Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure
Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming
2011-01-01
Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688
Comparison of air-charged and water-filled urodynamic pressure measurement catheters.
Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S
2011-03-01
Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.
Weston, Kassia S; Sacre, Julian W; Jellis, Christine L; Coombes, Jeff S
2013-01-01
The purpose of this study was to compare the presence and severity of autonomic dysfunction in type 2 diabetes mellitus patients, with and without exaggerated blood pressure responses to exercise. We performed a cross-sectional analysis of 98 patients with type 2 diabetes mellitus (aged 59±9). Both time (standard deviation of RR intervals, root-mean-square of successive RR interval differences) and frequency (total spectral power, high frequency, low frequency, very low frequency) domains of heart rate variability were analysed in a 5 min recording at rest and 20 min after a maximal treadmill test. An exaggerated blood pressure response to exercise was identified by peak blood pressure ≥190/105 mmHg (women) or ≥210/105 mmHg (men). Each group of either exaggerated exercise blood pressure response or normal blood pressure response consisted of 49 patients. At rest there were no significant differences between groups for all time and frequency domain parameters of heart rate variability. Post-exercise, there was a significant (p<0.05) reduction in the SDNN, RMSSD and TP in the exaggerated exercise blood pressure group. Independent correlates (p<0.01) of exercise systolic blood pressure included post-exercise TP, resting systolic blood pressure, cardiac autonomic neuropathy and beta-blockers (beta=-0.28, adj. R² = 0.32, p<0.001). Reduced post-exercise heart rate variability in patients with type 2 diabetes mellitus, with an exaggerated exercise blood pressure response suggests preclinical autonomic dysfunction characterized by impaired vagal modulation. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Frequency Response of Pressure Sensitive Paints
NASA Technical Reports Server (NTRS)
Winslow, Neal A.; Carroll, Bruce F.; Setzer, Fred M.
1996-01-01
An experimental method for measuring the frequency response of Pressure Sensitive Paints (PSP) is presented. These results lead to the development of a dynamic correction technique for PSP measurements which is of great importance to the advancement of PSP as a measurement technique. The ability to design such a dynamic corrector is most easily formed from the frequency response of the given system. An example of this correction technique is shown. In addition to the experimental data, an analytical model for the frequency response is developed from the one dimensional mass diffusion equation.
Graphene Squeeze-Film Pressure Sensors.
Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G
2016-01-13
The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.
Moderate pressure massage elicits a parasympathetic nervous system response.
Diego, Miguel A; Field, Tiffany
2009-01-01
Twenty healthy adults were randomly assigned to a moderate pressure or a light pressure massage therapy group, and EKGs were recorded during a 3-min baseline, during the 15-min massage period and during a 3-min postmassage period. EKG data were then used to derive the high frequency (HF), low frequency (LF) components of heart rate variability and the low to high frequency ratio (LF/HF) as noninvasive markers of autonomic nervous system activity. The participants who received the moderate pressure massage exhibited a parasympathetic nervous system response characterized by an increase in HF, suggesting increased vagal efferent activity and a decrease in the LF/HF ratio, suggesting a shift from sympathetic to parasympathetic activity that peaked during the first half of the massage period. On the other hand, those who received the light pressure massage exhibited a sympathetic nervous system response characterized by decreased HF and increased LF/HF.
Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José
2013-01-01
In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p < 0.001). It has been suggested that the biological response to large pressure amplitude low frequency noise exposure is associated with the need to maintain structural integrity. The structural reinforcement would be achieved by increased perivasculo-ductal connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.
Lonzaga, Joel B; Osterhoudt, Curtis F; Thiessen, David B; Marston, Philip L
2007-06-01
Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.
Acoustic waves in gases with strong pressure gradients
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1989-01-01
The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.
Nonlinear aspects of infrasonic pressure transfer into the perilymph.
Krukowski, B; Carlborg, B; Densert, O
1980-06-01
The perilymphatic pressure was studied in response to various low frequency pressure changes in the ear canal. The pressure transfer was analysed and found to be nonlinear in many aspects. The pressure response was found to contain two time constants representing the inner ear pressure regulating mechanisms. The time constants showed an asymmetry in response to positive and negative going inputs--the effects to some extent proportional to input levels. Further nonlinearities were found when infrasonic sine waves were applied to the ear. Harmonic distortion and modulation appeared. When short bursts of infrasound were introduced a clear d.c. shift was observed as a consequence of an asymmetry in the response to positive and negative going pressure inputs. A temporary change in mean perilymphatic pressure was thus achieved and continued throughout the duration of the signal. At very low frequencies a distinct phase shift was detected in the sine waves. This appeared as a phase lead, breaking the continuity of the output sine wave.
NASA Technical Reports Server (NTRS)
Panda, J.; Roozeboom, N. H.; Ross, J. C.
2016-01-01
The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.
Measurement of Gust Response on a Turbine Cascade
NASA Technical Reports Server (NTRS)
Kurkov, A. P.; Lucci, B. L.
1995-01-01
The paper presents benchmark experimental data on a gust response of an annular turbine cascade. The experiment was particularly designed to provide data for comparison with the results of a typical linearized gust-response analysis. Reduced frequency, Mach number, and incidence were varied independently. Except for the lowest reduced frequency, the gust velocity distribution was nearly sinusoidal. For the high inlet-velocity series of tests, the cascade was near choking. The mean flow was documented by measuring blade surface pressures and the cascade exit flow. High-response pressure transducers were used to measure the unsteady pressure distribution. Inlet-velocity components and turbulence parameters were measured using hot wire. In addition to the synchronous time-average pressure spectra, typical power spectra are included for several representative conditions.
Frequency-dependent baroreflex control of blood pressure and heart rate during physical exercise.
Spadacini, Giammario; Passino, Claudio; Leuzzi, Stefano; Valle, Felice; Piepoli, Massimo; Calciati, Alessandro; Sleight, Peter; Bernardi, Luciano
2006-02-15
It is widely recognised that during exercise vagal heart rate control is markedly impaired but blood pressure control may or may not be retained. We hypothesised that this uncertainty arose from the differing responses of the vagus (fast) and sympathetic (slow) arms of the autonomic effectors, and to differing sympatho-vagal balance at different exercise intensities. We studied 12 normals at rest, during moderate (50% maximal heart rate) and submaximal (80% maximal heart rate) exercise. The carotid baroreceptors were stimulated by sinusoidal neck suction at the frequency of the spontaneous high- (during moderate exercise) and low-frequency (during submaximal) fluctuations in heart period and blood pressure. The increases in these oscillations induced by neck suction were measured by autoregressive spectral analysis. At rest neck stimulation increased variability at low frequency (RR: from 6.99+/-0.24 to 8.87+/-0.18 ln-ms2; systolic pressure: from 3.05+/-1.7 to 4.09+/-0.17 ln-mm Hg2) and high frequency (RR: from 4.67+/-0.25 to 6.79+/-0.31 ln-ms2; systolic pressure: from 1.93+/-0.2 to 2.67+/-0.125 ln-mm Hg2) (all p<0.001). During submaximal exercise RR variability decreased but systolic pressure variability rose (p<0.01 vs rest); during submaximal exercise low-frequency neck stimulation increased the low-frequency fluctuations in blood pressure (2.35+/-0.51 to 4.25+/-0.38 ln-mm Hg2, p<0.05) and RR. Conversely, neck suction at high frequency was ineffective on systolic pressure, and had only minor effects on RR interval during moderate exercise. During exercise baroreflex control is active on blood pressure, but the efferent response on blood pressure and heart rate is only detected during low frequency stimulation, indicating a frequency-dependent effect.
Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects
NASA Technical Reports Server (NTRS)
Koh, J.; Brown, T. E.; Beightol, L. A.; Ha, C. Y.; Eckberg, D. L.
1994-01-01
1. We studied eight young men (age range: 20-37 years) with chronic, clinically complete high cervical spinal cord injuries and ten age-matched healthy men to determine how interruption of connections between the central nervous system and spinal sympathetic motoneurones affects autonomic cardiovascular control. 2. Baseline diastolic pressures and R-R intervals (heart periods) were similar in the two groups. Slopes of R-R interval responses to brief neck pressure changes were significantly lower in tetraplegic than in healthy subjects, but slopes of R-R interval responses to steady-state arterial pressure reductions and increases were comparable. Plasma noradrenaline levels did not change significantly during steady-state arterial pressure reductions in tetraplegic patients, but rose sharply in healthy subjects. The range of arterial pressure and R-R interval responses to vasoactive drugs (nitroprusside and phenylephrine) was significantly greater in tetraplegic than healthy subjects. 3. Resting R-R interval spectral power at respiratory and low frequencies was similar in the two groups. During infusions of vasoactive drugs, low-frequency R-R interval spectral power was directly proportional to arterial pressure in tetraplegic patients, but was unrelated to arterial pressure in healthy subjects. Vagolytic doses of atropine nearly abolished both low- and respiratory-frequency R-R interval spectral power in both groups. 4. Our conclusions are as follows. First, since tetraplegic patients have significant levels of low-frequency arterial pressure and R-R interval spectral power, human Mayer arterial pressure waves may result from mechanisms that do not involve stimulation of spinal sympathetic motoneurones by brainstem neurones. Second, since in tetraplegic patients, low-frequency R-R interval spectral power is proportional to arterial pressure, it is likely to be mediated by a baroreflex mechanism. Third, since low-frequency R-R interval rhythms were nearly abolished by atropine in both tetraplegic and healthy subjects, these rhythms reflect in an important way rhythmic firing of vagal cardiac motoneurones.
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
NASA Astrophysics Data System (ADS)
Chivers, J. W. H.
Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.
NASA Astrophysics Data System (ADS)
Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen
2013-10-01
The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.
Sugimoto, N; Masuda, M; Hashiguchi, T
2003-10-01
Nonlinear cubic theory is developed to obtain a frequency response of shock-free, forced oscillations of an air column in a closed tube with an array of Helmholtz resonators connected axially. The column is assumed to be driven by a plane piston sinusoidally at a frequency close or equal to the lowest resonance frequency with its maximum displacement fixed. By applying the method of multiple scales, the equation for temporal modulation of a complex pressure amplitude of the lowest mode is derived in a case that a typical acoustic Mach number is comparable with the one-third power of the piston Mach number, while the relative detuning of a frequency is comparable with the quadratic order of the acoustic Mach number. The steady-state solution gives the asymmetric frequency response curve with bending (skew) due to nonlinear frequency upshift in addition to the linear downshift. Validity of the theory is checked against the frequency response obtained experimentally. For high amplitude of oscillations, an effect of jet loss at the throat of the resonator is taken into account, which introduces the quadratic loss to suppress the peak amplitude. It is revealed that as far as the present check is concerned, the weakly nonlinear theory can give quantitatively adequate description up to the pressure amplitude of about 3% to the equilibrium pressure.
Quantification of peripheral and central blood pressure variability using a time-frequency method.
Kouchaki, Z; Butlin, M; Qasem, A; Avolio, A P
2016-08-01
Systolic blood pressure variability (BPV) is associated with cardiovascular events. As the beat-to-beat variation of blood pressure is due to interaction of several cardiovascular control systems operating with different response times, assessment of BPV by spectral analysis using the continuous measurement of arterial pressure in the finger is used to differentiate the contribution of these systems in regulating blood pressure. However, as baroreceptors are centrally located, this study considered applying a continuous aortic pressure signal estimated noninvasively from finger pressure for assessment of systolic BPV by a time-frequency method using Short Time Fourier Transform (STFT). The average ratio of low frequency and high frequency power band (LF PB /HF PB ) was computed by time-frequency decomposition of peripheral systolic pressure (pSBP) and derived central aortic systolic blood pressure (cSBP) in 30 healthy subjects (25-62 years) as a marker of balance between cardiovascular control systems contributing in low and high frequency blood pressure variability. The results showed that the BPV assessed from finger pressure (pBPV) overestimated the BPV values compared to that assessed from central aortic pressure (cBPV) for identical cardiac cycles (P<;0.001), with the overestimation being greater at higher power.
Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant
NASA Technical Reports Server (NTRS)
Chanin, S. P.; Shearer, A. J.; Faeth, G. M.
1976-01-01
An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.
Cardiovascular regulation in humans in response to oscillatory lower body negative pressure
NASA Technical Reports Server (NTRS)
Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.
1994-01-01
The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1991-01-01
The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.
Identification of Experimental Unsteady Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Piatak, David J.; Scott, Robert C.
2003-01-01
The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less
Hellige, G
1976-01-01
The experimentally in vitro determined dynamic response characteristics of 38 catheter manometer systems were uniform in the worst case to 5 c.p.s. and optimally to 26 c.p.s. Accordingly, some systems are only satisfactory for ordinary pressure recording in cardiac rest, while better systems record dp/dt correct up to moderate inotropic stimulation of the heart. In the frequency range of uniform response (amplitude error less +/- 5%) the phase distortion is also negligible. In clinical application the investigator is often restricted to special type of cardiac catheter. In this case a low compliant transducer yields superior results. In all examined systems the combination with MSD 10 transducers is best, whereas the combination with P 23 Db transducers leads to minimal results. An inadequate system for recording ventricular pressure pulses leads in most cases to overestimations of dp/dtmax. The use of low frequency pass filters to attenuate higher frequency artefacts is, under clinical conditions, not suitable for extending the range of uniform frequency response. The dynamic response of 14 catheter manometer systems with two types of continuous self flush units was determined. The use of the P 37 flush unit in combination with small internal diameter catheters leads to serious error in ordinary pressure recording, due to amplitude distortion of the lower harmonics. The frequency response characteristics of the combination of an Intraflow flush system and MSD 10 transducer was similar to the non-flushing P 23 Db transducer feature.
Human responses to upright tilt: a window on central autonomic integration
NASA Technical Reports Server (NTRS)
Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.
1999-01-01
1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.
Human responses to upright tilt: a window on central autonomic integration.
Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L
1999-06-01
1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.
The effects of extra-low-frequency atmospheric pressure oscillations on human mental activity
NASA Astrophysics Data System (ADS)
Delyukov, A. A.; Didyk, L.
Slight atmospheric pressure oscillations (APO) in the extra-low-frequency range below 0.1 Hz, which frequently occur naturally, can influence human mental activity. This phenomenon has been observed in experiments with a group of 12 healthy volunteers exposed to experimentally created APO with amplitudes 30-50 Pa in the frequency band 0.011-0.17 Hz. Exposure of the subjects to APO for 15-30 min caused significant changes in attention and short-term memory functions, performance rate, and mental processing flexibility. The character of the response depended on the APO frequency and coherence. Periodic APO promoted purposeful mental activity, accompanied by an increase in breath-holding duration and a slower heart rate. On the other hand, quasi-chaotic APO, similar to the natural perturbations of atmospheric pressure, disrupted mental activity. These observations suggest that APO could be partly responsible for meteorosensitivity in humans.
Non-Intrusive Pressure/Multipurpose Sensor and Method
NASA Technical Reports Server (NTRS)
Smith, William C. (Inventor)
2001-01-01
Method and apparatus are provided for determining pressure using a non-intrusive sensor that is easily attachable to the plumbing of a pressurized system. A bent mode implementation and a hoop mode implementation of the invention are disclosed. Each of these implementations is able to nonintrusively measure pressure while fluid is flowing. As well, each implementation may be used to measure mass flow rate simultaneously with pressure. An ultra low noise control system is provided for making pressure measurements during gas flow. The control system includes two tunable digital bandpass filters with center frequencies that are responsive to a clock frequency. The clock frequency is divided by a factor of N to produce a driving vibrational signal for resonating a metal sensor section.
Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone
Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; ...
2016-04-14
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less
Systems for low frequency seismic and infrasound detection of geo-pressure transition zones
Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.
2007-10-16
Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.
Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution
NASA Astrophysics Data System (ADS)
Wisniewiski, David
2015-03-01
Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
Response of space shuttle insulation panels to acoustic noise pressure
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1976-01-01
The response of reusable space shuttle insulation panels to random acoustic pressure fields are studied. The basic analytical approach in formulating the governing equations of motion uses a Rayleigh-Ritz technique. The input pressure field is modeled as a stationary Gaussian random process for which the cross-spectral density function is known empirically from experimental measurements. The response calculations are performed in both frequency and time domain.
Effects of age on the cardiac and vascular limbs of the arterial baroreflex.
Brown, C M; Hecht, M J; Weih, A; Neundörfer, B; Hilz, M J
2003-01-01
Healthy ageing has several effects on the autonomic control of the circulation. Several studies have shown that baroreflex-mediated vagal control of the heart deteriorates with age, but so far there is little information regarding the effect of ageing on sympathetically mediated baroreflex responses. The aim of this study was to assess the effects of ageing on baroreflex control of the heart and blood vessels. In 40 healthy volunteers, aged 20-87 years, we applied oscillatory neck suction at 0.1 Hz to assess the sympathetic modulation of the heart and blood vessels and at 0.2 Hz to assess the effect of parasympathetic stimulation on the heart. Breathing was maintained at 0.25 Hz. Blood pressure, electrocardiographic RR intervals and respiration were recorded continuously. Spectral analysis was used to evaluate the magnitude of the low-frequency (0.03-0.14 Hz) and high-frequency (0.15-0.50 Hz) oscillations in the RR interval and blood pressure. Responses to neck suction were assessed as the change in power of the RR interval and blood pressure fluctuations at the stimulation frequency from baseline values. Resting low- and high-frequency powers of the RR interval decreased significantly with age (P < 0.01). However, the low-frequency power of systolic blood pressure did not correlate with age. Spontaneous baroreflex sensitivity (alpha-index) showed a significant inverse correlation with age (r = -0.46, P < 0.05). Responses of the RR interval and systolic blood pressure to 0.1 Hz neck suction stimulation were not related to age, however, the RR interval response to 0.2 Hz neck suction declined significantly with age (r = -0.61, P < 0.01). These results confirm an age-related decrease in cardiovagal baroreflex responses. However, sympathetically mediated baroreflex control of the blood vessels is preserved with age.
Evaluation of the impact of noise metrics on tiltrotor aircraft design
NASA Technical Reports Server (NTRS)
Sternfeld, H.; Spencer, R.; Ziegenbein, P.
1995-01-01
A subjective noise evaluation was conducted in which the test participants evaluated the annoyance of simulated sounds representative of future civil tiltrotor aircraft. The subjective responses were correlated with the noise metrics of A-weighted sound pressure level, overall sound pressure level, and perceived level. The results indicated that correlation between subjective response and A-weighted sound pressure level is considerably enhanced by combining it in a multiple regression with overall sound pressure level. As a single metric, perceived level correlated better than A-weighted sound pressure level due to greater emphasis on low frequency noise components. This latter finding was especially true for indoor noise where the mid and high frequency noise components are attenuated by typical building structure. Using the results of the subjective noise evaluation, the impact on tiltrotor aircraft design was also evaluated. While A-weighted sound pressure level can be reduced by reduction in tip speed, an increase in number of rotor blades is required to achieve significant reduction of low frequency noise as measured by overall sound pressure level. Additional research, however, is required to achieve comparable reductions in impulsive noise due to blade-vortex interaction, and also to achieve reduction in broad band noise.
Speech intelligibility at high helium-oxygen pressures.
Rothman, H B; Gelfand, R; Hollien, H; Lambertsen, C J
1980-12-01
Word-list intelligibility scores of unprocessed speech (mean of 4 subjects) were recorded in helium-oxygen atmospheres at stable pressures equivalent to 1600, 1400, 1200, 1000, 860, 690, 560, 392, and 200 fsw daring Predictive Studies IV-1975 by wide-bandwidth condenser microphones (frequency responses not degraded by increased gas density). Intelligibility scores were substantially lower in helium-oxygen a 200 fsw than in air at l ATA, but there was little difference between 200 fsw and 1600 fsw. A previously documented prominent decrease in intelligibility of speech between 200 or 600 fsw because of helium and pressure was probably due to degradation of microphone frequency response by high gas density.
Cardiovascular and stress responses to short-term noise exposures-A panel study in healthy males.
Walker, Erica D; Brammer, Anthony; Cherniack, Martin G; Laden, Francine; Cavallari, Jennifer M
2016-10-01
While previous epidemiological studies report adverse effects of long-term noise exposure on cardiovascular health, the mechanisms responsible for these effects are unclear. We sought to elucidate the cardiovascular and stress response to short-term, low (31.5-125Hz) and high (500-2000Hz) frequency noise exposures. Healthy male (n=10) participants were monitored on multiple visits during no noise, low- or high-frequency noise exposure scenarios lasting 40min. Participants were fitted with an ambulatory electrocardiogram (ECG) and blood pressure measures and saliva samples were taken before, during and after noise exposures. ECGs were processed for measures of heart rate variability (HRV): high-frequency power (HF), low-frequency power (LF), the root of the mean squared difference between adjacent normal heart beats (N-N) intervals (RMSSD), and the standard deviation of N-N intervals (SDNN). Systolic blood pressure (SBP), diastolic blood pressure (DPB), and pulse were reported and saliva was analyzed for salivary cortisol and amylase. Multivariate mixed-effects linear regression models adjusted for age were used to identify statistically significant difference in outcomes by no noise, during noise or after noise exposure periods and whether this differed by noise frequency. A total of 658, 205, and 122, HRV, saliva, and blood pressure measurements were performed over 41 person days. Reductions in HRV (LF and RMSSD) were observed during noise exposure (a reduction of 19% (-35,-3.5) and 9.1% (-17,-1.1), respectively). After adjusting for noise frequency, during low frequency noise exposure, HF, LF, and SDNN were reduced (a reduction of 32% (-57,-6.2), 34% (-52,-15), and 16% (-26,-6.1), respectively) and during high frequency noise exposure, a 21% (-39,-2.3) reduction in LF, as compared to during no noise exposure, was found. No significant (p<0.05) changes in blood pressure, salivary cortisol, or amylase were observed. These results suggest that exposure to noise, and in particular, to low-frequency noise, negatively impacts HRV. The frequencies of noise should be considered when evaluating the cardiovascular health impacts of exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Cardiovascular and Stress Responses to Short-Term Noise Exposures—A Panel Study in Healthy Males
Walker, Erica D; Brammer, Anthony; Cherniack, Martin G; Laden, Francine; Cavallari, Jennifer M
2016-01-01
Background While previous epidemiological studies report adverse effects of long-term noise exposure on cardiovascular health, the mechanisms responsible for these effects are unclear. We sought to elucidate the cardiovascular and stress response to short-term, low (31.5-125 Hz) and high (500 – 2000 Hz) frequency noise exposures. Methods Healthy male (n = 10) participants were monitored on multiple visits during no noise, low- or high-frequency noise exposure scenarios lasting 40 minutes. Participants were fitted with an ambulatory electrocardiogram (ECG) and blood pressure measures and saliva samples were taken before, during and after noise exposures. ECGs were processed for measures of heart rate variability (HRV): high-frequency power (HF), low-frequency power (LF), the root of the mean squared difference between adjacent normal heart beats (N-N) intervals (RMSSD), and the standard deviation of N-N intervals (SDNN). Systolic blood pressure (SBP), diastolic blood pressure (DPB), and pulse were reported and saliva was analyzed for salivary cortisol and amylase. Multivariate mixed-effects linear regression models adjusted for age were used to identify statistically significant difference in outcomes by no noise, during noise or after noise exposure periods and whether this differed by noise frequency. Results A total of 658, 205, and 122, HRV, saliva,and blood pressure measurements were performed over 41 person days. Reductions in HRV (LF and RMSSD) were observed during noise exposure (a reduction of 19%(−35,−3.5) and 9.1%(−17,−1.1), respectively). After adjusting for noise frequency, during low frequency noise exposure, HF, LF, and SDNN were reduced (a reduction of 32%(−57,−6.2), 34%(−52,−15), and 16%(−26,−6.1), respectively and during high frequency noise exposure, a 21%(−39,−2.3) reduction in LF, as compared to during no noise exposure was found. No significant (p>0.05) changes in blood pressure,salivary cortisol or amylase were observed. Conclusions These results suggest that exposure to noise, and in particular, to low-frequency noise negatively impacts HRV. The frequencies of noise should be considered when evaluating the cardiovascular health impacts of exposure. PMID:27371930
A program to evaluate a control system based on feedback of aerodynamic pressure differentials
NASA Technical Reports Server (NTRS)
Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.
Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.
1990-01-01
Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.
Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.
2006-07-18
Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.
Low-frequency blood pressure oscillations and inotrope treatment failure in premature infants.
Vesoulis, Zachary A; Hao, Jessica; McPherson, Christopher; El Ters, Nathalie M; Mathur, Amit M
2017-07-01
The underlying mechanism as to why some hypotensive preterm infants do not respond to inotropic medications remains unclear. For these infants, we hypothesize that impaired vasomotor function is a significant factor and is manifested through a decrease in low-frequency blood pressure variability across regulatory components of vascular tone. Infants born ≤28 wk estimated gestational age underwent prospective recording of mean arterial blood pressure for 72 h after birth. After error correction, root-mean-square spectral power was calculated for each valid 10-min data frame across each of four frequency bands ( B1 , 0.005-0.0095 Hz; B2 , 0.0095-0.02 Hz; B3 , 0.02-0.06 Hz; and B4 , 0.06-0.16) corresponding to different components of vasomotion control. Forty infants (twenty-nine normotensive control and eleven inotrope-exposed) were included with a mean ± SD estimated gestational age of 25.2 ± 1.6 wk and birth weight 790 ± 211 g. 9.7/11.8 Million (82%) data points were error-free and used for analysis. Spectral power across all frequency bands increased with time, although the magnitude was 20% less in the inotrope-exposed infants. A statistically significant increase in spectral power in response to inotrope initiation was noted across all frequency bands. Infants with robust blood pressure response to inotropes had a greater increase compared with those who had limited or no blood pressure response. In this study, hypotensive infants who require inotropes have decreased low-frequency variability at baseline compared with normotensive infants, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. NEW & NOTEWORTHY In this study, we examine patterns of low-frequency oscillations in blood pressure variability across regulatory components of vascular tone in normotensive and hypotensive infants exposed to inotropic medications. We found that hypotensive infants who require inotropes have decreased low-frequency variability at baseline, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. Copyright © 2017 the American Physiological Society.
Frequency analysis of a step dynamic pressure calibrator.
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency analysis of a step dynamic pressure calibrator
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.
Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D
2010-01-01
Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.
Frequency-domain method for discrete frequency noise prediction of rotors in arbitrary steady motion
NASA Astrophysics Data System (ADS)
Gennaretti, M.; Testa, C.; Bernardini, G.
2012-12-01
A novel frequency-domain formulation for the prediction of the tonal noise emitted by rotors in arbitrary steady motion is presented. It is derived from Farassat's 'Formulation 1A', that is a time-domain boundary integral representation for the solution of the Ffowcs-Williams and Hawkings equation, and represents noise as harmonic response to body kinematics and aerodynamic loads via frequency-response-function matrices. The proposed frequency-domain solver is applicable to rotor configurations for which sound pressure levels of discrete tones are much higher than those of broadband noise. The numerical investigation concerns the analysis of noise produced by an advancing helicopter rotor in blade-vortex interaction conditions, as well as the examination of pressure disturbances radiated by the interaction of a marine propeller with a non-uniform inflow.
USDA-ARS?s Scientific Manuscript database
Understanding autonomic nervous system functioning, which mediates behavioral and physiological responses to stress, offers great potential for evaluation of farm animal stress and welfare. Evaluation of heart rate variability (HRV) and blood pressure variability (BPV), using time and frequency doma...
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars
2015-11-01
The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.
Vibration of a hydrostatic gas bearing due to supply pressure oscillations
NASA Technical Reports Server (NTRS)
Branch, H. D.; Watkins, C. B.; Eronini, I. E.
1984-01-01
The vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating supply pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and the sleeve is solved numerically together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The results presented include Bode plots of bearing oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency. The results are compared with the results of an earlier study involving the response of a similar bearing to oscillating exhaust pressure.
López-Juárez, Rhode; Zempoalteca, René; Corona-Quintanilla, Dora Luz; Jiménez-Estrada, Ismael; Castelán, Francisco; Martínez-Gómez, Margarita
2018-01-01
To characterize the contractile properties of the bulbospongiosus (Bsm), isquiocavernosus (Ism), and pubococcygeus muscles (Pcm), and their involvement in the genesis of vaginal pressure in nulliparous and multiparous rabbits. Age-matched nulliparous and multiparous rabbits were used to record the isometric contractile responses of each muscle as well as the intravaginal pressure evoked by single square electrical pulses and stimulation trains of ascending frequency. To establish significant differences between groups, two-tail unpaired Student t tests were carried out. The linear correlation between intravaginal pressure and muscle contractile force was analyzed with Pearson correlation tests. For all cases, a P ≤ 0.05 was set as statistically significant. Multiparity decreased the contractile force of Bsm and Ism generated by high-frequency stimulation trains. The normalized force of the Pcm increased when evoked at 1, 4, and 10 Hz while this decreased at higher frequencies (20, 50, and 100 Hz). The contraction of both Bsm and Ism raised particularly the pressure on the perineal vagina while that of the Pcm increased the pressure in the pelvic vagina. Such a functional segregation is still present in multiparous rabbits albeit it was modified. Multiparity induces changes in the contractile responses of Bsm, Ism, and Pcm, which alterates the vaginal pressure. © 2017 Wiley Periodicals, Inc.
Respiratory modulation of human autonomic function on Earth.
Eckberg, Dwain L; Cooke, William H; Diedrich, André; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar
2016-10-01
We studied healthy supine astronauts on Earth with electrocardiogram, non-invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings. The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs. R-R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea. The subjects' responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R-R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long-term neuroplasticity in serial measurements made over 20 days during and following space travel? Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Respiratory modulation of human autonomic function on Earth
Cooke, William H.; Diedrich, André; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U. O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar
2016-01-01
Key points We studied healthy supine astronauts on Earth with electrocardiogram, non‐invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings.The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs.R‐R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea.The subjects’ responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. Abstract We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled‐frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R‐R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R‐R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long‐term neuroplasticity in serial measurements made over 20 days during and following space travel? PMID:27028958
Transverse acoustic forcing of a round hydrodynamically self-excited jet
NASA Astrophysics Data System (ADS)
Kushwaha, Abhijit Kumar; Mazur, Marek; Worth, Nicholas; Dawson, James; Li, Larry K. B.
2017-11-01
Hydrodynamically self-excited jets can readily synchronize with longitudinal acoustic forcing, but their response to transverse acoustic forcing is less clear. In this experimental study, we apply transverse acoustic forcing to an axisymmetric low-density jet at frequencies around its natural global frequency. We place the jet in a rectangular box containing two loudspeakers, one at each end, producing nominally one-dimensional standing pressure waves. By traversing the jet across this box, we subject it to a range of acoustic modes, from purely longitudinal (streamwise) modes at the pressure anti-node to purely transverse (cross-stream) modes at the pressure node. Using time-resolved Background-Oriented Schlieren (BOS) imaging and hot-wire anemometry, we characterize the jet response for different forcing frequencies, amplitudes and mode shapes, providing new insight into the way transverse acoustic oscillations interact with axisymmetric hydrodynamic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Transfer function analysis of dynamic cerebral autoregulation in humans
NASA Technical Reports Server (NTRS)
Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wangher, Athena; Searby, Geoff; Quinard, Joel
Using OH{sup *} chemiluminescence, we measure the experimental unsteady response of a 1-D premixed flame to an acoustic pressure wave for a range of frequencies below and above the inverse of the flame transit time. We find that the response is positive and, at low frequency, the order of magnitude is comparable with existing theoretical analyses. However, if it is assumed that the chemiluminescence is proportional to the mass consumption rate, despite some uncertainty in the interpretation of the chemiluminescence signal we find that the frequency dependence of the measured response is not compatible with the predictions of the standardmore » flame model for one-step Arrhenius kinetics. A better, but not perfect, correlation is obtained for the heat release rate. We conclude that the standard model does not provide an adequate description of the unsteady response of real flames and that it is necessary to investigate more realistic chemical models. (author)« less
Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew
2011-01-01
The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
Effect of deep pressure input on parasympathetic system in patients with wisdom tooth surgery.
Chen, Hsin-Yung; Yang, Hsiang; Meng, Ling-Fu; Chan, Pei-Ying Sarah; Yang, Chia-Yen; Chen, Hsin-Ming
2016-10-01
Deep pressure input is used to normalize physiological arousal due to stress. Wisdom tooth surgery is an invasive dental procedure with high stress levels, and an alleviation strategy is rarely applied during extraction. In this study, we investigated the effects of deep pressure input on autonomic responses to wisdom tooth extraction in healthy adults. A randomized, controlled, crossover design was used for dental patients who were allocated to experimental and control groups that received treatment with or without deep pressure input, respectively. Autonomic indicators, namely the heart rate (HR), percentage of low-frequency (LF) HR variability (LF-HRV), percentage of high-frequency (HF) HRV (HF-HRV), and LF/HF HRV ratio (LF/HF-HRV), were assessed at the baseline, during wisdom tooth extraction, and in the posttreatment phase. Wisdom tooth extraction caused significant autonomic parameter changes in both groups; however, differential response patterns were observed between the two groups. In particular, deep pressure input in the experimental group was associated with higher HF-HRV and lower LF/HF-HRV during extraction compared with those in the control group. LF/HF-HRV measurement revealed balanced sympathovagal activation in response to deep pressure application. The results suggest that the application of deep pressure alters the response of HF-HRV and facilitates maintaining sympathovagal balance during wisdom tooth extraction. Copyright © 2016. Published by Elsevier B.V.
Frequency response of a vaporization process to distorted acoustic disturbances
NASA Technical Reports Server (NTRS)
Heidmann, M. F.
1972-01-01
The open-loop response properties expressed as the mass vaporized in phase and out of phase with the pressure oscillations were numerically evaluated for a vaporizing n-heptane droplet. The evaluation includes the frequency dependence introduced by periodic oscillation in droplet mass and temperature. A given response was achieved over a much broader range of frequency with harmonically distorted disturbances than with sinusoidal disturbances. The results infer that distortion increases the probability of incurring spontaneous and triggered instability in any rocket engine combustor by broadening the frequency range over which the vaporization process can support an instability.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less
Combustion response to acoustic perturbation in liquid rocket engines
NASA Astrophysics Data System (ADS)
Ghafourian, Akbar
An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.
Pressurized transient otoacoustic emissions measured using click and chirp stimuli.
Keefe, Douglas H; Patrick Feeney, M; Hunter, Lisa L; Fitzpatrick, Denis F; Sanford, Chris A
2018-01-01
Transient-evoked otoacoustic emission (TEOAE) responses were measured in normal-hearing adult ears over frequencies from 0.7 to 8 kHz, and analyzed with reflectance/admittance data to measure absorbed sound power and the tympanometric peak pressure (TPP). The mean TPP was close to ambient. TEOAEs were measured in the ear canal at ambient pressure, TPP, and fixed air pressures from 150 to -200 daPa. Both click and chirp stimuli were used to elicit TEOAEs, in which the incident sound pressure level was constant across frequency. TEOAE levels were similar at ambient and TPP, and for frequencies from 0.7 to 2.8 kHz decreased with increasing positive and negative pressures. At 4-8 kHz, TEOAE levels were larger at positive pressures. This asymmetry is possibly related to changes in mechanical transmission through the ossicular chain. The mean TEOAE group delay did not change with pressure, although small changes were observed in the mean instantaneous frequency and group spread. Chirp TEOAEs measured in an adult ear with Eustachian tube dysfunction and TPP of -165 daPa were more robust at TPP than at ambient. Overall, results demonstrate the feasibility and clinical potential of measuring TEOAEs at fixed pressures in the ear canal, which provide additional information relative to TEOAEs measured at ambient pressure.
Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2015-01-01
Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.
NASA Technical Reports Server (NTRS)
Zhang, R.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
2000-01-01
To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.
NASA Technical Reports Server (NTRS)
Miller, Eric L.; Dudenhoefer, James E.
1989-01-01
The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.
NASA Technical Reports Server (NTRS)
Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce
2010-01-01
The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:
High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)
2000-01-01
A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.
Dipole source encoding and tracking by the goldfish auditory system.
Coombs, Sheryl; Fay, Richard R; Elepfandt, Andreas
2010-10-15
In goldfish and other otophysans, the Weberian ossicles mechanically link the saccule of the inner ear to the anterior swimbladder chamber (ASB). These structures are correlated with enhanced sound-pressure sensitivity and greater sensitivity at high frequencies (600-2000 Hz). However, surprisingly little is known about the potential impact of the ASB on other otolithic organs and about how auditory responses are modulated by discrete sources that change their location or orientation with respect to the ASB. In this study, saccular and lagenar nerve fiber responses and conditioned behaviors of goldfish were measured to a small, low-frequency (50 Hz) vibrating sphere (dipole) source as a function of its location along the body and its orientation with respect to the ASB. Conditioned behaviors and saccular nerve fiber activity exhibited response characteristics nearly identical to those measured from a hydrophone in the same relative position as the ASB. By contrast, response patterns from lagena fibers could not be predicted by pressure inputs to the ASB. Deflation of the ASB abolished the characteristic spatial response pattern of saccular but not lagena fibers. These results show that: (1) the lagena is not driven by ASB-mediated pressure inputs to the ear; (2) the ASB-saccule pathway dominates behavioral responsiveness, operating effectively at frequencies as low as 50 Hz; and (3) behavioral and neural (saccular) responses are strongly modulated by the position and orientation of the dipole with respect to the ASB.
