.; Ring, Susan; Ritchie, Graham R. S.; Roberts, Nicola; Robinson, Rachel L.; Savage, David B.; Scambler, Peter; Schiffels, Stephan; Schmidts, Miriam; Schoenmakers, Nadia; Scott, Richard H.; Scott, Robert A.; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shaw, Adam; Shihab, Hashem A.; Shin, So-Youn; Skuse, David; Small, Kerrin S.; Smee, Carol; Smith, George Davey; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Timothy D.; St Clair, David; St Pourcain, Beate; Stalker, Jim; Stevens, Elizabeth; Sun, Jianping; Surdulescu, Gabriela; Suvisaari, Jaana; Syrris, Petros; Tachmazidou, Ioanna; Taylor, Rohan; Tian, Jing; Tobin, Martin D.; Toniolo, Daniela; Traglia, Michela; Tybjaerg-Hansen, Anne; Valdes, Ana M.; Vandersteen, Anthony M.; Varbo, Anette; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walters, James T. R.; Wang, Guangbiao; Wang, Jun; Wang, Yu; Ward, Kirsten; Wheeler, Eleanor; Whincup, Peter; Whyte, Tamieka; Williams, Hywel J.; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, ChangJiang; Yang, Jian; Zaza, Gianluigi; Zeggini, Eleftheria; Zhang, Feng; Zhang, Pingbo; Zhang, Weihua; Gambaro, Giovanni; Richards, J. Brent; Durbin, Richard; Timpson, Nicholas J.; Marchini, Jonathan; Soranzo, Nicole

    2015-01-01

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants. PMID:26368830

  13. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel.

    PubMed

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Gambaro, Giovanni; Richards, J Brent; Durbin, Richard; Timpson, Nicholas J; Marchini, Jonathan; Soranzo, Nicole

    2015-09-14

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants.

  14. Determination of reference values and frequency of occurrence of patella alta in German shepherd dogs: a retrospective study.

    PubMed

    Łojszczyk-Szczepaniak, Anna; Silmanowicz, Piotr; Komsta, Renata; Osiński, Zbigniew

    2017-05-31

    Patella alta and patella baja are important conditions underlying a predisposition to many joint diseases, including patellar luxation and patellar chondromalacia of the articular cartilage. The frequencies of patella alta and patella baja have not yet been determined. The objectives of this study were to determine the frequency of patella alta and to determine reference values to the position of the vertical patella according to two modified techniques of the Insall-Salvati method in a group of 65 German shepherd dogs (115 stifle joints). The upper limits of reference values for the normal vertical position of the patella were 1.79 and 2.13, depending on the method of measurement. A high prevalence of patella alta was observed in the group of German shepherd dogs. A correlation was demonstrated between the classification of dogs' joints in the patella alta group and the multiplied risk of canine hip dysplasia (CHD) through the estimation of odds ratios. Dogs with patella alta were healthy dogs that did not exhibit orthopaedic problems in the stifle joints. The results revealed that the risk of CHD is twice as high in dogs with higher patellar ligament length to patella length ratio.

  15. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  16. Simultaneous frequency stabilization, wavelength multiplexing and improvement of beam quality using a self-optimizing external cavity diode laser.

    PubMed

    Hengesbach, Stefan; Klein, Sarah; Traub, Martin; Witte, Ulrich

    2016-02-01

    The combination of a dense wavelength division multiplexer based on volume Bragg gratings (VBGs) and a subsequent feedback mirror forms an efficient single-stage frequency stabilization and multiplexing system. The laser emission of the connected diode laser sources is automatically forced to amplify the wavelengths with the maximum feedback and the minimum losses, respectively. Therefore, different transversal modes of a single emitter may be linked to different wavelength regions that fulfill the Bragg conditions of the VBGs with high efficiency. We demonstrate a multiplexing system with a channel spacing of 1.5 nm and an optical efficiency of 86%, up to 90% being feasible with modifications. The emission bandwidth of the diode laser single emitters is reduced to <300  pm. Due to transversal mode selection, the lateral beam quality factor M2 of the single emitters decreases by a factor of 1.4 on average, compared to the free running sources.

  17. A frequency-resolved cavity model (FRCM) for treating equilibrium and non-equilibrium solvation energies. 2: Evaluation of solvent reorganization energies

    NASA Astrophysics Data System (ADS)

    Newton, M. D.; Basilevsky, M. V.; Rostov, I. V.

    1998-06-01

    The frequency-resolved cavity model (FRCM), a generalized continuum reaction field model, which allows for distinct effective solute cavities pertaining to optical (op) and inertial (in) solvent response, has been implemented and applied to the evaluation of solvent reorganization energy ( Es) for a number of intramolecular electron transfer (ET) processes in polar media. Specifically, effective radii are defined for the solute atoms: r∞= κ· rvdW (where κ is taken as a universal scale factor) and rin= r∞+ δ (where δ is specific to a particular solvent). Optimal values of κ and δ are determined through the use of solvation free energy data for small atomic and molecular ions, together with the experimental estimates of solvation reorganization energy ( Es) for intramolecular ET in the steroid-based radical ions studied by Closs, Miller and co-workers [G.L. Closs, L.T. Calcaterra, N.J. Green, K.W. Penfield, J.R. Miller, J. Phys. Chem. 90 (1986) 3673; M.D. Johnson, J.R. Miller, N.S. Green, G.L. Closs, J. Phys. Chem. 93 (1989) 1173; J.R. Miller, B.P. Paulson, R. Bal, G.L. Closs, J. Phys. Chem. 99 (1995) 6923]. With these optimal parameters, Es is then evaluated for a number of other intramolecular ET processes, yielding results which are in generally good agreement with experimentally based estimates, and which give support for some of the assumptions employed in the analysis of the experimental data. Calculations with conventional solute atom radii ( r∞= rin, with κ=1.2 and δ=0) fitted to equilibrium solvation data yield Es values exceeding the FRCM results by factors of ≥2.

  18. The superconducting cavity stability ruby maser oscillator

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Strayer, D. M.

    1985-01-01

    Analysis of an application of the rudy maser to a superconducting Cavity Stabilized oscillator shows many attractive features. These derive from the mechancial stability inherent in an all-cryogenic design and from the properties of the ruby maser itself. A multiple-cavity design has been developed to allow physical separation of the high-Q superconducting cavity and the ruby element with its requried applied magnetic field. Mode selection is accomplished in this design by tuning the ruby by means of the applied field. We conclude that such an oscillator would perform well, even with cavity Q's as low as 10 to the 8th power allowing the use of a superconductor-on-sapphire resonator with its greater rigidity and lower thermal expansion. A first test of the Superconducting Cavity Stabilized Maser Oscillator (SCSMO) confirms the efficacy of the multiple-cavity design and the applicability of the ruby maser. Frequency variation less than 4x10 to the minus 11th power was measured in the stabilized mode and is attributed to the reference oscillator and to instabilities in the pump source. Variation of 10 to the minus 10th power was observed in the low-Q unstabilized mode, again attributable to pump fluctuations. Even so, direct scaling to a Q of 10 the 9th power predicts a stability better than 10 to the minus 15th power. Together with results showing the lowest losses to date in sapphire at microwave frequencies, and preliminary experiments on superconductor-on-sapphire resonators, frequency stability, levels as low as 10 to the minus 17th power are indicated.

  19. Fiber-coupled, Littrow-grating cavity displacement sensor.

    PubMed

    Allen, Graham; Sun, Ke-Xun; Byer, Robert

    2010-04-15

    We have demonstrated a compact, optical-fiber-fed, optical displacement sensor utilizing a Littrow-mounted diffraction grating to form a low-finesse Fabry-Perot cavity. Length changes of the cavity are read out via the Pound-Drever-Hall rf modulation technique at 925 MHz. The sensor has a nominal working distance of 2 cm and a total dynamic range of 160 nm. The displacement noise floor was less than 3x10(-10) m/sqrt[Hz] above 10(-2) Hz, limited by the frequency drift of the reference laser. A frequency-stabilized laser would reduce the noise floor to below 10(-12) m/sqrt[Hz]. The use of a 925 MHz modulation frequency demonstrates high-precision readout of a low-finesse compact resonant cavity.

  20. Composite resonator vertical cavity laser diode

    SciTech Connect

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  1. Vehicle-track interaction at high frequencies - Modelling of a flexible rotating wheelset in non-inertial reference frames

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Giménez, J. G.

    2015-10-01

    Vehicle-track interaction in the mid- and high-frequency range has become an important issue for rolling-stock manufacturers, railway operators and administrations. Previous modelling approaches have been focused on the development of flexible wheelset-track systems based on the assumption that the unsprung masses are decoupled from the high-frequency dynamic behaviour of carbody and bogies. In this respect, the available flexible wheelset models account for gyroscopic and inertial effects due to the main rotation but are, in general, developed from the viewpoint of inertial spaces and consequently restricted to the study of tangent layouts. The aim of this paper is to present the formulation of a flexible rotating wheelset derived within the framework of a non-inertial vehicle moving reference frame. This brings a double advantage; on the one hand, the formulation is not restricted to tangent tracks, but is also suitable for the study of transition curves and curve negotiation. On the other hand, the use of a vehicle moving reference frame allows the introduction of the hypothesis of small displacement for the degrees of freedom of the wheelset. This hypothesis is not applied to the pitch angle, as it is associated with the main axis of rotation. In addition, unlike previous flexible wheelset models that only consider the rotation around the main axis, all the degrees of freedom will be considered when developing the dynamic equations of motion. Results for the proposed model will be presented and the influence of the inertial and gyroscopic terms not taken into account in previous derived formulations will be evaluated.

  2. Nocturia and polyuria in men referred with lower urinary tract symptoms, assessed using a 7-day frequency-volume chart.

    PubMed

    Matthiesen, T B; Rittig, S; Mortensen, J T; Djurhuus, J C

    1999-06-01

    To investigate if a 7-day frequency-volume (FV) chart could identify nocturia on a polyuric basis in patients with lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH). The study included 23 patients (mean age 62.8 years, range 42-78) with LUTS who were referred for the evaluation of potential BPH and 11 men (control subjects, mean age 63.3 years, range 58-69); all completed a 7-day FV chart investigation as outpatients. Nocturia was associated with nocturnal polyuria in 10 of 23 patients with LUTS; these 10 patients had a diminished diurnal variation of urine production, whereas 13 patients had a diurnal variation in urine production comparable with that in controls with no nocturia. The degree of nocturia correlated positively with nocturnal urine production but showed no relationship with sleep duration. The nocturnal polyuria in these patients was associated with a higher 24-h urine production and seemed at least partly to be caused by a higher fluid intake during daytime. Nocturia on a polyuric basis can be detected by using a FV chart. In these patients, a 3-day FV chart would be sufficient to detect nocturia on a polyuric basis and seems therefore to be a valuable tool in evaluating patients with LUTS referred for potential BPH.

  3. Broadband Comb-Resolved Cavity Enhanced Spectrometer with Graphene Modulator

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mohr, Christian; Jiang, Jie; Fermann, Martin; Lee, Chien-Chung; Schibli, Thomas R.; Kowzan, Grzegorz; Maslowski, Piotr

    2015-06-01

    Optical cavities enhance sensitivity in absorption spectroscopy. While this is commonly done with single wavelengths, broad bandwidths can be coupled into the cavity using frequency combs. The combination of cavity enhancement and broad bandwidth allows simultaneous measurement of tens of transitions with high signal-to-noise for even weak near-infrared transitions. This removes the need for time-consuming sequencing acquisition or long-term averaging, so any systematic errors from long-term drifts of the experimental setup or slow changes of sample composition are minimized. Resolving comb lines provides a high accuracy, absolute frequency axis. This is of great importance for gas metrology and data acquisition for future molecular lines databases, and can be applied to simultaneous trace-gas detection of gas mixtures. Coupling of a frequency comb into a cavity can be complex, so we introduce and demonstrate a simplification. The Pound-Drever-Hall method for locking a cavity and a frequency comb together requires a phase modulation of the laser output. We use the graphene modulator that is already in the Tm fiber laser cavity for controlling the carrier envelope offset of the frequency comb, rather than adding a lossy external modulator. The graphene modulator can operate at frequencies of over 1~ MHz, which is sufficient for controlling the laser cavity length actuator which operates below 100~kHz. We match the laser cavity length to fast variations of the enhancement cavity length. Slow variations are stabilized by comparison of the pulse repetition rate to a GPS reference. The carrier envelope offset is locked to a constant value chosen to optimize the transmitted spectrum. The transmitted pulse train is a stable frequency comb suitable for long measurements, including the acquisition of comb-resolved Fourier transform spectra with a minimum absorption coefficient of about 2×10-7 wn. For our 38 cm long enhancement cavity, the comb spacing is 394~MHz. With our

  4. Accurate absolute reference frequencies from 1511 to 1545 nm of the {nu}{sub 1}+{nu}{sub 3} band of {sup 12}C{sub 2}H{sub 2} determined with laser frequency comb interval measurements

    SciTech Connect

    Madej, Alan A.; Alcock, A. John; Czajkowski, Andrzej; Bernard, John E.; Chepurov, Sergei

    2006-10-15

    Absolute frequency measurements, with uncertainties as low as 2 kHz (1x10{sup -11}), are presented for the {nu}{sub 1}+{nu}{sub 3} band of {sup 12}C{sub 2}H{sub 2} at 1.5 {mu}m (194-198 THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line of {sup 13}C{sub 2}H{sub 2} and a system stabilized to the line in {sup 12}C{sub 2}H{sub 2} whose frequency was to be determined, a Cr:YAG laser-based frequency comb was employed to measure the frequency intervals. The systematic uncertainty is notably reduced relative to that of previous studies, and the region of measured lines has been extended. Improved molecular constants are obtained.