Zhang, Jing; Mifflin, Steven W
2000-01-01
Using electrophysiological techniques, the discharge of neurones in the nucleus of the solitary tract (NTS) receiving aortic depressor nerve (ADN) inputs was examined during blood pressure changes induced by I.V. phenylephrine or nitroprusside in anaesthetized, paralysed and artificially ventilated rats. Various changes in discharge rate were observed during phenylephrine-induced blood pressure elevations: an increase (n = 38), a decrease (n = 5), an increase followed by a decrease (n = 4) and no response (n = 11). In cells receiving a monosynaptic ADN input (MSNs), the peak discharge frequency response was correlated to the rate of increase in mean arterial pressure (P < 0.01) but was not correlated to the absolute increase in blood pressure. The peak discharge frequency response of cells receiving a polysynaptic ADN input (PSNs) was correlated to neither the absolute increase in blood pressure nor the rate of increase in mean arterial pressure. Diverse changes in discharge rate were observed during nitroprusside-induced reductions in blood pressure: an increase (n = 3), a decrease (n = 10), an increase followed by a decrease (n = 3) and no response (n = 6). Reductions in pressure of 64 ± 2 mmHg produced weak reductions in spontaneous discharge of 1.3 ± 0.9 Hz and only totally abolished spontaneous discharge in one neurone. These response patterns of NTS neurones during changes in arterial pressure suggest that baroreceptor inputs are integrated differently in MSNs compared to PSNs. The sensitivity of MSNs to the rate of change of pressure provides a mechanism for the rapid regulation of cardiovascular function. The lack of sensitivity to the mean level of a pressure increase in both MSNs and PSNs suggests that steady-state changes in pressure are encoded by the number of active neurones and not graded changes in the discharge of individual neurones. Both MSNs and PSNs receive tonic excitatory inputs from the arterial baroreceptors; however, these tonic inputs appear to be insufficient to totally account for their spontaneous discharge. PMID:11101652
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1979-01-01
The effect of sweep on the dynamic response of the NACA 0012 airfoil was investigated. Unsteady chordwise distributed pressure data were obtained from a tunnel spanning wing equipped with 21 single surface transducers (13 on the suction side and 8 on the pressure side of the airfoil). The pressure data were obtained at pitching amplitudes of 8 and 10 degrees over a tunnel Mach number range of 0.10 to 0.46 and a pitching frequency range of 2.5 to 10.6 cycles per second. The wing was oscillated in the unswept and swept positions about the quarter-chord pivot axis relative to mean incidence angle settings of 0, 9, 12, and 15 degrees. A compilation of all the response data obtained during the test program is presented. These data are in the form of normal force, chord force, lift force, pressure drag, and moment hysteresis loops derived from chordwise integrations of the unsteady pressure distributions. The hysteresis loops are organized in two main sections. In the first section, the loop data are arranged to show the effect of sweep (lambda = 0 and 30 deg) for all available combinations of mean incidence angle, pitching amplitude, reduced frequency, and chordwise Mach number. The second section shows the effect of chordwise Mach number (MC = 0.30 and MC = 0.40) on the swept wing response for all available combinations of mean incidence angle, pitching amplitude, and reduced frequency.
Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges
NASA Astrophysics Data System (ADS)
Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.
2017-11-01
Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.
Elastic Nonlinear Response in Granular Media Under Resonance Conditions
NASA Astrophysics Data System (ADS)
Jia, X.; Johnson, P. A.
2004-12-01
We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).
Characterization of the Dynamic Pressure Response of Fuels in Microchannels
NASA Astrophysics Data System (ADS)
Haendler, Brenda; Pisano, Albert; Liepmann, Dorian
2004-11-01
In order to create a self-pumping fuel vaporization and delivery systems for a MEMS rotary engine power system, the dynamic pressure response due to phase eruption of fuels in micro channels must be characterized. Testing is done using micro channels with diameters the same order of magnitude as the critical bubble radius, a constant mass flow rate syringe pump, and a steady heat source. Pressure changes in the micro channel due to the periodic movement of the phase change meniscus are measured for a variety of flow conditions. A discrete Fourier transform is performed on the data to determine the dominant frequencies in the signal. Critical trends are discussed comparing both the frequency and the amplitude of the pressure spikes for a variety of temperatures and flow rates. The results presented on the trends in the pressure signature due to phase eruption for fuels are then related back to the fuel delivery system, which is using a nozzle-diffuser design to accomplish positive flow rectification given the periodic pressure condition at the phase eruption interface.
Rothe, C F; Kim, K C
1980-11-01
The purpose of this study was to evaluate the magnitude of possible error in the measurement of systolic blood pressure if disposable, built-in diaphragm, transducer domes or long extension tubes between the patient and pressure transducer are used. Sinusoidal or arterial pressure patterns were generated with specially designed equipment. With a long extension tube or trapped air bubbles, the resonant frequency of the catheter system was reduced so that the arterial pulse was amplified as it acted on the transducer and, thus, gave an erroneously high systolic pressure measurement. The authors found this error to be as much as 20 mm Hg. Trapped air bubbles, not stopcocks or connections, per se, lead to poor fidelity. The utility of a continuous catheter flush system (Sorenson, Intraflow) to estimate the resonant frequency and degree of damping of a catheter-transducer system is described, as are possibly erroneous conclusions. Given a rough estimate of the resonant frequency of a catheter-transducer system and the magnitude of overshoot in response to a pulse, the authors present a table to predict the magnitude of probable error. These studies confirm the variability and unreliability of static calibration that may occur using some safety diaphragm domes and show that the system frequency response is decreased if air bubbles are trapped between the diaphragms. The authors conclude that regular procedures should be established to evaluate the accuracy of the pressure measuring systems in use, the transducer should be placed as close to the patient as possible, the air bubbles should be assiduously eliminated from the system.
Method for noninvasive intracranial pressure measurement
Sinha, Dipen N.
2000-01-01
An ultrasonic-based method for continuous, noninvasive intracranial pressure (ICP) measurement and monitoring is described. The stress level in the skull bone is affected by pressure. This also changes the interfacial conditions between the dura matter and the skull bone. Standing waves may be set up in the skull bone and the layers in contact with the bone. At specific frequencies, there are resonance peaks in the response of the skull which can be readily detected by sweeping the excitation frequency on an excitation transducer in contact with a subject's head, while monitoring the standing wave characteristics from the signal received on a second, receiving transducer similarly in contact with the subject's head. At a chosen frequency, the phase difference between the excitation signal and the received signal can be determined. This difference can be related to the intracranial pressure and changes therein.
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.
Electroacoustic Performance of Direct-Input Hearing Aids with FM Amplification Systems.
ERIC Educational Resources Information Center
Thibodeau, Linda M.
1990-01-01
The electroacoustic performance of 18 direct-input and two inductive-coupling hearing aids was compared when operating with two different frequency modulation (FM) systems. The most significant differences occurred in full-on gain, equivalent-input noise, and frequency response, as opposed to high frequency average saturation sound pressure level…
Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio
NASA Astrophysics Data System (ADS)
Vanorio, T.; Mavko, G.
2006-12-01
A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize the assumptions and limitations described above, we designed a laboratory experiment which used gas as pore fluid medium. Experimental results show that in gas-pressured saturated rocks the Vp/Vs ratio, while remaining lower than values reported for liquid saturation conditions, increases with decreasing differential pressure, similarly to the trend observed in liquid saturated rocks.
Oxygen measurements at high pressures with vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Wang, J.; Sanders, S. T.; Jeffries, J. B.; Hanson, R. K.
Measurements of oxygen concentration at high pressures (to 10.9 bar) were made using diode-laser absorption of oxygen A-band transitions near 760 nm. The wide current-tuning frequency range (>30 cm-1) of vertical cavity surface-emitting lasers (VCSELs) was exploited to enable the first scanned-wavelength demonstration of diode-laser absorption at high pressures; this strategy is more robust than fixed-wavelength strategies, particularly in hostile environments. The wide tuning range and rapid frequency response of the current tuning were further exploited to demonstrate wavelength-modulation absorption spectroscopy in a high-pressure environment. The minimum detectable absorbance demonstrated, 1×10-4, corresponds to 800 ppm-m oxygen detectivity at room temperature and is limited by etalon noise. The rapid- and wide-frequency tunability of VCSELs should significantly expand the application domain of absorption-based sensors limited in the past by the small current-tuning frequency range (typically <2 cm-1) of conventional edge-emitting diode lasers.
Occlusion pressures in men rebreathing CO2 under methoxyflurane anesthesia.
Derenne, J P; Couture, J; Iscoe, S; Whitelaw, A; Milic-Emili, J
1976-05-01
The effect of general anesthesia on control of breathing was studied by CO2 rebreathing and occlusion pressure measurements in six normal human subjects under methoxyflurane anesthesia. CO2 was found to increase the amplitude of the occlusion pressure wave without changing its shape, so that CO2 responses in terms of the occlusion pressure developed 100 ms after the onset of inspiration (Po/0.1) gave results equivalent to the responses in terms of Po/1.o or any other parameter of the pressure wave. Methoxyflurane depressed the ventilatory response to CO2 but not the occlusion pressure response, implying that the most important action of the anesthetic was to increase the effective elastance of the respiratory system rather than to depress the respiratory centers. The elastance was further increased by CO2, and this mechanical change had the effect of shifting the "apneic threshold" extrapolated from the ventilatory response curve to a lower PAco2. Frequency of breathing, inspiratory and expiratory times were not altered by CO2 in anesthetized subjects.
NASA Technical Reports Server (NTRS)
Rosatino, S. A.; Westbrook, R. M.
1979-01-01
Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.
All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.
NASA Astrophysics Data System (ADS)
Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar
2017-04-01
Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.
Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mehmed, Oral
2003-01-01
Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.
Development of dynamic calibration methods for POGO pressure transducers. [for space shuttle
NASA Technical Reports Server (NTRS)
Hilten, J. S.; Lederer, P. S.; Vezzetti, C. F.; Mayo-Wells, J. F.
1976-01-01
Two dynamic pressure sources are described for the calibration of pogo pressure transducers used to measure oscillatory pressures generated in the propulsion system of the space shuttle. Rotation of a mercury-filled tube in a vertical plane at frequencies below 5 Hz generates sinusoidal pressures up to 48 kPa, peak-to-peak; vibrating the same mercury-filled tube sinusoidally in the vertical plane extends the frequency response from 5 Hz to 100 Hz at pressures up to 140 kPa, peak-to-peak. The sinusoidal pressure fluctuations can be generated by both methods in the presence of high pressures (bias) up to 55 MPa. Calibration procedures are given in detail for the use of both sources. The dynamic performance of selected transducers was evaluated using these procedures; the results of these calibrations are presented. Calibrations made with the two sources near 5 Hz agree to within 3% of each other.
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
Study of Cavitation/Vaporization in Liquid Rocket Thruster Injectors
2011-07-29
Particles, Journal of Propulsion and Power, Vol. 16, No. 2, 2000, pp. 309-317. [6] Ciucci, A., Iaccarino, G., Amato, M., Numerical Investigation of 3D ...axis lying in A-A plane. A Druck pressure transducer with a response frequency of 2.5 kHz is used to measure the pressure. Sampling rate for pressure
NASA Astrophysics Data System (ADS)
Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang
2017-09-01
Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.
Intra-arterial pressure measurement in neonates: dynamic response requirements.
van Genderingen, H R; Gevers, M; Hack, W W
1995-02-01
A computer simulation of a catheter manometer system was used to quantify measurement errors in neonatal blood pressure parameters. Accurate intra-arterial pressure recordings of 21 critically ill newborns were fed into this simulated system. The dynamic characteristics, natural frequency and damping coefficient, were varied from 2.5 to 60 Hz and from 0.1 to 1.4, respectively. As a result, errors in systolic, diastolic and pulse arterial pressure were obtained as a function of natural frequency and damping coefficient. Iso-error curves for 2%, 5% and 10% were constructed. Using these curves, the maximum inaccuracy of any neonatal catheter manometer system can be determined and used in the clinical setting.
Fiber optic pressure sensors in skin-friction measurements
NASA Technical Reports Server (NTRS)
Cuomo, F. W.
1986-01-01
A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.
New indices from microneurography to investigate the arterial baroreflex.
Laurin, Alexandre; Lloyd, Matthew G; Hachiya, Tesshin; Saito, Mitsuru; Claydon, Victoria E; Blaber, Andrew
2017-06-01
Baroreflex-mediated changes in heart rate and vascular resistance in response to variations in blood pressure are critical to maintain homeostasis. We aimed to develop time domain analysis methods to complement existing cross-spectral techniques in the investigation of the vascular resistance baroreflex response to orthostatic stress. A secondary goal was to apply these methods to distinguish between levels of orthostatic tolerance using baseline data. Eleven healthy, normotensive males participated in a graded lower body negative pressure protocol. Within individual neurogenic baroreflex cycles, the amount of muscle sympathetic nerve activity (MSNA), the diastolic pressure stimulus and response amplitudes, diastolic pressure to MSNA burst stimulus and response times, as well as the stimulus and response slopes between diastolic pressure and MSNA were computed. Coherence, gain, and frequency of highest coherence between systolic/diastolic arterial pressure (SAP/DAP) and RR-interval time series were also computed. The number of MSNA bursts per low-frequency cycle increased from 2.55 ± 0.68 at baseline to 5.44 ± 1.56 at -40 mmHg of LBNP Stimulus time decreased (3.21 ± 1.48-1.46 ± 0.43 sec), as did response time (3.47 ± 0.86-2.37 ± 0.27 sec). At baseline, DAP-RR coherence, DAP-RR gain, and the time delay between decreases in DAP and MSNA bursts were higher in participants who experienced symptoms of presyncope. Results clarified the role of different branches of the baroreflex loop, and suggested functional adaptation of neuronal pathways to orthostatic stress. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Experimental and analytical studies in fluids
NASA Technical Reports Server (NTRS)
Goglia, Gene L.; Ibrahim, Adel
1984-01-01
The first objective was to analyze and design a true airspeed sensor which will replace the conventional pitot-static pressure transducer for small commercial aircraft. The second objective was to obtain a numerical solution and predict the frequency response which is generated by the vortex whistle at a certain airspeed. It was concluded flow rate measurements indicate that the vortex tube sound frequency is linearly proportional to the frequency response. The vortex tube whistle frequency is dependent upon geometrical parameters to such an extent that: an increase in vortex tube length produces a decrease in frequency response and that an increase in the exhaust nozzle length produces an increase in the frequency precession. An increase in the vortex tube diameter produces a decrease in frequency precession. An increase in swirler diameter produces a decrease in frequency. An increase in the location distance of the microphone pickup signal point from the inside edge of the exit nozzle produces an increase in frequency response. The experimental results indicate that those parameters most significantly effecting frequency are in descending order of importance microphone location, vortex tube diameter, exit nozzle length, vortex tube length, and swirler diameter.
Hydrophone calibration for MERMAID seismic network
NASA Astrophysics Data System (ADS)
Joubert, C.; Nolet, G.; Sukhovich, A.; Ogé, A.; Argentino, J.; Hello, Y.
2013-12-01
The MERMAID float (Mobile Earthquake Recorder in Marine Areas by Independent Divers) is a new oceanic seismometer which has already successfully recorded P-waves from teleseismic events, when deployed in the Mediterranean Sea and the Indian Ocean. The frequency band of teleseismic acquisition is for frequencies up to 2 Hz. The P-waves are recorded with a Rafos II hydrophone. The hydrophone has a flat frequency response from 5 Hz to 10 kHz but its behavior below 5 Hz is not documented. In this work we determine the Rafos II response with the electronic card used for MERMAID in the frequency band of 0.1 to 2 Hz. A simple and low-cost calibration method at low frequencies was developed and applied to the Rafos II but can be used for any hydrophone. In this calibration method a brief pressure increase of 1000 Pa is applied to the hydrophone. We record response after filtering and digitizing by the electronic card. To create the pressure increase, the hydrophone is placed in a calibration chamber filled with water and making sure no air bubbles are present. By opening a solenoid valve connected to a tube with 10 cm extra water on top of the chamber, an abrupt pressure of 1000 Pa is applied. The output signal is fitted to an empirical response function, that characterizes it with four parameters: A, B, α and τ which control the shape of the signal: h(t) = t^(ατ) e^(-αt) (A + Bt). A represents the magnification, α defines the exponential relaxation of the signal, B models the overshoot and τ allows for a slightly delayed response due to the low-pass filtering in the electronics. A set of 20 experiments is used to characterize the Rafos II instrumental response in association with the electronic card. The method developed here offers a good and simple way to estimate the response at low frequencies. The MERMAID hydrophone response to the step function input of 1000 Pa can be defined by A = 0.36 × 0.02 mV/Pa, B = - 0.08 × 0.01 mV Pa^(-1) s^(-1), α = 0.28 × 0.02 s^(-1) and τ = 0.41 × 0.14 s.
Schinkel-Ivy, Alison; Singer, Jonathan C.; Inness, Elizabeth L.; Mansfield, Avril
2016-01-01
Objective To determine whether quiet standing measures at specific frequency levels (representative of reactive control) differed between individuals with stroke based on their ability to recover balance (failed or successful responses to external perturbations). Methods Individuals with stroke completed a clinical assessment, including 30 s of quiet standing and lean-and-release postural perturbations, at admission to in-patient rehabilitation. Quiet standing centre of pressure (COP) signals were calculated and discrete wavelet decomposition was performed. Net COP amplitude, between-limb synchronization, and ratios of individual-limb COP were determined for each frequency level of interest, and for the non-decomposed signal (all frequency levels). Outcome measures were compared between individuals who exhibited failed and successful responses during a) unconstrained and b) encouraged-use lean-and-release trials. Results Individuals with failed responses during the unconstrained lean-and-release trials displayed greater net COP amplitude than those with successful responses, specifically within a frequency range of 0.40–3.20 Hz. Conclusions Reduced ability to recover balance among individuals with stroke may be reflected in impaired reactive control of quiet standing. Significance These results provide insight into the mechanism by which reactive control of quiet standing is impaired in individuals with stroke, and may inform assessment and rehabilitation strategies for post-stroke reactive balance control. PMID:27178866
NASA Astrophysics Data System (ADS)
Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar
2008-02-01
Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.
A dynamic pressure source for the calibration of pressure transducers
NASA Technical Reports Server (NTRS)
Vezzetti, C. F.; Hilten, J. S.; Mayo-Wells, J. F.; Lederer, P. S.
1976-01-01
A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given.
Dynamic calibration of fast-response probes in low-pressure shock tubes
NASA Astrophysics Data System (ADS)
Persico, G.; Gaetani, P.; Guardone, A.
2005-09-01
Shock tube flows resulting from the incomplete burst of the diaphragm are investigated in connection with the dynamic calibration of fast-response pressure probes. As a result of the partial opening of the diaphragm, pressure disturbances are observed past the shock wave and the measured total pressure profile deviates from the envisaged step signal required by the calibration process. Pressure oscillations are generated as the initially normal shock wave diffracts from the diaphragm's orifice and reflects on the shock tube walls, with the lowest local frequency roughly equal to the ratio of the sound speed in the perturbed region to the shock tube diameter. The energy integral of the perturbations decreases with increasing distance from the diaphragm, as the diffracted leading shock and downwind reflections coalesce into a single normal shock. A procedure is proposed to calibrate fast-response pressure probes downwind of a partially opened shock tube diaphragm.
Homentcovschi, D.; Miles, R. N.; Loeppert, P. V.; Zuckerwar, A. J.
2013-01-01
An analysis is presented of the effect of the protective cover on the acoustic response of a miniature silicon microphone. The microphone diaphragm is contained within a small rectangular enclosure and the sound enters through a small hole in the enclosure's top surface. A numerical model is presented to predict the variation in the sound field with position within the enclosure. An objective of this study is to determine up to which frequency the pressure distribution remains sufficiently uniform so that a pressure calibration can be made in free space. The secondary motivation for this effort is to facilitate microphone design by providing a means of predicting how the placement of the microphone diaphragm in the package affects the sensitivity and frequency response. While the size of the package is typically small relative to the wavelength of the sounds of interest, because the dimensions of the package are on the order of the thickness of the viscous boundary layer, viscosity can significantly affect the distribution of sound pressure around the diaphragm. In addition to the need to consider viscous effects, it is shown here that one must also carefully account for thermal conductivity to properly represent energy dissipation at the system's primary acoustic resonance frequency. The sound field is calculated using a solution of the linearized system consisting of continuity equation, Navier-Stokes equations, the state equation and the energy equation using a finite element approach. The predicted spatial variation of both the amplitude and phase of the sound pressure is shown over the range of audible frequencies. Excellent agreement is shown between the predicted and measured effects of the package on the microphone's sensitivity. PMID:24701031
The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft
NASA Technical Reports Server (NTRS)
Fernholz, Christian M.; Robinson, Jay H.
1996-01-01
The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.
A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.
Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G
2017-10-01
We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.
Development of wide-band middle ear transmission in the Mongolian gerbil
NASA Astrophysics Data System (ADS)
Overstreet, Edward H.; Ruggero, Mario A.
2002-01-01
Stapes vibrations were measured in deeply anesthetized adult and neonatal (ages: 14 to 20 days) Mongolian gerbils. In adult gerbils, the velocity magnitude of stapes responses to tones was approximately constant over the entire frequency range of measurements, 1 to 40 kHz. Response phases referred to pressure near the tympanic membrane varied approximately linearly as a function of increasing stimulus frequency, with a slope corresponding to a group delay of 30 μs. In neonatal gerbils, the sensitivity of stapes responses to tones was lower than in adults, especially at mid-frequencies (e.g., by about 15 dB at 10-20 kHz in gerbils aged 14 days). The input impedance of the adult gerbil cochlea, calculated from stapes vibrations and published measurements of pressure in scala vestibuli near the oval window [E. Olson, J. Acoust. Soc. Am. 103, 3445-3463 (1998)], is principally dissipative at frequencies lower than 10 kHz. Conclusions: (a) middle-ear vibrations in adult gerbils do not limit the input to the cochlea up to at least 40 kHz, i.e., within 0.5 oct of the high-frequency cutoff of the behavioral audiogram; and (b) the results in both adult and neonatal gerbils are inconsistent with the hypothesis that mass reactance controls high-frequency ossicular vibrations and support the idea that the middle ear functions as a transmission line.
Park, Eun-Hyoung; Eide, Per Kristian; Zurakowski, David; Madsen, Joseph R
2012-12-01
The pathophysiology of normal pressure hydrocephalus (NPH), and the related problem of patient selection for treatment of this condition, have been of great interest since the description of this seemingly paradoxical condition nearly 50 years ago. Recently, Eide has reported that measurements of the amplitude of the intracranial pressure (ICP) can both positively and negatively predict response to CSF shunting. Specifically, the fraction of time spent in a "high amplitude" (> 4 mm Hg) state predicted response to shunting, which may represent a marker for hydrocephalic pathophysiology. Increased ICP amplitude might suggest decreased brain compliance, meaning a static measure of a pressure-volume ratio. Recent studies of canine data have shown that the brain compliance can be described as a frequency-dependent function. The normal canine brain seems to show enhanced ability to absorb the pulsations around the heart rate, quantified as a cardiac pulsation absorbance (CPA), with properties like a notch filter in engineering. This frequency dependence of the function is diminished with development of hydrocephalus in dogs. In this pilot study, the authors sought to determine whether frequency dependence could be observed in humans, and whether the frequency dependence would be any different in epochs with high ICP amplitude compared with epochs of low ICP amplitude. Systems analysis was applied to arterial blood pressure (ABP) and ICP waveforms recorded from 10 patients undergoing evaluations of idiopathic NPH to calculate a time-varying transfer function that reveals frequency dependence and CPA, the measure of frequency-dependent compliance previously used in animal experiments. The ICP amplitude was also calculated in the same samples, so that epochs with high (> 4 mm Hg) versus low (≤ 4 mm Hg) amplitude could be compared in CPA and transfer functions. Transfer function analysis for the more "normal" epochs with low amplitude exhibits a dip or notch in the physiological frequency range of the heart rate, confirming in humans the pulsation absorber phenomenon previously observed in canine studies. Under high amplitude, however, the dip in the transfer function is absent. An inverse relationship between CPA index and ICP amplitude is evident and statistically significant. Thus, elevated ICP amplitude indicates decreased performance of the human pulsation absorber. The results suggest that the human intracranial system shows frequency dependence as seen in animal experiments. There is an inverse relationship between CPA index and ICP amplitude, indicating that higher amplitudes may occur with a reduced performance of the pulsation absorber. Our findings show that frequency dependence can be observed in humans and imply that reduced frequency-dependent compliance may be responsible for elevated ICP amplitude observed in patients who respond to CSF shunting.
Electroacupuncture most effectively elicits depressor and bradycardic responses at 1 Hz in humans.
Nakahara, Hidehiro; Kawada, Toru; Ueda, Shin-ya; Kawai, Eriko; Yamamoto, Hiromi; Sugimachi, Masaru; Miyamoto, Tadayoshi
2016-02-01
Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.
The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.
Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C
2016-12-03
Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.
Shaping and timing gradient pulses to reduce MRI acoustic noise.
Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M
2010-08-01
A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.
Shock loading predictions from application of indicial theory to shock-turbulence interactions
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.; Nixon, David
1991-01-01
A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron
2013-01-01
Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.
Fritz, Robert J.
1986-01-01
A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.
Fritz, R.J.
1983-11-03
A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.
NASA Technical Reports Server (NTRS)
Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)
2014-01-01
A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.
[Hemodynamic changes in hypoglycemic shock].
Gutiérrez, C; Piza, R; Chousleb, A; Hidalgo, M A; Ortigosa, J L
1977-01-01
Severe hypoglycemia may be present in seriously ill patients; if it is not corrected opportunely a series of neuroendocrinal mechanisms take place aimed at correcting metabolic alterations. These mechanisms can produce hemodynamic alterations as well. Nine mongrel dogs were studied with continuous registration of: blood pressure, central venous pressure, cardiac frequency, respiratory frequency, electrocardiogram and first derivative (Dp/Dt). Six dogs received crystalline (fast acting) insuline intravenously (group 1). After hemodynamic changes were registered hypoglycemia was corrected with 50 per cent glucose solution. Complementary insuline doses were administered to three dogs (group 2); in this group hypoglycemia was not corrected. In group 1 during hypoglycemia there was an increase in blood pressure, central venous pressure, cardiac frequency, respiratory frequency and Dp/Dt, and changes in QT and T wave on the EKG; these changes were partially reversible after hypoglycemia was corrected. The above mentioned alterations persisted in group 2, breathing became irregular irregular and respiratory arrest supervened. It can be inferred that the hemodynamic response to hypoglycemia is predominantly adrenergic. The role of catecolamines, glucocorticoides, glucagon, insuline, cyclic AMP in metabolic and hemodynamic alterations consecutive to hypoglycemia are discussed.
Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Matthew
The extraction of heat from hot rock requires circulation of fluid through fracture networks. Because the geometry and connectivity of these fractures determines the efficiency of fluid circulation, many tools are used to characterize fractures before and after development of the reservoir. Under this project, a new tool was developed that allows hydraulic connectivity between geothermal boreholes to be identified. Nanostrain in rock fractures is measured using fiber optic distributed acoustic sensing (DAS). This strain is measured in one borehole in response to periodic pressure pulses induced in another borehole. The strain in the fractures represents hydraulic connectivity between wells.more » DAS is typically used at frequencies of Hz to kHz, but strain at mHz frequencies were measured for this project. The tool was demonstrated in the laboratory and in the field. In the laboratory, strain in fiber optic cables was measured in response to compression due to oscillating fluid pressure. DAS recorded strains as small as 10 picometer/m in response to 1 cm of water level change. At a fractured crystalline rock field site, strain was measured in boreholes. Fiber-optic cable was mechanically coupled borehole walls using pressured flexible liners. In one borehole 30 m from the oscillating pumping source, pressure and strain were measured simultaneously. The DAS system measured fracture displacement at frequencies of less than 1 mHz (18 min periods) and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm of water). The attenuation and phase shift of the monitored strain signal is indicative of the permeability and storage (compliance) of the fracture network that connects the two wells. The strain response as a function of oscillation frequency is characteristic of the hydraulic structure of the formation. This is the first application of DAS to the measurement of low frequency strain in boreholes. It has enormous potential for monitoring geothermal reservoirs for purposes of understanding reservoir compliance and for assuring security of injection fluids. Periodic pressure pulses can be induced by oscillating injection or pumping during operation so the system could provide real time reservoir data. DAS cable may already be installed at a site as it is becoming increasingly used for seismic observation. Simulations conducted for this project indicate that strain should be propagated through borehole cements, so observations can be made outside of well casing. In uncased holes, the cable would need to be mechanically coupled to the borehole wall to provide measurements. One option would be to install fiber into cemented and abandoned boreholes to extend their utility.« less
High pressure Raman study of type-I collagen.
Paschou, Amalia Maria; Katsikini, Maria; Christofilos, Dimitrios; Arvanitidis, John; Ves, Sotirios
2018-05-18
The high pressure response of type-I collagen from bovine Achilles tendon is investigated with micro-Raman spectroscopy. Fluorinert ™ and methanol-ethanol mixtures were used as pressure transmitting media (PTM) in a diamond anvil cell. The Raman spectrum of collagen is dominated by three bands centred at approximately 1450, 1660 and 2930 cm -1 , attributed to C-H deformation, C=O stretching of the peptide bond (amide-I band) and C-H stretching modes, respectively. Upon pressure increase, using Fluorinert ™ as PTM, a shift towards higher frequencies of the C-H stretching and deformation peaks is observed. Contrary, the amide-I band peaks are shifted to lower frequencies with moderate pressure slopes. On the other hand, by using the alcohol mixture as PTM, the amide-I band exhibits more pronounced C=O bond softening, deduced from the shift to lower frequencies, suggesting a strengthening of the hydrogen bonds between glycine and proline residues of different collagen chains due to the presence of the polar alcohol molecules. Furthermore, some of the peaks exhibit abrupt changes in their pressure slopes at approximately 2 GPa, implying a variation in the compressibility of the collagen fibres. This could be attributed to a pitch change from 10/3 to 7/2, sliding of the tropocollagen molecules, twisting variation at the molecular level and/or elimination of the D-gaps induced by kink compression. All spectral changes are reversible upon pressure release, which indicates that denaturation has not taken place. Finally, a minor lipid phase contamination was detected in some sample spots. Its pressure response is also monitored. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Predicting vibratory stresses from aero-acoustic loads
NASA Astrophysics Data System (ADS)
Shaw, Matthew D.
Sonic fatigue has been a concern of jet aircraft engineers for many years. As engines become more powerful, structures become more lightly damped and complex, and materials become lighter, stiffer, and more complicated, the need to understand and predict structural response to aeroacoustic loads becomes more important. Despite decades of research, vibration in panels caused by random pressure loads, such as those found in a supersonic jet, is still difficult to predict. The work in this research improves on current prediction methods in several ways, in particular for the structural response due to wall pressures induced by supersonic turbulent flows. First, solutions are calculated using time-domain input pressure loads that include shock cells and their interaction with turbulent flow. The solutions include both mean (static) and oscillatory components. Second, the time series of stresses are required for many fatigue assessment counting algorithms. To do this, a method is developed to compute time-dependent solutions in the frequency domain. The method is first applied to a single-degree-of-freedom system. The equations of motion are derived and solved in both the frequency domain and the time domain. The pressure input is a random (broadband) signal representative of jet flow. The method is then applied to a simply-supported beam vibrating in flexure using a line of pressure inputs computed with computational fluid dynamics (CFD). A modal summation approach is used to compute structural response. The coupling between the pressure field and the structure, through the joint acceptance, is reviewed and discussed for its application to more complicated structures. Results from the new method and from a direct time domain method are compared for method verification. Because the match is good and the new frequency domain method is faster computationally, it is chosen for use in a more complicated structure. The vibration of a two-dimensional panel loaded by jet nozzle discharge flow is addressed. The surface pressures calculated at Pratt and Whitney using viscous and compressible CFD are analyzed and compared to surface pressure measurements made at the United Technologies Research Center (UTRC). A structural finite element model is constructed to represent a flexible panel also used in the UTRC setup. The mode shapes, resonance frequencies, modal loss factors, and surface pressures are input into the solution method. Displacement time series and power spectral densities are computed and compared to measurement and show good agreement. The concept of joint acceptance is further addressed for two-dimensional plates excited by supersonic jet flow. Static and alternating stresses in the panel are also computed, and the most highly stressed modes are identified. The surface pressures are further analyzed in the wavenumber domain for insight into the physics of sonic fatigue. Most of the energy in the wall pressure wavenumber-frequency spectrum at subsonic speeds is in turbulent structures near the convective wavenumber. In supersonic flow, however, the shock region dominates the spectrum at low frequencies, but convective behavior is still dominant at higher frequencies. When the forcing function wavenumber energy overlaps the modal wavenumbers, the acceptance of energy by the structure from the flow field is greatest. The wavenumber analysis suggests a means of designing structures to minimize overlap of excitation and structural wavenumber peaks to minimize vibration and sonic fatigue.
Buffering of blood pressure variability by the renin-angiotensin system in the conscious dog
Just, Armin; Kirchheim, Hartmut R; Ehmke, Heimo
1998-01-01
The renin-angiotensin system (RAS) participates in the compensation of major blood pressure disturbances such as haemorrhage and is involved in the tonic long-term (> 1 day) maintenance of mean arterial blood pressure (MABP). Since its contribution to the short-term (< 1 h) buffering of normal blood pressure variability is not known, this was investigated in resting conscious dogs.The regulatory efficiency and the response time of the RAS were studied by an acute step reduction of renal artery pressure to 70 mmHg for 1 h using a suprarenal aortic cuff. After a delay of at least 100 s, MABP rose exponentially by 22 ± 5 mmHg in normal dogs (n = 4), by 6 ± 3 mmHg after angiotensin converting enzyme (ACE) inhibition (n = 4), and by 25 ± 5 mmHg after ganglionic blockade (n = 4). MABP returned to control after release of the cuff with similar time courses. The time constants of the MABP responses were in the range of 20 min. Thus, possible feedback oscillations of the RAS would be expected around 0.0025 Hz (1/(4 × 100 s)); a buffering effect would be possible below this frequency.Blood pressure variability was investigated by spectral analysis of MABP from 3.75 h recordings in the frequency ranges of 0.002–0.003 Hz (feedback oscillations) and below 0.002 Hz (buffering effect).ACE inhibition (n = 7) decreased MABP by 11 ± 2 mmHg (P < 0.05), but in both frequency ranges integrated spectral density was not affected. ACE inhibition also failed to significantly change spectral density in either of the two frequency ranges under the following conditions: (1) during ganglionic blockade (n = 7), (2) during a low-sodium diet (except for a very slight elevation below 0.002 Hz) (n = 7), and (3) when the fall of MABP induced by ACE inhibition was compensated by an angiotensin II infusion (n = 7).It is concluded that in spite of its high regulatory efficiency with an adequate response time the RAS does not directly contribute to the short-term buffering of blood pressure variability, nor does it give rise to feedback oscillations under normal resting conditions. Even if the RAS is stimulated by sodium restriction its contribution to short-term blood pressure buffering is only marginal. PMID:9763646
Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg
2016-12-01
Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D
2012-10-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955
Sloshing response of a reactor tank with internals
NASA Astrophysics Data System (ADS)
Ma, D. C.; Gvildys, J.; Chang, Y. W.
The sloshing response of a large reactor tank with in tank components is presented. It is indicated that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free surface but increases the dynamic pressure in the fluid.
Sander, H.H.
1959-10-01
A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.
NASA Astrophysics Data System (ADS)
Roten, D.; Fäh, D.; Bonilla, L. F.
2013-05-01
Ground motions of the 2011 Tohoku earthquake recorded at Onahama port (Iwaki, Fukushima prefecture) rank among the highest accelerations ever observed, with the peak amplitude of the 3-D acceleration vector approaching 2g. The response of the site was distinctively non-linear, as indicated by the presence of horizontal acceleration spikes which have been linked to cyclic mobility during similar observations. Compared to records of weak ground motions, the response of the site during the Mw 9.1 earthquake was characterized by increased amplification at frequencies above 10 Hz and in peak ground acceleration. This behaviour contrasts with the more common non-linear response encountered at non-liquefiable sites, which results in deamplification at higher frequencies. We simulate propagation of SH waves through the dense sand deposit using a non-linear finite difference code that is capable of modelling the development of excess pore water pressure. Dynamic soil parameters are calibrated using a direct search method that minimizes the difference between observed and simulated acceleration envelopes and response spectra. The finite difference simulations yield surface acceleration time-series that are consistent with the observations in shape and amplitude, pointing towards soil dilatancy as a likely explanation for the high-frequency pulses recorded at Onahama port. The simulations also suggest that the occurrence of high-frequency spikes coincided with a rapid increase in pore water pressure in the upper part of the sand deposit between 145 and 170 s. This sudden increase is possibly linked to a burst of high-frequency energy from a large slip patch below the Iwaki region.
NASA Astrophysics Data System (ADS)
Ceyhun Şahin, Fatma; Schiffmann, Jürg
2018-02-01
A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to reproduce time-resolved data far above probe resonant frequency.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1988-01-01
Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.
Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P
2016-01-01
In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.
NASA Astrophysics Data System (ADS)
Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra
2014-12-01
In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.
High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors
NASA Astrophysics Data System (ADS)
Benavides, L. S.; Costa Silva, E.; Costa Monteiro, E.; Hall Barbosa, C. R.
2018-03-01
This paper presents a new configuration for a GMI pressure transducer based on the reading of the phase characteristics of GMI sensor, intended for biomedical applications. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (dc level and frequency of the excitation current and sample length) and continuing with computational simulations of the full electronic circuit performed using the experimental data obtained from measured GMI curves, and have shown that the improvement in the sensitivity of GMI magnetometers is larger when phase-based transducers are used instead of magnitude-based transducers. Parameters of interest of the developed prototype are thoroughly analyzed, such as: sensitivity, linearity and frequency response. Also, the spectral noise density of the developed pressure transducer is evaluated and its resolution in the passband is estimated. A low-cost GMI pressure transducer was developed, presenting high resolution, high sensitivity and a frequency bandwidth compatible to the desired biomedical applications.
Cell type-specific suppression of mechanosensitive genes by audible sound stimulation.
Kumeta, Masahiro; Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H
2018-01-01
Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound.
Cell type-specific suppression of mechanosensitive genes by audible sound stimulation
Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H.
2018-01-01
Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound. PMID:29385174
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron
2013-01-01
Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.
Influence of cigarette smoking on human autonomic function
NASA Technical Reports Server (NTRS)
Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.
1993-01-01
BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.
Surface pressure fluctuations in hypersonic turbulent boundary layers
NASA Technical Reports Server (NTRS)
Raman, K. R.
1974-01-01
The surface pressure fluctuations on a flat plate model at hypersonic Mach numbers of 5.2, 7.4 and 10.4 with an attached turbulent boundary layer were measured using flush mounted small piezoelectric sensors. A high frequency resolution of the pressure field was achieved using specially designed small piezoelectric sensors that had a good frequency response well above 300 KHz. The RMS pressures and non-dimensional energy spectra for all above Mach numbers are presented. The convective velocities, obtained from space time correlation considerations are equal to 0.7 U sub infinity. The results indicate the RMS pressures vary from 5 to 25 percent of the mean static pressures. The ratios of RMS pressure to dynamic pressure are less than the universally accepted subsonic value of 6 x 10/3. The ratio decreases in value as the Mach number or the dynamic pressure is increased. The ratio of RMS pressure to wall shear for Mach number 7.4 satisfies one smaller than or equal to p/tau sub w smaller than or equal to three.
Response of a store with tunable natural frequencies in compressible cavity flow
Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; ...
2016-05-20
Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies bymore » about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.« less
NASA Astrophysics Data System (ADS)
Lash, E. Lara; Schmisseur, John
2017-11-01
Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.
Acoustic emission studies of large advanced composite rocket motor cases.
NASA Technical Reports Server (NTRS)
Robinson, E. Y.
1973-01-01
Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.
1989-01-01
Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.
Bruel and Kjaer 4944 Microphone Grid Frequency Response Function System Identification
NASA Technical Reports Server (NTRS)
Bennett, Reginald; Lee, Erik
2010-01-01
Br el & Kjaer (B&K) 4944B pressure field microphone was judiciously selected to measure acoustic environments, 400Hz 50kHz, in close proximity of the nozzle during multiple firings of solid propellant rocket motors. It is well known that protective grids can affect the frequency response of microphones. B&K recommends operation of the B&K 4944B without a protective grid when recording measurements above 10 to 15 kHz.
Biomimicking of a Swim Bladder and Its Application as a Mini-Generator.
Song, Mengmeng; Cheng, Mengjiao; Xiao, Meng; Zhang, Lina; Ju, Guannan; Shi, Feng
2017-02-01
A model fish with a man-made swim bladder achieves fast vertical motions based on density adjustments in a pressure-responsive way. When exposed to a magnetic field, a mini-generator is achieved by harvesting energy from the environment, working with pressure differences in the blood-pressure range and at the frequency of a beating heart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of self-demodulation on the subharmonic response of contrast agent microbubbles
NASA Astrophysics Data System (ADS)
Daeichin, V.; Faez, T.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.
2012-06-01
Subharmonic (SH) emission from the ultrasound contrast agent (UCA) is of interest since it is produced only by the UCA and not by tissue, opposite to harmonic imaging modes where both tissue and microbubble show harmonics. In this work, the use of the self-demodulation (S-D) signal as a means of microbubble excitation at the SH frequency to enhance the SH emission of UCA is studied. The S-D wave is a low-frequency signal produced by the weak nonlinear propagation of an ultrasound wave. It is proportional to the second time derivative of the squared envelope of the transmitted signal. A diluted population of BR14 UCA (Bracco Research SA, Geneva, Switzerland) was insonified by a 10 MHz transducer focused at 76 mm firing bursts with different envelopes, durations and peak pressure amplitudes. The center frequency of the S-D signal changes from low frequencies (around 0.5 MHz) toward the transmitted frequency (10 MHz) by modifying the envelope function from Gaussian to rectangular. For 6 and 20 transmitted cycles, the SH response is enhanced up to 25 and 22 dB, respectively, when using a rectangular envelope instead of a Gaussian one. The experimental results are confirmed by the numerical simulation. The effects of the excitation duration and pressure amplitude are also studied. This study shows that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA, and the SH imaging is feasible at high frequencies with a shorter transmit burst (six-cycle) and low acoustic pressure (∼100 KPa).
NASA Astrophysics Data System (ADS)
Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip
2016-11-01
The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.
Forced responses on a radial turbine with nozzle guide vanes
NASA Astrophysics Data System (ADS)
Liu, Yixiong; Yang, Ce; Ma, Chaochen; Lao, DaZhong
2014-04-01
Radial turbines with nozzle guide vanes are widely used in various size turbochargers. However, due to the interferences with guide vanes, the blades of impellers are exposed to intense unsteady aerodynamic excitations, which cause blade vibrations and lead to high cycle failures (HCF). Moreover, the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions. Aiming to achieve a detail insight into vibration characteristics of radial flow turbine, a numerical method based on fluid structure interaction (FSI) is presented. Firstly, the unsteady aerodynamic loads are determined by computational fluid dynamics (CFD). And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform (FFT). Then, the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element (FE) method. Meanwhile, harmonic analyses, applying the pressure fluctuation from CFD, are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain. The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
NASA Technical Reports Server (NTRS)
Cao, Nhai The
1993-01-01
A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.
NASA Astrophysics Data System (ADS)
Geddes, Earl Russell
The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the spatial pressure response is studied. The results for this characteristic show that it not significantly different in any of the rooms. The conclusions of the study are that only the frequency variations of the pressure response are affected by a room's shape. Further, in general, the simplest modification of a rectangular room (i.e., changing the angle of only one of the smallest walls), produces the most pronounced decrease of the pressure response variations in the low frequency region.
Preliminary work about the reproduction of sonic boom signals for perception studies
NASA Astrophysics Data System (ADS)
Epain, N.; Herzog, P.; Rabau, G.; Friot, E.
2006-05-01
As part of a French research program, a sound restitution cabin was designed for investigating the annoyance of sonic boom signals. The first goal was to reproduce the boom spectrum and temporal waveform: this required linear generation of high pressure levels at infrasonic frequencies (110 SPL dB around 3 Hz), and response equalization over the full frequency range (1 Hz-20 kHz). At this stage the pressure inside the cabin was almost uniform around the listener, emulating an outdoor situation. A psychoacoustic study was then conducted which confirmed that the loudness (related to annoyance) of N-waves is roughly governed by the peak pressure, the rise/fall time, and the wave duration. A longer-term goal is to reproduce other aspects of an indoor situation including rattle noise, ground vibrations, and a more realistic spatial repartition of pressure. This latter point has been addressed through an Active Noise Control study aiming at monitoring the low-frequency acoustic pressure on a surface enclosing a listener. Frequency and time-domain numerical simulations of boom reproduction via ANC are given, including a sensitivity study of the coupling between a listener's head and the incident boom wave which combine into the effective sound-field to be reproduced.
Cardiovascular responses to water ingestion at rest and during isometric handgrip exercise.
Mendonca, Goncalo V; Teixeira, Micael S; Pereira, Fernando D
2012-07-01
Water drinking activates sympathetic vasoconstriction in healthy young adults; however, this is not accompanied by a concomitant increase in resting blood pressure. It is not known whether the water pressor effect is unmasked by a physiological condition such as exercise. Therefore, we examined the effect of water ingestion (50 vs. 500 mL) on the cardiovascular and autonomic responses to isometric handgrip in 17 healthy participants (9 men, 8 women, aged 28.4 ± 9.7 years). Beat-to-beat blood pressure and R-R intervals were recorded in both conditions at rest (pre- and post-ingestion) and during handgrip at 30% of maximal voluntary contraction. R-R series were spectrally decomposed using an autoregressive approach. Water ingestion did not interact with the increase in mean arterial pressure (MAP) from rest to exercise, which was similar between conditions. In contrast, there was an overall bradycardic effect of water and this was accompanied by increased high frequency power (condition main effect, p < 0.05). When the differences in high frequency power between conditions were controlled for, MAP was significantly higher after drinking 500 mL of water (condition main effect, p < 0.05). In addition, water ingestion attenuated the increase in the low to high frequency power ratio from rest to handgrip (interaction effect, p < 0.05). In conclusion, the rise in blood pressure post-water ingestion is prevented both at rest and during isometric handgrip. Interestingly, this is not sustained after controlling for the enhanced vagal drive caused by water ingestion. Therefore, the mechanisms underlying this response most likely depend on reflex bradycardia of vagal origin.
Radiation impedance of condenser microphones and their diffuse-field responses.
Barrera-Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn
2010-04-01
The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone and (b) measuring the pressure on the membrane of the microphone. The first measurement is carried out by means of laser vibrometry. The second measurement cannot be implemented in practice. However, the pressure on the membrane can be calculated numerically by means of the boundary element method. In this way, a hybrid estimate of the radiation impedance is obtained. The resulting estimate of the diffuse-field response is compared with experimental estimates of the diffuse-field response determined using reciprocity and the random-incidence method. The different estimates are in good agreement at frequencies below the resonance frequency of the microphone. Although the method may not be of great practical utility, it provides a useful validation of the estimates obtained by other means.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
NASA Astrophysics Data System (ADS)
Rosin, Zuzanna M.; Kwieciński, Zbigniew; Lesicki, Andrzej; Skórka, Piotr; Kobak, Jarosław; Szymańska, Anna; Osiejuk, Tomasz S.; Kałuski, Tomasz; Jaskulska, Monika; Tryjanowski, Piotr
2018-06-01
Although shell colour polymorphism of the land snail Cepaea nemoralis is a well-known phenomenon, proximate and ultimate factors driving its evolution remain uncertain. Polymorphic species show variation in behavioural responses to selective forces. Therefore, we estimated effects of various environmental factors (temperature, humidity, food availability, (micro)habitat structure and predatory pressure) on behavioural response (frequency of locomotion, climbing and hiding) of C. nemoralis morphs, in experimental and natural conditions. In the experimental part of study, the frequency of locomotion was negatively affected by temperature and the presence of food and positively influenced by the presence of light. Morphs significantly differed in behavioural responses to environmental variability. Pink mid-banded and yellow five-banded morphs climbed less often and hide in shelter more often than yellow and pink unbanded individuals when temperature was low and food was absent. Snails fed most often at moderate temperature compared to low and high temperatures. Field investigations partially confirmed differences among morphs in frequency of climbing, but not in terms of probability of hiding in sheltered sites. In natural colonies, temperature and (micro)habitat structure significantly affected frequency of climbing as well as hiding in shelter. Snails more often hid in sheltered sites where thrushes preyed on Cepaea. Tendency of unbanded morphs to climb trees may have evolved under avian predatory pressure as thrushes forage on a ground. Tendency of banded morphs to hide in sheltered sites may reflect prey preferences for cryptic background. The results implicate that differential behaviour of C. nemoralis morphs compensate for their morphological and physiological limitations of adaptation to habitat.
Rosin, Zuzanna M; Kwieciński, Zbigniew; Lesicki, Andrzej; Skórka, Piotr; Kobak, Jarosław; Szymańska, Anna; Osiejuk, Tomasz S; Kałuski, Tomasz; Jaskulska, Monika; Tryjanowski, Piotr
2018-05-09
Although shell colour polymorphism of the land snail Cepaea nemoralis is a well-known phenomenon, proximate and ultimate factors driving its evolution remain uncertain. Polymorphic species show variation in behavioural responses to selective forces. Therefore, we estimated effects of various environmental factors (temperature, humidity, food availability, (micro)habitat structure and predatory pressure) on behavioural response (frequency of locomotion, climbing and hiding) of C. nemoralis morphs, in experimental and natural conditions. In the experimental part of study, the frequency of locomotion was negatively affected by temperature and the presence of food and positively influenced by the presence of light. Morphs significantly differed in behavioural responses to environmental variability. Pink mid-banded and yellow five-banded morphs climbed less often and hide in shelter more often than yellow and pink unbanded individuals when temperature was low and food was absent. Snails fed most often at moderate temperature compared to low and high temperatures. Field investigations partially confirmed differences among morphs in frequency of climbing, but not in terms of probability of hiding in sheltered sites. In natural colonies, temperature and (micro)habitat structure significantly affected frequency of climbing as well as hiding in shelter. Snails more often hid in sheltered sites where thrushes preyed on Cepaea. Tendency of unbanded morphs to climb trees may have evolved under avian predatory pressure as thrushes forage on a ground. Tendency of banded morphs to hide in sheltered sites may reflect prey preferences for cryptic background. The results implicate that differential behaviour of C. nemoralis morphs compensate for their morphological and physiological limitations of adaptation to habitat.
Unsteady aerodynamics of an oscillating cascade in a compressible flow field
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford
1987-01-01
Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.
Garcia, J C; Layton, S A; Rubal, B J
1989-05-01
This study compares the frequency response characteristics of catheter-mounted piezoelectric sound transducers with micromanometric transducers. The tip of a 8F catheter with two piezoelectric transducers and two micromanometers was inserted into a water-filled chamber that had a speaker fixed at one end. The speaker was driven by a power amplifier and sine wave generator. The outputs of the transducers were connected to a low-level amplifier. The piezoelectric transducer behaved as a tunable high-pass filter that could be modified by altering the input impedance of the low level amplifier; the frequency response characteristics were examined at five input impedances ranging from 0.96 to 11.8 megohms. The peak-to-peak outputs of the piezoelectric and pressure transducers were recorded at frequency ranges from DC to 1 kHz with a wide-band oscilloscope. The ratio of the outputs from the piezotransducer and micromanometer (Vph/Vpr) was plotted vs. frequency for each input impedance and analyzed to determine the piezotransducer's output resistance and equivalent capacitance; roll-off frequencies were then calculated. The equivalent capacitance of the piezo-element was determined to be 500-700 picofarads. Series capacitance acted with network resistance to produce a predictable frequency-dependent change in signal amplitude and phase angle. The inherent noise of the pressure transducer was found to be approximately 0.2 mm Hg, while the noise of the piezoelectric transducer was immeasurably low. The piezoelectric phonotransducers were superior to micromanometer transducers in their higher gain and lower noise, suggesting that these transducers may prove useful to physiologic and clinical studies for measuring intravascular sound.
Wideband profiles of stimulus-frequency otoacoustic emissions in humans
NASA Astrophysics Data System (ADS)
Dewey, James B.; Dhar, Sumitrajit
2015-12-01
Behavioral pure-tone hearing thresholds and stimulus-frequency otoacoustic emissions (SFOAEs) were measured with a high frequency resolution from 0.5-20 kHz in 15 female participants. Stimuli were calibrated in terms of forward pressure level (FPL). SFOAE responses to 36 dB FPL probes were largest near 1 kHz and declined above 8-10 kHz, though were still measurable at frequencies approaching 16 kHz in some ears. SFOAEs typically dropped in amplitude at a frequency that was roughly one octave below the "corner" frequency of the audiogram, and one-third to one-half of an octave below the frequency where thresholds departed from highly sensitive hearing. High-frequency SFOAE responses are likely limited by a reduction in the efficiency of the underlying generation mechanism and/or a diminished region of generation as the stimulus-driven excitation approaches the basal-most portion of the cochlea.
High temperature and frequency pressure sensor based on silicon-on-insulator layers
NASA Astrophysics Data System (ADS)
Zhao, Y. L.; Zhao, L. B.; Jiang, Z. D.
2006-03-01
Based on silicon on insulator (SOI) technology, a novel high temperature pressure sensor with high frequency response is designed and fabricated, in which a buried silicon dioxide layer in the silicon material is developed by the separation by implantation of oxygen (SIMOX) technology. This layer can isolate leak currents between the top silicon layer for the detecting circuit and body silicon at a temperature of about 200 °C. In addition, the technology of silicon and glass bonding is used to create a package of the sensor without internal strain. A structural model and test data from the sensor are presented. The experimental results showed that this kind of sensor possesses good static performance in a high temperature environment and high frequency dynamic characteristics, which may satisfy the pressure measurement demands of the oil industry, aviation and space, and so on.
A transmission-line model of back-cavity dynamics for in-plane pressure-differential microphones.
Kim, Donghwan; Kuntzman, Michael L; Hall, Neal A
2014-11-01
Pressure-differential microphones inspired by the hearing mechanism of a special parasitoid fly have been described previously. The designs employ a beam structure that rotates about two pivots over an enclosed back volume. The back volume is only partially enclosed due to open slits around the perimeter of the beam. The open slits enable incoming sound waves to affect the pressure profile in the microphone's back volume. The goal of this work is to study the net moment applied to pressure-differential microphones by an incoming sound wave, which in-turn requires modeling the acoustic pressure distribution within the back volume. A lumped-element distributed transmission-line model of the back volume is introduced for this purpose. It is discovered that the net applied moment follows a low-pass filter behavior such that, at frequencies below a corner frequency depending on geometrical parameters of the design, the applied moment is unaffected by the open slits. This is in contrast to the high-pass filter behavior introduced by barometric pressure vents in conventional omnidirectional microphones. The model accurately predicts observed curvature in the frequency response of a prototype pressure-differential microphone 2 mm × 1 mm × 0.5 mm in size and employing piezoelectric readout.
Development of a computerized analysis for solid propellant combustion instability with turbulence
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed.
NASA Astrophysics Data System (ADS)
El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared
2010-05-01
Borehole water levels fluctuate in response to deformation of the surrounding aquifer caused by surface loading due to barometric pressure or strain caused by Earth and ocean tides. The magnitude and nature of this response mainly depend on the hydraulic properties of the aquifer and overlying units and borehole design. Thus water level responses reflect the effectiveness of a confining unit as a protective layer against aquifer contamination (and therefore groundwater vulnerability) and to potential aquifer recharge/discharge zones. In this study, time series of borehole water levels and barometric pressure are being investigated using time series analysis and signal processing techniques with the aim of developing a methodology for assessing recharge/discharge distribution and groundwater vulnerability in the confined/semi-confined part of the Chalk aquifer in East Yorkshire, UK. The chalk aquifer in East Yorkshire is an important source for industrial and domestic water supply. The aquifer water quality is threatened by surface pollution particularly by nitrates from agricultural fertilizers. The confined/semi-confined part of this aquifer is covered by various types of superficial deposits resulting in a wide range of the aquifer's degree of confinement. A number of boreholes have been selected for monitoring to cover all these various types of confining units. Automatic pressure transducers are installed to record water levels and barometric pressure measurements at each borehole on 15 minutes recording intervals. In strictly confined aquifers, borehole water level response to barometric pressure is an un-drained instantaneous response and is a constant fraction of the barometric pressure changes. This static confined constant is called the barometric efficiency which can be estimated simply by the slope of a regression plot of water levels versus barometric pressure. However, in the semi confined aquifer case this response is lagged due to water movement between the aquifer and the confining layer. In this case the static constant barometric efficiency is not applicable and the response is represented by a barometric response function which reflects the timing and frequency of the barometric pressure loading. In this study, the barometric response function is estimated using de-convolution techniques both in the time domain (least squares regression de-convolution) and in the frequency domain (discrete Fourier transform de-convolution). In order to estimate the barometric response function, borehole water level fluctuations due to factors other than barometric pressure should be removed (de-trended) as otherwise they will mask the response relation of interest. It is shown from the collected borehole data records that the main four factors other than barometric pressure contribute to borehole water level fluctuations. These are the rainfall recharge, Earth tides, sea tides and pumping activities close to the borehole location. Due to the highly variable nature of the UK weather, rainfall recharge shows a wide variation throughout the winter and summer seasons. This gives a complicated recharge signal over a wide range of frequencies which must be de-trended from the borehole water level data in order to estimate the barometric response function. Methods for removing this recharge signal are developed and discussed. Earth tides are calculated theoretically at each borehole location taking into account oceanic loading effects. Ocean tide effects on water levels fluctuations are clear for the boreholes located close to the coast. A Matlab code has been designed to calculate and de-trend the periodic fluctuations in borehole water levels due to Earth and ocean tides using the least squares regression technique based on a sum of sine and cosine fitting model functions. The program results have been confirmed using spectral analysis techniques.
High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines
NASA Astrophysics Data System (ADS)
Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo
2002-02-01
In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.
Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound
NASA Astrophysics Data System (ADS)
Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning
2015-03-01
In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.
NASA Technical Reports Server (NTRS)
Knapp, C. F.; Evans, J. M.; Grande, K. J.; Murphy, C. D.; Patwardhan, A. R.
1992-01-01
Changes in autonomic outflow to peripheral organs during the development of bedrest induced orthostatic intolerance have not been determined. Recent studies have indicated that spectral analysis provides an indirect assessment of these changes. Eight male subjects were studied before and after 22 hours of 6 degree head down bedrest plus Lasix (40 mg. P.P.). Cardiovascular spectra (using an autoregressive technique) were determined for heart rate (HR, ECG), arterial pressure (AP, Finapres), radial artery flow (RF, Hokansen) and respiration rate (RR, BoMed). Spectra were obtained from 2.5 minute segments during control, lower body negative pressure (minus 10, 20, 30, 40, 50 mmHg) and recovery. Bedrest increased HR spectra power in the low frequency (.001 to .041 Hz) range, increased RF power in the low and mid (.04 to .18 Hz) range and increased AP power in the high (.18 to .50 Hz) frequency range. Increasing levels of lower body negative pressure decreased HR power and increased RF power in the high frequency range and decreased AP power in the low frequency range. Since spectral power of HR in the high frequency range has been shown to indicate parasympathetically mediated regulation and power in the low and mid frequency ranges indicates a sympathetic / parasympathetic mixture, then both bedrest and lower body negative pressure appeared to shift sympathetic / parasympathetic balance toward sympathetic regulation of HR. The interpretation of the spectral content of AP and RF with respect to their autonomic origins remains unclear.
A harmonic pulse testing method for leakage detection in deep subsurface storage formations
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Lu, Jiemin; Hovorka, Susan
2015-06-01
Detection of leakage in deep geologic storage formations (e.g., carbon sequestration sites) is a challenging problem. This study investigates an easy-to-implement frequency domain leakage detection technology based on harmonic pulse testing (HPT). Unlike conventional constant-rate pressure interference tests, HPT stimulates a reservoir using periodic injection rates. The fundamental principle underlying HPT-based leakage detection is that leakage modifies a storage system's frequency response function, thus providing clues of system malfunction. During operations, routine HPTs can be conducted at multiple pulsing frequencies to obtain experimental frequency response functions, using which the possible time-lapse changes are examined. In this work, a set of analytical frequency response solutions is derived for predicting system responses with and without leaks for single-phase flow systems. Sensitivity studies show that HPT can effectively reveal the presence of leaks. A search procedure is then prescribed for locating the actual leaks using amplitude and phase information obtained from HPT, and the resulting optimization problem is solved using the genetic algorithm. For multiphase flows, the applicability of HPT-based leakage detection procedure is exemplified numerically using a carbon sequestration problem. Results show that the detection procedure is applicable if the average reservoir conditions in the testing zone stay relatively constant during the tests, which is a working assumption under many other interpretation methods for pressure interference tests. HPT is a cost-effective tool that only requires periodic modification of the nominal injection rate. Thus it can be incorporated into existing monitoring plans with little additional investment.
Wireless measurement of tire pressure with passive quartz sensors
NASA Astrophysics Data System (ADS)
Grossmann, Rainer
1999-05-01
The air pressure in the tires of a vehicle affects its stability, handling and braking and may contribute to causing an accident. Under-inflated tires increase fuel consumption. Existing measurement systems for the monitoring of the tire pressure use active sensors which need a battery or bulky energy transmission. This work shows a new approach: Quartz crystals as sensors can operate passively, without energy supply, by giving an echo to a stimulus pulse. Strain influences the otherwise extremely stable natural frequency of a quartz crystal which is therefore ideally suited for pressure measurements. As the natural frequency lies in the Megahertz range, stimulation and response can be transmitted by a pair of small antennas. A wireless measurement system has been built with excellent accuracy and resolution and a lightweight sensor which is very reliable and in principle maintenance-free.
Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Zorman, Christian A.
2016-01-01
This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.
Healthcare performance and the effects of the binaural beats on human blood pressure and heart rate.
Carter, Calvin
2008-01-01
Binaural beats are the differences in two different frequencies (in the range of 30-1000 Hz). Binaural beats are played through headphones and are perceived by the superior olivary nucleus of each hemisphere of the brain. The brain perceives the binaural beat and resonates to its frequency (frequency following response). Once the brain is in tune with the binaural beat it produces brainwaves of that frequency altering the listener's state of mind. In this experiment, the effects of the beta and theta binaural beat on human blood pressure and pulse were studied. Using headphones, three sounds were played for 7 minutes each to 12 participants: the control,- the sound of a babbling brook (the background sound to the two binaural beats), the beta binaural beat (20 Hz), and the theta binaural beat (7 Hz). Blood pressure and pulse were recorded before and after each sound was played. Each participant was given 2 minutes in-between each sound. The results showed that the control and the two binaural beats did not affect the 12 participant's blood pressure or pulse (p > 0.05). One reason for this may be that the sounds were not played long enough for the brain to either perceive and/or resonate to the frequency. Another reason why the sounds did not affect blood pressure and pulse may be due to the participant's age since older brains may not perceive the binaural beats as well as younger brains.
Measurements and Computations of Second-Mode Instability Waves in Three Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Casper, Katya M.; Rufer, Shann J.; Alba, Christopher R.; Lewis, Daniel R.; Beresh, Steven J.; Schneider, Steven P.
2010-01-01
High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7deg-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 micro-s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N approx. equals 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes. In Tunnel 9, the measured transition locations were found to be at N = 4.5 using thermocouples, and N = 5.3 using 50-kHz-response pressure sensors. What appears to be a very long transitional region was observed at a unit Reynolds number of 13.5 million per meter in Tunnel 9. These results were consistent with the high-frequency pressure fluctuation measurements. High-frequency pressure fluctuation measurements indicated that transition did occur in the Langley Mach-6 tunnel, but the location of transition was not precisely determined. Unit Reynolds numbers in the Langley Mach-10 tunnel were too low to observe transition. More analysis of this data set is expected in the future.
Multiplexing Transducers Based on Tunnel-Diode Oscillators
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin; Young, Joseph
2006-01-01
Multiplexing and differential transducers based on tunnel-diode oscillators (TDOs) would be developed, according to a proposal, for operation at very low and/or widely varying temperatures in applications that involve requirements to minimize the power and mass of transducer electronic circuitry. It has been known since 1975 that TDOs are useful for making high-resolution (of the order of 10(exp -9)) measurements at low temperatures. Since that time, TDO transducers have been found to offer the following additional advantages, which the present proposal is intended to exploit: TDO transducers can operate at temperatures ranging from 1 K to about 400 K. Most electronic components other than tunnel diodes do not operate over such a wide temperature range. TDO transducers can be made to operate at very low power - typically, <1 mW. Inasmuch as the response of a TDO transducer is a small change in an arbitrarily set oscillation frequency, the outputs of many TDOs operating at sufficiently different set frequencies can be multiplexed through a single wire. Inasmuch as frequencies can be easily subtracted by means of mixing circuitry, one can easily use two TDOs to make differential measurements. Differential measurements are generally more precise and less susceptible to environmental variations than are absolute measurements. TDO transducers are tolerant to ionizing radiation. Ultimately, the response of a TDO transducer is measured by use of a frequency counter. Because frequency counting can be easily implemented by use of clock signals available from most microprocessors, it is not necessary to incorporate additional readout circuitry that would, if included, add to the mass and power consumption of the transducer circuitry. In one example of many potential variations on the basic theme of the proposal, the figure schematically depicts a conceptual differential-pressure transducer containing a symmetrical pair of TDOs. The differential pressure would be exerted on an electrically conductive and grounded diaphragm, which, at zero differential pressure, would nominally be sprung to a middle position between two capacitor plates that would be parts of the two TDOs. The frequencies of the two TDOs would vary in opposite directions as variations in differential pressure bent the diaphragm away from one capacitor plate and toward the other. The outputs of the TDOs would be mixed and lowpass filtered to obtain a signal at the difference between the frequencies of the two TDOs. The difference frequency would be measured by a frequency counter and converted to differential pressure by a computer.
Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels
NASA Technical Reports Server (NTRS)
Russell, Rick; Skow, Miles
2013-01-01
This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure vessel load conditions. For example, low frequency measurements can be used to monitor the overwrap thickness and changes associated with pressure level. High frequency data is dominated by the properties of the overwrap, including the fiber orientations and lay-up of the layers.
Morisaku, Toshinori; Yui, Hiroharu
2018-05-15
A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.
Determination of rock properties by low-frequency AC electrokinetics
NASA Astrophysics Data System (ADS)
Pengra, David B.; Xi Li, Sidney; Wong, Po-Zen
1999-12-01
In brine-saturated rock the existence of a mobile space charge at the fluid/solid interface leads to the electrokinetic phenomena of electroosmotic pressure and streaming potential. The coupling coefficients of these electrokinetic effects, when combined with the conductivity of the brine-saturated rock, determine the brine permeability of rock exactly. A sensitive low-frequency AC technique has been used to measure electrokinetic response of a collection of eight rock and four glass bead samples saturated with NaCl brine as a function of salt concentration (fluid conductivity of 0.5 to 6.38 S/m); the response of four of the original 12 samples has also been measured as a function of temperature from 0° to 50°C. All data verify the predicted permeability relationship. Additionally, the frequency response of the electroosmotic pressure signal alone can also be used to determine the permeability, given knowledge of experimental parameters. The concentration and temperature dependence of electroosmosis and streaming potential is found to mostly conform to the predictions of a simple model based on the Helmholtz-Smoluchowski equation, the Stern model of the electrochemical double layer, and an elementary theory of ionic conduction.
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Lu, J.; Hovorka, S. D.; Freifeld, B. M.; Islam, A.
2015-12-01
Monitoring techniques capable of deep subsurface detection are desirable for early warning and leakage pathway identification in geologic carbon storage formations. This work investigates the feasibility of a leakage detection technique based on pulse testing, which is a traditional hydrogeological characterization tool. In pulse testing, the monitoring reservoir is stimulated at a fixed frequency and the acquired pressure perturbation signals are analyzed in the frequency domain to detect potential deviations in the reservoir's frequency domain response function. Unlike traditional time-domain analyses, the frequency-domain analysis aims to minimize the interference of reservoir noise by imposing coded injection patterns such that the reservoir responses to injection can be uniquely determined. We have established the theoretical basis of the approach in previous work. Recently, field validation of this pressure-based, leakage detection technique was conducted at a CO2-EOR site located in Mississippi, USA. During the demonstration, two sets of experiments were performed using 90-min and 150-min pulsing periods, for both with and without leak scenarios. Because of the lack of pre-existing leakage pathways, artificial leakage CO2 was simulated by rate-controlled venting from one of the monitoring wells. Our results show that leakage events caused a significant deviation in the amplitude of the frequency response function, indicating that pulse testing may be used as a cost-effective monitoring technique with a strong potential for automation.
Chen, Xing; Brox, Daniel; Assadsangabi, Babak; Hsiang, York; Takahata, Kenichi
2014-10-01
This paper reports a sensor-integrated telemetric stent targeted at wireless detection and monitoring of restenosis, a common vascular complication induced by stent implantation. The developed "smart" stent incorporates the design and fabrication approaches that raise the practicality of the device, being tested in an in vivo study that validates its operating principle. The stent is produced to have a gold-coated helical-like structure that serves as a high-performance inductor/antenna and integrated with a novel capacitive pressure sensor chip, all based on medical-grade stainless steel. The stent device forms an inductor-capacitor resonant tank that enables radio-frequency (RF) wireless pressure sensing in an operating frequency range of 30-80 MHz. With an overall length of 20 mm, the device is designed to be compatible with standard balloon catheters and necessary crimping process. The balloon-expanded devices are characterized in saline and blood to determine selective coating of passivation layer, Parylene C, with tailored thicknesses in order to maximize both RF and sensing abilities. In vitro testing of the devices reveals a frequency sensitivity up to 146 ppm/mmHg over a pressure range of 250 mmHg. Tests in pig models show wireless detection of device's resonance and frequency response to variations in local blood pressure, the targeted function of the device.
NASA Technical Reports Server (NTRS)
Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert
2000-01-01
Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.
NASA Astrophysics Data System (ADS)
Gao, Yan; Liu, Yuyou
2017-06-01
Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.
Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.
DiBona, Gerald F; Sawin, Linda L
2002-11-01
When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.
Calculating far-field radiated sound pressure levels from NASTRAN output
NASA Technical Reports Server (NTRS)
Lipman, R. R.
1986-01-01
FAFRAP is a computer program which calculates far field radiated sound pressure levels from quantities computed by a NASTRAN direct frequency response analysis of an arbitrarily shaped structure. Fluid loading on the structure can be computed directly by NASTRAN or an added-mass approximation to fluid loading on the structure can be used. Output from FAFRAP includes tables of radiated sound pressure levels and several types of graphic output. FAFRAP results for monopole and dipole sources compare closely with an explicit calculation of the radiated sound pressure level for those sources.
1980-03-01
UNCLASSIFIED UNCLASSIFIED 20. ABSTRACT (Continued) either a traversing pitot pressure probe in contact with the cone surface or the flush-mounted...CONCLUDING REMARKS 46 REFERENCES 46 ILLUSTRATIONS Figure 1. 2. 3. 4. 5. 6. 7. 8. ’.. 9. i ~.. AEDC 10-deg Transition Cone Model 6 Pitot Pressure Probe ...Installation Sketch 9 Details of Pitot Pressure Probe Assembly 10 Typical Pitot Pressure Probe Sensing Tube/Transducer Frequency Response
NASA Technical Reports Server (NTRS)
Brown, David; Sutherland, Louis C.
1992-01-01
The preferred descriptor to define the spectral content of sonic booms is the Sound Exposure Spectrum Level, LE(f). This descriptor represents the spectral content of the basic noise descriptors used for describing any single event--the Sound Exposure Level, LE. The latter is equal to ten times the logarithms, to the base ten, of the integral, over the duration of the event, of the square of the instantaneous acoustic pressure, divided by the square of the reference pressure, 20 micro-Pa. When applied to the evaluation of community response to sonic booms, it is customary to use the so-called C-Weighted Sound Exposure Level, LCE, for which the frequency content of the instantaneous acoustic pressure is modified by the C-Weighting curve.
NASA Astrophysics Data System (ADS)
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2017-05-01
In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure and velocity cause a delay in the radial displacement of the shell at different values of the axial coordinate. The effect of different pulse wave velocities is also studied. Comparisons with the corresponding ideal case without wave propagation (i.e. with the same pulsatile velocity and pressure at any point of the shell) are here discussed. Bifurcation diagrams of Poincaré maps obtained from direct time integration have been used to study the system in the spectral neighborhood of the fundamental natural frequency. By increasing the forcing frequency, the response undergoes very complex nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), here deeply investigated.
Wang, Xuelin; Wang, Liling; Zhou, Jianjun; Hu, Yujin
2014-08-01
A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs.
Alles, E. J.; Zhu, Y.; van Dongen, K. W. A.; McGough, R. J.
2013-01-01
The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared to those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method. PMID:23160476
Jiménez-Fernández, J
2018-01-01
This paper investigates the dependence of the subharmonic response in a signal scattered by contrast agent microbubbles on ambient pressure to provide quantitative estimations of local blood pressure. The problem is formulated by assuming a gas bubble encapsulated by a shell of finite thickness with dynamic behavior modeled by a nonlinear viscoelastic constitutive equation. For ambient overpressure compatible with the clinical range, the acoustic pressure intervals where the subharmonic signal may be detected (above the threshold for the onset and below the limit value for the first chaotic transition) are determined. The analysis shows that as the overpressure is increased, all harmonic components are displaced to higher frequencies. This displacement is significant for the subharmonic of order 1/2 and explains the increase or decrease in the subharmonic amplitude with ambient pressure described in previous works. Thus, some questions related to the monotonic dependence of the subharmonic amplitude on ambient pressure are clarified. For different acoustic pressures, quantitative conditions for determining the intervals where the subharmonic amplitude is a monotonic or non-monotonic function of the ambient pressure are provided. Finally, the influence of the ambient pressure on the subharmonic resonance frequency is analyzed.
Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor
2014-03-15
This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.
Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines
NASA Technical Reports Server (NTRS)
Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.
2006-01-01
The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.
NASA Astrophysics Data System (ADS)
Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han
2012-03-01
Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
Hintsala, Heidi E.; Kiviniemi, Antti M.; Tulppo, Mikko P.; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.
2016-01-01
Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55–65 years) who underwent a whole-body cold exposure (−10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg2, compared with hypertensive group [0 (−13, 20) mmHg2]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543
Dynamic characteristics of a hydrostatic gas bearing driven by oscillating exhaust pressure
NASA Technical Reports Server (NTRS)
Watkins, C. B.; Eronini, I. E.; Branch, H. D.
1984-01-01
Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference aproximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.
NASA Astrophysics Data System (ADS)
Bicen, Baris
Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress or enhance the desired vibration modes of the diaphragm. This approach provides an electronic means to tailor the directional response of the microphones, with significant implications in device performance for various applications. As an example, the use of this device as a particle velocity sensor for sound intensity and sound power measurements is investigated. Without force feedback, the gradient microphone provides accurate particle velocity measurement for frequencies below 2 kHz, after which the pressure response of the second order mode becomes significant. With two-sided force feedback, the calculations show that this upper frequency limit may be increased to 10 kHz. This improves the pressure residual intensity index by more than 15 dB in the 50 Hz--10 kHz range, matching the Class I requirements of IEC 1043 standards for intensity probes without any need for multiple spacers.
Delphinid behavioral responses to incidental mid-frequency active sonar.
Henderson, E Elizabeth; Smith, Michael H; Gassmann, Martin; Wiggins, Sean M; Douglas, Annie B; Hildebrand, John A
2014-10-01
Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 μPa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well.
Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads
NASA Technical Reports Server (NTRS)
Gold, Harold; Otto, Edward W; Ransom, Victor L
1953-01-01
An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.
NASA Astrophysics Data System (ADS)
Ai, Y.; Lange, R. A.
2003-12-01
One of the most direct methods for obtaining melt compressibility is through measurements of sound speed via acoustic interferometry. This technique may be applied to silicate melts by either varying the path length or the frequency of the acoustic wave through the melt. To date, only the variable path length (VPL) technique has been applied, which restricts measurements to atmospheric pressure owing to the requirement of mechanical movement of the upper buffer rod. This, in turn, precludes the study of volatile-bearing liquids at pressure and a systematic study of how melt compressibility varies with pressure. We have developed a frequency sweep (FS) interferometer that can be applied at high pressure, which is based on frequency spectrum analysis on mirror reflection waves from high-temperature liquids. First, a theoretical acoustic model for a rod-liquid-rod (RLR) interferometer is proposed and solutions to the resultant wave equations are obtained. The solutions demonstrate that only two kinds of non-dispersive waves exist within the upper buffer rod. They have computable group velocities and waveform patterns that are entirely dependent on the material and diameter of the buffer rods. Experimental tests verify the theoretical model and indicate that buffer rods made of molybdenum metal and > 1.9 cm diameter are ideal for sound speed measurements in silicate melts with the FS interferometer. On the basis of the theoretical acoustic model, a mechanical assembly and signal-processing algorithm was designed to implement the FS interferometer. A very short pulse (e.g. 1 microsecond) encompassing a range of frequencies that span about 1 MHz is sent down the upper buffer rod and the first two mirror reflections from the liquid are collected and stored. Because they have the same waveform and have 180o phase difference, Fourier spectrum analysis can be performed to find the frequency response function of the two reflections, which is related to the sound speed and thickness of the melt. From the obtained frequency response function, the sound speed is calculated. We have applied this newly designed FS interferometer to two liquids with well-known sound speeds from the literature: NaCl liquid at 930o C and 1026 o C and a sodium aluminosilicate liquid at 1436 o C. Sound speeds were measured for these liquids at three center frequencies (4.5 MHz, 5.0 MHz, and 5.8 MHz). Our results are less than 0.6 % off the literature values and demonstrate the accuracy and precision of the FS interferometer. The principal advantage of the FS interferometer over the VPL method is that it requires no physical intervention or mechanical movement of the micrometer-transducer-rod assembly during a measurement. Thus, the FS method has considerable promise for adaption to high-pressure conditions in an internally-heated pressure vessel.