  5. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2<=17. Because of the feedback the lateral (multimodal) spatial and angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  6. First Continuous High Frequency in Situ Measurements of CO2 and CH4 in Rwanda Using Cavity Ring-down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gasore, J.; DeWitt, L. H.; Prinn, R. G.

    2015-12-01

    Recent IPCC reports emphasize the lack of ground measurements of greenhouse gases on the African continent, despite Africa's significant emissions from agriculture and biomass burning as well as ongoing land use changes. We have established a greenhouse gas monitoring station in northern Rwanda that will be part of the Advanced Global Atmospheric Gases Experiment (AGAGE), a global network of high frequency long-term remote atmospheric measurement stations. Using a Picarro G2401 cavity ring-down analyzer, continuous measurements of CO2, CH4, and CO at a frequency of five seconds are being captured at this equatorial East African site. The measurement site is located near the Virunga mountains, a volcanic range in North-West Rwanda, on the summit of Mt. Mugogo (2507 m above sea level). Mt. Mugogo is located in a rural area 70km away from Kigali, the capital of Rwanda, and about 13km from the nearest town. From HYSPLIT 7-day back-trajectory calculations, we have determined that the station measures air masses originating from East and Central Africa, the Indian Ocean and occasionally from Southern Asia. Depending on the wind direction and local boundary layer height, measurements taken at Mt Mugogo are occasionally influenced by local sources, including emissions from the nearby city and wood fires from small rural settlements around the station. Here we present the first greenhouse gas measurement data from this unique and understudied location in Africa. Using the lagrangian transport and dispersion model FLEXPART, we derive the relationship between the observed mole fractions of CO2 and CH4 and our current knowledge of their sources and sinks, across this large African footprint.

  7. High-Q resonant cavities for terahertz quantum cascade lasers.

    PubMed

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-09

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.

  8. Passive optical cavity with backward scattering

    SciTech Connect

    Skryabin, D.V.; Radin, A.M.

    1994-07-01

    A passive optical cavity with an aperture is considered. An account of scattering and mode polarization results in splitting of the cavity spectrum. Analytic equations are derived for scattering losses and natural frequencies. 11 refs., 4 figs.

  9. 0.5W CW single frequency blue at 486 nm via SHG with net conversion of 81.5% from the NIR using a 30mm PPMgO:SLT crystal in a resonant cavity

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Jadhav, Shilpa; Shiner, David

    2015-02-01

    A single frequency fiber Bragg grating (FBG) stabilized laser at 972 nm is coupled into a doubling ring cavity with an optical length of 138 mm, a 91% input coupler, a 30 mm long Brewster cut magnesium doped periodically poled lithium tantalate (PPMgO:SLT) crystal and a high reflector. The cavity buildup is 37 and loss is 0.63%. The cavity is monitored, controlled and locked with a single chip processor. With IR power of 572 mW in the input fiber, 466 mW blue output is obtained, giving 81.5% net efficiency. The blue and IR beams are separated by refraction at the crystal's Brewster surface with negligible loss and without the need for dichroic optics.

  10. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  11. Arbitrary optical frequency synthesis traced to an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun

    2016-11-01

    An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and <3 kHz, respectively. The arbitrary optical frequency synthesizer will be a versatile tool in diverse applications, such as synthetic wavelength based absolute distance measurement and frequency-stabilized Cavity Ring-Down Spectroscopy.

  12. RF Cavity Characterization with VORPAL

    SciTech Connect

    C. Nieter, C. Roark, P. Stoltz, C.D. Zhou, F. Marhauser

    2011-03-01

    When designing a radio frequency (RF) accelerating cavity structure various figures of merit are considered before coming to a final cavity design. These figures of merit include specific field and geometry based quantities such as the ratio of the shunt impedance to the quality factor (R/Q) or the normalized peak fields in the cavity. Other important measures of cavity performance include the peak surface fields as well as possible multipacting resonances in the cavity. High fidelity simulations of these structures can provide a good estimate of these important quantities before any cavity prototypes are built. We will present VORPAL simulations of a simple pillbox structure where these quantities can be calculated analytically and compare them to the results from the VORPAL simulations. We will then use VORPAL to calculate these figures of merit and potential multipacting resonances for two cavity designs under development at Jefferson National Lab for Project X.

  13. Length measurement in absolute scale via low-dispersion optical cavity

    NASA Astrophysics Data System (ADS)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  14. Comparison of weighed food record procedures for the reference methods in two validation studies of food frequency questionnaires.

    PubMed

    Ishii, Yuri; Ishihara, Junko; Takachi, Ribeka; Shinozawa, Yurie; Imaeda, Nahomi; Goto, Chiho; Wakai, Kenji; Takahashi, Toshiaki; Iso, Hiroyasu; Nakamura, Kazutoshi; Tanaka, Junta; Shimazu, Taichi; Yamaji, Taiki; Sasazuki, Shizuka; Sawada, Norie; Iwasaki, Motoki; Mikami, Haruo; Kuriki, Kiyonori; Naito, Mariko; Okamoto, Naoko; Kondo, Fumi; Hosono, Satoyo; Miyagawa, Naoko; Ozaki, Etsuko; Katsuura-Kamano, Sakurako; Ohnaka, Keizo; Nanri, Hinako; Tsunematsu-Nakahata, Noriko; Kayama, Takamasa; Kurihara, Ayako; Kojima, Shiomi; Tanaka, Hideo; Tsugane, Shoichiro

    2017-07-01

    Although open-ended dietary assessment methods, such as weighed food records (WFRs), are generally considered to be comparable, differences between procedures may influence outcome when WFRs are conducted independently. In this paper, we assess the procedures of WFRs in two studies to describe their dietary assessment procedures and compare the subsequent outcomes. WFRs of 12 days (3 days for four seasons) were conducted as reference methods for intake data, in accordance with the study protocol, among a subsample of participants of two large cohort studies. We compared the WFR procedures descriptively. We also compared some dietary intake variables, such as the frequency of foods and dishes and contributing foods, to determine whether there were differences in the portion size distribution and intra- and inter-individual variation in nutrient intakes caused by the difference in procedures. General procedures of the dietary records were conducted in accordance with the National Health and Nutrition Survey and were the same for both studies. Differences were seen in 1) selection of multiple days (non-consecutive days versus consecutive days); and 2) survey sheet recording method (individual versus family participation). However, the foods contributing to intake of energy and selected nutrients, the portion size distribution, and intra- and inter-individual variation in nutrient intakes were similar between the two studies. Our comparison of WFR procedures in two independent studies revealed several differences. Notwithstanding these procedural differences, however, the subsequent outcomes were similar. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health.

    PubMed

    Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai

    2016-11-02

    In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.Journal of Exposure Science and Environmental Epidemiology advance online publication, 2 November 2016; doi:10.1038/jes.2016.64.

  16. Cavity length measurement: bias from misalignment and mismatching.

    PubMed

    Reasenberg, Robert D

    2013-11-20

    SR-POEM, the sounding rocket principle of equivalence measurement, uses a set of six tracking-frequency laser gauges operating in Fabry-Perot cavities to determine the relative acceleration of two test masses (TMs) that are chemically different. One end of each cavity is a flat mirror on a TM; the other end is a concave coupling mirror mounted to a common reference plate. The tracking-frequency laser gauges work by locking a variable frequency laser to the cavity by the method of Pound, Drever, and Hall. Because the TMs are unconstrained, they are expected to rotate slightly during measurement. Although the distance measurements are intended to be based on the TEM₀₀ cavity mode, any misalignment will couple into higher-order transverse modes, particularly the TEM₁₀ and TEM₀₁. Light thus coupled will contribute a spurious signal to the cavity locking servo that causes a bias (i.e., a systematic error) in the length determination. The spurious signal proportional to the misalignment has an antisymmetric distribution at the detector and thus has a zero average, but causes a distance bias because of the inhomogeneity of the detector responsivity. To prevent such bias, SR-POEM includes a servo to keep the incoming laser beam aligned with the cavity. The required performance of that alignment servo is less stringent than has already been achieved by other projects. There is also a spurious signal proportional to the square of the misalignment that produces a symmetric distribution at the detector. This signal is also made unimportant by the operation of an alignment servo, even when operating well above the shot noise limit. We also look at the locking of a laser to a high finesse cavity and conclude that the alignment quality sets a bound on the ratio of measurement accuracy to cavity linewidth.

  17. Performance of a dual Fabry-Perot cavity refractometer.

    PubMed

    Egan, Patrick F; Stone, Jack A; Hendricks, Jay H; Ricker, Jacob E; Scace, Gregory E; Strouse, Gregory F

    2015-09-01

    We have built and characterized a refractometer that utilizes two Fabry-Perot cavities formed on a dimensionally stable spacer. In the typical mode of operation, one cavity is held at vacuum, and the other cavity is filled with nitrogen gas. The differential change in length between the cavities is measured as the difference in frequency between two helium-neon lasers, one locked to the resonance of each cavity. This differential change in optical length is a measure of the gas refractivity. Using the known values for the molar refractivity and virial coefficients of nitrogen, and accounting for cavity length distortions, the device can be used as a high-resolution, multi-decade pressure sensor. We define a reference value for nitrogen refractivity as n-1=(26485.28±0.3)×10(-8) at p=100.0000  kPa, T=302.9190  K, and λ(vac)=632.9908  nm. We compare pressure determinations via the refractometer and the reference value to a mercury manometer.

  18. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability.

    PubMed

    Zhao, Y N; Zhang, J; Stejskal, A; Liu, T; Elman, V; Lu, Z H; Wang, L J

    2009-05-25

    We use the three-cornered-hat method to evaluate the absolute frequency stabilities of three different ultrastable reference cavities, one of which has a vibration-insensitive design that does not even require vibration isolation. An Nd:YAG laser and a diode laser are implemented as light sources. We observe approximately 1 Hz beat note linewidths between all three cavities. The measurement demonstrates that the vibration-insensitive cavity has a good frequency stability over the entire measurement time from 100 ms to 200 s. An absolute, correlation-removed Allan deviation of 1.4 x 10(-15) at s of this cavity is obtained, giving a frequency uncertainty of only 0.44 Hz.

  19. [Development of the method of high frequency insufflation of medical aerosol for treatment and prophylaxis of the adhesion process in the abdominal cavity].

    PubMed

    Filenko, B P; Lazarev, S M; Borsak, I I

    2009-01-01

    A method of treatment of the abdominal cavity in peritonitis patients has been developed which promotes early regeneration of the peritoneum mesothelium, fibrinolysis, recovery of functions of the abdominal cavity and thus preventing formation of the adhesion process in the abdominal cavity. Effectiveness of the method was experimentally confirmed in rabbits and used in 126 patients with different forms of peritonitis. A comparison of methods of traditional treatment of peritonitis in 120 patients and that with using the developed method has shown advantages of the latter one.

  20. High-frequency isotopic analysis of liquid water samples in the field - initial results from continuous water sampling and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James

    2016-04-01

    Studying rapidly changing hydrochemical signals in catchments can help to improve our mechanistic understanding of their water flow pathways and travel times. For these purposes, stable water isotopes (18O and 2H) are commonly used as natural tracers. However, high-frequency isotopic analyses of liquid water samples are challenging. One must capture highly dynamic behavior with high precision and accuracy, but the lab workload (and sample storage artifacts) involved in collecting and analyzing thousands of bottled samples should also be avoided. Therefore, we have tested Picarro, Inc.'s newly developed Continuous Water Sampler Module (CoWS), which is coupled to their L2130-i Cavity Ring-Down Spectrometer to enable real-time on-line measurements of 18O and 2H in liquid water samples. We coupled this isotope analysis system to a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as a UV-Vis spectroscopy system (s::can Messtechnik GmbH, Vienna, Austria) and electrochemical probes for characterization of basic water quality parameters. The system was run unattended for up to a week at a time in the laboratory and at a small catchment. At the field site, stream-water and precipitation samples were analyzed, alternating at sub-hourly intervals. We observed that measured isotope ratios were highly sensitive to the liquid water flow rate in the CoWS, and thus to the hydraulic head difference between the CoWS and the samples from which water was drawn. We used a programmable high-precision dosing pump to control the injection flow rate and eliminate this flow-rate artifact. Our experiments showed that the precision of the CoWS-L2130-i-system for 2-minute average values was typically better than 0.06‰ for δ18O and 0.16‰ for δ2H. Carryover effects were 1% or less between isotopically contrasting water samples for 30-minute sampling intervals. Instrument drift could be minimized through periodic analysis of

  1. Optimization of a digital lock-in algorithm with a square-wave reference for frequency-divided multi-channel sensor signal detection.

    PubMed

    Zhang, Shengzhao; Li, Gang; Lin, Ling; Zhao, Jing

    2016-08-01

    A digital lock-in detection technique is commonly used to measure the amplitude and phase of a selected frequency signal. A technique that uses a square wave as the reference signal has an advantage over the one using a sinusoidal wave due to its easier implementation and higher computational efficiency. However, demodulating multiple-frequency composite signals using square wave reference may result in interference between channels. To avoid interference between channels and reduce the computational complexity, we modify the calculations and determine the optimal parameter settings of the low-pass filter and carrier frequency, as detailed in this paper. The results of our analysis show that when the length of the average filter and carrier frequencies are properly set, the interference between the channels is removed. This optimization produces the digital lock-in detection suitable for measuring multi-channel sensor signals.