Echeverría, E L; Robles, L W
1983-02-01
Cochlear microphonic (CM) responses to acoustic transient stimuli were studied at the three more basal turns of the cochlea in the guinea pig. The responses to rarefaction and condensation pressure pulses of less than 100-mus duration were recorded using the differential electrode technique. In some animals the CM response to pure tones was recorded at the same position at which the transient response was obtained. The transient responses recorded at the three turns of the cochlea displayed a damped oscillation at a frequency consistent with the values of cutoff frequency already known for the electrode positions. Some of the responses were significantly less damped than click responses previously reported. There was a good correlation between the cutoff frequency in the frequency response curve and the frequency of oscillation in the transient response for recordings obtained at the same position in the cochlea. A nonlinear effect was observed for changes in stimulus intensity. There was a less than proportional decrease in amplitude of the initial part of the damped oscillation for a decrease of the stimulus intensity, while the late part of the response behaved almost linearly. This nonlinearity observed in the CM transient response could not be explained by a nonlinear characteristic of the sort reported in the basilar membrane of the squirrel monkey by Robles et al. [J. Acoust. Soc. Am. 59, 926-939 (1976)]; rather it seems to be a saturation nonlinearity similar to the one known for sinusoidal stimulation.
Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1993-01-01
The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.
Space shuttle pogo studies. [systems stability
NASA Technical Reports Server (NTRS)
Coppolino, R. N.; Lock, M. H.; Rubin, S.
1977-01-01
Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements.
Effect of endogenous angiotensin II on the frequency response of the renal vasculature.
Dibona, Gerald F; Sawin, Linda L
2004-12-01
The renal vasculature functions as an efficient low-pass filter of the multiple frequencies contained within renal sympathetic nerve activity. This study examined the effect of angiotensin II on the frequency response of the renal vasculature. Physiological changes in the activity of the endogenous renin-angiotensin system were produced by alterations in dietary sodium intake. The frequency response of the renal vasculature was evaluated using pseudorandom binary sequence renal nerve stimulation, and the role of angiotensin II was evaluated by the administration of the angiotensin II AT(1)-receptor antagonist losartan. In low-sodium-diet rats with increased renin-angiotensin system activity, losartan steepened the renal vascular frequency response (i.e., greater attenuation); this was not seen in normal- or high-sodium-diet rats with normal or decreased renin-angiotensin system activity. Analysis of the transfer function from arterial pressure to renal blood flow, i.e., dynamic autoregulation, showed that the tubuloglomerular feedback but not the myogenic component was enhanced in low- and normal- but not in high-sodium-diet rats and that this was reversed by losartan administration. Thus physiological increases in endogenous renin-angiotensin activity inhibit the renal vascular frequency response to renal nerve stimulation while selectively enhancing the tubuloglomerular feedback component of dynamic autoregulation of renal blood flow.
Extended frequency turbofan model
NASA Technical Reports Server (NTRS)
Mason, J. R.; Park, J. W.; Jaekel, R. F.
1980-01-01
The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.
NASA Astrophysics Data System (ADS)
Cuthbert, M. O.; Acworth, I. R.; Halloran, L. J. S.; Rau, G. C.; Bernadi, T. L.
2017-12-01
It has long been recognised that hydraulic properties can be derived from the response of piezometric heads to tidal loadings. However, there is a degree of subjectivity in existing graphical approaches most commonly used to calculate barometric efficiency leading to uncertainties in derived values of compressible storage. Here we demonstrate a novel approach to remove these uncertainties by objectively deriving the barometric efficiency from groundwater hydraulic head responses using a frequency domain method. We take advantage of the presence of worldwide and ubiquitous atmospheric tide fluctuations which occur at 2 cycles per day (cpd). First we use a Fourier transform to calculate the amplitudes of the 2 cpd signals from co-located atmospheric pressure and hydraulic head time series measurements. Next we show how the Earth tide response at the same frequency can be quantified and removed so that this effect does not interfere with the calculation of the barometric efficiency. Finally, the ratio of the amplitude of the response at 2 cpd of hydraulic head to atmospheric pressure is used to quantify the barometric efficiency. This new method allows an objective quantification using `passive' in situ monitoring rather than resorting to aquifer pumping or laboratory tests. The minimum data requirements are 15 days duration of 6-hourly hydraulic head and atmospheric pressure measurements, and modelled Earth tide records which are readily conducted using freely available software. The new approach allows for a rapid and cost-effective alternative to traditional methods of estimating aquifer compressible storage properties without the subjectivity of existing approaches, and will be of importance to improving the spatial coverage of subsurface characterisation for groundwater resource evaluation and land subsidence assessment.
Cardiovascular response to acute stress in freely moving rats: time-frequency analysis.
Loncar-Turukalo, Tatjana; Bajic, Dragana; Japundzic-Zigon, Nina
2008-01-01
Spectral analysis of cardiovascular series is an important tool for assessing the features of the autonomic control of the cardiovascular system. In this experiment Wistar rats ecquiped with intraarterial catheter for blood pressure (BP) recording were exposed to stress induced by blowing air. The problem of non stationary data was overcomed applying the Smoothed Pseudo Wigner Villle (SPWV) time-frequency distribution. Spectral analysis was done before stress, during stress, immediately after stress and later in recovery. The spectral indices were calculated for both systolic blood pressure (SBP) and pulse interval (PI) series. The time evolution of spectral indices showed perturbed sympathovagal balance.
Radtke, Thomas; Poerschke, Daniel; Wilhelm, Matthias; Trachsel, Lukas D; Tschanz, Hansueli; Matter, Friederike; Jauslin, Daniel; Saner, Hugo; Schmid, Jean-Paul
2016-04-01
The haemodynamic response to Finnish sauna and subsequent cold-water immersion in heart failure patients is unknown. Haemodynamic response to two consecutive Finnish sauna (80℃) exposures, followed by a final head-out cold-water immersion (12℃) was measured in 37 male participants: chronic heart failure (n = 12, 61.8 ± 9.2 years), coronary artery disease (n = 13, 61.2 ± 10.6 years) and control subjects (n = 12, 60.9 ± 8.9 years). Cardiac output was measured non-invasively with an inert gas rebreathing method prior to and immediately after the first sauna exposure and after cold-water immersion, respectively. Blood pressure was measured before, twice during and after sauna. The autonomic nervous system was assessed by power spectral analysis of heart rate variability. Total power, low-frequency and high-frequency components were evaluated. The low frequency/high frequency ratio was used as a marker of sympathovagal balance. Sauna and cold-water immersion were well tolerated by all subjects. Cardiac output and heart rate significantly increased in all groups after sauna and cold-water immersion (p < 0.05), except for coronary artery disease patients after sauna exposure. Systolic blood pressure during sauna decreased significantly in all groups with a nadir after 6 min (all p < 0.05). Cold-water immersion significantly increased systolic blood pressure in all groups (p < 0.05). No change in the low/high frequency ratio was found in chronic heart failure patients. In coronary artery disease patients and controls a prolonged increase in low frequency/high frequency ratio was observed after the first sauna exposure. Acute exposure to Finnish sauna and cold-water immersion causes haemodynamic alterations in chronic heart failure patients similarly to control subjects and in particular did not provoke an excessive increase in adrenergic activity or complex arrhythmias. © The European Society of Cardiology 2015.
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The advantages of silicon piezoresistive strain sensing technology are being used to achieve the objectives of state of the art pressure sensors for SSME applications. The integration of multiple functions on a single chip is the key attribute being exploited. Progress is reported in transducer packaging and materials; silicon resistor characterization at cryogenic temperatures; chip mounting; and frequency response optimization.
Ester Boserup's theory of agrarian change: a critical review.
Grigg, D
1979-01-01
As discussions of the positive effect of population growth upon agricutural change have been less common than focus on the negative effects, Ester Boserup's book, "The Conditions of Agricultural Growth," and her subsequent work in which it is argued that population growth is the prime cause of agricultural change is of great importance. The objective of this essay is to review earlier attempts to relate the intensification of agriculture to population growth, to outline Boserup's theory, and to examine the criticisms which have been made of the theory. Boserup maintains that population growth is the cause rather than the result of agricultural change and that the principal change is the intensification of land use. The theory of agricultural development posed by Boserup is more subtle and complex than that of any of her predecessors. She sees population pressure as a major cause of change in land use, agricultural technology, land tenure systems, and settlement form. Boserup argues that population growth is independent of food supply and that population increase is a cause of changes in agriculture. The principal means of increasing agricultural output is intensification. Boserup's work has had a varied response from readers; other economists have been less than enthusiastic. It might seem as if the critics of Boserup's theory have left it in tatters. Her central argument, that intensification reduces labor productivity, remains unproven. There are few who would agree that an increase in the frequency of cropping is the only possible response to population pressure; the extensive margin can be extended, higher yielding crops adopted, and methods that increase yields introduced independently of increases in the frequency of cropping. Emigration or the control of numbers may relieve population pressure. Intensification can also take place without population pressure, under the stimulus of urban growth or the development of trade. It is difficult to accept that population pressure is the only cause or agrarian change or that the increased frequency of cropping is the only response to population pressure, yet the thesis is a fruitful interpretation of agrarian change. Assuming population growth as a change mechanism can lead to important new conclusions regarding the nature of agrarian change in western European history.
A Proposed Dynamic Pressure and Temperature Primary Standard
Rosasco, Gregory J.; Bean, Vern E.; Hurst, Wilbur S.
1990-01-01
Diatomic gas molecules have a fundamental vibrational motion whose frequency is affected by pressure in a simple way. In addition, these molecules have well defined rotational energy levels whose populations provide a reliable measure of the thermodynamic temperature. Since information concerning the frequency of vibration and the relative populations can be determined by laser spectroscopy, the gas molecules themselves can serve as sensors of pressure and temperature. Through measurements under static conditions, the pressure and temperature dependence of the spectra of selected molecules is now understood. As the time required for the spectroscopic measurement can be reduced to nanoseconds, the diatomic gas molecule is an excellent candidate for a dynamic pressure/temperature primary standard. The temporal response in this case will be limited by the equilibration time for the molecules to respond to changes in local thermodynamic variables. Preliminary feasibility studies suggest that by using coherent anti-Stokes Raman spectroscopy we will be able to measure dynamic pressure up to 108 Pa and dynamic temperature up to 1500 K with an uncertainty of 5%. PMID:28179756
Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy
NASA Technical Reports Server (NTRS)
Zlotnicki, V.
1994-01-01
Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.
Fay, R R
1995-01-01
Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.
A study of tyre cavity resonance and noise reduction using inner trim
NASA Astrophysics Data System (ADS)
Mohamed, Zamri; Wang, Xu
2015-01-01
A study of tyre inner trim as a method for reducing tyre cavity resonance noise is presented. The tyre is modelled as a rectangular toroid where only the outside shell is flexible. A modal series solution of the sound pressure frequency response inside the tyre cavity is derived from the wave equation using modal superposition. In the solution with the rigid and flexible wall boundary condition, the effect of placing a trim layer onto the inner surface of the tyre tread plate wall is reflected by adding a damping loss term in the sound pressure frequency response function. The numerical simulation result was then compared with the result obtained from a roving impact test performed on a tyre. The results show that selective trim material may be effective for reducing the structure-borne noise magnitude resulting from the tyre cavity resonance.
NASA Astrophysics Data System (ADS)
Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.
2016-12-01
Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in wellbores outside of well casings.
A study on electrode gels for skin conductance measurements.
Tronstad, Christian; Johnsen, Gorm Krogh; Grimnes, Sverre; Martinsen, Ørjan G
2010-10-01
Low-frequency skin conductance is used within several clinical applications and is mainly sensitive to sweating and the moisture content of the stratum corneum, but also how electrodes introduce changes in the electrical properties. Four electrode gels were investigated with regard to sorption characteristics and electrical properties. Skin conductance time series were collected from 18 test subjects during relaxation, exercise and recovery, wearing different pairs of electrodes contralaterally on the hypothenar and the T9 dermatome. Pressure test was applied on the T9 electrodes. Impedance frequency sweeps were taken on the T9 electrodes the same day and the next, parameterized to the Cole model. ANOVA on the initial skin conductance level change, exercise response amplitude, recovery offset and pressure-induced changes revealed significant differences among gel types. The wetter gels caused a higher positive level change, a greater response amplitude, larger recovery offset and greater pressure-induced artifacts compared to the solid gels. Sweating on the T9 site led to negative skin conductance responses for the wetter gels. Correlations were found between the desorption measurements and the initial skin conductance level change (hypothenar: R = 0.988 T9: R = 0.901) RM-ANOVA on the Cole parameters revealed a significant decrease in R(s) of the most resistive gel. Clinical implications are discussed.
Numerical study of the direct pressure effect of acoustic waves in planar premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, H.; Jimenez, C.
Recently the unsteady response of 1-D premixed flames to acoustic pressure waves for the range of frequencies below and above the inverse of the flame transit time was investigated experimentally using OH chemiluminescence Wangher (2008). They compared the frequency dependence of the measured response to the prediction of an analytical model proposed by Clavin et al. (1990), derived from the standard flame model (one-step Arrhenius kinetics) and to a similar model proposed by McIntosh (1991). Discrepancies between the experimental results and the model led to the conclusion that the standard model does not provide an adequate description of the unsteadymore » response of real flames and that it is necessary to investigate more realistic chemical models. Here we follow exactly this suggestion and perform numerical studies of the response of lean methane flames using different reaction mechanisms. We find that the global flame response obtained with both detailed chemistry (GRI3.0) and a reduced multi-step model by Peters (1996) lies slightly above the predictions of the analytical model, but is close to experimental results. We additionally used an irreversible one-step Arrhenius reaction model and show the effect of the pressure dependence of the global reaction rate in the flame response. Our results suggest first that the current models have to be extended to capture the amplitude and phase results of the detailed mechanisms, and second that the correlation between the heat release and the measured OH* chemiluminescence should be studied deeper. (author)« less
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Cappa, F.; Virieux, J.; Rutqvist, J.; Tsang, C.
2007-12-01
We present a new approach, called the "High-Pulse Poroelasticity Protocol" (HPPP), for a very large broadband geophysical monitoring of rock deformations into deep boreholes (from 200 m to 1 km depth). The HPPP consists in developing an innovative probe that allows the hydromechanical loading of rocks with synchronous fluid pressure - 3D deformations (translational components along and in the orthogonal plan of the borehole axis, and rotational components along the longitudinal axis) - seismic wave measurements over a broadband of frequencies (from static to dynamic [1-1,000 Hz]). In this protocol, the rock is subjected to a controlled source corresponding to a fast (few seconds) hydraulic pressure pulse (pressure wave) localized into a short injection chamber (from 1 to 3 m) which is isolated between two inflatable packers in a borehole. In the chamber, measurements are done with fibre-optic and acoustic sensors that makes possible to use a wide range of frequencies (1-1,000 Hz) and high accuracy (10-7) sampling of fluid pressure and 3D deformations. When the pressure wave is applied, several poroelastic effects are measured: (i) a static poroelastic response that is linked to the fluid diffusion in phase with mechanical deformation of the porous rock; (ii) a low-frequency slow Biot wave (P2 wave) associated with the motion out of phase of solid and fluid phases; (iii) a high-frequency pressure wave that is generated and converted to seismic waves (P1 and S waves) at the borehole wall. This new approach aims at determining the infinitesimal shear and axial components of the strain tensor within the rock crossed by a borehole. The HPPP also allows studying the relationships between elastic waves propagation and rock hydromechanical properties and state at an intermediate scale (mesoscopic scale), between the laboratory and crustal scales, in a volume of one to a few tens of meters around the borehole. This new approach was designed from previous pulse testing done in a fault zone with a first prototype of the HPPP probe capable of simultaneously measuring changes (with a high frequency [120 Hz] and high accuracy) in fluid pressure (± 1 kPa) and displacement normal to the fault (± 10-7 m). This prototype consisted of a fibre-optic fluid pressure and a fibre-optic normal displacement sensor fixed to the borehole walls by two anchors located on both sides of the fault which was isolated with two packers to create a 0.4 m injection chamber. Results indicated that fiber-optic measurements allow good capturing of all the high-frequency changes during the hydraulic pulse. The method appears useful for accurately measuring time discrepancies between pressure and deformation signals as small as a few milliseconds. Moreover, high-frequency measurement of the fault "pressure-deformation" poroelastic response allows highlighting of a loop-shaped evolution that is not observed in conventional laboratory or in situ experiments. Consequently, the HPPP approach will provide new data with axial and shear components of the strain tensor which will give us additional information for determination of the rock seismic and hydromechanical properties at various depths in the crust. Moreover, the HPPP will be adapted to study seismic and mechanical instability of fault zones under controlled hydraulic loading and localized in a point source.
Zhang, Zhaoyan
2016-01-01
The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and different acoustic measures are investigated. The results show that the medial surface thickness has dominant effects on the vertical phase difference between the upper and lower margins of the medial surface, closed quotient, H1-H2, and higher-order harmonics excitation. The main effects of vocal fold approximation or decreasing resting glottal opening are to lower the phonation threshold pressure, reduce noise production, and increase the fundamental frequency. Increasing subglottal pressure is primarily responsible for vocal intensity increase but also leads to significant increase in noise production and an increased fundamental frequency. Increasing AP stiffness significantly increases the fundamental frequency and slightly reduces noise production. The interaction among vocal fold thickness, stiffness, approximation, and subglottal pressure in the control of F0, vocal intensity, and voice quality is discussed. PMID:27106298
NASA Technical Reports Server (NTRS)
Grody, N. C.
1973-01-01
Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.
NASA Astrophysics Data System (ADS)
SAKAMOTO, H.; HAYASHI, F.; SUGIURA, S.; TSUJIKAWA, M.
2002-02-01
This study investigated the effect of steady noise, fluctuating noise and music on circulatory function. Pulse-wave and blood pressure were continuously measured in 35 healthy young females who listened to three types of music or were exposed to steady noise or fluctuating noise, synchronized with each type of music with respect to intensity variations. The pulse-wave did not change during any exposure conditions. Regarding blood pressure, several modes were observed. The critical level for a blood pressure change was estimated to be 54 LAeqduring exposure to steady noise. The frequency of high-intensity peaks in the mode of sound fluctuation was associated with elevation in blood pressure. The blood pressure change was analyzed by distinguishing the intensity variation in sound fluctuation from other attributes of music. The effects of music on blood pressure were modified not only by the melody and timbre of the music but also by emotional responses during listing.
Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Clark, B. J.
1986-01-01
Unsteady blade surface pressures were measured on an advanced, highly swept propeller known as SR-3. These measurements were obtained because the unsteady aerodynamics of these highly loaded transonic blades is important to noise generation and aeroelastic response. Specifically, the response to periodic angle-of-attack change was measured for both two- and eight-bladed configurations over a range of flight Mach numbers from 0.4 to 0.85. The periodic angle-of-attack change was obtained by placing the propeller axis at angles up to 4 deg to the flow. Most of the results are presented in terms of the unsteady pressure coefficient variation with Mach number. Both cascade and Mach number effects were largest on the suction surface near the leading edge. The results of a three-dimensional Euler code applied in a quasi-steady fashion were compared to measured data at the reduced frequency of 0.1 and showed relatively poor agreement. Pressure waveforms are shown that suggest shock phenomena may play an important part in the unsteady pressure response at some blade locations.
Response mechanisms of attached premixed flames subjected to harmonic forcing
NASA Astrophysics Data System (ADS)
Shreekrishna
The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the vicinity of typical screech frequencies in gas turbine combustors. The nonlinear response problem is exclusively studied in the case of equivalence ratio coupling. Various nonlinearity mechanisms are identified, amongst which the crossover mechanisms, viz., stoichiometric and flammability crossovers, are seen to be responsible in causing saturation in the overall heat release magnitude of the flame. The response physics remain the same across various preheat temperatures and reactant pressures. Finally, comparisons between the chemiluminescence transfer function obtained experimentally and the heat release transfer functions obtained from the reduced order model (ROM) are performed for lean, CH4/Air swirl-stabilized, axisymmetric V-flames. While the comparison between the phases of the experimental and theoretical transfer functions are encouraging, their magnitudes show disagreement at lower Strouhal number gains show disagreement.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Willoh, R. G.
1975-01-01
A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haneberg, W.C.
1991-11-01
Previous workers have correlated slope failures during rainstorms with rainfall intensity, rainfall duration, and seasonal antecedent rainfall. This note shows how such relationships can be interpreted using a periodic steady-state solution to the well-known linear pressure diffusion equation. Normalization of the governing equation yields a characteristic response time that is a function of soil thickness, saturated hydraulic conductivity, and pre-storm effective porosity, and which is analogous to the travel time of a piston wetting front. The effects of storm frequency and magnitude are also successfully quantified using dimensionless attenuation factors and lag times.
Effect of HMX on the combustion response function
NASA Technical Reports Server (NTRS)
Strand, L. D.; Cohen, N. S.
1980-01-01
Over a pressure range of 3.5-7 MPa and a frequency range of 500-2000 Hz and compared to propellants having equivalent energy and burn rate, HMX produces less pressure-coupled acoustic driving than AP and is equivalent to NC/TMETN. Formation of carbonaceous combustion products indicates that binder decomposition does not follow equilibrium thermochemistry, and that this is aggravated by fuel richness or the absence of AP.
Synchronized oscillations and acoustic fluidization in confined granular materials
NASA Astrophysics Data System (ADS)
Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.
2018-01-01
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
Infrasound, Its Sources and Its Effects on Man
1976-05-01
modulated by an infra - Annoyance has been broken out as a separate sonic frequency. For instance, the amplified topic because I believe that the greatest...importance is the nigh frequency response of quency sound. In general, infrasound does not the measurement system. Measurement of infra - often occur at levels...esuential for detailed analysis and changes in barometric pressure would be con- from these recordings a narrow band spectral sidered infrasonic . The
Salt, A N; DeMott, J E
1999-08-01
The inner ear is continually exposed to pressure fluctuations in the infrasonic frequency range (< 20 Hz) from external and internal body sources. The cochlea is generally regarded to be insensitive to such stimulation. The effects of stimulation at infrasonic frequencies (0.1 to 10 Hz) on endocochlear potential (EP) and endolymph movements in the guinea pig cochlea were studied. Stimuli were applied directly to the perilymph of scala tympani or scala vestibuli of the cochlea via a fluid-filled pipette. Stimuli, especially those near 1 Hz, elicited large EP changes which under some conditions exceeded 20 mV in amplitude and were equivalent to a cochlear microphonic (CM) response. Accompanying the electrical responses was a cyclical, longitudinal displacement of the endolymph. The amplitude and phase of the CM varied according to which perilymphatic scala the stimuli were applied to and whether a perforation was made in the opposing perilymphatic scala. Spontaneously occurring middle ear muscle contractions were also found to induce EP deflections and longitudinal endolymph movements comparable to those generated by perilymphatic injections. These findings suggest that cochlear fluid movements induced by pressure fluctuations at infrasonic frequencies could play a role in fluid homeostasis in the normal state and in fluid disturbances in pathological states.
In-Situ Ultra Low Frequency Poroelastic Response of a Natural Macro-Fracture
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.; Gaffet, S.
2008-12-01
The seismic visibility of macro-fractures filled with fluids is a central problem in the exploration of thermo- hydro-mechanical and chemical processes that occur in Earth' s subsurface. Most studies have been concerned (1) with cracks of a small size relative to the seismic wavelength (2) with "core-sized" samples of single macro-fractures. In comparison, in-situ studies of macro-fractures are very rare and no real estimate is made of the relevance of this convenient "core-sized" data to in-situ reservoirs in general. In this study, we present a new experimental approach to in-situ characterize mechanical and hydraulic properties of fractures using the innovative HPPP protocol. This protocol allows simultaneous high-frequency (120.2 Hz) sampling of normal displacement and fluid pressure in a borehole intersecting the fracture. We show preliminary results conducted in a single fracture vertically embedded in a carbonate reservoir that contains 3 sets of macro-fractures with an average 2m spacing. Two HPPP probes were set, spaced one meter vertically in the fracture. Two types of ULF seismic sources are applied: a fluid pressure pulse injected in the fracture and a hammer hit at a point located 5m far from the fracture plane. There is a highly non-linear variation of fracture normal displacement-versus- fluid pressure as a function of frequency, the higher the frequency, the lower the displacement spectral amplitude is. The pressure pulse and the hammer hit allow exploring the fracture poroelastic response in the [0 - 3Hz] frequency range. The fracture plays the role of a "low-pass" filter for fluid pressure waves; only a quasi-static pressure signal being registered at the receiver. The displacement wave propagation is more complex resulting in uncoupled quasi-static-pressure-2Hz-deformation signals at the receiver. For low magnitude seismic sources (low amplitude pulse and seismic wave), the fracture natural resonance is amplified resulting in separate signals power spectral peaks. When fluid pressure is enough increased, hydraulic diffusion takes place at frequencies lower than 1.2 Hz. Poroelastic effects related to static hydraulic diffusion and to wave propagation were described separately using a linear elastic model where the fracture was treated as a displacement discontinuity across which stresses are continuous but displacement are discontinuous. It appears that the dynamic fracture normal stiffness at 2 to 3 Hz is a factor of 2.8 higher than the static stiffness although the fracture displays a high hydraulic aperture of 10-4 m. This surprising result is related to a high heterogeneity of the fracture channel network with a large porosity/permeability contrast that does not allow fluid displacement under dynamic loading. The HPPP approach appears as a possibility to in-situ characterize such fractures static to seismic poroelastic heterogeneous properties.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1980-01-01
In order to aid in the design of the National Transonic Facility (NTF) control system, test section/plenum response studies were carried out in a 0.186 scale model of the NTF high speed duct. Two types of disturbances, those induced by the model and those induced by the compressor inlet guide vanes were simulated. Some observations with regard to the test section/plenum response tests are summarized as follows. A resonance frequency for the test section/plenum area of the tunnel of approximately 50 Hz was observed for Mach numbers from 0.40 to 0.90. However, since the plenum is 3.1 times (based on volume) too large for the scaled size of the test section, care must be taken in extrapolating these data to NTF conditions. The plenum pressure data indicate the existence of pressure gradients in the plenum. The test results indicate that the difference between test section static pressure and plenum pressure is dependent on test section flow conditions. Plenum response to inlet guide vane type disturbances appears to be slower than plenum response to test section disturbances.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2014-01-01
Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.; Ozevin, Didem; Mosinyi, Bao; Bakuckas, John G., Jr.; Awerbuch, Jonathan; Lau, Alan; Tan, Tein-Min
2008-03-01
Preliminary tests were conducted using frequency response (FR) characteristics to determine damage initiation and growth in a honeycomb sandwich graphite/epoxy curved panel. This investigation was part of a more general study investigating the damage tolerance characteristics of several such panels subjected to quasi-static internal pressurization combined with hoop and axial loading. The panels were tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center in Atlantic City, NJ. The overall program objective was to investigate the damage tolerance characteristics of full-scale composite curved aircraft fuselage panels and the evolution of damage under quasi-static loading up to failure. This paper focuses on one aspect of this comprehensive investigation: the effect of state-of-damage on the characteristics of the frequency response of the subject material. The results presented herein show that recording the frequency response could be used for real-time monitoring of damage growth and in determining damage severity in full-scale composites fuselage aircraft structures.
NASA Astrophysics Data System (ADS)
Becker, M. W.; Ciervo, C.; Cole, M.; Coleman, T.; Mondanos, M.
2017-07-01
A new method of measuring dynamic strain in boreholes was used to record fracture displacement in response to head oscillation. Fiber optic distributed acoustic sensing (DAS) was used to measure strain at mHz frequencies, rather than the Hz to kHz frequencies typical for seismic and acoustic monitoring. Fiber optic cable was mechanically coupled to the wall of a borehole drilled into fractured crystalline bedrock. Oscillating hydraulic signals were applied at a companion borehole 30 m away. The DAS instrument measured fracture displacement at frequencies of less than 1 mHz and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm H2O). Displacement was linearly related to the log of effective stress, a relationship typically explained by the effect of self-affine fracture roughness on fracture closure. These results imply that fracture roughness affects closure even when displacement is a million times smaller than the fracture aperture.
Acoustic response of compliable microvessels containing ultrasound contrast agents
NASA Astrophysics Data System (ADS)
Qin, Shengping; Ferrara, Katherine W.
2006-10-01
The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 µm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 µm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 µm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the circumferential stress is predicted to increase. Decreasing the vessel size or the centre frequency increases the circumferential stress. For the two frequencies considered in this work, the circumferential stress does not scale as the inverse of the square root of the acoustic frequency va as in the mechanical index, but rather has a stronger frequency dependence, 1/va.
Gender affects sympathetic and hemodynamic response to postural stress
NASA Technical Reports Server (NTRS)
Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.
2001-01-01
We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.
Performance, Calibration and Stability of the Mars InSight Mission Pressure Sensor
NASA Astrophysics Data System (ADS)
Banfield, Don; Banerdt, Bruce; Hurst, Ken; Grinblat, Jonny; murray, alex; Carpenter, Scott
2017-10-01
The NASA Mars InSight Discovery Mission is primarily aimed at understanding the seismic environment at Mars and in turn the interior structure of the planet. To this end, it carries a set of very sensitive seismometers to characterize fine ground movements from quakes, impacts and tides. However, to remove atmospheric perturbations that would otherwise corrupt the seismic signals, InSight also carries a pressure sensor of unprecedented sensitivity and frequency response for a Mars mission.The instrument is based on a commercial spacecraft pressure sensor built by the Tavis Corporation. Tavis heritage transducers have provided pressure measurements on several interplanetary missions, starting with a similar application on the Viking Landers. The sensor developed for the Insight mission is their most sensitive device. That same sensitivity was the root of the challenges faced in the design and development for Insight. It uses inductive sensing of a deformable membrane, and includes an internal temperature sensor to compensate for temperature effects in its overall response.The technical requirement on the pressure sensor performance is 0.01(f/0.1)^(-2/3) Pa/sqrt(Hz) between 0.01 and 0.1 Hz, and 0.01 Pa/sqrt(Hz) between 0.1 and 1 Hz. The actual noise spectrum is about 0.01(f/0.3)^(-2/3) Pa/sqrt(Hz) between 0.01 and 1 Hz, and its frequency response (including inlet plumbing) has good response up to about 10 Hz Nyquist (it will be sampled at 20 Hz).Achieving the required sensitivity proved to be a difficult engineering challenge, which necessitated extensive experimentation and prototyping of the electronics design. In addition, a late discovery of the introduction of noise by the signal processing chain into the measurement stream forced a last-minute change in the instrument’s firmware.The flight unit has been calibrated twice, separated by a time span of about 2 years due to the delay in launching the InSight mission. This has the benefit of allowing a direct measure of the stability of the pressure sensor over time. We will discuss the details of the performance, calibration and stability of the pressure sensor in more detail in our presentation.
Experimental short-duration techniques. [gas turbine engine tests
NASA Technical Reports Server (NTRS)
Dunn, Michael G.
1986-01-01
Short-duration facilities used for gas turbine studies are described. Data recording techniques; and instruments (thin-film heat flux gages, high-frequency response pressure measurements, total temperature probes, measurement of rotor tip speed, active measurement of tip clearance) are presented.
Nonlinear Sound Field by Interdigital Transducers in Water
NASA Astrophysics Data System (ADS)
Maezawa, Miyuki; Kamada, Rui; Kamakura, Tomoo; Matsuda, Kazuhisa
2008-05-01
Nonlinear ultrasound beams in water radiated by a surface acoustic wave (SAW) device are examined experimentally and theoretically. SAWs on an 128° X-cut Y-propagation LiNbO3 substrate are excited by 50 pairs of interdigital transducers (IDTs). The device with a 2 ×10 mm2 rectangular aperture and a center frequency of 20 MHz radiate two ultrasound beams in the direction of the Rayleigh angle determined by the propagation speed of the SAW on the device and of the longitudinal wave in water. The Rayleigh angle becomes 22° in the present experimental situation. The fundamental and second harmonic sound pressures are respectively measured along and across the beam using a miniature hydrophone whose active element 0.4 mm in diameter and whose frequency response is calibrated up to 40 MHz. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is utilized to theoretically predict sound pressure amplitudes. The theoretical predictions of both the fundamental and second harmonic pressures agree well with the measured sound pressures.
Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M
2013-04-01
Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.
Scallan, Joshua P; Wolpers, John H; Davis, Michael J
2013-01-01
Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (−3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow. PMID:23045335
Faez, Telli; Skachkov, Ilya; Versluis, Michel; Kooiman, Klazina; de Jong, Nico
2012-09-01
The dynamics of coated microbubbles was studied in an in vivo model. Biotinylated lipid-coated microbubbles were prepared in-house and were injected into a chick embryo chorioallantoic membrane (CAM) model on the fifth day of incubation. The microbubbles, ranging between 1.0 and 3.5 μm in diameter, were insonified in the frequency range of 4-7 MHz. Two amplitudes of acoustic pressure were applied: 300 kPa and 400 kPa. The fundamental and subharmonic responses were recorded optically with an ultra-fast camera (Brandaris 128) at 20 million frames per second. A subharmonic response was observed for 44% of the studied bubbles. From the data the frequency of the maximum fundamental and subharmonic response was derived for each individual bubble and resulted in the resonance curves of the microbubbles. All the bubbles showed shell (strain) hardening behavior for a higher acoustic pressure. We conclude that the subharmonic oscillations observed in this study belonged to the transmit at resonance (TR) regime. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Pressure sensitivity of flow oscillations in postocclusive reactive skin hyperemia.
Strucl, M; Peterec, D; Finderle, Z; Maver, J
1994-05-01
Skin blood flow was monitored using a laser-Doppler (LD) flowmeter in 21 healthy volunteers after an occlusion of the digital arteries. The peripheral vascular bed was exposed to occlusion ischemia of varying duration (1, 4, or 8 min) and to a change in digital arterial pressure produced by different positions of the arm above heart level to characterize the pattern of LD flow oscillations in postocclusive reactive hyperemia (PRH) and to elucidate the relevance of metabolic and myogenic mechanisms in governing its fundamental frequency. The descending part of the hyperemic flow was characterized by the appearance of conspicuous periodic oscillations with a mean fundamental frequency of 7.2 +/- 1.5 cycles/min (SD, n = 9), as assessed by a Fourier transform frequency analysis of 50-s sections of flow. The mean respiratory frequency during the periods of flow frequency analysis was 17.0 +/- 2.2 (SD, n = 9), and the PRH oscillations remained during apnea in all tested subjects. The area under the maximum flow curve increased significantly with prolongation of the occlusion (paired t test, P < 0.001; n = 9), but showed no dependence on the estimated blood pressure in the digital arteries, which suggests the predominant role of a metabolic component in this part of the PRH response. In contrast, the fundamental frequency of PRH oscillations exhibited a significant decrease with a reduction in the estimated digital arterial pressure (linear regression, b = 0.08, P < 0.001; n = 12), but did not change with the prolongation of arterial occlusion despite a significant increase in mean LD flow (paired t test, P < 0.001; n = 9).(ABSTRACT TRUNCATED AT 250 WORDS)
Matthews, Evan L; Brian, Michael S; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B
2017-12-01
Blood pressure responses to dietary sodium vary widely person-to-person. Salt sensitive rodent models display altered autonomic function, a trait thought to contribute to poor cardiovascular health. Thus, we hypothesized that increased salt sensitivity (SS) in normotensive humans would be associated with increased muscle sympathetic nerve activity (MSNA), decreased high frequency heart rate variability (HF-HRV), and decreased baroreflex sensitivity. Healthy normotensive men and women completed 1week of high (300mmol·day -1 ) and 1week of low (20mmol·day -1 ) dietary sodium (random order) with 24h mean arterial pressure (MAP) assessed on the last day of each diet to assess SS. Participants returned to the lab under habitual sodium conditions for testing. Forty-two participants are presented in this analysis, 19 of which successful MSNA recordings were obtained (n=42: age 39±2yrs., BMI 24.3±0.5kg·(m 2 ) -1 , MAP 83±1mmHg, habitual urine sodium 93±7mmol·24h -1 ; n=19: MSNA burst frequency 20±2 bursts·min -1 ). The variables of interest were linearly regressed over the magnitude of SS. Higher SS was associated with increased MSNA (burst frequency: r=0.469, p=0.041), decreased HF-HRV (r=-0.349, p=0.046), and increased LF/HF-HRV (r=0.363, p=0.034). SS was not associated with sympathetic or cardiac baroreflex sensitivity (p>0.05). Multiple regression analysis accounting for age found that age, not SS, independently predicted HF-HRV (age adjusted no longer significant; p=0.369) and LF/HF-HRV (age adjusted p=0.273). These data suggest that age-related salt sensitivity of blood pressure in response to dietary sodium is associated with altered resting autonomic cardiovascular function. Copyright © 2017 Elsevier B.V. All rights reserved.
Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Thomas; Becker, Matthew
California State University Long Beach evaluated hydraulic connectivity among geothermal wells using Periodic Hydraulic Testing (PHT) and Distributed Acoustic Sensing (DAS). The principal was to create a pressure signal in one well and observe the responding pressure signals in one or more observation wells to assess the permeability and storage of the fracture network that connects the two wells. DAS measured strain at mHz frequency in monitoring wells in response to PHT.
Continuous recording of pulmonary artery pressure in unrestricted subjects.