  2. Optimization of a digital lock-in algorithm with a square-wave reference for frequency-divided multi-channel sensor signal detection

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhao; Li, Gang; Lin, Ling; Zhao, Jing

    2016-08-01

    A digital lock-in detection technique is commonly used to measure the amplitude and phase of a selected frequency signal. A technique that uses a square wave as the reference signal has an advantage over the one using a sinusoidal wave due to its easier implementation and higher computational efficiency. However, demodulating multiple-frequency composite signals using square wave reference may result in interference between channels. To avoid interference between channels and reduce the computational complexity, we modify the calculations and determine the optimal parameter settings of the low-pass filter and carrier frequency, as detailed in this paper. The results of our analysis show that when the length of the average filter and carrier frequencies are properly set, the interference between the channels is removed. This optimization produces the digital lock-in detection suitable for measuring multi-channel sensor signals.

  3. The operational performance of hydrogen masers in the Deep Space Network (the performance of laboratory reference frequency standards in an operational environment)

    NASA Technical Reports Server (NTRS)

    Ward, S. C.

    1981-01-01

    Spacecraft navigation to the outer planets (Jupiter and beyond) places very stringent demands upon the performance of frequency and time (F&T) reference standards. The Deep Space Network (DSN) makes use of hydrogen masers as an aid in meeting the routine F&T operational requirements within the 64 m antenna network. Results as of October 1980 indicate the hydrogen masers are performing within the required specifications. Two problem areas are discussed: insufficient control over the environment in which the reference standards reside; and frequency drift.

  4. 5-W Yellow Laser by Intracavity Frequency Doubling of High-Power Vertical-External-Cavity Surface-Emitting Laser (POSTPRINT)

    DTIC Science & Technology

    2008-10-15

    pumped semiconductor lasers, tunable vertical-external-cavity surface-emitting laser ( VECSEL ). I. INTRODUCTION H IGH-POWER laser sources covering the...wavelengths are difficult to fabricate. Optically pumped vertical-external-cavity surface-emitting lasers ( VECSELs ) using multiquantum wells are very...highly strained InGaAs–GaAs VECSEL which can cover a significantly longer wavelength range of 1147–1197 nm. Very robust multi-Watt high-brightness

  5. [Frequency of prevalence of Turner syndrome in fetuses of patients referred to genetic amniocentesis in 2007-2011].

    PubMed

    Chuchracki, Marek; Szczepaniak, Aleksandra; Sedziak, Anna; Ziółkowska, Katarzyna; Opala, Tomasz

    2012-01-01

    Turner syndrome is a genetic diseases caused by an aberration of sex chromosomes. It is conditioned by structural and/or quantitative aberration of one of the two X chromosomes, with frequent presence of mosaicism in cells. Since there are a few types of the syndrome, its diagnosis is often difficult and, as a consequence, a lot of people live without knowing of their disease. It is only during puberty that symptoms occur, or when full maturity begins it possible to diagnose the disease and start treatment. Genetic amniocentesis is a method thanks to which a material for cytogenetic test is obtained. The method involves puncturing amniotic sac and aspiration of fluid under the control of ultrasound for diagnostic purposes. Microscopic analysis of the chromosomes makes it possible to recognize aberration of one chromosome X which indicates Tuner syndrome phenotype. The objective of the study was the analysis of the frequency of prevalence of Turner syndrome in the patients' fetuses referred for genetic amniocentesis in 2007-2011. The most frequent cause of Turner syndrome in girls is missing one of two chromosomes X. the analysis shows that in 1815 tests Turner syndrome was confirmed in 46 cases which constitutes 2.5%. It is mostly young women, aged 25-29 that are at risk of having a child with this aberration. Indications which were later confirmed by the cases of fetuses with this syndrome included fetal hydrops, cystic hygroma and abnormalities in ultrasound image. In case of indications such as genetic defects in the family, incorrect result of triple test are not confirmed by Turner syndrome.

  6. Seismic wave interaction with underground cavities

    NASA Astrophysics Data System (ADS)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  7. JLEIC SRF cavity RF Design

    SciTech Connect

    Wang, Shaoheng; Guo, Jiquan; Wang, Haipeng; Rimmer, Robert A.

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the first phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.

  8. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  9. Hypersonic flow past open cavities

    NASA Technical Reports Server (NTRS)

    Morgenstern, Alagacyr, Jr.; Chokani, Ndaona

    1993-01-01

    The hypersonic flow over a cavity is investigated. The time-dependent compressible Navier-Stokes equations, in terms of mass averaged variables, are numerically solved. An implicit algorithm, with a subiteration procedure to recover time-accuracy, is used to perform the time-accurate computations. The objective of the study is to investigate the effects of Reynolds number and cavity dimensions. The comparison of the computations with available experimental data, in terms of time mean static pressure, heat transfer, and Mach number show good agreement. In the computations large vortex structures, which adversely affect the cavity flow characteristics, are observed at the rear of the cavity. A self-sustained oscillatory motion occurs within the cavity over a range of Reynolds number and cavity dimensions. The frequency spectra of the oscillations show good agreement with a modified semi-empirical relation.

  10. Hypersonic flow past open cavities

    NASA Technical Reports Server (NTRS)

    Morgenstern, Algacyr, Jr.; Chokani, Ndaona

    1994-01-01

    The hypersonic flow over a cavity is investigated. The time-dependent compressible Navier-Stokes equations are numerically solved. An implicit algorithm, with a subiteration procedure to recover time accuracy, is used to perform the time-accurate computations. The objective of the study is to investigate the effects of Reynolds number and cavity dimensions. The comparsion of the computations with available experimental data, in terms of time mean static pressure, heat transfer, and Mach number, show good agreement. In the computations large vortex structures, which adversely affect the cavity flow characteristics, are observed at the rear of the cavity. A self-sustained oscillatory motion occurs within the cavity over a range of Reynolds number and cavity dimensions. The frequency spectra of the oscillations show good agreement with a modified semiempirical relation.

  11. Combining canonical correlation analysis and infinite reference for frequency recognition of steady-state visual evoked potential recordings: a comparison with periodogram method.

    PubMed

    Tian, Yin; Li, Fali; Xu, Peng; Yuan, Zhen; Zhao, Dechun; Zhang, Haiyong

    2014-01-01

    Steady-state visual evoked potentials (SSVEP) are the visual system responses to a repetitive visual stimulus flickering with the constant frequency and of great importance in the study of brain activity using scalp electroencephalography (EEG) recordings. However, the reference influence for the investigation of SSVEP is generally not considered in previous work. In this study a new approach that combined the canonical correlation analysis with infinite reference (ICCA) was proposed to enhance the accuracy of frequency recognition of SSVEP recordings. Compared with the widely used periodogram method (PM), ICCA is able to achieve higher recognition accuracy when extracts frequency within a short span. Further, the recognition results suggested that ICCA is a very robust tool to study the brain computer interface (BCI) based on SSVEP.