Ikram, H; Richards, A M; Hamilton, E J; Nicholls, M G
1984-01-01
Continuous ambulatory pulmonary artery pressures were recorded using a conventional No 5 French Goodale-Lubin filled catheter linked to the Oxford Medilog system of a portable transducer-perfusion unit and miniaturised recorder. Data retrieval and analysis were performed using a PB2 Medilog playback unit linked to a PDP 11 computer system. The total system has a frequency response linear to 8 Hz allowing accurate pressure recording over the full range of heart rates. Ten recordings in 10 patients yielded artefact free data for 80% or more of the recorded period. This inexpensive reliable method allows pulmonary artery pressures to be recorded in unrestricted subjects. Images PMID:6704262
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
Türker Duyuler, Pinar; Duyuler, Serkan; Demir, Mevlüt; Uçar Elalmiş, Özgül; Güray, Ümit; İleri, Mehmet
2017-12-01
Exaggerated blood pressure response to exercise is a risk factor for the development of future hypertension. In this study, we aimed to investigate the association between homocysteine, epicardial fat thickness, nonalcoholic hepatic steatosis, and exaggerated blood pressure response to exercise. We included 44 normotensive and 40 patients with exaggerated blood pressure response to exercise who have normal resting blood pressure and without a previous diagnosis of hypertension. All patients underwent treadmill exercise test and clinical, ultrasonographic, and echocardiographic evaluation. Exaggerated blood pressure response to exercise is defined as peak exercise systolic blood pressure of at least 210 mmHg in men and at least 190 mmHg in women. Homocysteine and other biochemical parameters were determined with standardized automated laboratory tests. Mean age of all participants is 47.9±8.5 years, and 36 of 84 participants were female. The frequency of diabetes mellitus in both groups was similar (P=0.250). Homeostasis model assessment index-insulin resistance had a statistically insignificant trend to be higher in a patient with exercise hypertension (P=0.058). The nonalcoholic fatty liver was more frequent in patients with exercise hypertension (13.6 vs. 47.5%, P=0.002). Epicardial fat thickness was increased in patients with exercise hypertension (5.5±1.5 vs. 7.3±1.1 mm; P=0.001). However, homocysteine levels did not significantly differ between normotensive and exercise hypertensive patients [12.3 μmol/l (5.7-16.9 μmol/l) vs. 13 μmol/l (5.9-28.3 μmol/l); P=0.883]. In our study, homocysteine levels were not associated with exaggerated blood pressure response to exercise; however, fatty liver and epicardial fat thickness as visceral adiposity-related cardiometabolic risk factors were significantly related with exaggerated blood pressure response to exercise in patients without a previous diagnosis of hypertension.
Zhang, Cheng; Lin, Ruei-Lung; Hong, Jeff; Khosravi, Mehdi; Lee, Lu-Yuan
2017-05-01
This study was designed to determine the effect of active sensitization with ovalbumin (Ova) on cough responses to inhaled irritant gases in mice. Conscious mice moved freely in a recording chamber, while the pressure change in the chamber and audio and video signals of the mouse movements were recorded simultaneously to measure the frequencies of cough reflex (CR) and expiration reflex (ER). To further verify the accuracy of cough analysis, the intrapleural pressure was also recorded by a telemetry sensor surgically implanted in the intrapleural space in a subgroup of mice. During the irritant gas inhalation challenge, sulfur dioxide (SO 2 ; 200 and 400 ppm) or ammonia (NH 3 ; 0.1% and 0.2%) was drawn into the chamber at a constant flow rate for 8 min. Ova sensitization and sham sensitization with vehicle (Veh) were performed over a 25-day period in separate groups of mice. Our results showed that 1 ) both SO 2 and NH 3 inhalation challenges increased CR and ER frequencies in a concentration-dependent manner before Ova sensitization; 2 ) the baseline CR frequency was significantly elevated after Ova sensitization, accompanied by pronounced airway inflammation; and 3 ) Ova sensitization also markedly augmented the responses of CR and ER to both SO 2 and NH 3 inhalation challenges; in sharp contrast, the cough responses did not change after sham sensitization in the Veh group. In conclusion, Ova sensitization caused distinct and lingering increases in baseline cough frequency, and also intensified both CR and ER responses to inhaled irritant gases, which probably resulted from an allergic inflammation-induced hypersensitivity of airway sensory nerves. Copyright © 2017 the American Physiological Society.
Aeroelasticity Analysis of AN Industrial Gas Turbine Combustor Using a Simplified Combustion Model
NASA Astrophysics Data System (ADS)
Bréard, C.; Sayma, A. I.; Vahdati, M.; Imregun, M.
2002-12-01
Lean premixed industrial gas turbine combustors are susceptible to flame instabilities, resulting in large unsteady pressure waves that may cause the discharge nozzle to experience excessive vibration levels. A detailed aeroelasticity analysis, aimed at investigating possible structural failure mechanisms, was undertaken using a time-accurate unsteady flow representation, a simplified combustion disturbance and a structural model of the discharge nozzle. The computational domain included the lower part of the combustor geometry as well as the nozzle guide vanes (NGVs) at the HP turbine inlet. A pressure perturbation, representing the unsteadiness due to the combustion process, was applied below the tertiary fuel inlet and its frequency was set to each structural natural frequency in turn. The propagation of the pressure perturbation through the combustor nozzle, its reflection from the NGVs and further reflections were monitored using two different models. The first one, the so-called ``open'' system, ignored the reflections from the upper part of the combustion chamber while the second one, the ``closed'' system, assumed full reflection with an appropriate time shift. The calculations have shown that the imposed excitation could generate unsteady pressure shapes that were correlated with the ``flap'' modes of the discharge nozzle. In addition, an acoustic resonance condition was observed when the forcing pressure wave had a frequency close to 550 Hz, the experimentally observed failure frequency of the nozzle. The co-existence of these two factors, i.e., excitation/structural-mode match and the possibility of acoustic resonance, was thought to have the potential of producing very high vibration response.
Influence of computer work under time pressure on cardiac activity.
Shi, Ping; Hu, Sijung; Yu, Hongliu
2015-03-01
Computer users are often under stress when required to complete computer work within a required time. Work stress has repeatedly been associated with an increased risk for cardiovascular disease. The present study examined the effects of time pressure workload during computer tasks on cardiac activity in 20 healthy subjects. Heart rate, time domain and frequency domain indices of heart rate variability (HRV) and Poincaré plot parameters were compared among five computer tasks and two rest periods. Faster heart rate and decreased standard deviation of R-R interval were noted in response to computer tasks under time pressure. The Poincaré plot parameters showed significant differences between different levels of time pressure workload during computer tasks, and between computer tasks and the rest periods. In contrast, no significant differences were identified for the frequency domain indices of HRV. The results suggest that the quantitative Poincaré plot analysis used in this study was able to reveal the intrinsic nonlinear nature of the autonomically regulated cardiac rhythm. Specifically, heightened vagal tone occurred during the relaxation computer tasks without time pressure. In contrast, the stressful computer tasks with added time pressure stimulated cardiac sympathetic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Macías, Silvio; Hechavarría, Julio C; Cobo, Ariadna; Mora, Emanuel C
2014-03-01
In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus. Here, we describe the response-level function of cortical units in these two species. In the auditory cortices of M. waterhousii and M. molossus, the characteristic frequency of the units increased from caudal to rostral. In M. waterhousii, there was an even distribution of characteristic frequencies while in M. molossus there was an overrepresentation of frequencies present within echolocation pulses. In both species, most of the units showed best levels in a narrow range, without an evident topography in the amplitopic organization, as described in other species. During flight, bats decrease the intensity of their emitted pulses when they approach a prey item or an obstacle resulting in maintenance of perceived echo intensity. Narrow level tuning likely contributes to the extraction of echo amplitudes facilitating echo-intensity compensation. For aerial-hawking bats, like M. molossus, receiving echoes within the optimal sensitivity range can help the bats to sustain consistent analysis of successive echoes without distortions of perception caused by changes in amplitude. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamic hydraulic fluid stimulation regulated intramedullary pressure.
Hu, Minyi; Serra-Hsu, Frederick; Bethel, Neville; Lin, Liangjun; Ferreri, Suzanne; Cheng, Jiqi; Qin, Yi-Xian
2013-11-01
Physical signals within the bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within the bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where they peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in the bone, which serves critically in bone adaptation. These results clearly implied DHS's potential as an effective, non-invasive intervention for osteopenia and osteoporosis treatments. © 2013. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Krishnamurthy, Thiagarajan
2010-01-01
Equivalent plate analysis is often used to replace the computationally expensive finite element analysis in initial design stages or in conceptual design of aircraft wing structures. The equivalent plate model can also be used to design a wind tunnel model to match the stiffness characteristics of the wing box of a full-scale aircraft wing model while satisfying strength-based requirements An equivalent plate analysis technique is presented to predict the static and dynamic response of an aircraft wing with or without damage. First, a geometric scale factor and a dynamic pressure scale factor are defined to relate the stiffness, load and deformation of the equivalent plate to the aircraft wing. A procedure using an optimization technique is presented to create scaled equivalent plate models from the full scale aircraft wing using geometric and dynamic pressure scale factors. The scaled models are constructed by matching the stiffness of the scaled equivalent plate with the scaled aircraft wing stiffness. It is demonstrated that the scaled equivalent plate model can be used to predict the deformation of the aircraft wing accurately. Once the full equivalent plate geometry is obtained, any other scaled equivalent plate geometry can be obtained using the geometric scale factor. Next, an average frequency scale factor is defined as the average ratio of the frequencies of the aircraft wing to the frequencies of the full-scaled equivalent plate. The average frequency scale factor combined with the geometric scale factor is used to predict the frequency response of the aircraft wing from the scaled equivalent plate analysis. A procedure is outlined to estimate the frequency response and the flutter speed of an aircraft wing from the equivalent plate analysis using the frequency scale factor and geometric scale factor. The equivalent plate analysis is demonstrated using an aircraft wing without damage and another with damage. Both of the problems show that the scaled equivalent plate analysis can be successfully used to predict the frequencies and flutter speed of a typical aircraft wing.
Interhospital transfer of children in respiratory failure: a clinician interview qualitative study.
Odetola, Folafoluwa O; Anspach, Renee R; Han, Yong Y; Clark, Sarah J
2017-02-01
To investigate the decision making underlying transfer of children with respiratory failure from level II to level I pediatric intensive care unit care. Interviews with 19 eligible level II pediatric intensive care unit physicians about a hypothetical scenario of a 2-year-old girl in respiratory failure: RESULTS: At baseline, indices critical to management were as follows: OI (53%), partial pressure of oxygen in arterial blood (Pao 2 )/Fio 2 (32%), and inflation pressure (16%). Poor clinical response was signified by high OI, inflation pressure, and Fio 2 , and low Pao 2 /Fio 2 . At EP 1, 18 of 19 respondents would initiate high-frequency oscillatory ventilation, and 1 would transfer. At EP 2, 15 of 18 respondents would maintain high-frequency oscillatory ventilation, 9 of them calling to discuss transfer. All respondents would transfer if escalated therapies failed to reverse the patient's clinical deterioration. Interhospital transfer of children in respiratory failure is triggered by poor response to escalation of locally available care modalities. This finding provides new insight into decision making underlying interhospital transfer of children with respiratory failure. Copyright © 2016 Elsevier Inc. All rights reserved.
Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Abe, Touma
2011-07-01
We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.
Contrast Gain Control in Auditory Cortex
Rabinowitz, Neil C.; Willmore, Ben D.B.; Schnupp, Jan W.H.; King, Andrew J.
2011-01-01
Summary The auditory system must represent sounds with a wide range of statistical properties. One important property is the spectrotemporal contrast in the acoustic environment: the variation in sound pressure in each frequency band, relative to the mean pressure. We show that neurons in ferret auditory cortex rescale their gain to partially compensate for the spectrotemporal contrast of recent stimulation. When contrast is low, neurons increase their gain, becoming more sensitive to small changes in the stimulus, although the effectiveness of contrast gain control is reduced at low mean levels. Gain is primarily determined by contrast near each neuron's preferred frequency, but there is also a contribution from contrast in more distant frequency bands. Neural responses are modulated by contrast over timescales of ∼100 ms. By using contrast gain control to expand or compress the representation of its inputs, the auditory system may be seeking an efficient coding of natural sounds. PMID:21689603
Intracellular studies of hair cells in the mammalian cochlea.
Russell, I J; Sellick, P M
1978-01-01
1. Intracellular recordings were made from inner hair cells in the first turn of the guinea-pig cochlea, the recording sites being confirmed by the injection of Procion yellow dye and subsequent histology. 2. The receptor potential, in response to a pure tone burst, consisted of an AC response which followed the wave form of the stimulus and was analogous to the extracellularly recorded cochlear microphonic and a depolarizating DC response which followed the envelope of the tone burst and was analogous to the extracellularly recorded summating potential. 3. The DC response was broadly tuned at high sound pressure having a maximal amplitude of 27 mV at a sound pressure level of ca. 100 db; however the bandwidth of the response was reduced at lower sound pressure level. Isoamplitude curves for the DC response were indistinguishable from the threshold curves for auditory nerve fibres. 4. The AC response was tuned in a similar fashion to the DC response except that it was attenuated at 6-9 db/octave with respect to the DC response. It is suggested that this difference was due to the effect of membrane capacitance and resistance on the AC response. In contrast the extracellularly recorded AC component was not subject to this attenuation. 5. The total resistance and capacitance in three cells were found to be 46-61 Momega and 7.8-15.8 muF respectively. 6. Intracellular resistance changes were measured during sound stimulation, the resistance change being proportional to the DC receptor potential, indicating constant current flow through the hair cell. The current varied between 0.37 and 0.81 nA between cells. The time constant for seven cells was found to lie between 0.31 and 0.76 msec. 7. A map of the basilar membrane showing position of hair cells against characteristic frequency corresponded to the cut-off frequencies of the basilar membrane mechanical measurements and the innervation sites of spiral ganglion cells. PMID:731538
Theoretical Modelling of Sound Radiation from Plate
NASA Astrophysics Data System (ADS)
Zaman, I.; Rozlan, S. A. M.; Yusoff, A.; Madlan, M. A.; Chan, S. W.
2017-01-01
Recently the development of aerospace, automotive and building industries demands the use of lightweight materials such as thin plates. However, the plates can possibly add to significant vibration and sound radiation, which eventually lead to increased noise in the community. So, in this study, the fundamental concept of sound pressure radiated from a simply-supported thin plate (SSP) was analyzed using the derivation of mathematical equations and numerical simulation of ANSYS®. The solution to mathematical equations of sound radiated from a SSP was visualized using MATLAB®. The responses of sound pressure level were measured at far field as well as near field in the frequency range of 0-200 Hz. Result shows that there are four resonance frequencies; 12 Hz, 60 Hz, 106 Hz and 158 Hz were identified which represented by the total number of the peaks in the frequency response function graph. The outcome also indicates that the mathematical derivation correlated well with the simulation model of ANSYS® in which the error found is less than 10%. It can be concluded that the obtained model is reliable and can be applied for further analysis such as to reduce noise emitted from a vibrating thin plate.
Finneran, James J; Schlundt, Carolyn E
2007-07-01
Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.
Reservoir transport and poroelastic properties from oscillating pore pressure experiments
NASA Astrophysics Data System (ADS)
Hasanov, Azar K.
Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.
Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture.
Elder, Steven H; Sanders, Shawn W; McCulley, William R; Marr, Misti L; Shim, Joon W; Hasty, Karen A
2006-04-01
Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA. Copyright 2006 Orthopaedic Research Society
Remote tire pressure sensing technique
NASA Technical Reports Server (NTRS)
Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)
1993-01-01
A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.
Identification of Computational and Experimental Reduced-Order Models
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.
2003-01-01
The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.
A method for improving the drop test performance of a MEMS microphone
NASA Astrophysics Data System (ADS)
Winter, Matthias; Ben Aoun, Seifeddine; Feiertag, Gregor; Leidl, Anton; Scheele, Patrick; Seidel, Helmut
2009-05-01
Most micro electro mechanical system (MEMS) microphones are designed as capacitive microphones where a thin conductive membrane is located in front of a rigid counter electrode. The membrane is exposed to the environment to convert sound into vibrations of the membrane. The movement of the membrane causes a change in the capacitance between the membrane and the counter electrode. The resonance frequency of the membrane is designed to occur above the acoustic spectrum to achieve a linear frequency response. To obtain a good sensitivity the thickness of the membrane must be as small as possible, typically below 0.5 μm. These fragile membranes may be damaged by rapid pressure changes. For cell phones, drop tests are among the most relevant reliability tests. The extremely high acceleration during the drop impact leads to fast pressure changes in the microphone which could result in a rupture of the membrane. To overcome this problem a stable protection layer can be placed at a small distance to the membrane. The protective layer has small holes to form a low pass filter for air pressure. The low pass filter reduces pressure changes at high frequencies so that damage to the membrane by excitation in resonance will be prevented.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation.
Deguchi, Shinji; Matsuzaki, Yuji; Ikeda, Tadashige
2007-02-01
In humans, a decrease in transglottal pressure (Pt) causes an increase in the fundamental frequency of phonation (F0) only at a specific voice pitch within the modal register, the mechanism of which remains unclear. In the present study, numerical analyses were performed to investigate the mechanism of the voice pitch-dependent positive change of F0 due to Pt decrease. The airflow and the airway, including the vocal folds, were modeled in terms of mechanics of fluid and structure. Simulations of phonation using the numerical model indicated that Pt affects both the average position and the average amplitude magnitude of vocal fold self-excited oscillation in a non-monotonous manner. This effect results in voice pitch-dependent responses of F0 to Pt decreases, including the positive response of F0 as actually observed in humans. The findings of the present study highlight the importance of considering self-excited oscillation of the vocal folds in elucidation of the phonation mechanism.
Properties of short-wavelength oblique Alfvén and slow waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Wu, D. J.; Voitenko, Y.
Linear properties of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency ω and plasma-to-magnetic pressure ratio β. The KAW frequency can reach and exceed the ion-cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At β ∼ 1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes also exhibit several opposite properties. At high β, themore » electric polarization ratios of KAWs and KSWs are opposite at the ion gyroradius scale, where KAWs are polarized in the sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity σ ∼ 1 for KAWs and σ ∼ –1 for KSWs, and the ion Alfvén ratio R{sub Ai} << 1 for KAWs and R{sub Ai} >> 1 for KSWs. We also found transition wavenumbers where KAWs change their polarization from left-handed to right-handed. These new properties can be used to discriminate KAWs and KSWs when interpreting kinetic-scale electromagnetic fluctuations observed in various solar-terrestrial plasmas. This concerns, in particular, identification of modes responsible for kinetic-scale pressure-balanced fluctuations and turbulence in the solar wind.« less
Galli, Gina L J; Gesser, Hans; Taylor, Edwin W; Shiels, Holly A; Wang, Tobias
2006-05-01
The functional significance of the sarcoplasmic reticulum (SR) in the generation of high heart rates and blood pressures was investigated in four species of reptile; the turtle, Trachemys scripta; the python, Python regius, the tegu lizard, Tupinanvis merianae, and the varanid lizard, Varanus exanthematicus. Force-frequency trials and imposed pauses were performed on ventricular and atrial tissue from each species with and without the SR inhibitor ryanodine, and in the absence and presence of adrenaline. In all species, an imposed pause of 1 or 5 min caused a post-rest decay of force, and a negative force-frequency response was observed in all species within their in vivo frequency range of heart rates. These relationships were not affected by either ryanodine or adrenaline. In ventricular strips from varanid lizards and pythons, ryanodine caused significant reductions in twitch force within their physiologically relevant frequency range. In atrial tissue from the tegu and varanid lizards, SR inhibition reduced twitch force across the whole of their physiological frequency range. In contrast, in the more sedentary species, the turtle and the python, SR inhibition only decreased twitch force at stimulation frequencies above maximal in vivo heart rates. Adrenaline caused an increase in twitch force in all species studied. In ventricular tissue, this positive inotropic effect was sufficient to overcome the negative effects of ryanodine. In atrial tissue however, adrenaline could only ameliorate the negative effects of ryanodine at the lower pacing frequencies. Our results indicate that reptiles recruit Ca2+ from the SR for force development in a frequency and tissue dependent manner. This is discussed in the context of the development of high reptilian heart rates and blood pressures.
Rogers, R F; Rose, W C; Schwaber, J S
1996-10-01
1. We seek to understand the baroreceptor signal processing that occurs centrally, beginning with the transformation of the signal at the first stage of processing. Because quantitative descriptions of the encoding of mean arterial pressure and its derivative with respect to time by baroreceptive second-order neurons have been unavailable, we characterized the responses of nucleus tractus solitarius (NTS) neurons that receive direct myelinated baroreceptor inputs to combinations of these two stimulus variables. 2. In anesthetized, paralyzed, artificially ventilated rabbits, the carotid sinus was vascularly isolated and the carotid sinus nerve was dissected free from surrounding tissue. Single-unit extracellular recordings were made from NTS neurons that received direct (with the use of physiological criteria) synaptic inputs from carotid sinus baroreceptors with myelinated axons. The vast majority of these neurons did not receive ipsilateral aortic nerve convergent inputs. With the use of a computer-controlled linear motor, a piecewise linear pressure waveform containing 32 combinations of pressure and its rate of change with respect to time (dP/dt) was delivered to the ipsilateral carotid sinus. 3. The average NTS firing frequency during the different stimulus combinations of pressure and dP/dt was a nonlinear and interdependent function of both variables. Most notable was the "extinctive" encoding of carotid sinus pressure by these neurons. This was characterized by an increase in firing frequency going from low to medium mean pressures (analyzed at certain positive dP/dt values) followed by a decrease in activity during high-pressure stimuli. All second-order neurons analyzed had their maximal firing rates when dP/dt was positive. 4. All neurons had their maximal firing frequency locations ("receptive field centers") at just 3 of 32 possible pressure-dP/dt coordinates. The responses of a small population of neurons were used to generate a composite description of the encoding of pressure and dP/dt. When combined as a composite of individually normalized values, the encoding of carotid sinus pressure and dP/dt may be approximated with the use of two-dimensional Gaussian functions. 5. We conclude that the population of NTS neurons recorded most faithfully encodes the rate and direction of (mean) pressure change, as opposed to providing the CNS with an unambiguous encoding of absolute pressure. Instead, the activity of these neurons, individually or as a population, serves as an estimate for the first derivative of the myelinated baroreceptor signal's encoding of mean pressure. We therefore speculate that the output of these individual neurons is useful in dynamic, rather than static, arterial pressure control.
Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.
2012-01-01
Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.
NASA Astrophysics Data System (ADS)
Hedlund, Brock E.; Houpt, Alec W.; Gordeyev, Stanislav V.; Leonov, Sergey B.
2017-10-01
This study was performed to characterize the dominant frequencies present in the boundary layer uptsream of and in the corner separation zone of a compression surface in Mach 4.5 flow and to determine a control effect of transient plasma actuation on the boundary layer. Schlieren imaging was used to distinguish the corner separation zone for 20°, 25°, and 30° compression ramps mounted on flat plates. Spectra of the natural disturbances present in the boundary layer and separation zone were gathered using a high-speed Shack-Hartmann wavefront sensor and surface mounted PCBTM pressure sensors while varying flow parameters by adjusting total pressure, temperature, and ramp angle. Shallow cavity discharge plasma actuators were used as a high-frequency localized thermal forcing mechanism of the boundary layer. The plasma effect was negligible for forcing frequencies (50 kHz) below the natural dominant frequency (~55-80 kHz). High frequency perturbations that can promote the transition to turbulence were amplified when the plasma forcing frequency (100 kHz) was higher than the natural dominant frequency (~55-80 kHz). This technique can potentially be used for active control of hypersonic boundary layer transition and the supersonic flow structure on the compression surface.
Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure.
Kasra, Mehran; Merryman, W David; Loveless, Kristen N; Goel, Vijay K; Martin, James D; Buckwalter, Joseph A
2006-10-01
The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. Dynamic loads with frequencies close to that of the in vivo human spine resonant frequency (4-6 Hz) have a destructive effect, which may induce extracellular disc matrix (ECM) degradation. To investigate this issue, three-dimensional (3D) alginate cultures of normal pig intervertebral disc nucleus and inner annulus cells were tested under dynamic hydrostatic loading. Alginate cultures of each region were divided into six groups; five groups were exposed to cyclic hydrostatic pressures of frequencies 1, 3, 5, 8, and 10 Hz with the same amplitude (1 MPa), and group 6 was the control group (no loading). Cultures of different groups were loaded for 3 days (30 min daily) in a hydraulic chamber. Effects of loading frequency on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. The results indicated a poor synthesis rate and more degradation near the 5 Hz frequency. The repeatability of experiments was verified by performing two experiments with the same protocol. Both experiments indicated that a threshold frequency of around 5 Hz disrupted protein metabolism. Copyright (c) 2006 Orthopaedic Research Society.
Portable high precision pressure transducer system
Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.
1994-04-26
A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.
NASA Astrophysics Data System (ADS)
Chevrot, S.; Wang, Y.; Monteiller, V.; Komatitsch, D.; Martin, R.
2016-12-01
Measuring fracture mechanical behavior in response to changes in fluid pressure is critical for understanding flow through petroleum reservoirs, predicting hydrothermal responses in geothermal fields, and monitoring geologic carbon sequestration injection. Distributed acoustic sensing (DAS) is new, but commercially available fiber optic technology that offers a novel approach to characterize fractured bedrock systems. DAS was originally designed to measure the amplitude, frequency, and phase of an acoustic wave, and is therefore capable of detecting strains at exceedingly small scales. Though normally used to measure frequencies in the Hz to kHz range, we adapted DAS to measure fracture displacements in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a fractured bedrock aquifer to test the ability of DAS to measure fracture mechanical response to oscillatory well tests. Fiber optic cable was deployed in a well, and coupled to the borehole wall using a flexible impermeable liner designed with an air coupled transducer to measure fluid pressure at the target fracture zone. Two types of cable were tested, a loose tube and tight buffered, to determine the effects of cable construction. Both strain and pressure were measured across the known fracture zone hydraulically connected to a well 30 m away. The companion well was subjected to alternating pumping and injection with periods between 2 and 18 minutes. Raw DAS data were collected as strain rate measured every 0.25 m along the fiber with a gauge length of 10 m, at a sampling rate of 1 kHz. Strain rate was converted to strain by integrating with respect to time. DAS measured periodic strains of less than 1 nm/m in response to periodic injection and pumping at the companion well. Strain was observed by DAS only at the depth of the hydraulically connected fracture zone. Thus, the magnitude and response of the strain could be both localized with depth and measured quantitatively. The tight buffered cable was found to be twice as sensitive to strain than the loose tube cable construction. This technology holds promise for monitoring mechanical strain in response to periodic hydraulic testing. Such an approach could be used, for example, in leak detection of injection systems by inducing a periodically varying injection rate.
NASA Astrophysics Data System (ADS)
Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.
2017-12-01
Measuring fracture mechanical behavior in response to changes in fluid pressure is critical for understanding flow through petroleum reservoirs, predicting hydrothermal responses in geothermal fields, and monitoring geologic carbon sequestration injection. Distributed acoustic sensing (DAS) is new, but commercially available fiber optic technology that offers a novel approach to characterize fractured bedrock systems. DAS was originally designed to measure the amplitude, frequency, and phase of an acoustic wave, and is therefore capable of detecting strains at exceedingly small scales. Though normally used to measure frequencies in the Hz to kHz range, we adapted DAS to measure fracture displacements in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a fractured bedrock aquifer to test the ability of DAS to measure fracture mechanical response to oscillatory well tests. Fiber optic cable was deployed in a well, and coupled to the borehole wall using a flexible impermeable liner designed with an air coupled transducer to measure fluid pressure at the target fracture zone. Two types of cable were tested, a loose tube and tight buffered, to determine the effects of cable construction. Both strain and pressure were measured across the known fracture zone hydraulically connected to a well 30 m away. The companion well was subjected to alternating pumping and injection with periods between 2 and 18 minutes. Raw DAS data were collected as strain rate measured every 0.25 m along the fiber with a gauge length of 10 m, at a sampling rate of 1 kHz. Strain rate was converted to strain by integrating with respect to time. DAS measured periodic strains of less than 1 nm/m in response to periodic injection and pumping at the companion well. Strain was observed by DAS only at the depth of the hydraulically connected fracture zone. Thus, the magnitude and response of the strain could be both localized with depth and measured quantitatively. The tight buffered cable was found to be twice as sensitive to strain than the loose tube cable construction. This technology holds promise for monitoring mechanical strain in response to periodic hydraulic testing. Such an approach could be used, for example, in leak detection of injection systems by inducing a periodically varying injection rate.
Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces
NASA Technical Reports Server (NTRS)
Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu
2001-01-01
An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.
NASA Technical Reports Server (NTRS)
Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.
NASA Astrophysics Data System (ADS)
Hayashi, I.; Kaneko, S.
2014-02-01
Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1975-01-01
Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.
Nonlinear vibration and radiation from a panel with transition to chaos induced by acoustic waves
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.
1992-01-01
The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling) and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance, bifurcation is diffused and difficult to maintain, thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on aluminum panel and using a graphite epoxy panel having the same size and weight. Good agreement is obtained between the experimental and numerical results.
Nonlinear vibration and radiation from a panel with transition to chaos
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.
1992-01-01
The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling), and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance bifurcation is diffused and difficult to maintain; thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on an aluminum panel and a graphite epoxy panel having the same size and weight. Good agreement is obtained betwen the experimental and numerical results.
2008-07-01
SUBJECT TERMS Gas turbine, sensors, Hostile Operating Conditions, FADEC , High Temperature Regimes for Sensors, Sensor Needs, Turbine Engine...Authority Digital Engine Control ( FADEC ). The frequency and bandwidth capability of sensors for engine control are drastically different for each sensor...metering valve assembly is responsive to electrical signals generated by the FADEC in response to sensors that measure turbine speed, pressure
de Queiróz, A T L; Maracaja-Coutinho, V; Jardim, A C G; Rahal, P; de Carvalho-Mello, I M V G; Matioli, S R
2011-02-01
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-α and ribavirin therapy. Major histocompatibility complex class I restricted CD8(+) T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated α-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy. © 2010 Blackwell Publishing Ltd.
Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.
Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo
2016-04-26
Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).
NASA Astrophysics Data System (ADS)
Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves
2017-12-01
Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.
NASA Technical Reports Server (NTRS)
Kelley, N. D.; Mckenna, H. E.; Jacobs, E. W.
1995-01-01
Early results from a recent experiment designed to directly evaluate the aeroacoustic/elastic spectral responses of a MOD-2 turbine blade to turbulence-induced unsteady blade loads are discussed. The experimental procedure consisted of flying a hot-film anemometer from a tethered balloon in the turbine inflow and simultaneously measuring the fluctuating airload and aeroelastic response at two blade span stations (65% and 87% spans) using surface-mounted, subminiature pressure transducers and standard strain gage instrumentation. The radiated acoustic pressure field was measured with a triad of very-low-frequency microphones placed at ground level, 1.5 rotor diameters upwind of the disk. Initial transfer function estimates for acoustic radiation, blade normal forces, flapwise acceleration/displacement, and chord/flapwise moments are presented.
Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade
NASA Technical Reports Server (NTRS)
Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.
1985-01-01
Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.
Parameter identification of a rotor supported in a pressurized bearing lubricated with water
NASA Technical Reports Server (NTRS)
Grant, John W.; Muszynska, Agnes; Bently, Donald E.
1994-01-01
A rig for testing an externally pressurized (hydrostatic), water-lubricated bearing was developed. Applying a nonsynchronous sweep frequency, rotating perturbation force with a constant amplitude as an input, rotor vibration response data was acquired in Bode and Dynamic Stiffness formats. Using this data, the parameters of the rotor/bearing system were identified. The rotor/bearing model was represented by the generalized (modal) parameters of the first lateral mode, with the rotational character of the fluid force taken into account.
Modeling dynamic acousto-elastic testing experiments: validation and perspectives.
Gliozzi, A S; Scalerandi, M
2014-10-01
Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.
A Mechanism for Frequency Modulation in Songbirds Shared with Humans
Margoliash, Daniel
2013-01-01
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways. PMID:23825417
A mechanism for frequency modulation in songbirds shared with humans.
Amador, Ana; Margoliash, Daniel
2013-07-03
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.
A multi-physics model for ultrasonically activated soft tissue.
Suvranu De, Rahul
2017-02-01
A multi-physics model has been developed to investigate the effects of cellular level mechanisms on the thermomechanical response of ultrasonically activated soft tissue. Cellular level cavitation effects have been incorporated in the tissue level continuum model to accurately determine the thermodynamic states such as temperature and pressure. A viscoelastic material model is assumed for the macromechanical response of the tissue. The cavitation model based equation-of-state provides the additional pressure arising from evaporation of intracellular and cellular water by absorbing heat due to structural and viscoelastic heating in the tissue, and temperature to the continuum level thermomechanical model. The thermomechanical response of soft tissue is studied for the operational range of frequencies of oscillations and applied loads for typical ultrasonically activated surgical instruments. The model is shown to capture characteristics of ultrasonically activated soft tissue deformation and temperature evolution. At the cellular level, evaporation of water below the boiling temperature under ambient conditions is indicative of protein denaturation around the temperature threshold for coagulation of tissues. Further, with increasing operating frequency (or loading), the temperature rises faster leading to rapid evaporation of tissue cavity water, which may lead to accelerated protein denaturation and coagulation.
High frequency pressure oscillator for microcryocoolers.
Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C
2008-04-01
Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.
High frequency pressure oscillator for microcryocoolers
NASA Astrophysics Data System (ADS)
Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.
2008-04-01
Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.
Perry, S F; Montpetit, C J; McKendry, J; Desforges, P R; Gilmour, K M; Wood, C M; Olson, K R
2001-11-01
The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.
Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.
Li, Xin; Rong, Jiepeng; Wei, Bingqing
2010-10-26
The effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with single-walled carbon nanotube (SWNT) film electrodes and 1 M aqueous electrolytes with different anions and cations were thoroughly investigated. The under-pressed capacitive and resistive features of the supercapacitors were studied by means of cyclic voltammetry measurements and electrochemical impedance analysis. The results demonstrated that the specific capacitance increased first and saturated in corresponding decreases of the series resistance, the charge-transfer resistance, and the Warburg diffusion resistance under an increased pressure from 0 to 1723.96 kPa. Wettability as well as ion-size effect of different aqueous electrolytes played important roles to determine the pressure dependence behavior of the suerpcapacitors under an applied pressure. An improved high-frequency capacitive response with 1172 Hz knee frequency, which is significantly higher compared to reported values, was observed under the compressive pressure of 1723.96 kPa, indicating an improving and excellent high-power capability of the supercapacitors under the pressure. The experimental results and the thorough analysis described in this work not only provide fundamental insight of pressure effects on supercapacitors but also give an important guideline for future design of next generation flexible/stretchable supercapacitors for industrial and consumer applications.
Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play
NASA Astrophysics Data System (ADS)
Schultz, R.; Atkinson, G.; Eaton, D. W.; Gu, Y. J.; Kao, H.
2018-01-01
A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (104 to 105 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index–modified frequency-magnitude distribution, providing a framework to forecast induced seismicity.
Geokinetic Effects on Motion Sensitive Instrumentation, Systems and Facilities.
1984-01-15
used to predict the responses for actual hammer-blows. Tiltmeter data from truck runs were frequency scaled to enable comparison to a common vehicle...to pressure loads traveling near the speed of sound in air was established. The RRV station was again occupied in June 1981 and tiltmeters and
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Johnson, R. L.
1984-01-01
Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.
Clicker Evolution: Seeking Intelligent Design
ERIC Educational Resources Information Center
Barber, Maryfran; Njus, David
2007-01-01
Two years after the first low-cost radio-frequency audience response system using clickers was introduced for college classrooms, at least six different systems are on the market. Their features and user-friendliness are evolving rapidly, driven by competition and improving technology. The proliferation of different systems is putting pressure on…
A method for computing ion energy distributions for multifrequency capacitive discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.
2007-03-01
The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.
Feeney, M. Patrick; Keefe, Douglas H.; Hunter, Lisa L.; Fitzpatrick, Denis F.; Garinis, Angela C.; Putterman, Daniel B.; McMillan, Garnett P.
2016-01-01
Objectives Wideband acoustic immittance (WAI) measures such as pressure reflectance, parameterized by absorbance and group delay, equivalent admittance at the tympanic membrane (TM), and acoustic stapedius reflex threshold (ASRT) describe middle-ear function across a wide frequency range, compared to traditional tests employing a single frequency. The objective of this study was to obtain normative data using these tests for a group of normal hearing adults and investigate test-retest reliability using a longitudinal design. Design A longitudinal prospective design was used to obtain normative test and retest data on clinical and WAI measures. Subjects were 13 males and 20 females (mean age = 25 y). Inclusion criteria included normal audiometry and clinical immittance. Subjects were tested on two separate visits approximately one month apart. Reflectance and equivalent admittance at the TM were measured from 0.25 to 8.0 kHz under three conditions: at ambient pressure in the ear canal and with pressure sweeps from positive to negative pressure (downswept) and negative to positive pressure (upswept). Equivalent admittance at the TM was calculated using admittance measurements at the probe tip which were adjusted using a model of sound transmission in the ear canal and acoustic estimates of ear-canal area and length. Wideband ASRTs were measured at tympanometric peak pressure (TPP) derived from the average TPP of downswept and upswept tympanograms. Descriptive statistics were obtained for all WAI responses, and wideband and clinical ASRTs were compared. Results Mean absorbance at ambient pressure and TPP demonstrated a broad band-pass pattern typical of previous studies. Test-retest differences were lower for absorbance at TPP for the downswept method compared to ambient pressure at frequencies between 1.0 and 1.26 kHz. Mean tympanometric peak-to-tail differences for absorbance were greatest around 1.0 to 2.0 kHz and similar for positive and negative tails. Mean group delay at ambient pressure and at TPP were greatest between 0.32 and 0.6 kHz at 200 to 300 μs, reduced at frequencies between 0.8 and 1.5 kHz, and increased above 1.5 kHz to around 150 μs. Mean equivalent admittance at the TM had a lower level for the ambient method than at TPP for both sweep directions below 1.2 kHz, but the difference between methods was only statistically significant for the comparison between the ambient method and TPP for the upswept tympanogram. Mean equivalent admittance phase was positive at all frequencies. Test-retest reliability of the equivalent admittance level ranged from 1 to 3 dB at frequencies below 1.0 kHz, but increased to 8 to 9 dB at higher frequencies. The mean wideband ASRT for an ipsilateral broadband noise activator was 12 dB lower than the clinical ASRT, but had poorer reliability. Conclusions Normative data for the WAI test battery revealed minor differences for results at ambient pressure compared to tympanometric methods at TPP for reflectance, group delay, and equivalent admittance level at the TM for subjects with middle-ear pressure within ±100 daPa. Test-retest reliability was better for absorbance at TPP for the downswept tympanogram compared to ambient pressure at frequencies around 1.0 kHz. Large peak-to-tail differences in absorbance combined with good reliability at frequencies between about 0.7 and 3.0 kHz suggest that this may be a sensitive frequency range for interpreting absorbance at TPP. The mean wideband ipsilateral ASRT was lower than the clinical ASRT, consistent with previous studies. Results are promising for the use of a wideband test battery to evaluate middle-ear function. PMID:28045835
Rogers, D W; Baker, R H; Chapman, T; Denniff, M; Pomiankowski, A; Fowler, K
2005-05-01
Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.
Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.
2014-01-01
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183
Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A
2014-04-01
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.
NASA Astrophysics Data System (ADS)
Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.
2017-06-01
An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.
Human middle-ear model with compound eardrum and airway branching in mastoid air cells
Keefe, Douglas H.
2015-01-01
An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25–13 kHz), equivalent input impedance at the eardrum (0.25–11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1–11 kHz), and reverse middle-ear impedance (0.25–8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold. PMID:25994701
Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
Keefe, Douglas H
2015-05-01
An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25-13 kHz), equivalent input impedance at the eardrum (0.25-11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1-11 kHz), and reverse middle-ear impedance (0.25-8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold.
Micromechanical Resonator Driven by Radiation Pressure Force.
Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj
2017-11-22
Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.
Improving the sensitivity of a torsion pendulum by using an optical spring method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Qinglan; Yeh Hsienchi; Zhou Zebing
We present a scheme aiming at improving the sensitivity of a torsion pendulum by means of radiation-pressure-induced optical spring. Two partial-reflective mirrors are installed on the opposite sides of a torsion pendulum, and one high-reflective mirror is mounted at the end of the torsion beam so that two identical Fabry-Perot cavities can be formed and aligned in series. Due to the antisymmetric radiation pressures acting on the opposite sides of the torsion beam, a negative restoring coefficient can be generated within a certain dynamic range, such that both the resultant torsional rigidity and the resonant frequency of the torsion pendulummore » are reduced, and the minimum detectable response torque in high-frequency region can be reduced accordingly.« less
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Doyley, Marvin M.
2013-03-01
Nonlinear (subharmonic/harmonic) imaging with ultrasound contrast agents (UCA) could characterize the vasa vasorum, which could help assess the risk associated with atherosclerosis. However, the sensitivity and specificity of high-frequency nonlinear imaging must be improved to enable its clinical translation. The current excitation scheme employs sine-bursts — a strategy that requires high-peak pressures to produce strong nonlinear response from UCA. In this paper, chirp-coded excitation was evaluated to assess its ability to enhance the subharmonic and harmonic response of UCA. Acoustic measurements were conducted with a pair of single-element transducers at 10-MHz transmit frequencies to evaluate the subharmonic and harmonic response of Targestar-P® (Targeson Inc., San Diego, CA, USA), a commercially available phospholipid-encapsulated contrast agent. The results of this study demonstrated a 2 - 3 fold reduction in the subharmonic threshold, and a 4 - 14 dB increase in nonlinear signal-to-noise ratio, with chirp-coded excitation. Therefore, chirp-coded excitation could be well suited for improving the imaging performance of high-frequency harmonic and subharmonic imaging.
Frequency response of synthetic vocal fold models with linear and nonlinear material properties.
Shaw, Stephanie M; Thomson, Scott L; Dromey, Christopher; Smith, Simeon
2012-10-01
The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F0) during anterior-posterior stretching. Three materially linear and 3 materially nonlinear models were created and stretched up to 10 mm in 1-mm increments. Phonation onset pressure (Pon) and F0 at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1-mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Nonlinear synthetic models appear to more accurately represent the human vocal folds than do linear models, especially with respect to F0 response.
Near-field spectroscopic investigation of dual-band heavy fermion metamaterials.
Gilbert Corder, Stephanie N; Chen, Xinzhong; Zhang, Shaoqing; Hu, Fengrui; Zhang, Jiawei; Luan, Yilong; Logan, Jack A; Ciavatti, Thomas; Bechtel, Hans A; Martin, Michael C; Aronson, Meigan; Suzuki, Hiroyuki S; Kimura, Shin-Ichi; Iizuka, Takuya; Fei, Zhe; Imura, Keiichiro; Sato, Noriaki K; Tao, Tiger H; Liu, Mengkun
2017-12-22
Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with <50 nm spatial resolution. The optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert Corder, Stephanie N.; Chen, Xinzhong; Zhang, Shaoqing
Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with < 50 nm spatial resolution. Themore » optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.« less
Near-field spectroscopic investigation of dual-band heavy fermion metamaterials
Gilbert Corder, Stephanie N.; Chen, Xinzhong; Zhang, Shaoqing; ...
2017-12-22
Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with < 50 nm spatial resolution. Themore » optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.« less
Daschewski, M; Kreutzbruck, M; Prager, J
2015-12-01
In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
Reducing the pressure drag of a D-shaped bluff body using linear feedback control
NASA Astrophysics Data System (ADS)
Dalla Longa, L.; Morgans, A. S.; Dahan, J. A.
2017-12-01
The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input-output model identification, meaning that it could be applied experimentally.
Effect of water immersion on cardiopulmonary physiology at high gravity (+Gz)
NASA Technical Reports Server (NTRS)
Arieli, R.; Boutellier, U.; Farhi, L. E.
1986-01-01
The cardiopulmonary responses of eight male subject between 21-31 years exposed to 1, 2, and 3 Gz during immersion at 35 + or - 0.5 C to heart level and during control dry rides are studied. Ventilation, O2 consumption, the end-tidal pressure of CO2, heart frequency, cardiac output, functional residual capacity, and the arterial pressure of CO2 were measured. It is observed that as Gz increases ventilation, heart frequency, and O2 consumption increase, and the end-tidal and arterial pressures of CO2 decrease during dry rides, but are not altered during immersion. It is detected that the functional residual capacity is lower during immersion and decreases in both the dry and immersed state as Gz increases, and cardiac output decreases as Gz increases in dry rides. It is noted that changes produced by acceleration in a Gz direction are due to the effect on the systemic circulation rather than to the effect on the lungs.
Two-phase simulations of the full load surge in Francis turbines
NASA Astrophysics Data System (ADS)
Wack, J.; Riedelbauch, S.
2016-11-01
At off-design conditions, Francis turbines experience cavitation which may reduce the power output and can cause severe damage in the machine. Certain conditions can cause self-excited oscillations of the vortex rope in the draft tube at full load operating point. For the presented work, two-phase simulations are carried out at model scale on a domain ranging from the inlet of the spiral case to the outlet of the draft tube. At different locations, wall pressure measurements are available and compared to the simulation results. Furthermore, the dynamics of the cavity volume in the draft tube cone and at the trailing edge of the runner blades are investigated by comparing with high speed visualization. To account for the selfexcited behaviour, proper boundary conditions need to be set. In this work, the focus lies on the treatment of the boundary condition at the inlet. In the first step, the dynamic behaviour of the cavity regions is investigated using a constant mass flow. Thereafter, oscillations of the total pressure and mass flow rate are prescribed using various frequencies and amplitudes. This methodology enables to examine the response of the cavity dynamics due to different excitations. It can be observed that setting a constant mass flow boundary condition is not suitable to account for the self-excited behaviour. Prescribing the total pressure has the result that the frequency of the vapour volume oscillation is the same as the frequency of the excitation signal. Contrary to that, for an excitation with a mass flow boundary condition, the response of the system is not equal to the excitation.
The trade-off characteristics of acoustic and pressure sensors for the NASP
NASA Technical Reports Server (NTRS)
Winkler, Martin; Bush, Chuck
1992-01-01
Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.
Petersen, Laura A; Ramos, Kate Simpson; Pietz, Kenneth; Woodard, LeChauncy D
2017-06-01
Evaluate the effect of a pay-for-performance intervention on the quality of hypertension care provided to black patients and determine whether it produced risk selection. Primary data collected between 2007 and 2009 from Veterans Affairs physicians and their primary care panels. Nested study within a cluster randomized controlled trial of three types of financial incentives and no incentives (control). We compared the proportion of physicians' black patients meeting hypertension performance measures for baseline and final performance periods. We measured risk selection by comparing the proportion of patients who switched providers, patient visit frequency, and panel turnover. Due to limited power, we prespecified in the analysis plan combining the three incentive groups and oversampling black patients. Data collected electronically and by chart review. The proportion of black patients who achieved blood pressure control or received an appropriate response to uncontrolled blood pressure in the final period was 6.3 percent (95 percent confidence interval, 0.8-11.7 percent) greater for physicians who received an incentive than for controls. There was no difference between intervention and controls in the proportion of patients who switched providers, visit frequency, or panel turnover. A pay-for-performance intervention improved blood pressure control or appropriate response to uncontrolled blood pressure in black patients and did not produce risk selection. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
An analytical-numerical method for determining the mechanical response of a condenser microphone
Homentcovschi, Dorel; Miles, Ronald N.
2011-01-01
The paper is based on determining the reaction pressure on the diaphragm of a condenser microphone by integrating numerically the frequency domain Stokes system describing the velocity and the pressure in the air domain beneath the diaphragm. Afterwards, the membrane displacement can be obtained analytically or numerically. The method is general and can be applied to any geometry of the backplate holes, slits, and backchamber. As examples, the method is applied to the Bruel & Kjaer (B&K) 4134 1/2-inch microphone determining the mechanical sensitivity and the mechano-thermal noise for a domain of frequencies and also the displacement field of the membrane for two specified frequencies. These elements compare well with the measured values published in the literature. Also a new design, completely micromachined (including the backvolume) of the B&K micro-electro-mechanical systems (MEM) 1/4-inch measurement microphone is proposed. It is shown that its mechanical performances are very similar to those of the B&K MEMS measurement microphone. PMID:22225026
An analytical-numerical method for determining the mechanical response of a condenser microphone.
Homentcovschi, Dorel; Miles, Ronald N
2011-12-01
The paper is based on determining the reaction pressure on the diaphragm of a condenser microphone by integrating numerically the frequency domain Stokes system describing the velocity and the pressure in the air domain beneath the diaphragm. Afterwards, the membrane displacement can be obtained analytically or numerically. The method is general and can be applied to any geometry of the backplate holes, slits, and backchamber. As examples, the method is applied to the Bruel & Kjaer (B&K) 4134 1/2-inch microphone determining the mechanical sensitivity and the mechano-thermal noise for a domain of frequencies and also the displacement field of the membrane for two specified frequencies. These elements compare well with the measured values published in the literature. Also a new design, completely micromachined (including the backvolume) of the B&K micro-electro-mechanical systems (MEM) 1/4-inch measurement microphone is proposed. It is shown that its mechanical performances are very similar to those of the B&K MEMS measurement microphone. © 2011 Acoustical Society of America
A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.
Guédra, Matthieu; Cornu, Corentin; Inserra, Claude
2017-09-01
The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Iwasaki, K. I.; Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
2000-01-01
Adaptation to head-down-tilt bed rest leads to an apparent abnormality of baroreflex regulation of cardiac period. We hypothesized that this "deconditioning response" could primarily be a result of hypovolemia, rather than a unique adaptation of the autonomic nervous system to bed rest. To test this hypothesis, nine healthy subjects underwent 2 wk of -6 degrees head-down bed rest. One year later, five of these same subjects underwent acute hypovolemia with furosemide to produce the same reductions in plasma volume observed after bed rest. We took advantage of power spectral and transfer function analysis to examine the dynamic relationship between blood pressure (BP) and R-R interval. We found that 1) there were no significant differences between these two interventions with respect to changes in numerous cardiovascular indices, including cardiac filling pressures, arterial pressure, cardiac output, or stroke volume; 2) normalized high-frequency (0.15-0.25 Hz) power of R-R interval variability decreased significantly after both conditions, consistent with similar degrees of vagal withdrawal; 3) transfer function gain (BP to R-R interval), used as an index of arterial-cardiac baroreflex sensitivity, decreased significantly to a similar extent after both conditions in the high-frequency range; the gain also decreased similarly when expressed as BP to heart rate x stroke volume, which provides an index of the ability of the baroreflex to alter BP by modifying systemic flow; and 4) however, the low-frequency (0.05-0.15 Hz) power of systolic BP variability decreased after bed rest (-22%) compared with an increase (+155%) after acute hypovolemia, suggesting a differential response for the regulation of vascular resistance (interaction, P < 0.05). The similarity of changes in the reflex control of the circulation under both conditions is consistent with the hypothesis that reductions in plasma volume may be largely responsible for the observed changes in cardiac baroreflex control after bed rest. However, changes in vasomotor function associated with these two conditions may be different and may suggest a cardiovascular remodeling after bed rest.
Characterization of Low-Frequency Combustion Stability of the Fastrac Engine
NASA Technical Reports Server (NTRS)
Rocker, Marvin; Jones, Preston (Technical Monitor)
2002-01-01
A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.
Human Pulse Wave Measurement by MEMS Electret Condenser Microphone
NASA Astrophysics Data System (ADS)
Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi
A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.
Dynamic stall experiments on the NACA 0012 airfoil
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Carr, L. W.; Mccroskey, W. J.
1978-01-01
The flow over a NACA 0012 airfoil undergoing large oscillations in pitch was experimentally studied at a Reynolds number of and over a range of frequencies and amplitudes. Hot-wire probes and surface-pressure transducers were used to clarify the role of the laminar separation bubble, to delineate the growth and shedding of the stall vortex, and to quantify the resultant aerodynamic loads. In addition to the pressure distributions and normal force and pitching moment data that have often been obtained in previous investigations, estimates of the unsteady drag force during dynamic stall have been derived from the surface pressure measurements. Special characteristics of the pressure response, which are symptomatic of the occurrence and relative severity of moment stall, have also been examined.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen R.; Moes, Timothy R.
1991-01-01
The accuracy of a prototype nonintrusive airdata system derived for high-angle-of-attack measurements was demonstrated for quasi-steady maneuvers as great as 55 degrees during phase one of the F-18 high alpha research vehicle flight test program. This system consists of a matrix of nine pressure ports arranged in annular rings on the aircraft nose, and estimates the complete airdata set utilizing flow modeling and nonlinear regression. Particular attention is paid to the effects of acoustical distortions within the individual pressure sensors of the HI-FADS pressure matrix. A dynamic model to quantify these effects which describes acoustical distortion is developed and solved in closed form for frequency response.
Gravity waves produced by the total solar eclipse of 1 August 2008
NASA Astrophysics Data System (ADS)
Marty, Julien; Francis, Dalaudier; Damien, Ponceau; Elisabeth, Blanc; Ulziibat, Munkhuu
2010-05-01
Gravity waves are a major component of atmospheric small scale dynamics because of their ability to transport energy and momentum over considerable distances and of their interactions with the mean circulation or other waves. They produce pressure variations which can be detected at the ground by microbarographs. The solar intensity reduction which occurs in the atmosphere during solar eclipses is known to act as a temporary source of large scale gravity waves. Despite decades of research, observational evidence for a characteristic bow-wave response of the atmosphere to eclipse passages remains elusive. A new versatile numerical model (Marty, J. and Dalaudier, F.: Linear spectral numerical model for internal gravity wave propagation. J. Atmos. Sci. (in press)) is presented and applied to the cooling of the atmosphere during a solar eclipse. Calculated solutions appear to be in good agreement with ground pressure fluctuations recorded during the total solar eclipse of 1 August 2008. To the knowledge of the authors, this is the first time that such a result is presented. A three-dimensional linear spectral numerical model is used to propagate internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully-compressible dispersion relation for inertia-gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources allowing to cover a broad range of physical situations. It is applied to the case of solar eclipses, which are known to produce large-scale bow waves on the Earth's surface. The asymptotic response to a Gaussian thermal forcing travelling at constant velocity as well as the transient response to the 4 December 2002 eclipse are presented. They show good agreement with previous numerical simulations. The model is then applied to the case of the 1 August 2008 solar eclipse. Ground pressure variations produced by the response to the solar intensity reduction in both stratosphere and troposphere are calculated. These synthetic signals are then compared to pressure variations recorded by IMS (International Monitoring System) infrasound stations and a temporary network specifically set up in Western Mongolia for this occasion. The pressure fluctuations produced by the 1 August 2008 solar eclipse are in a frequency band highly disturbed by atmospheric tides. Pressure variations produced by atmospheric tides and synoptic disturbances are thus characterized and removed from the signal. A low frequency wave starting just after the passage of the eclipse is finally brought to light on all stations. Its frequency and amplitude are close to the one calculated with our model, which strongly suggest that this signal was produced by the total solar eclipse.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak P.; Gump, Jared C.
2006-07-01
Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.
Amini, Reza; Kaczka, David W.
2013-01-01
To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936
Detection of cavitation vortex in hydraulic turbines using acoustic techniques
NASA Astrophysics Data System (ADS)
Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.
2014-03-01
Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.
Babaei, Arash; Dua, Kulwinder; Naini, Sohrab Rahimi; Lee, Justin; Katib, Omar; Yan, Ke; Hoffmann, Raymond; Shaker, Reza
2012-04-01
Studies of the pressure response of the upper esophageal sphincter (UES) to simulated or spontaneous gastroesophageal reflux have shown conflicting results. These discrepancies could result from uncontrolled influence of variables such as posture, volume, and velocity of distension. We characterized in humans the effects of these variables on UES pressure response to esophageal distension. We studied 12 healthy volunteers (average, 27 ± 5 years old; 6 male) using concurrent esophageal infusion and high-resolution manometry to determine UES, lower esophageal sphincter, and intraesophageal pressure values. Reflux events were simulated by distal esophageal injections of room temperature air and water (5, 10, 20, and 50 mL) in individuals in 3 positions (upright, supine, and semisupine). Frequencies of various UES responses were compared using χ(2) analysis. Multinomial logistical regression analysis was used to identify factors that determine the UES response. UES contraction and relaxation were the overriding responses to esophageal water and air distension, respectively, in a volume-dependent fashion (P < .001). Water-induced UES contraction and air-induced UES relaxation were the predominant responses among individuals in supine and upright positions, respectively (P < .001). The prevalence of their respective predominant response significantly decreased in the opposite position. Proximal esophageal dp/dt significantly and independently differentiated the UES response to infusion with water or air. The UES response to esophageal distension is affected by combined effects of posture (spatial orientation of the esophagus), physical properties, and volume of refluxate, as well as the magnitude and rate of increase in intraesophageal pressure. The UES response to esophageal distension can be predicted using a model that incorporates these factors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando
2009-06-01
In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P < 0.001). Variance, high-frequency oscillations of HR variability (HRV), and baroreflex sensitivity resembled a bell-shaped curve with a minimum at the highest TRIMP(i), whereas low-frequency oscillations of HR and systolic arterial pressure variability and the low frequency (LF)-to-high frequency ratio resembled an U-shaped curve with a maximum at the highest TRIMP(i). The LF component of HRV assessed at the last recording session was significantly and inversely correlated to the time needed to complete the nearing marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.
Bravo, Teresa; Maury, Cédric
2011-01-01
Random wall-pressure fluctuations due to the turbulent boundary layer (TBL) are a feature of the air flow over an aircraft fuselage under cruise conditions, creating undesirable effects such as cabin noise annoyance. In order to test potential solutions to reduce the TBL-induced noise, a cost-efficient alternative to in-flight or wind-tunnel measurements involves the laboratory simulation of the response of aircraft sidewalls to high-speed subsonic TBL excitation. Previously published work has shown that TBL simulation using a near-field array of loudspeakers is only feasible in the low frequency range due to the rapid decay of the spanwise correlation length with frequency. This paper demonstrates through theoretical criteria how the wavenumber filtering capabilities of the radiating panel reduces the number of sources required, thus dramatically enlarging the frequency range over which the response of the TBL-excited panel is accurately reproduced. Experimental synthesis of the panel response to high-speed TBL excitation is found to be feasible over the hydrodynamic coincidence frequency range using a reduced set of near-field loudspeakers driven by optimal signals. Effective methodologies are proposed for an accurate reproduction of the TBL-induced sound power radiated by the panel into a free-field and when coupled to a cavity.
Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel
2009-07-01
Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.
Where hearing starts: the development of the mammalian cochlea.
Basch, Martin L; Brown, Rogers M; Jen, Hsin-I; Groves, Andrew K
2016-02-01
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length. © 2015 Anatomical Society.
Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System
NASA Technical Reports Server (NTRS)
Tischler, Adelbert O.; Bellman, Donald R.
1951-01-01
Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.
Seafloor Pressure Array Studies at Ultra-Low Frequencies
1991-01-01
broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high
Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning
2014-01-01
Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226
McKendry, J E; Milsom, W K; Perry, S F
2001-04-01
Adult Pacific spiny dogfish (Squalus acanthias) were exposed to acute (approximately 20 min) hypercarbia while we monitored arterial blood pressure, systemic vascular resistance (R(S)), cardiac output (V(b)) and frequency (fh) as well as ventilatory amplitude (V(AMP)) and frequency (f(V)). Separate series of experiments were conducted on control, atropinized (100 nmol kg(-1)) and branchially denervated fish to investigate putative CO(2)-chemoreceptive sites on the gills and their link to the autonomic nervous system and cardiorespiratory reflexes.In untreated fish, moderate hypercarbia (water CO(2 )partial pressure; Pw(CO2)=6.4+/-0.1 mmHg) (1 mmHg=0.133 kPa) elicited significant increases in V(AMP) (of approximately 92 %) and f(V) (of approximately 18 %) as well as decreases in fh (of approximately 64 %), V.(b) (approximately 29 %) and arterial blood pressure (of approximately 11 %); R(S) did not change significantly. Denervation of the branchial branches of cranial nerves IX and X to the pseudobranch and each gill arch eliminated all cardiorespiratory responses to hypercarbia. Prior administration of the muscarinic receptor antagonist atropine also abolished the hypercarbia-induced ventilatory responses and virtually eliminated all CO(2)-elicited cardiovascular adjustments. Although the atropinized dogfish displayed a hypercarbic bradycardia, the magnitude of the response was significantly attenuated (36+/-6 % decrease in fh in controls versus 9+/-2 % decrease in atropinized fish; means +/- s.e.m.).Thus, the results of the present study reveal the presence of gill CO(2) chemoreceptors in dogfish that are linked to numerous cardiorespiratory reflexes. In addition, because all cardiorespiratory responses to hypercarbia were abolished or attenuated by atropine, the CO(2) chemoreception process and/or one or more downstream elements probably involve cholinergic (muscarinic) neurotransmission.
Kloepper, L N; Nachtigall, P E; Gisiner, R; Breese, M
2010-11-01
Toothed whales and dolphins possess a hypertrophied auditory system that allows for the production and hearing of ultrasonic signals. Although the fossil record provides information on the evolution of the auditory structures found in extant odontocetes, it cannot provide information on the evolutionary pressures leading to the hypertrophied auditory system. Investigating the effect of hearing loss may provide evidence for the reason for the development of high-frequency hearing in echolocating animals by demonstrating how high-frequency hearing assists in the functioning echolocation system. The discrimination abilities of a false killer whale (Pseudorca crassidens) were measured prior to and after documented high-frequency hearing loss. In 1992, the subject had good hearing and could hear at frequencies up to 100 kHz. In 2008, the subject had lost hearing at frequencies above 40 kHz. First in 1992, and then again in 2008, the subject performed an identical echolocation task, discriminating between machined hollow aluminum cylinder targets of differing wall thickness. Performances were recorded for individual target differences and compared between both experimental years. Performances on individual targets dropped between 1992 and 2008, with a maximum performance reduction of 36.1%. These data indicate that, with a loss in high-frequency hearing, there was a concomitant reduction in echolocation discrimination ability, and suggest that the development of a hypertrophied auditory system capable of hearing at ultrasonic frequencies evolved in response to pressures for fine-scale echolocation discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xing, E-mail: xing.wei@sjtu.edu.cn; Princeton University Observatory, Princeton, NJ 08544
2016-09-01
To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flowmore » has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.« less
Determination of a response function of a thermocouple using a short acoustic pulse.
Tashiro, Yusuke; Biwa, Tetsushi; Yazaki, Taichi
2007-04-01
This paper reports on an experimental technique to determine a response function of a thermocouple using a short acoustic pulse wave. A pulse of 10 ms is generated in a tube filled with 1 bar helium gas. The temperature is measured using the thermocouple. The reference temperature is deduced from the measured pressure on the basis of a laminar oscillating flow theory. The response function of the thermocouple is obtained as a function of frequency below 50 Hz through a comparison between the measured and reference temperatures.
NASA Astrophysics Data System (ADS)
Espinal, Daniel
The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)
1992-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)
1993-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.
Annoyance due to simulated blade-slap noise
NASA Technical Reports Server (NTRS)
Powell, C. A.
1978-01-01
The effects of several characteristics of blade slap noise on annoyance response were studied. These characteristics or parameters were the sound pressure level of the continuous noise used to simulate helicopter broadband noise, the ratio of impulse peak to broadband noise or crest factor, the number of pressure excursions comprising an impulse event, the rise and fall time of the individual impulses, and the repetition frequency of the impulses. Analyses were conducted to determine the correlation between subjective response and various physical measures for the range of parameters studied. A small but significant improvement in the predictive ability of PNL was provided by an A-weighted crest factor correlation. No significant improvement in predictive ability was provided by a rate correction.
Effect of acoustic resonance phenomenon on fluid flow with light dust
NASA Astrophysics Data System (ADS)
Hamakawa, Hiromitsu; Arshad, Azim B. M.; Ohta, Mitsuo
2011-10-01
In the present paper, the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena. The acoustic resonance was excited by using a controlled speaker at the middle of a test duct. We measured the sound pressure level, frequency response characteristics, acoustic damping ratio, mode shape, and lightweight materials response to acoustic resonance excited by a speaker. As a result, the acoustic damping ratio decreased as the mode number of acoustic resonance increased. The tissue strips and the lightweight materials were collected at the node of acoustic pressure when the acoustic resonance was excited. It was made clear that it is possible to control lightweight materials using acoustic resonance excited by a speaker.
Experimental investigation of compliant wall surface deformation in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Zhang, Cao; Wang, Jin; Katz, Joseph
2016-11-01
The dynamic response of a compliant wall under a turbulent channel flow is investigated by simultaneously measuring the time-resolved, 3D flow field (using tomographic PIV) and the 2D surface deformation (using interferometry). The pressure distributions are calculated by spatially integrating the material acceleration field. The Reynolds number is Reτ = 2300, and the centerline velocity (U0) is 15% of the material shear speed. The wavenumber-frequency spectra of the wall deformation contain a non-advected low-frequency component and advected modes, some traveling downstream at U0 and others at 0.72U0. Trends in the wall dynamics are elucidated by correlating the deformation with flow variables. The spatial pressure-deformation correlations peak at y/ h 0.12 (h is half channel height), the elevation of Reynolds shear stress maximum in the log-layer. Streamwise lagging of the deformation behind the pressure is caused in part by phase-lag of the pressure with decreasing distance from the wall, and in part by material damping. Positive deformations (bumps) are preferentially associated with ejections, which involve spanwise vortices located downstream and quasi-streamwise vortices with spanwise offset, consistent with hairpin-like structures. The negative deformations (dents) are preferentially associated with pressure maxima at the transition between an upstream sweep to a downstream ejection. Sponsored by ONR.
Weddell, Thomas D.; Yarin, Yury M.; Drexl, Markus; Russell, Ian J.; Elliott, Stephen J.; Lukashkin, Andrei N.
2014-01-01
The round window (RW) membrane provides pressure relief when the cochlea is excited by sound. Here, we report measurements of cochlear function from guinea pigs when the cochlea was stimulated at acoustic frequencies by movements of a miniature magnet which partially occluded the RW. Maximum cochlear sensitivity, corresponding to subnanometre magnet displacements at neural thresholds, was observed for frequencies around 20 kHz, which is similar to that for acoustic stimulation. Neural response latencies to acoustic and RW stimulation were similar and taken to indicate that both means of stimulation resulted in the generation of conventional travelling waves along the cochlear partition. It was concluded that the relatively high impedance of the ossicles, as seen from the cochlea, enabled the region of the RW not occluded by the magnet, to act as a pressure shunt during RW stimulation. We propose that travelling waves, similar to those owing to acoustic far-field pressure changes, are driven by a jet-like, near-field component of a complex pressure field, which is generated by the magnetically vibrated RW. Outcomes of research described here are theoretical and practical design principles for the development of new types of hearing aids, which use near-field, RW excitation of the cochlea. PMID:24501274
Water hammer reduces fouling during natural water ultrafiltration.
Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M
2012-03-15
Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shekhar, Himanshu; Doyley, Marvin M.
2013-01-01
The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P®) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI. PMID:23654417
Shekhar, Himanshu; Doyley, Marvin M
2013-05-01
The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P(®)) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI.
Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J
2003-01-01
Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.
Use of piezoelectric foil for flow diagnostics
NASA Technical Reports Server (NTRS)
Carraway, Debra L.; Bertelrud, Arild
1989-01-01
A laboratory investigation was conducted to characterize two piezoelectric-film sensor configurations, a rigidly mounted sensor and a sensor mounted over an air cavity. The sensors are evaluated for sensitivity and frequency response, and methods to optimize data are presented. The cavity-mounted sensor exhibited a superior frequency response and was more sensitive to normal pressure fluctuations and less sensitive to vibrations through the structure. Both configurations were sensitive to large-scale structural vibrations. Flight-test data are shown for cavity-mounted sensors, illustrating practical aspects to consider when designing sensors for application in such harsh environments. The relation of the data to skin friction and maximum shear stress, transition detection, and turbulent viscous layers is derived through analysis of the flight data.
Examples Manual for Program MAVART
1990-08-01
Capacitance vs. Frequency 36 PROBLEM 9 37 5.3.1 Deformation at 375 Hz 38 5.3.2 Tangential Stress Contours 38 5.3.3 Admittance Components vs Frequency 39...5.3.4 Transmitting Voltage Response 39 5.3.5 Directivity at 375 Hz 40 5.3.6 Near-Field Pressure Contours 40 SERIES 3: TRHIINAR BENDER DISK 41 6.0.1 Cross...be used in the resonance search [1.1a]. If NSEL is zero, the default node used is the first in the node list. The output data indicate that 375 Hz is
Upstream ionization instability associated with a current-free double layer.
Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W
2006-08-18
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
FIR signature verification system characterizing dynamics of handwriting features
NASA Astrophysics Data System (ADS)
Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu
2013-12-01
This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.
Analysis of the transfer function for layered piezoelectric ultrasonic sensors
NASA Astrophysics Data System (ADS)
Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.
2017-06-01
We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.
Simmons, Andrea Megela; Flores, Victoria
2012-04-01
In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole's dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40-200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole's vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient "deaf period" of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories.
Flores, Victoria
2012-01-01
In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole’s dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40–200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole’s vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient “deaf period” of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories. PMID:22198742
Photoacoustic Studies on Iodine.
NASA Astrophysics Data System (ADS)
Bhan, Avtar N.
A photoacoustic cavity was constructed which employs a temperature-controlled cylindrical cavity with optical windows at either end. It was operated in the lowest longitudinal mode using a small electret microphone for detecting the acoustic signal and a photomultiplier tube for detecting the optical signal. Molecular Iodine was used as the specimen gas and argon as the buffer gas. The photoacoustic characteristics of the system were studied. Iodine molecules, excited periodically by intensity modulated optical radiation (xenon discharge), de-excited by non-radiative processes which result in pressure waves having the same modulation frequency as that of the light. These pressure waves are detected as acoustical pulses by the microphone situated in the wall of the cavity. Studies were conducted for different pressures of buffer gas (100 torr to 800 torr) at several different Iodine pressures in the range between 0.3 and 1 torr. The longitudinal mode of excitation provides an opportunity to compare the response of the cavity under acoustical excitation with that under optical excitation. The relevant parameters in the investigation were: Q, the quality factor of the cavity; the resonant frequency, partial pressures of argon and Iodine; temperature; and the signal amplitude. It was found that the Q of the cavity was well -behaved following the theoretically predicted dependence on SQRT.(P and on T('- 3/4). The absorption coefficient of Iodine determined photometrically, increased with increasing argon pressure up to a limiting value of pressure that depended on Iodine concentration. The photoacoustic signal showed a similar increase with increasing argon pressure. This signal reached a limiting value at a pressure which corresponded closely with that found optically. This is taken to indicate that the extinction coefficient of Iodine in argon, at the level of dilution used in these studies, depends on the argon pressure. A method was developed for measuring the concentration of Iodine at low levels through application of the shift in the frequency of the longitudinal mode resonance of the cavity. Also, resonance technique was employed for determining the velocity of sound in argon. A value of 307.7 M/sec was established as compared with the value of 319 M/sec as reported in various standard handbooks.
Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai
2015-09-01
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. Copyright © 2015 Elsevier B.V. All rights reserved.
Water under inner pressure: a dielectric spectroscopy study.
Angulo-Sherman, Abril; Mercado-Uribe, Hilda
2014-02-01
Water is the most studied substance on Earth. However, it is not completely understood why its structural and dynamical properties give rise to some anomalous behaviors. Some of them emerge when experiments at low temperatures and/or high pressures are performed. Here we report dielectric measurements on cold water under macroscopically constrained conditions, i.e., water in a large container at constant volume that cannot freeze below the melting point. The inner pressure in these conditions shifts the α relaxation peak to similar frequencies as seen in ice Ih. At 267 K we observe a peculiar response possibly due to the Grotthuss mechanism. At 251 K (the triple point) ice III forms.
Basic principles for measurement of intramuscular pressure
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.
1995-01-01
We review historical and methodological approaches to measurements of intramuscular pressure (IMP) in humans. These techniques provide valuable measures of muscle tone and activity as well as diagnostic criteria for evaluation of exertional compartment syndrome. Although the wick and catheter techniques provide accurate measurements of IMP at rest, their value for exercise studies and diagnosis of exertional compartment syndrome is limited because of low frequency response and hydrostatic (static and inertial) pressure artifacts. Presently, most information on diagnosis of exertional compartment syndromes during dynamic exercise is available using the Myopress catheter. However, future research and clinical diagnosis using IMP can be optimized by the use of a miniature transducer-tipped catheter such as the Millar Mikro-tip.
Pulse wave velocity in patients with severe head injury a pilot study.
Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson
2010-01-01
The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.
NASA Astrophysics Data System (ADS)
Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping
2018-03-01
In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.
Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Igoe, William B.
1996-01-01
Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1983-01-01
The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.
System identification of perilymphatic fistula in an animal model
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Casselbrant, M. L.
1992-01-01
An acute animal model has been developed in the chinchilla for the study of perilymphatic fistulas. Micropunctures were made in three sites to simulate bony, round window, and oval window fistulas. The eye movements in response to pressure applied to the external auditory canal were recorded after micropuncture induction and in preoperative controls. The main pressure stimulus was a pseudorandom binary sequence (PRBS) that rapidly changed between plus and minus 200 mm of water. The PRBS stimulus, with its wide frequency bandwidth, produced responses clearly above the preoperative baseline in 78 percent of the runs. The response was better between 0.5 and 3.3 Hz than it was below 0.5 Hz. The direction of horizontal eye movement was toward the side of the fistula with positive pressure applied in 92 percent of the runs. Vertical eye movements were also observed. The ratio of vertical eye displacement to horizontal eye displacement depended upon the site of the micropuncture induction. Thus, such a ratio measurement may be clinically useful in the noninvasive localization of perilymphatic fistulas in humans.
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk
2017-04-01
The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor, suggesting a horizontal propagation of the air pressure waves.
Signal processing in urodynamics: towards high definition urethral pressure profilometry.
Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny
2016-03-22
Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we present the different signal processing steps in HD-UPP and show experimental results from female minipigs. We use a special microtip catheter with high angular pressure resolution and an integrated inclination sensor. Signals from the catheter are filtered and time-correlated artifacts removed. A signal reconstruction algorithm processes pressure data into a detailed pressure image on the urethra's inside. Finally, the pressure distribution on the urethra's outside is calculated through deconvolution. A mathematical model of the urethra is contained in a point-spread-function (PSF) which is identified depending on geometric and material properties of the urethra. We additionally investigate the PSF's frequency response to determine the relevant frequency band for pressure information on the urinary sphincter. Experimental pressure data are spatially located and processed into high resolution pressure images. Artifacts are successfully removed from data without blurring other details. The pressure distribution on the urethra's outside is reconstructed and compared to the one on the inside. Finally, the pressure images are mapped onto the urethral geometry calculated from inclination and position data to provide an integrated image of pressure distribution, anatomical shape, and location. With its advanced sensing capabilities, the novel microtip catheter collects an unprecedented amount of urethral pressure data. Through sequential signal processing steps, physicians are provided with detailed information on the pressure distribution in and around the urethra. Therefore, HD-UPP overcomes many current limitations of conventional UPP and offers the opportunity to evaluate urethral structures, especially the sphincter, in context of the correct anatomical location. This could enable the development of focal therapy approaches in the treatment of SUI.
NASA Astrophysics Data System (ADS)
Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.
2015-08-01
The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations under the effect of external periodic loads caused by an earthquake when the vibration frequency of the reactor plant main equipment and the frequency of elastic waves fall in the frequency band corresponding to the maximal values of envelope response spectra.