  12. Magnetically Induced Optical Transparency on a Forbidden Transition in Strontium for Cavity-Enhanced Spectroscopy

    NASA Astrophysics Data System (ADS)

    Winchester, Matthew N.; Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-06-01

    In this Letter we realize a narrow spectroscopic feature using a technique that we refer to as magnetically induced optical transparency. A cold ensemble of 88Sr atoms interacts with a single mode of a high-finesse optical cavity via the 7.5 kHz linewidth, spin forbidden 1S0 to 3P1 transition. By applying a magnetic field that shifts two excited state Zeeman levels, we open a transmission window through the cavity where the collective vacuum Rabi splitting due to a single level would create destructive interference for probe transmission. The spectroscopic feature approaches the atomic transition linewidth, which is much narrower than the cavity linewidth, and is highly immune to the reference cavity length fluctuations that limit current state-of-the-art laser frequency stability.

  13. Mechanical Design of a New Injector Cryomodule 2-Cell Cavity at CEBAF

    SciTech Connect

    Cheng, Guangfeng G.; Henry, James E.; Mammosser, John D.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.; Yang, Shuo

    2013-12-01

    As a part of Jefferson Lab’s 12 GeV upgrade, a new injector superconducting RF cryomodule is required. This unit consists of a 2-cell and 7-cell cavity, with the latter being refurbished from an existing cavity. The new 2-cell cavity requires electromagnetic design and optimization followed by mechanical design analyses. The electromagnetic design is reported elsewhere. This paper aims to present the procedures and conclusions of the analyses on cavity tuning sensitivity, pressure sensitivity, upset condition pressure induced stresses, and structural vibration frequencies. The purposes of such analyses include: 1) provide reference data for cavity tuner design; 2) examine the structural integrity of the cavity; and 3) evaluate the 2-cell cavity’s resistance to microphonics. Design issues such as the location of stiffening rings, effect of tuner stiffness on cavity stress, choice of cavity wall thickness, etc. are investigated by conducting extensive finite element analyses. Progress in fabrication of the 2-cell cavity is also reported.

  14. Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene

    NASA Astrophysics Data System (ADS)

    Zolot, A. M.; Giorgetta, F. R.; Baumann, E.; Swann, W. C.; Coddington, I.; Newbury, N. R.

    2013-03-01

    The Doppler-limited spectra of methane between 176 THz and 184 THz (5870-6130 cm-1) and acetylene between 193 THz and 199 THz (6430-6630 cm-1) are acquired via comb-tooth resolved dual comb spectroscopy with frequency accuracy traceable to atomic standards. A least squares analysis of the measured absorbance and phase line shapes provides line center frequencies with absolute accuracy of 0.2 MHz, or less than one thousandth of the room temperature Doppler width. This accuracy is verified through comparison with previous saturated absorption spectroscopy of 37 strong isolated lines of acetylene. For the methane spectrum, the center frequencies of 46 well-isolated strong lines are determined with similar high accuracy, along with the center frequencies for 1107 non-isolated lines at lower accuracy. The measured methane line-center frequencies have an uncertainty comparable to the few available laser heterodyne measurements in this region but span a much larger optical bandwidth, marking the first broad-band measurements of the methane 2ν3 region directly referenced to atomic frequency standards. This study demonstrates the promise of dual comb spectroscopy to obtain high resolution broadband spectra that are comparable to state-of-the-art Fourier-transform spectrometer measurements but with much improved frequency accuracy.Work of the US government, not subject to US copyright.

  15. Exploring the Frequency Stability Limits of Whispering Gallery Mode Resonators for Metrological Applications

    NASA Technical Reports Server (NTRS)

    Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan

    2012-01-01

    Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.

  16. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  17. High-frequency (8 to 16 kHz) reference thresholds and intrasubject threshold variability relative to ototoxicity criteria using a Sennheiser HDA 200 earphone.

    PubMed

    Frank, T

    2001-04-01

    The first purpose of this study was to determine high-frequency (8 to 16 kHz) thresholds for standardizing reference equivalent threshold sound pressure levels (RETSPLs) for a Sennheiser HDA 200 earphone. The second and perhaps more important purpose of this study was to determine whether repeated high-frequency thresholds using a Sennheiser HDA 200 earphone had a lower intrasubject threshold variability than the ASHA 1994 significant threshold shift criteria for ototoxicity. High-frequency thresholds (8 to 16 kHz) were obtained for 100 (50 male, 50 female) normally hearing (0.25 to 8 kHz) young adults (mean age of 21.2 yr) in four separate test sessions using a Sennheiser HDA 200 earphone. The mean and median high-frequency thresholds were similar for each test session and increased as frequency increased. At each frequency, the high-frequency thresholds were not significantly (p > 0.05) different for gender, test ear, or test session. The median thresholds at each frequency were similar to the 1998 interim ISO RETSPLs; however, large standard deviations and wide threshold distributions indicated very high intersubject threshold variability, especially at 14 and 16 kHz. Threshold repeatability was determined by finding the threshold differences between each possible test session comparison (N = 6). About 98% of all of the threshold differences were within a clinically acceptable range of +/-10 dB from 8 to 14 kHz. The threshold differences between each subject's second, third, and fourth minus their first test session were also found to determine whether intrasubject threshold variability was less than the ASHA 1994 criteria for determining a significant threshold shift due to ototoxicity. The results indicated a false-positive rate of 0% for a threshold shift > or = 20 dB at any frequency and a false-positive rate of 2% for a threshold shift >10 dB at two consecutive frequencies. This study verified that the output of high-frequency audiometers at 0 dB HL using

  18. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    SciTech Connect

    Fuller, J.; Gibson, S. E.

    2009-08-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R{sub sun} and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R{sub sun} than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  19. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  20. Continuously tunable, split-cavity gyrotrons

    NASA Astrophysics Data System (ADS)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  1. An Initial Assessment of the Surface Reference Technique Applied to Data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung; Liao, Liang; Jones, Jeffrey A.; Kwiatkowski, John M.

    2015-01-01

    It has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band-Ka-band combination. The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or sigma(0)) of the surface, the statistics of sigma(0) derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.

  2. An Initial Assessment of the Surface Reference Technique Applied to Data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung; Liao, Liang; Jones, Jeffrey A.; Kwiatkowski, John M.

    2015-01-01

    It has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band-Ka-band combination. The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or sigma(0)) of the surface, the statistics of sigma(0) derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.