LEM Characterization of Synthetic Jet Actuators Driven by Piezoelectric Element: A Review
Chiatto, Matteo; Capuano, Francesco; Coppola, Gennaro; de Luca, Luigi
2017-01-01
In the last decades, Synthetic jet actuators have gained much interest among the flow control techniques due to their short response time, high jet velocity and absence of traditional piping, which matches the requirements of reduced size and low weight. A synthetic jet is generated by the diaphragm oscillation (generally driven by a piezoelectric element) in a relatively small cavity, producing periodic cavity pressure variations associated with cavity volume changes. The pressured air exhausts through an orifice, converting diaphragm electrodynamic energy into jet kinetic energy. This review paper considers the development of various Lumped-Element Models (LEMs) as practical tools to design and manufacture the actuators. LEMs can quickly predict device performances such as the frequency response in terms of diaphragm displacement, cavity pressure and jet velocity, as well as the efficiency of energy conversion of input Joule power into useful kinetic power of air jet. The actuator performance is also analyzed by varying typical geometric parameters such as cavity height and orifice diameter and length, through a suited dimensionless form of the governing equations. A comprehensive and detailed physical modeling aimed to evaluate the device efficiency is introduced, shedding light on the different stages involved in the process. Overall, the influence of the coupling degree of the two oscillators, the diaphragm and the Helmholtz frequency, on the device performance is discussed throughout the paper. PMID:28587141
NASA Technical Reports Server (NTRS)
Eckberg, Dwain L.
2003-01-01
Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.
Caska, Catherine M; Smith, Timothy W; Renshaw, Keith D; Allen, Steven N; Uchino, Bert N; Birmingham, Wendy; Carlisle, McKenzie
2014-11-01
Posttraumatic stress disorder (PTSD) is associated with increased risk of coronary heart disease (CHD) and difficulties in intimate relationships. Greater frequency and severity of couple conflict and greater cardiovascular reactivity to such conflict might contribute to CHD risk in those with PTSD, but affective and physiological responses to couple conflict have not been examined previously in this population. In a preliminary test of this hypothesis, 32 male veterans of the Iraq and Afghanistan Wars with PTSD and their female partners, and 33 control male veterans without PTSD and their female partners completed relationship quality assessments and a conflict discussion task. PTSD diagnosis was confirmed through diagnostic interviews and questionnaires. State anger, state anxiety, and cardiovascular measures (i.e., blood pressure, heart rate) were recorded during baseline and the conflict discussion. Compared with controls, PTSD couples reported greater couple conflict and less warmth, and displayed pronounced increases in anger and greater increases in systolic blood pressure in response to the conflict task (all ps < .05; range η2: .05-.24). Partners in the PTSD group exhibited similar, if not greater, responses as veterans. This was the first investigation to document emotional and cardiovascular responses to couple conflict in veterans with PTSD and their partners. PTSD was associated with greater frequency and severity of couple conflict, and greater anger and cardiovascular reactivity to conflict discussions. Anger and physiological responses to couple discord might contribute to CHD risk in veterans with PTSD, and perhaps their partners, as well. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Kuriki, Shinya; Kobayashi, Yusuke; Kobayashi, Takanari; Tanaka, Keita; Uchikawa, Yoshinori
2013-02-01
The auditory steady-state response (ASSR) is a weak potential or magnetic response elicited by periodic acoustic stimuli with a maximum response at about a 40-Hz periodicity. In most previous studies using amplitude-modulated (AM) tones of stimulus sound, long lasting tones of more than 10 s in length were used. However, characteristics of the ASSR elicited by short AM tones have remained unclear. In this study, we examined magnetoencephalographic (MEG) ASSR using a sequence of sinusoidal AM tones of 0.78 s in length with various tone frequencies of 440-990 Hz in about one octave variation. It was found that the amplitude of the ASSR was invariant with tone frequencies when the level of sound pressure was adjusted along an equal-loudness curve. The amplitude also did not depend on the existence of preceding tone or difference in frequency of the preceding tone. When the sound level of AM tones was changed with tone frequencies in the same range of 440-990 Hz, the amplitude of ASSR varied in a proportional manner to the sound level. These characteristics are favorable for the use of ASSR in studying temporal processing of auditory information in the auditory cortex. The lack of adaptation in the ASSR elicited by a sequence of short tones may be ascribed to the neural activity of widely accepted generator of magnetic ASSR in the primary auditory cortex. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shokralla, Shaddy Samir Zaki
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Semiconductor nanomembrane-based sensors for high frequency pressure measurements
NASA Astrophysics Data System (ADS)
Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing
2017-04-01
This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.
NASA Astrophysics Data System (ADS)
Sakurai, T.; Okubo, S.; Ohta, H.
2017-07-01
We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.
Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
NASA Astrophysics Data System (ADS)
Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.
2018-02-01
We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.
Ospina, D A; Mora-Ramos, M E; Duque, C A
2017-02-01
The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.
A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors
NASA Technical Reports Server (NTRS)
Jenkins, Rhonald M.
1994-01-01
Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor.
Sexual dimorphism in the osmopressor response following water ingestion
Mendonca, Goncalo V.; Teodósio, Carolina; Lucena, Rui; Pereira, Fernando D.
2016-01-01
There is conflicting evidence as to whether water drinking elicits a pressor response in healthy young adults. The inclusion of a variable number of women may have contributed to the discrepancies found in past research. Thus, we aimed at exploring whether the osmopressor response follows a sexually dimorphic pattern. In a randomized fashion, 31 healthy adults (16 men; 15 women, aged 18–40 years) ingested 50 and 500 ml of water before completing a resting protocol on two separate days. Arterial blood pressure, heart rate and spectral heart rate variability were measured in the seated position at pre- and post-25 min of water ingestion. Women responded to 500 ml of water with a greater proportion of change in diastolic and mean arterial pressure (MAP) (P<0.05). Conversely, the percent change in systolic blood pressure (SBP) and heart rate was not different between sexes after 500 ml of water. Overall, women demonstrated lower blood pressure, but higher resting heart rate compared with men (P<0.05). In contrast, heart rate variability was similar between sexes before and after ingesting either volume of water. There was a bradycardic effect of water and, irrespectively of sex; this was accompanied by increased high frequency power (HF) (P<0.05). We conclude that women display a greater magnitude of pressor response than men post-water ingestion. Accordingly, we provide direct evidence of sexual dimorphism in the haemodynamic response to water intake in young healthy adults. PMID:27129286
Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond
NASA Astrophysics Data System (ADS)
Kunz, M. W.; Abel, I. G.; Klein, K. G.
2018-04-01
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.
Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao
2015-05-01
Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.
2015-01-01
OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469
Digital pressure transducer for use at high temperatures
Karplus, Henry H. B.
1981-01-01
A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.
Digital pressure transducer for use at high temperatures
Karplus, H.H.B.
A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.
Effects of Skin Thickness on Cochlear Input Signal using Transcutaneous Bone Conduction Implants
Mattingly, Jameson K.; Greene, Nathaniel T.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.
2015-01-01
Hypothesis Intracochlear sound pressures (PIC) and velocity measurements of the stapes, round window, and promontory (VStap/RW/Prom) will show frequency dependent attenuation using magnet-based, transcutaneous bone-conduction implants (TCBCI) in comparison to direct-connect, skin-penetrating implants (DCBCI). Background TCBCIs have recently been introduced as alternatives to DCBCIs. Clinical studies have demonstrated elevated high-frequency thresholds for TCBCIs as compared to DCBCIs; however, little data exists examining the direct effect of skin thickness on the cochlear input signal using TCBCIs. Methods Using seven cadveric heads, PIC was measured in the scala vestibuli and tympani with fiber-optic pressure sensors concurrently with VStap/RW/Prom via laser Doppler vibrometry. Ipsilateral titanium implant fixtures were placed and connected to either a DCBCI or TCBCI. Soft tissue flaps with varying thicknesses (no flap, 3, 6, and 9 mm) were placed successively between the magnetic plate and sound processor magnet. A bone-conduction transducer coupled to custom software provided pure tone stimuli between 120 to 10240 Hz. Results Stimulation via the DCBCI produced the largest response magnitudes. The TCBCI showed similar PSV/ST and VStap/RW/Prom with no intervening flap, and a frequency-dependent, non-linear reduction of magnitude with increasing flap thickness. Phase shows a comparable dependence on transmission delay as the acoustic baseline, and the slope steepens at higher frequencies as flap thickness increases suggesting a longer group delay. Conclusions Proper soft tissue management is critical to optimize the cochlear input signal. The skin thickness related effects on cochlear response magnitudes should be taken into account when selecting patients for a TCBCI. PMID:26164446
NASA Astrophysics Data System (ADS)
Liu, You; Yuan, Zhi-Guo; Fan, Li-Yun; Tian, Bin-Qi
2010-12-01
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.
Suaste-Gómez, Ernesto; Rodríguez-Roldán, Grissel; Reyes-Cruz, Héctor; Terán-Jiménez, Omar
2016-01-01
An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa) and temperature (2 °C to 90 °C). The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing). More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception. PMID:26959026
Suaste-Gómez, Ernesto; Rodríguez-Roldán, Grissel; Reyes-Cruz, Héctor; Terán-Jiménez, Omar
2016-03-04
An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa) and temperature (2 °C to 90 °C). The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing). More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception.
High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer
NASA Astrophysics Data System (ADS)
Pyo, Dongbum; Ryu, Semin; Kyung, Ki-Uk; Yun, Sungryul; Kwon, Dong-Soo
2018-02-01
We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100-200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.
Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice.
Jackson, Kristy L; Dampney, Bruno W; Moretti, John-Luis; Stevenson, Emily R; Davern, Pamela J; Carrive, Pascal; Head, Geoffrey A
2016-05-01
BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice. © 2016 American Heart Association, Inc.
Development of a multi-body nonlinear model for a seat-occupant system
NASA Astrophysics Data System (ADS)
Azizi, Yousof
A car seat is an important component of today's cars, which directly affects ride comfort experienced by occupants. Currently, the process of ride comfort evaluation is subjective. Alternatively, the ride comfort can be evaluated by a series of objective metrics in the dynamic response of the occupant. From previous studies it is well known that the dynamic behavior of a seat-occupant system is greatly affected by soft nonlinear viscoelastic materials used in the seat cushion. Therefore, in this research, especial attention was given to efficiently modeling the behavior of seat cushion. In the first part of this research, a phenomenological nonlinear viscoelastic foam model was proposed and its ability to capture uniaxial behavior of foam was investigated. The model is based on the assumption that the total stress can be decomposed into the sum of a nonlinear elastic component, modeled by a higher order polynomial of strain, and a nonlinear hereditary type viscoelastic component. System identification procedures were developed to estimate the model parameters using uniaxial cyclic compression data from experiments conducted at different rates on two types of low density polyurethane foams and three types of high density CONFOR foams. The performance of the proposed model was compared to that of other traditional continuum models. For each foam type, it was observed that lower order models are sufficient to describe the uniaxial behavior of the foam compressed at different rates. Although, the estimated model parameters were functions of the input strain rate. Alternatively, higher order comprehensive models, with strain independent parameters, were estimated as well. The estimated comprehensive model predicts foam responses under different compression rates. Also, a methodology was proposed to predict the stress-response of a layered foam system using the estimated models of each foam in the layers. Next, the estimated foam model was incorporated into a single-degree of freedom foam-mass model which is also the simplest model of seat-occupant systems. The steady-state response of the system when it is subjected to harmonic base excitation was studied using the incremental harmonic balance method. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. Experiments are conducted on a single-degree of freedom foam-mass system subjected to harmonic base excitation. Initially, the simulated response predictions were found to deviate from the experimental results. The foam-mass model was then modified to incorporate rate dependency of foam parameters resulting in response predictions that were in good agreement with experimental results. In the second part of this research, the dynamic response of a seat-occupant system was examined through a more realistic planar multi-body seat-occupant model. A constraint Lagrangian formulation was used to derive the governing equations for the seat-occupant model. First, the governing equations were solved numerically to obtain the occupant transient response, the occupant's H-Point location and the interfacial pressure distribution. Variations in the H-Point location and the seat-occupant pressure distribution with changes in the seat-occupant parameters, including the seat geometry and the occupant's characteristics, were studied. The estimated pressure was also investigated experimentally and was found to match with the results obtained using the seat-occupant model. Next, the incremental harmonic balance method was modified and used to obtain the occupant's steady-state response when the seat-occupant system was subjected to harmonic base excitation at different frequencies. The system frequency response and mode shapes at different frequencies were also obtained and compared to the previously measured experimental frequency responses. Finally, variations in the estimated frequency response with changes in the seat-occupant parameters, including the seat geometry and the occupant characteristics, were studied.
Experiments with a pressure-driven Stirling refrigerator with flexible chambers
NASA Astrophysics Data System (ADS)
McFarlane, Patrick; Suire, Jonathan; Sen, Mihir; Semperlotti, Fabio
2014-06-01
We report on the design and experimental testing of a Stirling refrigerator that uses air as the working fluid, and where the conventional piston-cylinder assemblies are replaced by pressure-driven flexible chambers. The two chambers are periodically compressed by pneumatic actuators resulting in airflow through the regenerator and in a net temperature difference between the chambers. An experimental setup is used to investigate the performance of the refrigerator under different operating conditions with particular attention to actuation frequencies, driving pressure differences, and phase angles between the two inputs. The time constant of the temperature difference between the two chambers is determined, and the temperature difference is measured as a function of the system parameters. The results of several tests conducted under different operating conditions show that the refrigerating effect is very robust and allows good performance even for modulated inputs. The frequency response is radically different from that of a traditional motion-driven device. This work suggests that mechanical to thermal energy conversion devices based on this principle can be successfully powered by human motion.
Numerical study on the instabilities in H2-air rotating detonation engines
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping
2018-04-01
Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.
Dynamic response of the cavitating LE-7 LOX pump
NASA Astrophysics Data System (ADS)
Shimura, Takashi; Watanabe, Mitsuo; Ujino, Isao
The dynamic response of the LE-7 engine LOX pump under cavitating conditions was investigated by perturbation tests using cryogenic fluid in order to obtain data for the analysis of the H-II rocket POGO phenomena. Mass flow gain factor, M(sub b), and cavitation compliance, C(sub b), were determined by pressure data using resonant frequency. M(sub b) and C(sub b) show cavity volume change rates due to flow fluctuation and pressure fluctuations, respectively. A large accumulator was installed in the vicinity of the pump inlet in order to eliminate the upstream effects. The test results of M(sub b) agreed well with the values calculated by equations presented in the literature. However, the test results of C(sub b) were quite different from the calculated values.
Model-Based Self-Tuning Multiscale Method for Combustion Control
NASA Technical Reports Server (NTRS)
Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2006-01-01
A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.
Wustmann, Kerstin; Kucera, Jan P; Scheffers, Ingrid; Mohaupt, Markus; Kroon, Abraham A; de Leeuw, Peter W; Schmidli, Jürg; Allemann, Yves; Delacrétaz, Etienne
2009-09-01
In patients with drug-resistant hypertension, chronic electric stimulation of the carotid baroreflex is an investigational therapy for blood pressure reduction. We hypothesized that changes in cardiac autonomic regulation can be demonstrated in response to chronic baroreceptor stimulation, and we analyzed the correlation with blood pressure changes. Twenty-one patients with drug-resistant hypertension were prospectively included in a substudy of the Device Based Therapy in Hypertension Trial. Heart rate variability and heart rate turbulence were analyzed using 24-hour ECG. Recordings were obtained 1 month after device implantation with the stimulator off and after 3 months of chronic electric stimulation (stimulator on). Chronic baroreceptor stimulation decreased office blood pressure from 185+/-31/109+/-24 mm Hg to 154+/-23/95+/-16 mm Hg (P<0.0001/P=0.002). Mean heart rate decreased from 81+/-11 to 76+/-10 beats per minute(-1) (P=0.001). Heart rate variability frequency-domain parameters assessed using fast Fourier transformation (FFT; ratio of low frequency:high frequency: 2.78 versus 2.24 for off versus on; P<0.001) were significantly changed during stimulation of the carotid baroreceptor, and heart rate turbulence onset was significantly decreased (turbulence onset: -0.002 versus -0.015 for off versus on; P=0.004). In conclusion, chronic baroreceptor stimulation causes sustained changes in heart rate variability and heart rate turbulence that are consistent with inhibition of sympathetic activity and increase of parasympathetic activity in patients with drug-resistant systemic hypertension; these changes correlate with blood pressure reduction. Whether the autonomic modulation has favorable cardiovascular effects beyond blood pressure control should be investigated in further studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei
2013-11-15
An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less
Derryberry, Elizabeth P; Gentry, Katherine; Derryberry, Graham E; Phillips, Jennifer N; Danner, Raymond M; Danner, Julie E; Luther, David A
2017-07-01
The soundscape acts as a selective agent on organisms that use acoustic signals to communicate. A number of studies document variation in structure, amplitude, or timing of signal production in correspondence with environmental noise levels thus supporting the hypothesis that organisms are changing their signaling behaviors to avoid masking. The time scale at which organisms respond is of particular interest. Signal structure may evolve across generations through processes such as cultural or genetic transmission. Individuals may also change their behavior during development (ontogenetic change) or in real time (i.e., immediate flexibility). These are not mutually exclusive mechanisms, and all must be investigated to understand how organisms respond to selection pressures from the soundscape. Previous work on white-crowned sparrows ( Zonotrichia leucophrys ) found that males holding territories in louder areas tend to sing higher frequency songs and that both noise levels and song frequency have increased over time (30 years) in urban areas. These previous findings suggest that songs are changing across generations; however, it is not known if this species also exhibits immediate flexibility. Here, we conducted an exploratory, observational study to ask whether males change the minimum frequency of their song in response to immediate changes in noise levels. We also ask whether males sing louder, as increased minimum frequency may be physiologically linked to producing sound at higher amplitudes, in response to immediate changes in environmental noise. We found that territorial males adjust song amplitude but not minimum frequency in response to changes in environmental noise levels. Our results suggest that males do not show immediate flexibility in song minimum frequency, although experimental manipulations are needed to test this hypothesis further. Our work highlights the need to investigate multiple mechanisms of adaptive response to soundscapes.
Pressure broadening and frequency shift of the D 1 and D 2 lines of K in the presence of Ne and Kr
NASA Astrophysics Data System (ADS)
Wang, Xulin; Chen, Yao; Quan, Wei; Chi, Haotian; Fang, Jiancheng
2018-02-01
We present the results of pressure broadening and frequency shift of K D 1 and D 2 lines in presence of 1-4 amg of Neon gas and 1-5 amg of Krypton gas by laser absorption spectroscopy. Both pressure broadening and frequency shift are linearly related to gas density with high accuracy. The asymmetry of the absorption line shape caused by van der Waals potential was first found in the near-line wings of large density Kr in the experiment. We have also investigated the temperature dependence of the pressure broadening and frequency shift in a range of 353-403 K in Neon and 373-417 K in Krypton and compared the results of the pressure broadening and frequency shift with previous values.
Sleight, P; La Rovere, M T; Mortara, A; Pinna, G; Maestri, R; Leuzzi, S; Bianchini, B; Tavazzi, L; Bernardi, L
1995-01-01
1. It is often assumed that the power in the low- (around 0.10 Hz) and high-frequency (around 0.25 Hz) bands obtained by power spectral analysis of cardiovascular variables reflects sympathetic and vagal tone [corrected] respectively. An alternative model attributes the low-frequency band to a resonance in the control system that is produced by the inefficiently slow time constant of the reflex response to beat-to-beat changes in blood pressure effected by the sympathetic (with or without the parasympathetic) arm(s) of the baroreflex (De Boer model). 2. We have applied the De Boer model of circulatory variability to patients with varying baroreflex sensitivity to patients with varying baroreflex sensitivity and one normal subject, and have shown that the main differences in spectral power (for both low and high frequency) between and within subjects are caused by changes in the arterial baroreflex gain, particularly for vagal control of heart rate (R-R interval) and left ventricular stroke output. We have computed the power spectrum at rest and during neck suction (to stimulate carotid baroreceptors). We stimulated the baroreceptors at two frequencies (0.1 and 0.2 Hz), which were both distinct from the controlled respiration rate (0.25 Hz), in both normal subjects and heart failure patients with either sensitive or poor baroreflex control. 3. The data broadly confirm the De Boer model. The low-frequency (0.1 Hz) peak in either R-R or blood pressure variability) was spontaneously generated only if the baroreflex control of the autonomic outflow was relatively intact.(ABSTRACT TRUNCATED AT 250 WORDS)
SRB combustion dynamics analysis computer program (CDA-1)
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A two-dimensional numerical model is developed for the unsteady oscillatory combustion of the solid propellant flame zone. Variations of pressure with low and high frequency responses across the long flame, such as in the double-base propellants, are accommodated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition for the gaseous phase with no condensed phase reaction. Numerical calculations are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The numerical results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.
Multimode four-wave mixing in an unresolved sideband optomechanical system
NASA Astrophysics Data System (ADS)
Li, Zongyang; You, Xiang; Li, Yongmin; Liu, Yong-Chun; Peng, Kunchi
2018-03-01
We have studied multimode four-wave mixing (FWM) in an unresolved sideband cavity optomechanical system. The radiation pressure coupling between the cavity fields and multiple mechanical modes results in the formation of a series of tripod-type energy-level systems, which induce the multimode FWM phenomenon. The FWM mechanism enables remarkable amplification of a weak signal field accompanied by the generation of an FWM field when only a microwatt-level pump field is applied. For proper system parameters, the amplified signal and FWM fields have equal intensity with opposite phases. The gain and frequency response bandwidth of the signal field can be dynamically tuned by varying the pump intensity, optomechanical coupling strength, and additional feedback control. Under certain conditions, the frequency response bandwidth can be very narrow and reaches the level of hertz.
Method and apparatus to characterize ultrasonically reflective contrast agents
NASA Technical Reports Server (NTRS)
Pretlow, Robert A., III (Inventor)
1993-01-01
A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.
Dynamic Cerebral Autoregulation is Preserved During Acute Head-down Tilt
2003-06-27
relationship of mean arterial pressure to mean cerebral blood flow velocity transfer function gain at the high and low frequencies, respectively; TCD-PHASE...HF and TCD-PHASE-LF, phase angle between mean arterial pressure and mean cerebral blood flow veloc- ity at high and low frequencies, respectively...arterial pressure and mean ce- rebral blood flow oscillations decrease from low- to high -frequency ranges. Average phase angles were 68° at low frequencies
Neuronal modelling of baroreflex response to orthostatic stress
NASA Astrophysics Data System (ADS)
Samin, Azfar
The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse-rhythmic activity is regained downstream provided the input phase information in preserved centrally; (3) frequency-dependent synaptic depression, which causes temporal variations in synaptic strength due to changes in input frequency, is a possible mechanism of non-linear dynamic baroreflex gain control. Synaptic depression enables the NTS neuron to encode dBP/dt but to lose information about the steady state firing of the afferents.
NASA Technical Reports Server (NTRS)
Bushnell, P.; Gruber, M.; Parzych, D.
1988-01-01
Unsteady blade surface pressure data for the Large-Scale Advanced Prop-Fan (LAP) blade operation with angular inflow, wake inflow and uniform flow over a range of inflow Mach numbers of 0.02 to 0.70 is provided. The data are presented as Fourier coefficients for the first 35 harmonics of shaft rotational frequency. Also presented is a brief discussion of the unsteady blade response observed at takeoff and cruise conditions with angular and wake inflow.
Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.
Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C
2013-01-01
The skull-brain complex is typically modeled as an integrated structure, similar to a fluid-filled shell. Under dynamic loads, the interaction of the skull and the underlying brain, cerebrospinal fluid, and other tissue produces the pressure and strain histories that are the basis for many theories meant to describe the genesis of traumatic brain injury. In addition, local bone strains are of interest for predicting skull fracture in blunt trauma. However, the role of skull flexure in the intracranial pressure response to blunt trauma is complex. Since the relative time scales for pressure and flexural wave transmission across the skull are not easily separated, it is difficult to separate out the relative roles of the mechanical components in this system. This study uses a finite element model of the head, which is validated for pressure transmission to the brain, to assess the influence of skull table flexural stiffness on pressure in the brain and on strain within the skull. In a Human Head Finite Element Model, the skull component was modified by attaching shell elements to the inner and outer surfaces of the existing solid elements that modeled the skull. The shell elements were given the properties of bone, and the existing solid elements were decreased so that the overall stiffness along the surface of the skull was unchanged, but the skull table bending stiffness increased by a factor of 2.4. Blunt impact loads were applied to the frontal bone centrally, using LS-Dyna. The intracranial pressure predictions and the strain predictions in the skull were compared for models with and without surface shell elements, showing that the pressures in the mid-anterior and mid-posterior of the brain were very similar, but the strains in the skull under the loads and adjacent to the loads were decreased 15% with stiffer flexural properties. Pressure equilibration to nearly hydrostatic distributions occurred, indicating that the important frequency components for typical impact loading are lower than frequencies based on pressure wave propagation across the skull. This indicates that skull flexure has a local effect on intracranial pressures but that the integrated effect of a dome-like structure under load is a significant part of load transfer in the skull in blunt trauma.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
Graphene-based ultrasonic detector for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong
2018-03-01
Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.
Norris, Anne E.; Pettigrew, Jonathan; Miller-Day, Michelle; Hecht, Michael L.; Hutchison, Janet; Campoe, Kristi
2015-01-01
A content analysis of early adolescent (M=12.02 years) Latino girls’ (n=44) responses to open-ended questions imbedded in an electronic survey was conducted to explore strategies girls may use to resist peer pressure with respect to sexual behavior. Analysis yielded 341 codable response units, 74% of which were consistent with the REAL typology (i.e., refuse, explain, avoid, and leave) previously identified in adolescent substance use research. However, strategies reflecting a lack of resistance (11%) and inconsistency with communication competence (e.g., aggression, involving authorities) were also noted (15%). Frequency of particular strategies varied according to offer type, suggesting a variety of strategies may be needed to resist the peer pressure that puts early adolescent girls at risk for engaging in sexual behavior. Findings argue for universality of the REAL typology, building communication competence skills for conflict resolution in dating situations, and including peer resistance strategies in adolescent pregnancy prevention programs. PMID:26146434
Respiratory modulation of human autonomic function: long‐term neuroplasticity in space
Diedrich, André; Cooke, William H.; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U.O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar
2016-01-01
Key points We studied healthy astronauts before, during and after the Neurolab Space Shuttle mission with controlled breathing and apnoea, to identify autonomic changes that might contribute to postflight orthostatic intolerance.Measurements included the electrocardiogram, finger photoplethysmographic arterial pressure, respiratory carbon dioxide levels, tidal volume and peroneal nerve muscle sympathetic activity.Arterial pressure fell and then rose in space, and drifted back to preflight levels after return to Earth.Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations rose and then fell in space, and descended to preflight levels upon return to Earth.Sympathetic burst frequencies (but not areas) were greater than preflight in space and on landing day, and astronauts’ abilities to modulate both burst areas and frequencies during apnoea were sharply diminished.Spaceflight triggers long‐term neuroplastic changes reflected by reciptocal sympathetic and vagal motoneurone responsiveness to breathing changes. Abstract We studied six healthy astronauts five times, on Earth, in space on the first and 12th or 13th day of the 16 day Neurolab Space Shuttle mission, on landing day, and 5–6 days later. Astronauts followed a fixed protocol comprising controlled and random frequency breathing and apnoea, conceived to perturb their autonomic function and identify changes, if any, provoked by microgravity exposure. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations and volumes, and peroneal nerve muscle sympathetic activity on Earth (in the supine position) and in space. (Sympathetic nerve recordings were made during three sessions: preflight, late mission and landing day.) Arterial pressure changed systematically from preflight levels: pressure fell during early microgravity exposure, rose as microgravity exposure continued, and drifted back to preflight levels after return to Earth. Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations (root mean square of successive normal R‐R intervals; and proportion of successive normal R‐R intervals greater than 50 ms, divided by the total number of normal R‐R intervals) rose significantly during early microgravity exposure, fell as microgravity exposure continued, and descended to preflight levels upon return to Earth. Sympathetic mechanisms also changed. Burst frequencies (but not areas) during fixed frequency breathing were greater than preflight in space and on landing day, but their control during apnoea was sharply altered: astronauts increased their burst frequencies from already high levels, but they could not modulate either burst areas or frequencies appropriately. Space travel provokes long‐lasting sympathetic and vagal neuroplastic changes in healthy humans. PMID:27029027
Cormack, John; Liu, Yanju; Nam, Jong-Hoon; Gracewski, Sheryl M.
2015-01-01
The cochlea is a spiral-shaped, liquid-filled organ in the inner ear that converts sound with high frequency selectivity over a wide pressure range to neurological signals that are eventually interpreted by the brain. The cochlear partition, consisting of the organ of Corti supported below by the basilar membrane and attached above to the tectorial membrane, plays a major role in the frequency analysis. In early fluid-structure interaction models of the cochlea, the mechanics of the cochlear partition were approximated by a series of single-degree-of-freedom systems representing the distributed stiffness and mass of the basilar membrane. Recent experiments suggest that the mechanical properties of the tectorial membrane may also be important for the cochlea frequency response and that separate waves may propagate along the basilar and tectorial membranes. Therefore, a two-dimensional two-compartment finite difference model of the cochlea was developed to investigate the independent coupling of the basilar and tectorial membranes to the surrounding liquid. Responses are presented for models using two- or three-degree-of-freedom stiffness, damping, and mass parameters derived from a physiologically based finite element model of the cochlear partition. Effects of changes in membrane and organ of Corti stiffnesses on the individual membrane responses are investigated. PMID:25786927
Kaczka, David W; Lutchen, Kenneth R
2004-04-01
The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.
Blunted autonomic response in cluster headache patients.
Barloese, Mads; Brinth, Louise; Mehlsen, Jesper; Jennum, Poul; Lundberg, Helena Inez Sofia; Jensen, Rigmor
2015-12-01
Cluster headache (CH) is a disabling headache disorder with chronobiological features. The posterior hypothalamus is involved in CH pathophysiology and is a hub for autonomic control. We studied autonomic response to the head-up tilt table test (HUT) including heart rate variability (HRV) in CH patients and compared results to healthy controls. Twenty-seven episodic and chronic CH patients and an equal number of age-, sex- and BMI-matched controls were included. We analyzed responses to HUT in the time and frequency domain and by non-linear analysis. CH patients have normal cardiovascular responses compared to controls but increased blood pressure. In the frequency analysis CH patients had a smaller change in the normalized low- (LF) (2.89 vs. 13.38, p < 0.05) and high-frequency (HF) (-2.86 vs. -13.38, p < 0.05) components as well as the LF/HF ratio (0.81 vs. 2.62, p < 0.05) in response to tilt. In the Poincaré plot, the change in ratio between long- and short-term variation was lower in patients (SD1/SD2, -0.05 vs. -0.17, p < 0.05). CH patients show decreased autonomic response to HUT compared to healthy controls. This can be interpreted as dysregulation in the posterior hypothalamus and supports a theory of central autonomic mechanisms involvement in CH. © International Headache Society 2015.
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2004-05-01
In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.
On pressure-frequency relations in the excised larynx.
Alipour, Fariborz; Scherer, Ronald C
2007-10-01
The purpose of this study was to find relationships between subglottal pressure (P(s)) and fundamental frequency (F(0)) of phonation in excised larynx models. This included also the relation between F(0) and its rate of change with pressure (dFdP). Canine larynges were prepared and mounted over a tapered tube that supplied pressurized, heated, and humidified air. Glottal adduction was accomplished either by using two-pronged probes to press the arytenoids together or by passing a suture to simulate lateral cricoarytenoid muscle activation. The pressure-frequency relation was obtained through a series of pressure-flow sweep experiments that were conducted for eight excised canine larynges. It was found that, at set adduction and elongation levels, the pressure-frequency relation is nonlinear, and is highly influenced by the adduction and elongation. The results indicated that for the lower phonation mode, the average rate of change of frequency with pressure was 2.9+/-0.7 Hzcm H(2)O, and for the higher mode was 5.3+/-0.5 Hzcm H(2)O for adduction changes and 8.2+/-4.4 Hzcm H(2)O for elongation changes. The results suggest that during speech and singing, the dFdP relationships are taken into account.
Apparatus and method for gas turbine active combustion control system
NASA Technical Reports Server (NTRS)
Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)
2011-01-01
An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.
Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog
Just, Armin; Ehmke, Heimo; Wittmann, Uwe; Kirchheim, Hartmut R
2002-01-01
The influence of angiotensin II (ANGII) on the dynamic characteristics of renal blood flow (RBF) was studied in conscious dogs by testing the response to a step increase in renal artery pressure (RAP) after a 60 s period of pressure reduction (to 50 mmHg) and by calculating the transfer function between physiological fluctuations in RAP and RBF. During the RAP reduction, renal vascular resistance (RVR) decreased and upon rapid restoration of RAP, RVR returned to baseline with a characteristic time course: within the first 10 s, RVR rose rapidly by 40 % of the initial change (first response, myogenic response). A second rise began after 20–30 s and reached baseline after an overshoot at 40 s (second response, tubuloglomerular feedback (TGF)). Between both responses, RVR rose very slowly (plateau). The transfer function had a low gain below 0.01 Hz (high autoregulatory efficiency) and two corner frequencies at 0.026 Hz (TGF) and at 0.12 Hz (myogenic response). Inhibition of angiotensin converting enzyme (ACE) lowered baseline RVR, but not the minimum RVR at the end of the RAP reduction (autoregulation-independent RVR). Both the first and second response were reduced, but the normalised level of the plateau (balance between myogenic response, TGF and possible slower mechanisms) and the transfer gain below 0.01 Hz were not affected. Infusion of ANGII after ramipril raised baseline RVR above the control condition. The first and second response and the transfer gain at both corner frequencies were slightly augmented, but the normalised level of the plateau was not affected. It is concluded that alterations of plasma ANGII within a physiological range do not modulate the relative contribution of the myogenic response to the overall short-term autoregulation of RBF. Consequently, it appears that ANGII augments not only TGF, but also the myogenic response. PMID:11773325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.
1989-01-01
Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude didmore » not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.« less
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2017-01-01
Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.
Dynamics of fluidic devices with applications to rotor pitch links
NASA Astrophysics Data System (ADS)
Scarborough, Lloyd H., III
Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional impedance. At low frequency, the pitch link must have high impedance to pass through the pilot's collective and cyclic commands to control the aircraft. At higher frequencies, however, the pitch-link impedance can be tuned to change the blade pitching response to higher harmonic loads. Active blade control to produce higher harmonic pitch motions has been shown to reduce hub loads and increase rotor efficiency. This work investigates whether fluidic pitch links can passively provide these benefits. An analytical model of a fluidic pitch link is derived and incorporated into a rotor aeroelastic simulation for a rotor similar to that of the UH-60. Eighty-one simulations with varied fluidic pitch link parameters demonstrate that their impedance can be tailored to reduce rotor power and all six hub forces and moments. While no impedance was found that simultaneously reduced all components, the results include cases with reductions in the lateral 4/rev hub force of up to 91% and 4/rev hub pitching moment of up to 67%, and main rotor power of up to 5%.
Reliability Advancement for Electronic Engine Controllers. Volume 1
1980-06-01
natural frequency increases. Hence, the natural frequency is dependent upon pressure in the nonlinear rela- tionship: Pressure = A + Bft + Cft 2 + Dft 3...Hence, the natural frequency is dependent upon pressure in the nonlinear re- I ationship: Pressure = A + Bft + Cft 2 + Dft 3 + Eft 4 where A, B, C, D...BIT STTE TO’, AML ’’E ICONVERTER ICOUNTER BUFFE CPUT IBUS TOAMPLIFIER________IBUS PROGRAM-COKRSE -TT PER:OO INPUTS ENABLE M MR- - L
Bandopadhyay, Aditya; Chakraborty, Suman
2012-05-01
We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media. In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy's law in the presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential. We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.
NASA Astrophysics Data System (ADS)
Sane, Sandeep Bhalchandra
This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.
Distribution of standing-wave errors in real-ear sound-level measurements.
Richmond, Susan A; Kopun, Judy G; Neely, Stephen T; Tan, Hongyang; Gorga, Michael P
2011-05-01
Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.
Acoustic leak-detection system for railroad transportation security
NASA Astrophysics Data System (ADS)
Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.
2007-04-01
Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.
He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng
2014-12-01
To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints. Copyright © 2014 Elsevier B.V. All rights reserved.
Combined Effect of Fluid and Pressure on Middle Ear Function
Dai, Chenkai; Wood, Mark W.; Gan, Rong Z.
2008-01-01
In our previous studies, the effects of effusion and pressure on sound transmission were investigated separately. The aim of this study is to investigate the combined effect of fluid and pressure on middle ear function. An otitis media with effusion model was created by injecting saline solution and air pressure simultaneously into the middle ear of human temporal bones. Tympanic membrane displacement in response to 90 dB SPL sound input was measured by a laser vibrometer and the compliance of the middle ear was measured by a tympanometer. The movement of the tympanic membrane at the umbo was reduced up to 17 dB by the combination of fluid and pressure in the middle ear over the auditory frequency range. The fluid and pressure effects on the umbo movement in the fluid-pressure combination are not additive. The combined effect of fluid and pressure on the umbo movement is different compared with that of only fluid or pressure change in the middle ear. Negative pressure in fluid-pressure combination had more effect on middle ear function than positive pressure. Tympanometry can detect the middle ear pressure of the fluid-pressure combination. This study provides quantitative information for analysis of the combined effect of fluid and pressure on tympanic membrane movement. PMID:18162348
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet
NASA Astrophysics Data System (ADS)
Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio
2018-04-01
Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.
The Efficacy of Low-Level Continuous Positive Airway Pressure for the Treatment of Snoring
Guzman, Michelle A.; Sgambati, Francis P.; Pho, Huy; Arias, Rafael S.; Hawks, Erin M.; Wolfe, Erica M.; Ötvös, Tamás; Rosenberg, Russell; Dakheel, Riad; Schneider, Hartmut; Kirkness, Jason P.; Smith, Philip L.; Schwartz, Alan R.