  3. Frequency of anti-Chlamydia trachomatis antibodies in infertile women referred to Tabriz Al-Zahra hospital

    PubMed Central

    Sattari, Mahtab; Ghiami Rad, Mehdi; Ghasemzadeh, Aaliye; Mohammadoghli Reihan, Zahra

    2017-01-01

    Background: Infertility is one of the major issues in society and its incidence is estimated to be almost 10-15%. Chlamydia trachomatis (C. trachomatis) is an important cause of sexually transmitted diseases leading to infertility. Objective: This study was designed to determine the frequency of anti-C. trachomatis antibodies in infertile women at Al-zahra hospital, Tabriz, Iran. Materials and Methods: In this cross-sectional study, the blood samples were collected randomly from 184 infertile women (case group) and 100 pregnant women (control group). The frequency of specific IgG and IgM anti-C. trachomatis antibodies were evaluated using ELISA method. Results: The frequency of IgG anti-C. trachomatis antibody in the control and case groups was 18% and 35.88%, respectively. IgM anti-C. trachomatis antibody was found in 2% of controls and 5.44% of infertile women. Our results showed the significant differences between the case and control groups in anti-C. trachomatis antibodies (IgG, p=0.035 and IgM, p=0.004). Also, no significant relation was seen between the frequency of anti-C. trachomatis antibodies and age, location, and tubal factor infertility in our two study groups. Conclusion: According to high frequency of antibody anti-C. trachomatis among infertile women in competition to the control group, evaluation and treatment of Chlamydia infections is necessary in these patients. PMID:28280796

  4. Mechanical Properties of Niobium Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  5. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-01

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80 K /m are studied under various applied magnetic fields from 5 to 20 μ T . We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity rfl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of d T /d s dependence of Rfl/Ba are also discussed.

  6. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc

    DOE PAGES

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-26

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity rfl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of Rfl/Ba are also discussed.« less

  7. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  8. Laser frequency stabilization for LISA

    NASA Technical Reports Server (NTRS)

    Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan

    2005-01-01

    The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.

  9. Atomic hydrogen maser active oscillator cavity and bulb design optimization

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Washburn, P. J.

    1984-01-01

    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices.

  10. Ferrite-filled cavities for compact planar resonators

    NASA Astrophysics Data System (ADS)

    Keatley, P. S.; Durrant, C. J.; Berry, S. J.; Sirotkin, E.; Hibbins, A. P.; Hicken, R. J.

    2014-01-01

    Sub-wavelength metallic planar cavities, closed at one end, have been constructed by wrapping aluminium foil around teflon or ferrite slabs. Finite cavity width perturbs the fundamental cavity mode frequency of ferrite-filled cavities due to different permeability inside and outside of the cavity, in contrast to teflon-filled cavities, while the cavity length required to achieve a specific resonance frequency is significantly reduced for a ferrite-filled cavity. Ferrite-filled cavities may be excited by an in-plane alternating magnetic field and may be advantageous for high-frequency (HF) and ultra HF tagging and radio frequency identification of metallic objects within security, manufacturing, and shipping environments.

  11. Machining and brazing of accelerating RF cavity

    SciTech Connect

    Ghodke, S.R.; Barnwal, Rajesh; Mondal, Jayant; and others

    2014-07-01

    BARC has developed 2856 MHz accelerating cavities for 6 MeV, 9 MeV and 10 MeV RF Linac. New vendors are developed for mass production of accelerating cavity for future projects. New vendors are developing for diamond turning machining, cleaning and brazing processes. Fabrication involved material testing, CNC diamond turning of cavity, cavity cleaning and brazing. Before and after brazing resonance frequency (RF) of cavity was checked with vector network analyser (VNA). A power feed test setup is also fabricated to test power feed cavity before brazing. This test setup will be used to find out assembly performance of power feed cavity and its coupler. This paper discusses about nano machining, cleaning and brazing processes of RF cavities. (author)

  12. The 24-h frequency-volume chart in adults reporting no voiding complaints: defining reference values and analysing variables.

    PubMed

    van Haarst, E P; Heldeweg, E A; Newling, D W; Schlatmann, T J

    2004-06-01

    To determine the variables (e.g. voiding frequency, voided volumes, urine production) and their mutual relationships and differences between age groups and genders, using a frequency-volume chart (FVC) in an adult population (representing all age groups) who denied having any voiding complaints. In all, 1152 men and women aged > 20 years completed a 24-h FVC; registration started with the first voided volume in the morning and concluded with the first voided volume the next morning. The time of voiding and volume were both recorded, and bedtime hours noted. Each participant claimed to have no voiding complaints. The statistical analysis was aimed at discerning the relationships between the FVC variables, gender and age. There was a linear increase in mean 24-h voiding frequency and nocturia in men, from 6.0 and 0.5 in the third decade to 8.5 and 1.6 in those aged > 70 years. Contrary to men, in women the mean 24-h frequency declined slightly in the older decades; it increased from 6.9 in the third to 8.2 in the sixth, declining to 7.8 in those aged > 70 years. Nocturia in women increased linearly, although slower than in men, from 0.7 in the third decade to 1.4 in those aged > 70 years. The mean volume/void decreased significantly in both genders, from 313 to 209 mL in men, and from 274 to 240 mL in women. The mean 24-h volume was 1718 and 1762 mL in men and women, respectively. For both genders there was a strong linear association between 24-h urine production and voided volumes. The volume/void and maximum voided volume decreased significantly with age in both sexes, but more prominently in men. As a result, in men the frequency increased with age, probably reflecting subclinical changes associated with the development of prostatic enlargement. In contrast to men the frequency in women increased initially and decreased in the older groups. A higher 24-h urine production was associated with a higher mean volume/void.

  13. Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 MHz.

    PubMed

    Rajagopal, Srinath; Sadhoo, Neelaksh; Zeqiri, Bajram

    2015-01-01

    To support the development of clinical applications of high-frequency ultrasound, appropriate tissue-mimicking materials (TMMs) are required whose acoustic properties have been measured using validated techniques. This paper describes the characterisation of the sound speed (phase velocity) and attenuation coefficient of the International Electrotechnical Commission (IEC) agar-based TMM over the frequency range 1 to 60 MHz. Measurements implemented a broadband through-transmission substitution immersion technique over two overlapping frequency ranges, with co-axially aligned 50 MHz centre-frequency transducers employed for characterisation above 15 MHz. In keeping with usual practice employed within the technical literature, thin acoustic windows (membranes) made of 12-μm-thick Mylar protected the TMM from water damage. Various important sources of uncertainty that could compromise measurement accuracy have been identified and evaluated through a combination of experimental studies and modelling. These include TMM sample thickness, measured both manually and acoustically, and the influence of interfacial losses that, even for thin protective membranes, are significant at the frequencies of interest. In agreement with previous reports, the attenuation coefficient of the IEC TMM exhibited non-linear frequency dependence, particularly above 20 MHz, yielding a value of 0.93 ± 0.04 dB cm(-1) MHz(-1) at 60 MHz, derived at 21 ± 0.5°C. For the first time, phase velocity, measured with an estimated uncertainty of ±3.1 m s(-1), has been found to be dispersive over this extended frequency range, increasing from 1541 m s(-1) at 1 MHz to 1547 m s(-1) at 60 MHz. This work will help standardise acoustic property measurements, and establishes a reference measurement capability for TMMs underpinning clinical applications at elevated frequencies. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Status of the ILC Crab Cavity Development

    SciTech Connect

    Burt, G.; Dexter, A.; Beard, C.; Goudket, P.; McIntosh, P.; Bellantoni, L.; Grimm, T.; Li, Z.; Xiao, L.; /SLAC

    2011-10-20

    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  15. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator.

    PubMed

    Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang

    2016-05-30

    We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.

  16. Estimating KIR Haplotype Frequencies on a Cohort of 10,000 Individuals: A Comprehensive Study on Population Variations, Typing Resolutions, and Reference Haplotypes

    PubMed Central

    Jayaraman, Jyothi; Trowsdale, John; Traherne, James; Kuang, Rui; Spellman, Stephen; Maiers, Martin

    2016-01-01

    The killer cell immunoglobulin-like receptors (KIR) mediate human natural killer (NK) cell cytotoxicity via activating or inhibiting signals. Although informative and functional haplotype patterns have been reported, most genotyping has been performed at resolutions that are structurally ambiguous. In order to leverage structural information given low-resolution genotypes, we performed experiments to quantify the effects of population variations, reference haplotypes, and genotyping resolutions on population-level haplotype frequency estimations as well as predictions of individual haplotypes. We genotyped 10,157 unrelated individuals in 5 populations (518 African American[AFA], 258 Asian or Pacific Islander[API], 8,245 European[EUR], 1,073 Hispanic[HIS], and 63 Native American[NAM]) for KIR gene presence/absence (PA), and additionally half of the AFA samples for KIR gene copy number variation (CNV). A custom EM algorithm was used to estimate haplotype frequencies for each population by interpretation in the context of three sets of reference haplotypes. The algorithm also assigns each individual the haplotype pairs of maximum likelihood. Generally, our haplotype frequency estimates agree with similar previous publications to within <5% difference for all haplotypes. The exception is that estimates for NAM from the U.S. showed higher frequency association of cB02 with tA01 (+14%) instead of tB01 (-8.5%) compared to a previous study of NAM from south of the U.S. The higher-resolution CNV genotyping on the AFA samples allowed unambiguous haplotype-pair assignments for the majority of individuals, resulting in a 22% higher median typing resolution score (TRS), which measures likelihood of self-match in the context of population-specific haplo- and geno-types. The use of TRS to quantify reduced ambiguity with CNV data clearly revealed the few individuals with ambiguous genotypes as outliers. It is observed that typing resolution and reference haplotype set influence

  17. Generation of single frequency blue light by highly efficient harmonic generation of IR laser diodes in resonance build-up cavities using nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Danekar, Koustubh; Aflakian, Nafiseh; Shiner, David

    2012-06-01

    Blue and UV lasers have a wide variety of applications, including atomic spectroscopy. We are particularly interested in 486 nm and 243 nm for hydrogen spectroscopy. Blue and UV laser diodes are at the early stages of development. At this time, harmonic generations (HG) is a viable technique to produce blue and UV light with well developed fiber coupled IR laser diodes. We recently reported a polarization maintaining (PM) fiber to fiber conversion efficiency of 71 percent overall. We used a PPKTP (Periodically Poled Potassium Titanyl Phosphate) crystal in an external build-up cavity. The 600 mW of blue at 486 nm was generated from second HG of a 972 nm PM fiber coupled laser diode [1]. PPKTP presents blue absorption (BA) and blue light induced IR absorption (BLIIRA) which cause thermal instability and inefficiency in the buildup cavity. Another crystal, PPSLT (Periodically Poled Lithium Tantalite) promises less BA and less BLIIRA. Our latest results for producing 486 nm using PPSLT and comparison with PPKTP will be presented. [4pt] [1] Koustrubh Danekar, Ali Khademian, and David Shiner, Opt. Lett. 36, 294 (2011)

  18. Long distance measurement using optical sampling by cavity tuning.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Li, Jianshuang; Qu, Xinghua

    2016-05-15

    We experimentally demonstrate a method enabling absolute distance measurement based on optical sampling by cavity tuning. The cross-correlation patterns can be obtained by sweeping the repetition frequency of the frequency comb. The 114 m long fiber delay line, working as the reference arm, is actively stabilized by using a feedback servo loop with 10-10 level stability. The unknown distance can be measured via the instantaneous repetition frequency corresponding to the peak of the fringe packet. We compare the present technique with the reference incremental interferometer, and the experimental results show an agreement within 3 μm over 60 m distance, corresponding to 10-8 level in relative.

  19. Light storage and cavity supermodes in two coupled optomechanical cavities

    NASA Astrophysics Data System (ADS)

    He, Yong

    2016-12-01

    We theoretically investigate a hybrid optomechanical system including two coupled optomechanical cavities in the presence of two strong pump fields and a weak probe field. The photon-hopping coupling of the cavities gives rise to two cavity supermodes whose resonant frequencies can be obtained in the probe transmission spectrum. In a strong photon-hopping coupling regime, there is a large coupling rate between the probe field and one of the two cavity supermodes that is called a bright mode. The optomechanical couplings between the bright mode and two mechanical resonators can cause double optomechanically induced transparency (OMIT), which can be employed to both separately and simultaneously store two weak probe pulses with different central frequencies. We obtain the group delay (light storage time) of the probe field in the hybrid optomechanical system. The results suggest that compared with that of a single cavity optomechanical system, the maximum value of the storage time roughly quadrupled in a particular case. The physical origin of the results is discussed. The hybrid optomechanical system opens an avenue of light storage in cavity optomechanics.

  20. CAVITY CONTROL ALGORITHM

    SciTech Connect

    Tomasz Plawski, J. Hovater

    2010-09-01

    A digital low level radio frequency (RF) system typically incorporates either a heterodyne or direct sampling technique, followed by fast ADCs, then an FPGA, and finally a transmitting DAC. This universal platform opens up the possibilities for a variety of control algorithm implementations. The foremost concern for an RF control system is cavity field stability, and to meet the required quality of regulation, the chosen control system needs to have sufficient feedback gain. In this paper we will investigate the effectiveness of the regulation for three basic control system algorithms: I&Q (In-phase and Quadrature), Amplitude & Phase and digital SEL (Self Exciting Loop) along with the example of the Jefferson Lab 12 GeV cavity field control system.