2017-01-01
Study Objectives: To assess effects of low-level continuous positive airway pressure (CPAP) on snoring in habitual snorers without obstructive sleep apnea (OSA). Methods: A multicenter prospective in-laboratory reversal crossover intervention trial was conducted between September 2013 and August 2014. Habitual snorers were included if they snored (inspiratory sound pressure level ≥ 40 dBA) for ≥ 30% all sleep breaths on a baseline sleep study (Night 1), and if significant OSA and daytime somnolence were absent. Included participants then underwent a CPAP titration study at 2, 4, or 6 cm H2O (Night 2) to examine snoring responses to step-increases in nasal pressure, a treatment night at optimal pressure (Night 3), followed by baseline night (Night 4). At each pressure, snoring intensity was measured on each breath. Snoring frequency was quantified as a percentage of sleep breaths at thresholds of 40, 45, 50, and 55 dBA. Sleep architecture and OSA severity were characterized using standard measurements. Results: On baseline sleep studies, participants demonstrated snoring at ≥ 40 dBA on 53 ± 3% and ≥ 45 dBA on 35 ± 4% of breaths. Snoring frequency decreased progressively as nasal pressure increased from 0 to 4 cm H2O at each threshold, and plateaued thereafter. CPAP decreased snoring frequency by 67% and 85% at 40 and 45 dBA, respectively. Intervention did not alter sleep architecture and sleep apnea decreased minimally. Conclusions: Low-level CPAP below the range required to treat OSA diminished nocturnal snoring, and produced uniform reduction in nightly noise production below the World Health Organization's limit of 45 dBA. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT01949584. Citation: Guzman MA, Sgambati FP, Pho H, Arias RS, Hawks EM, Wolfe EM, Ötvös T, Rosenberg R, Dakheel R, Schneider H, Kirkness JP, Smith PL, Schwartz AR. The efficacy of low-level continuous positive airway pressure for the treatment of snoring. J Clin Sleep Med. 2017;13(5):703–711. PMID:28356182
Riede, Tobias; Tokuda, Isao T.; Farmer, C. G.
2011-01-01
SUMMARY Vocalization is rare among non-avian reptiles, with the exception of the crocodilians, the sister taxon of birds. Crocodilians have a complex vocal repertoire. Their vocal and respiratory system is not well understood but appears to consist of a combination of features that are also found in the extremely vocal avian and mammalian taxa. Anatomical studies suggest that the alligator larynx is able to abduct and adduct the vocal folds, but not to elongate or shorten them, and is therefore lacking a key regulator of frequency, yet alligators can modulate fundamental frequency remarkably well. We investigated the morphological and physiological features of sound production in alligators. Vocal fold length scales isometrically across a wide range of alligator body sizes. The relationship between fundamental frequency and subglottal pressure is significant in some individuals at some isolated points, such as call onset and position of maximum fundamental frequency. The relationship is not consistent over large segments of the call. Fundamental frequency can change faster than expected by pressure changes alone, suggesting an active motor pattern controls frequency and is intrinsic to the larynx. We utilized a two-mass vocal fold model to test whether abduction and adduction could generate this motor pattern. The fine-tuned interplay between subglottal pressure and glottal adduction can achieve frequency modulations much larger than those resulting from subglottal pressure variations alone and of similar magnitude, as observed in alligator calls. We conclude that the alligator larynx represents a sound source with only two control parameters (subglottal pressure and vocal fold adduction) in contrast to the mammalian larynx in which three parameters can be altered to modulate frequency (subglottal pressure, vocal fold adduction and length/tension). PMID:21865521
Tubular fluoropolymer arrays with high piezoelectric response
NASA Astrophysics Data System (ADS)
Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz
2018-01-01
Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.
Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change
NASA Astrophysics Data System (ADS)
Shi, Q.
2017-12-01
Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.
NASA Astrophysics Data System (ADS)
Rojstaczer, Stuart; Riley, Francis S.
1990-08-01
The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.
Rocha, P L; Branco, L G
1998-03-01
We assessed seasonal variations in the effects of temperature on hypoxia-induced alterations in the bullfrog Rana catesbeiana by measuring the heart rate, arterial blood pressure, breathing frequency, metabolic rate, blood gas levels, acid-base status and plasma glucose concentration. Regardless of the season, decreased body temperature was accompanied by a reduction in heart and breathing frequencies. Lower temperatures caused a significant decrease in arterial blood pressure during all four seasons. Hypoxia-induced changes in breathing frequency were proportional to body temperature and were more pronounced during winter, less so during spring and autumn and even smaller during summer. Season had no effect on the relationship between hypoxia and heart rate. At any temperature tested, the rate of oxygen consumption had a tendency to be highest during summer and lowest during winter, but the difference was significant only at 35 degrees C. The PaO2 and pH values showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. Lower temperatures were accompanied by decreased plasma glucose levels, and this effect was greater during summer and smaller during autumn. Hypoxia-induced hyperglycaemia was influenced by temperature and season. During autumn and winter, plasma glucose level remained elevated regardless of temperature, probably to avoid dehydration and/or freezing. In winter, the bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since at low body temperatures the set-points of most physiological responses to hypoxia are reduced, regardless of the season.
Ou, Tianji; Yan, Jiejuan; Xiao, Chuanhai; Shen, Wenshu; Liu, Cailong; Liu, Xizhe; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao
2016-06-02
Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods. The visible light response of MAPbI3 remains robust below 3 GPa while it is suppressed when it becomes amorphous. Pressure-induced electrical transport properties of MAPbI3 including resistance, relaxation frequency, and relative permittivity have been investigated under pressure up to 8.5 GPa by in situ impedance spectroscopy measurements. These results indicate that the discontinuous changes of these physical parameters occur around the structural phase transition pressure. The XRD studies of MAPbI3 under high pressure up to 20.9 GPa show that a phase transformation below 0.7 GPa, could be attributed to the tilting and distortion of PbI6 octahedra. And pressure-induced amorphization is reversible at a low density amorphous state but irreversible at a relatively higher density state. Furthermore, the MAPbI3 nanorods crush into nanopieces around 0.9 GPa which helps us to explain why the mixed phase of tetragonal and orthorhombic was observed at 0.5 GPa. The pressure modulated changes of electrical transport and visible light response properties open up a new approach for exploring CH3NH3PbI3-based photo-electronic applications.
Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts
Griffith, Jacob; Cluff, Kim; Eckerman, Brandon; Aldrich, Jessica; Becker, Ryan; Moore-Jansen, Peer; Patterson, Jeremy
2018-01-01
Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments) were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure. PMID:29596338
NASA Astrophysics Data System (ADS)
Garg, Sanjay
An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.
Yokokawa, Hirohide; Goto, Aya; Sanada, Hironobu; Watanabe, Tsuyoshi; Felder, Robin A; Jose, Pedro A; Yasumura, Seiji
2014-01-01
To determine success rates in controlling target blood pressures longitudinally by measuring several factors, including lifestyle characteristics associated with uncontrolled blood pressures for target treatment goals. This prospective observational cohort study (September 2008-September 2010) collected information on blood pressure control status and healthy lifestyle factors listed in Breslow's seven health practices through medical records and self-administered questionnaires from 884 of the 1264 Japanese hypertensive patients initially registered in the FRESH study. Multivariate analysis adjusted for associated factors was performed to estimate the association between lifestyle change and "uncontrolled blood pressures" at the final follow-up survey. Median age and proportion of men were 73 years and 39.1%, respectively. All survey failure rates were 37.6% among non-elderly patients (<65 years of age) without diabetes mellitus or chronic kidney disease, and 35.0% among patients with these diseases or myocardial infarction. Maintaining a healthy lifestyle was a protective factor against uncontrolled blood pressures in multivariate analysis. Obesity and smoking status were associated with uncontrolled blood pressures, and exercise frequency was borderline significance. The number of participants with healthy responses for these factors remained relatively low during follow up. Our study revealed low rates of controlled blood pressures, especially in non-elderly patients without diabetes mellitus or chronic kidney disease, and patients with these diseases or myocardial infarction. Our data indicate the need to maintain a healthy lifestyle, in particular, ideal body weight and adequate exercise frequency, for better hypertension management according to treatment guidelines. Copyright © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Wavelet filter analysis of local atmospheric pressure effects in the long-period tidal bands
NASA Astrophysics Data System (ADS)
Hu, X.-G.; Liu, L. T.; Ducarme, B.; Hsu, H. T.; Sun, H.-P.
2006-11-01
It is well known that local atmospheric pressure variations obviously affect the observation of short-period Earth tides, such as diurnal tides, semi-diurnal tides and ter-diurnal tides, but local atmospheric pressure effects on the long-period Earth tides have not been studied in detail. This is because the local atmospheric pressure is believed not to be sufficient for an effective pressure correction in long-period tidal bands, and there are no efficient methods to investigate local atmospheric effects in these bands. The usual tidal analysis software package, such as ETERNA, Baytap-G and VAV, cannot provide detailed pressure admittances for long-period tidal bands. We propose a wavelet method to investigate local atmospheric effects on gravity variations in long-period tidal bands. This method constructs efficient orthogonal filter bank with Daubechies wavelets of high vanishing moments. The main advantage of the wavelet filter bank is that it has excellent low frequency response and efficiently suppresses instrumental drift of superconducting gravimeters (SGs) without using any mathematical model. Applying the wavelet method to the 13-year continuous gravity observations from SG T003 in Brussels, Belgium, we filtered 12 long-period tidal groups into eight narrow frequency bands. Wavelet method demonstrates that local atmospheric pressure fluctuations are highly correlated with the noise of SG measurements in the period band 4-40 days with correlation coefficients higher than 0.95 and local atmospheric pressure variations are the main error source for the determination of the tidal parameters in these bands. We show the significant improvement of long-period tidal parameters provided by wavelet method in term of precision.
Miniature piezoresistive solid state integrated pressure sensors
NASA Technical Reports Server (NTRS)
Kahng, S. K.
1980-01-01
The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.
Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure
Sinha, Dipen N.; Wray, William O.
1994-01-01
Apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established.
Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure
Sinha, D.N.; Wray, W.O.
1994-12-27
The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.
Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc
2015-12-01
A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.
Wind-induced structural response of a large telescope
NASA Astrophysics Data System (ADS)
Smith, David R.; Avitabile, Peter; Gwaltney, Geoff; Cho, Myung; Sheehan, Michael
2004-09-01
In May of 2000, the construction progress of the Gemini South 8m telescope at Cerro Pachon in Chile was such that the telescope and dome were installed and able to move, but the primary mirror had not been installed. This provided a unique opportunity to make extensive tests of the structure in its nearly-completed state, including a modal impact test and simultaneous measurements of wind pressure and structural response. The testing was even more comprehensive because the Gemini dome design allows for a wide range of wind flow configurations, from nearly enclosed to almost fully exposed. In these tests, the operating response of 24 surface pressures on the primary mirror cell, 5 wind velocity channels (each with direction vector information), and more than 70 channels of accelerometers on the telescope structure were measured. The data were taken in a variety of wind loading configurations. While previous analysis efforts have focused on the wind velocity and pressure measurement, this paper investigates the dynamic behavior of the telescope structure itself. Specifically, the discussion includes the participation of the modes measured in the modal impact test as a function of wind loading configuration. Data that indicate the most important frequency ranges in the operating response of the telescope are also presented. Finally, the importance of the response of the enclosure on the structural vibration of the telescope structure is discussed.
Intermittent pressure decreases human keratinocyte proliferation in vitro.
Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S
2007-01-01
The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.
Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone
NASA Astrophysics Data System (ADS)
Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji
2017-07-01
Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.
Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.
Shih, Po-Jen; Guo, Yi-Ren
2016-04-01
An acoustic tonometer that measures shifts in resonance frequencies associated with intraocular pressure (IOP) could provide an opportunity for a type of tonometer that can be operated at home or worn by patients. However, there is insufficient theoretical background, especially with respect to the uncertainty in operating frequency ranges and the unknown relationships between IOPs and resonance frequencies. The purpose of this paper is to develop a frequency function for application in an acoustic tonometer. A linear wave theory is used to derive an explicit frequency function, consisting of an IOP and seven other physiological parameters. In addition, impulse response experiments are performed to measure the natural frequencies of porcine eyes to validate the provided function. From a real-time detection perspective, explicitly providing a frequency function can be the best way to set up an acoustic tonometer. The theory shows that the resonance oscillation of the eyeball is mainly dominated by liquid inside the eyeball. The experimental validation demonstrates the good prediction of IOPs and resonance frequencies. The proposed explicit frequency function supports further modal analysis not only of the dynamics of eyeballs, but also of the natural frequencies, for further development of the acoustic tonometer.
Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Fontana, Richard Remo
1988-01-01
This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Kouzoudis, D.
2000-01-01
Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhanasekaran, A.; Kumaraswamy, S.
2018-01-01
Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.
Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.
2017-01-01
Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608
High pressure Raman spectroscopy of H2O-CH3OH mixtures.
Hsieh, Wen-Pin; Chien, Yu-Hsiang
2015-02-23
Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH content in H2O increases the transition pressure where water crystallizes to ice VI, but does not significantly change the pressure where ice VI transforms to ice VII. Furthermore, the stiffening rates of C-H stretching frequencies dω/dP in CH3OH significantly decrease upon the crystallization of water, and the softening rates of the O-H stretching frequencies of ice VII are suppressed over a narrow pressure range, after which the frequencies of these modes shift with pressure in ways similar to pure CH3OH and ice VII, respectively. Such complex pressure evolution of Raman frequencies along with pronounced variations in Raman intensities of CH3OH within the sample, and the hysteresis of the water-ice VI phase transition suggest pressure-induced segregation of low content CH3OH from ice VII. These findings indicate the significant influence of volatiles on the crystallization of sub-surface ocean and thermal evolution within large icy planets and satellites.
Fujiwara, Shigeki; Tachihara, Keiichi; Mori, Satoshi; Ouchi, Kentaro; Yokoe, Chizuko; Imaizumi, Uno; Morimoto, Yoshinari; Miki, Yoichiro; Toyoguchi, Izumi; Yoshida, Kazu-Ichi; Yokoyama, Takeshi
2016-12-01
Blood pressure transducer kits are equipped with two types of Planecta™ ports-the flat-type Planecta™ port (FTP) and the Planecta™ port with a three-way stopcock (PTS). We reported that FTP application decreased the natural frequency of the kits. However, Planecta™ is an invaluable tool as it prevents infection, ensures technical simplicity, and excludes air. Hence, an ideal Planecta™ port that does not decrease the frequency characteristics is required. As a first step in this direction, we aimed to assess the influence of PTSs on the natural frequency of blood transducer kits. A DTXplus transducer kit (DT4812J; Argon Medical Devices, TX, USA) was used along with ≥1 PTSs (JMS, Hiroshima, Japan), and the frequency characteristics were assessed. The natural frequency and damping coefficient of each kit were obtained by using frequency characteristics analysis software, and these parameters were evaluated by plotting them on Gardner's chart. Regardless of whether one or two PTSs were inserted, the natural frequency of the kits only slightly decreased (from 42.5 to 41.1 Hz, when 2 PTSs were used). Thus, the frequency characteristics of the kits with PTSs were adequate for pressure monitoring. The insertion of ≥2 FTPs in pressure transducer kits should be avoided, as they markedly decrease the natural frequency and lead to underdamping. However, the effect of PTS insertion in pressure transducer kits on the frequency characteristics is minimal. Thus, we found that the use of PTS markedly improved the frequency characteristics as compared to the use of FTP.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.
1980-01-01
Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.
An experimental investigation on fluid dynamics of an automotive torque converter
NASA Astrophysics Data System (ADS)
Dong, Yu
The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors mounted on the stator blade surface. Based on the experimental data and analysis, recommendations are proposed for the hydraulic design and the fluid dynamics research of the torque converter.
NASA Astrophysics Data System (ADS)
Larson, John Philip
Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response, nonlinear magnetostrictive behavior, and fluid behavior (including inertia and compliance). This model was validated by experimental study of a magnetostrictive EHA with a reduced volume manifold. The model was subsequently applied to design a compact magnetostrictive EHA for aircraft applications. Testing of the system shows that the output performance increases with frequency up to a peak unloaded flow rate of 100 cm3/s (6.4 cu in/s) at 1200 Hz, which is a 100% to 500% increase over previous state-of-the-art systems. A blocked differential pressure of 12.1 MPa (1750 psi) was measured, resulting in a power capacity of 310 W, more than 100 W higher than previously reported values. The design and modeling approach used to scale up the performance to create a compact aircraft EHA can also be applied to reduce the size and weight of smart material EHAs for lower power level applications.
Optical pressure/density measuring means
Veligdan, James T.
1995-05-09
An apparatus and method for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature.
Optical pressure/density measuring means
Veligdan, J.T.
1995-05-09
An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.
Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico
2014-06-01
Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli
Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.
2016-01-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2016-09-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.
Byrd, Dana L.; Reuther, Erin T.; McNamara, Joseph P. H.; DeLucca, Teri L.; Berg, William K.
2015-01-01
The current study examines similarity or disparity of a frontally mediated physiological response of mental effort among multiple executive functioning tasks between children and adults. Task performance and phasic heart rate variability (HRV) were recorded in children (6 to 10 years old) and adults in an examination of age differences in executive functioning skills during periods of increased demand. Executive load levels were varied by increasing the difficulty levels of three executive functioning tasks: inhibition (IN), working memory (WM), and planning/problem solving (PL). Behavioral performance decreased in all tasks with increased executive demand in both children and adults. Adults’ phasic high frequency HRV was suppressed during the management of increased IN and WM load. Children’s phasic HRV was suppressed during the management of moderate WM load. HRV was not suppressed during either children’s or adults’ increasing load during the PL task. High frequency phasic HRV may be most sensitive to executive function tasks that have a time-response pressure, and simply requiring performance on a self-paced task requiring frontal lobe activation may not be enough to generate HRV responsitivity to increasing demand. PMID:25798113
NASA Technical Reports Server (NTRS)
Bershader, Daniel
1988-01-01
For some time now, NASA has had a program under way to aid in the validation of rotor performance and acoustics codes associated with the UH-60 rotary-wing aircraft; and to correlate results of such studies with those obtained from investigations of other selected aircraft rotor performance. A central feature of these studies concerns the dynamic measurement of surface pressure at various locations up to frequencies of 25 KHz. For this purpose, fast-response gauges of the Kulite type are employed. The latter need to be buried in the rotor; they record surface pressures which are transmitted by a pipette connected to the gauge. The other end of the pipette is cut flush with the surface. In certain locations, the pipette configuration includes a rather sharp right-angle bend. The natural question has arisen in this connection: In what way are the pipettes modifying the signals received at the rotor surface and subsequently transmitted to the sensitive Kulite transducer element. The basic details and results of the program performed and recently completed in the High Pressure Shock Tube Laboratory of the Department of Aeronautics and Astronautics at Stanford University are given.
NASA Astrophysics Data System (ADS)
Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong
A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.
Aeroelastic Response of Swept Aircraft Wings in a Compressible Flow Field
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
The present study addresses the subcritical aeroelastic response of swept wings, in various flight speed regimes, to arbitrary time-dependent external excitations. The methodology based on the concept of indicial functions is carried out in time and frequency domains. As a result of this approach, the proper unsteady aerodynamic loads necessary to study the subcritical aeroelastic response of the open/closed loop aeroelastic systems, and of flutter instability, respectively are obtained. Validation of the aeroelastic model is provided, and applications to subcritical aeroelastic response to blast pressure signatures are illustrated. In this context, an original representation of the aeroelastic response in the phase-space is displayed, and pertinent conclusions on the implications of a number of selected parameters of the system are outlined.
Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse
NASA Astrophysics Data System (ADS)
Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan
2011-11-01
A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.
Stapes Displacement and Intracochlear Pressure in Response to Very High Level, Low Frequency Sounds
Greene, Nathaniel T.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.
2018-01-01
The stapes is held in the oval window by the stapedial annular ligament (SAL), which restricts total peak-to-peak displacement of the stapes. Previous studies have suggested that for moderate (< 130 dB SPL) sound levels intracochlear pressure (PIC), measured at the base of the cochlea far from the basilar membrane, increases directly proportionally with stapes displacement (DStap), thus a current model of impulse noise exposure (the Auditory Hazard Assessment Algorithm for Humans, or AHAAH) predicts that peak PIC will vary linearly with DStap up to some saturation point. However, no direct tests of DStap, or of the relationship with PIC during such motion, have been performed during acoustic stimulation of the human ear. In order to examine the relationship between DStap and PIC to very high level sounds, measurements of DStap and PIC were made in cadaveric human temporal bones. Specimens were prepared by mastoidectomy and extended facial recess to expose the ossicular chain. Measurements of PIC were made in scala vestibuli (PSV) and scala tympani (PST), along with the SPL in the external auditory canal (PEAC), concurrently with laser Doppler vibrometry (LDV) measurements of stapes velocity (VStap). Stimuli were moderate (~100 dB SPL) to very high level (up to ~170 dB SPL), low frequency tones (20–2560 Hz). Both DStap and PSV increased proportionally with sound pressure level in the ear canal up to approximately ~150 dB SPL, above which both DStap and PSV showed a distinct deviation from proportionality with PEAC. Both DStap and PSV approached saturation: DStap at a value exceeding 150 μm, which is substantially higher than has been reported for small mammals, while PSV showed substantial frequency dependence in the saturation point. The relationship between PSV and DStap remained constant, and cochlear input impedance did not vary across the levels tested, consistent with prior measurements at lower sound levels. These results suggest that PSV sound pressure holds constant relationship with DStap, described by the cochlear input impedance, at these, but perhaps not higher, stimulation levels. Additionally, these results indicate that the AHAAH model, which was developed using results from small animals, underestimates the sound pressure levels in the cochlea in response to high level sound stimulation, and must be revised. PMID:28189837
Chen, Chih-Chung; Johnson, Mark I
2009-10-01
Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.
Shibasaki, Koji; Ogawa, Sumito; Yamada, Shizuru; Ouchi, Yasuyoshi; Akishita, Masahiro
2018-04-11
Previous studies have shown the relationship between low blood pressure and high mortality in frail, disabled older adults in long-term care. However, the mechanism of this relationship is still unclear. We hypothesized that autonomic nervous activity decline is involved in the relationship between low blood pressure and high mortality. The present prospective cohort study recruited 61 participants aged ≥75 years. The data from 24-h Holter monitoring and blood pressure recorded by ambulatory blood pressure monitoring were collected. Measured data were divided into three categories: 24-h, daytime and night-time. From power spectral density in the electrocardiogram, low frequency, high frequency and low frequency/high frequency ratio were calculated. The primary end-point was death. High blood pressure was connected to both high daytime low frequency and high frequency (partial correlation coefficients: 0.42, P < 0.05 and 0.35, P < 0.05, respectively). In addition, the low blood pressure group had higher mortality than the high blood pressure group, and disabled older adults in long-term care and those with elevated daytime systolic and diastolic blood pressure had less risk of mortality compared with those without (systolic: hazard ratio 0.89, 95% confidence interval 0.83-0.96, P = 0.003; diastolic: hazard ratio 0.98, 95% confidence interval 0.79-1.00, P = 0.049). The average blood pressures in the high blood pressure groups were approximately 140/80 mmHg and were connected to low mortality. Attenuated autonomic nervous activity might lead to low blood pressure in the daytime and high mortality in disabled older adults in long-term care. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.
Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu
2001-01-01
The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
Smallwood, Craig D; Bullock, Kevin J; Gouldstone, Andrew
2016-08-01
High-frequency airway clearance therapy is a positive pressure secretion clearance modality used in pediatric and adult applications. However, pressure attenuation across different size endotracheal tubes (ETT) has not been adequately described. This study quantifies attenuation in an in vitro model. The MetaNeb® System was used to deliver high-frequency pressure pulses to 3.0, 4.0, 6.0 and 8.0mm ID ETTs connected to a test lung during mechanical ventilation. The experimental setup included a 3D-printed trachea model and imbedded pressure sensors. The pressure attenuation (Patt%) was calculated: Patt%=[(Pproximal-Pdistal)/Pproximal]x100. The effect of pulse frequency on Pdistal and Pproximal was quantified. Patt% was inversely and linearly related to ETT ID and (y=-7.924x+74.36; R(2)=0.9917, P=.0042 for 4.0Hz pulse frequency and y=-7.382+9.445, R(2)=0.9964, P=.0018 for 3.0Hz pulse frequency). Patt% across the 3.0, 4.0, 6.0 and 8.0mm I.D. ETTs was 48.88±10.25%, 40.87±5.22%, 27.97±5.29%, and 9.90±1.9% respectively. Selecting the 4.0Hz frequency mode demonstrated higher Pproximal and Pdistal compared to the 3.0Hz frequency mode (P=.0049 and P=.0065). Observed Pdistal was <30cmH2O for all experiments. In an in vitro model, pressure attenuation was linearly related to the inner diameter of the endotracheal tube; with decreasing attenuation as the ETT size increased. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Channumsin, Sittiporn; Ceriotti, Matteo; Radice, Gianmarco; Watson, Ian
2017-09-01
Multilayer insulation (MLI) is a recently-discovered type of debris originating from delamination of aging spacecraft; it is mostly detected near the geosynchronous orbit (GEO). Observation data indicates that these objects are characterised by high reflectivity, high area-to-mass ratio (HAMR), fast rotation, high sensitivity to perturbations (especially solar radiation pressure) and change of area-to-mass ratio (AMR) over time. As a result, traditional models (e.g. cannonball) are unsuitable to represent and predict this debris' orbital evolution. Previous work by the authors effectively modelled the flexible debris by means of multibody dynamics to improve the prediction accuracy. The orbit evolution with the flexible model resulted significantly different from using the rigid model. This paper aims to present a methodology to determine the dynamic properties of thin membranes with the purpose to validate the deformation characteristics of the flexible model. A high-vacuum chamber (10-4 mbar) to significantly decrease air friction, inside which a thin membrane is hinged at one end but free at the other provides the experimental setup. A free motion test is used to determine the damping characteristics and natural frequency of the thin membrane via logarithmic decrement and frequency response. The membrane can swing freely in the chamber and the motion is tracked by a static, optical camera, and a Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. Then, the effect of solar radiation pressure on the thin membrane is investigated: a high power spotlight (500-2000 W) is used to illuminate the sample and any displacement of the membrane is measured by means of a high-resolution laser sensor. Analytic methods from the natural frequency response and Finite Element Analysis (FEA) including multibody simulations of both experimental setups are used for the validation of the flexible model by comparing the experimental results of amplitude decay, natural frequencies and deformation. The experimental results show good agreement with both analytical results and finite element methods.
Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors
NASA Astrophysics Data System (ADS)
Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre
2018-03-01
NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.
1985-12-31
puretone threshold at ultra-audiometric frequencies (10,000-20,000 Hz; e) Masking Level Differences (MLD) used to assess binaural processing in the auditory...SD in 5 Supine Resting Subjects) I Pre-exposure Mean Exposure Time Control 2.6 Hours 9.8 Hours I Heart Rate 59.8 + 10.7 50.2 + 8.5 63.6* + 14.4 ( beats ...complete absence of ectopic beats by 6 hours post-exposure. 72 FIGURE 26. 1 HEART RATE RESPONSES TO RISING FROM SUPINE TO STANDING POSITION IN SUBJECT (C.H
Pressure effect on phonon frequencies in some transition metals: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kazanc, S.; Ozgen, S.
2005-08-01
It is important to determine the atomic lattice vibrations of metallic materials, under high-pressure conditions, due to its effects on material properties such as thermal, electrical and optical conductions. In this work, we have investigated the changes of acoustic phonon frequencies with hydrostatic pressure for Cu, Ni, Al, Ag and Au transition metals, using molecular dynamics (MD) simulations based on embedded atom method (EAM). For this aim, we have adopted the embedded atom potential proposed by Sutton and Chen. The phonon frequencies have been calculated from the dynamical matrix for [1 0 0], [1 1 0] and [1 1 1] high symmetry directions of the Brillouin zone. The obtained results show that the hydrostatic pressure causes an increment in phonon frequencies, and this rising do not depend linearly on the increasing pressure.
Method and Apparatus for Measuring Surface Air Pressure
NASA Technical Reports Server (NTRS)
Lin, Bing (Inventor); Hu, Yongxiang (Inventor)
2014-01-01
The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.
Burke, S L; Dorward, P K; Korner, P I
1986-09-01
In both anaesthetized and conscious rabbits, perivascular balloon inflations slowly raised or lowered mean arterial pressure (M.A.P.), at 1-2 mmHg/s, from resting to various plateau pressures. Deflations then returned the M.A.P. to resting. 'Steady-state' curves relating M.A.P. to unitary aortic baroreceptor firing, integrated aortic nerve activity and heart rate were derived during the primary and return pressure changes and they formed typical hysteresis loops. In single units, return M.A.P.-frequency curves were shifted in the same direction as the primary pressure changes by an average 0.37 mmHg per mmHg change in M.A.P. Shifts were linearly related to the changes in M.A.P. between resting and plateau levels for all pressure rises and for falls less than 30 mmHg. They were established within 30 s and were quantitatively similar to the rapid resetting of baroreceptor function curves found 15 min-2 h after a change in resting M.A.P. (Dorward, Andresen, Burke, Oliver & Korner, 1982). Unit threshold pressures were shifted within 20 s to the same extent as the over-all curve shift to which they contributed. In the whole aortic nerve, return M.A.P.-integrated activity curves were shifted to same degree as unit function curves in both anaesthetized and conscious rabbits. Simultaneous shifts of return reflex M.A.P.-heart rate curves were also seen in conscious rabbits within 30 s. During M.A.P. falls, receptor and reflex hysteresis was similar, but during M.A.P. rises, reflex shifts were double baroreceptor shifts, suggesting the involvement of other pressure-sensitive receptors. We conclude that hysteresis shifts in baroreceptor function curves, which follow the reversal of slow ramp changes in blood pressure are a form of rapid resetting. They are accompanied by rapid resetting of reflex heart rate responses. We regard this as an important mechanism in blood pressure control which produces relatively high-gain reflex responses, during slow directional pressure changes, over a wider range of absolute pressure levels than would otherwise be possible.
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, John C.
1995-01-01
A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, J.C.
1995-06-27
A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.
Passino, Claudio; Cencetti, Simone; Spadacini, Giammario; Quintana, Robert; Parker, Daryl; Robergs, Robert; Appenzeller, Otto; Bernardi, Luciano
2007-09-01
To assess the effects of acute exposure to simulated high altitude on baroreflex control of mean cerebral blood flow velocity (MCFV). We compared beat-to-beat changes in RR interval, arterial blood pressure, mean MCFV (by transcranial Doppler velocimetry in the middle cerebral artery), end-tidal CO2, oxygen saturation and respiration in 19 healthy subjects at baseline (Albuquerque, 1779 m), after acute exposure to simulated high altitude in a hypobaric chamber (barometric pressure as at 5000 m) and during oxygen administration (to achieve 100% oxygen saturation) at the same barometric pressure (HOX). Baroreflex control on each signal was assessed by univariate and bivariate power spectral analysis performed on time series obtained during controlled (15 breaths/min) breathing, before and during baroreflex modulation induced by 0.1-Hz sinusoidal neck suction. At baseline, neck suction was able to induce a clear increase in low-frequency power in MCFV (P<0.001) as well as in RR and blood pressure. At high altitude, MCFV, as well as RR and blood pressure, was still able to respond to neck suction (all P<0.001), compared to controlled breathing alone, despite marked decreases in end-tidal CO2 and oxygen saturation at high altitude. A similar response was obtained at HOX. Phase delay analysis excluded a passive transmission of low-frequency oscillations from arterial pressure to cerebral circulation. During acute exposure to high altitude, cerebral blood flow is still modulated by the autonomic nervous system through the baroreflex, whose sensitivity is not affected by changes in CO2 and oxygen saturation levels.
Cardiovascular reflexes in conscious toads.
Hoffmann, A; de Souza, M B
1982-05-01
Methods used for implanting sensors and catheters in temporarily ether-anesthetized toads (Bufo paracnemis) are described. Following recovery it was found that distension of the pulmocutaneous arterial trunk and high frequency electrical stimulation of the laryngeal nerve of conscious toads induce an abrupt fall in arterial pressure accompanied or not by bradycardia or cardiac arrest. A brief suppression of throat movements may occur but this is not a constant finding. The response is blocked by atropine or methyl-homatropine and persists in animals with high spinal sectioning, thus indicating its cholinergic parasympathetic nature. However a certain amount of sympathetic inhibition is not ruled out. Perfusion of the artery with lobeline and electrical stimulation of the laryngeal nerve at low frequency (1/s) induces a rise in arterial pressure which is blocked by phentolamine. The hypertension is followed by enhancing of both throat oscillations and electromyographic discharges. The occurrence of chemoreceptors in the pulmocutaneous arterial wall in these animals is discussed. Blockage of the laryngeal nerve with lidocaine or perfusion of the pulmocutaneous arterial trunk with the same solution elicited a blood pressure rise, tachycardia and enhanced ventilatory movements. This was attributed to suppression of the baroreceptor tonus.
NASA Astrophysics Data System (ADS)
Threadgill, James; Doerhmann, Adam; Little, Jesse
2017-11-01
A detailed experimental investigation of an impinging oblique Shock/Boundary Layer Interaction (SBLI) with 30° sweep in Mach 2.3 flow has been conducted. Despite its non-dimensional form, this canonical SBLI configuration has attracted little attention and remains poorly understood. Using a 12 .5° shock generator mounted in the freestream over a turbulent boundary layer, the interaction has been characterized with oil flow visualization, fast-response pressure transducers, and particle image velocimetry. Velocity vectors are used to extract the 3D interaction structure. These data are compared to wall pressure measurements and surface skin-friction streamlines. A local collapse of data normal to separation indicates a swept equivalence to Free Interaction Theory, albeit at a lower angle of sweep than imposed by the shock generator. Conditions at reattachment align with the imposed shock. Low-frequency shock motion near separation is observed, analogous to unswept SBLIs, with significant correlations that indicate spanwise traveling ripples in the shock foot. However, the magnitude of wall-pressure unsteadiness in this location is lower and shifted to higher frequencies than observed in equivalent unswept SBLI counterparts. Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430).
Corner separation and the onset of stall in an axial compressor
NASA Astrophysics Data System (ADS)
Thiam, Aicha; Whittlesey, Robert; Wark, Candace; Williams, David
2007-11-01
Axial compressor performance is limited by the onset of stall between the diffusing passageways of the rotors and stators. The flow physics responsible for the stall depends on the blade geometry of the machine, and in this experiment stall develops from a blade-hub corner separation. The 1.5 stage axial compressor consists of inlet guide vanes, a rotor and stator section. Separate motors drive the downstream fan and rotor, which makes it possible to change the compressor pressure ratio and flow coefficient by changing either the wheel speed or the bulk flow rate through the machine. Detailed maps of the flow behind the stators and in front of the rotors were obtained using a Kulite stagnation pressure probe. Mean pressure measurements show the growth of the corner flow separation and divergence of the ``through flow'' toward the outer casing. Spectra show a sensitivity of the separated region to small amplitude external disturbances, in this case originating from the downstream fan. The onset of rotating stall appears as the first subharmonic of the rotor frequency, 0.5 fr, then shifts to a slightly lower frequency 0.45 fr as the flow coefficient is decreased.
The effect of convection and shear on the damping and propagation of pressure waves
NASA Astrophysics Data System (ADS)
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.
Non-Newtonian fluid structure interaction in flexible biomimetic microchannels
NASA Astrophysics Data System (ADS)
Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman
2017-11-01
To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.
Haque, Rubaiyet Iftekharul; Ogam, Erick; Benaben, Patrick; Boddaert, Xavier
2017-01-01
This paper describes the fabrication process and the method to determine the membrane tension and defects of an inkjet-printed circular diaphragm. The membrane tension is an important parameter to design and fabricate an acoustic sensor and resonator with the highest sensitivity and selectivity over a determined range of frequency. During this work, the diaphragms are fabricated by inkjet printing of conductive silver ink on pre-strained Mylar thin films, and the membrane tension is determined using the resonant frequency obtained from its measured surface velocity response to an acoustic excitation. The membrane is excited by an acoustic pressure generated by a loudspeaker, and its displacement (response) is acquired using a laser Doppler vibrometer (LDV). The response of the fabricated membrane demonstrates good correlation with the numerical result. However, the inkjet-printed membrane exhibits undesired peaks, which appeared to be due to defects at their boundaries as observed from the scanning mode of LDV. PMID:28481267
Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play.
Schultz, R; Atkinson, G; Eaton, D W; Gu, Y J; Kao, H
2018-01-19
A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (10 4 to 10 5 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index-modified frequency-magnitude distribution, providing a framework to forecast induced seismicity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Haque, Rubaiyet Iftekharul; Ogam, Erick; Benaben, Patrick; Boddaert, Xavier
2017-05-06
This paper describes the fabrication process and the method to determine the membrane tension and defects of an inkjet-printed circular diaphragm. The membrane tension is an important parameter to design and fabricate an acoustic sensor and resonator with the highest sensitivity and selectivity over a determined range of frequency. During this work, the diaphragms are fabricated by inkjet printing of conductive silver ink on pre-strained Mylar thin films, and the membrane tension is determined using the resonant frequency obtained from its measured surface velocity response to an acoustic excitation. The membrane is excited by an acoustic pressure generated by a loudspeaker, and its displacement (response) is acquired using a laser Doppler vibrometer (LDV). The response of the fabricated membrane demonstrates good correlation with the numerical result. However, the inkjet-printed membrane exhibits undesired peaks, which appeared to be due to defects at their boundaries as observed from the scanning mode of LDV.
Extreme pressure differences at 0900 NZST and winds across New Zealand
NASA Astrophysics Data System (ADS)
Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita
2005-07-01
Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.
Weather and childbirth: A further search for relationships
NASA Astrophysics Data System (ADS)
Driscoll, Dennis M.
1995-09-01
Previous attempts to find relationships between weather and parturition (childbirth) and its onset (the beginning of labor pains) have revealed, firstly, limited but statistically significant relationships between weather conditions much colder than the day before, with high winds and low pressure, and increased onsets; and secondly, increased numbers of childbirths during periods of atmospheric pressure rise (highly statistically significant). To test these findings, this study examined weather data coincident childbirth data from a hospital at Bryan-College Station, Texas (for a period of 30 cool months from 1987 to 1992). Tests for (1) days of cold fronts, (2) a day before and a day after the cold front, (3) days with large temperature increases, and (4) decreases from the day before revealed no relationship with mean daily rate of onset. Cold days with high winds and low pressure had significantly fewer onsets, a result that is the opposite of previous findings. The postulated relationship between periods of pressure rise and increased birth frequency was negative, i.e., significantly fewer births occurred at those times — again, the opposite of the apparent occurrence in an earlier study. The coincidence of diurnal variations in both atmospheric pressure and frequency of childbirths, was shown to account for fairly strong negative associations between the two variables. This same reasoning might explain the positive association found in an earlier study. A comparison has been made between childbirth and onset as the response variable, and the advantage is emphasized of using data from women whose labor is not induced.