Radio frequency heating for in-situ remediation of DNAPL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.
1996-08-01
In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.
USDA-ARS?s Scientific Manuscript database
Radio frequency (RF) treatments have potential as alternatives to chemical fumigation for phytosanitary disinfestation treatments in the dried nut industry. To develop effective RF treatment protocols for almonds, it is desirable to determine heating uniformity and the occurrence of differential hea...
Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin
2018-03-23
Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Zhi; Marra, Francesco; Subbiah, Jeyamkondan; Wang, Shaojin
2018-04-13
Radio frequency (RF) heating has great potential for achieving rapid and volumetric heating in foods, providing safe and high-quality food products due to deep penetration depth, moisture self-balance effects, and leaving no chemical residues. However, the nonuniform heating problem (usually resulting in hot and cold spots in the heated product) needs to be resolved. The inhomogeneous temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms or insects may not be controlled in the cold spots. The mathematical modeling for RF heating processes has been extensively studied in a wide variety of agricultural products recently. This paper presents a comprehensive review of recent progresses in computer simulation for RF heating uniformity improvement and the offered solutions to reduce the heating nonuniformity. It provides a brief introduction on the basic principle of RF heating technology, analyzes the applications of numerical simulation, and discusses the factors influencing the RF heating uniformity and the possible methods to improve heating uniformity. Mathematical modeling improves the understanding of RF heating of food and is essential to optimize the RF treatment protocol for pasteurization and disinfestation applications. Recommendations for future research have been proposed to further improve the accuracy of numerical models, by covering both heat and mass transfers in the model, validating these models with sample movement and mixing, and identifying the important model parameters by sensitivity analysis.
Zheng, Ajuan; Zhang, Lihui; Wang, Shaojin
2017-05-16
Radio frequency (RF) heating has been proposed and tested to achieve a required anti-fungal efficacy on various food samples due to its advantage of deeper penetration depth and better heating uniformity. The purpose of this study was to validate applications of RF treatments for controlling Aspergillus parasiticus in corn while maintaining product quality. A pilot-scale, 27.12MHz, 6kW RF heating system together with hot air heating was used to rapidly pasteurize 3.0kg corn samples. Results showed that the pasteurizing effect of RF heating on Aspergillus parasiticus increased with increasing heating temperature and holding time, and RF heating at 70°C holding in hot air for at least 12min resulted in 5-6 log reduction of Aspergillus parasiticus in corn samples with the moisture content of 15.0% w.b. Furthermore, thermal resistance of Aspergillus parasiticus decreased with increasing moisture content (MC) of corn samples. Quality (MC, water activity - a w , protein, starch, ash, fat, fatty acid, color, electrical conductivity and germination rate) of RF treated corn met the required quality standard used in cereal industry. Therefore, RF treatments can provide an effective and rapid heating method to control Aspergillus parasiticus and maintain acceptable corn quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Qiu, Bensheng; El-Sharkawy, Abdel-Monem; Paliwal, Vaishali; Karmarkar, Parag; Gao, Fabao; Atalar, Ergin; Yang, Xiaoming
2005-07-01
Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.
Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds.
Jeong, Seul-Gi; Baik, Oon-Doo; Kang, Dong-Hyun
2017-08-02
This study was conducted to investigate the efficacy of radio-frequency (RF) heating to reduce Salmonella enterica serovars Enteritidis, Typhimurium, and Senftenberg in raw shelled almonds compared to conventional convective heating, and the effect of RF heating on quality by measuring changes in the color and degree of lipid oxidation. Agar-grown cells of three pathogens were inoculated onto the surface or inside of raw shelled almonds using surface inoculation or the vacuum perfusion method, respectively, and subjected to RF or conventional heating. RF heating for 40s achieved 3.7-, 6.0-, and 5.6-log reductions in surface-inoculated S. Enteritidis, S. Typhimurium, and S. Senftenberg, respectively, whereas the reduction of these pathogens following convective heating for 600s was 1.7, 2.5, and 3.7 log, respectively. RF heating reduced internally inoculated pathogens to below the detection limit (0.7 logCFU/g) after 30s. However, conventional convective heating did not attain comparable reductions even at the end of treatment (600s). Color values, peroxide values, and acid values of RF-treated (40-s treatment) almonds were not significantly (P>0.05) different from those of nontreated samples. These results suggest that RF heating can be applied to control internalized pathogens as well as surface-adhering pathogens in raw almonds without affecting product quality. Copyright © 2017. Published by Elsevier B.V.
Radio-Frequency Applications for Food Processing and Safety.
Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L
2018-03-25
Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.
Noninvasive radio frequency for skin tightening and body contouring.
Weiss, Robert A
2013-03-01
The medical use of radio frequency (RF) is based on an oscillating electrical current forcing collisions between charged molecules and ions, which are then transformed into heat. RF heating occurs irrespective of chromophore or skin type and is not dependent on selective photothermolysis. RF can be delivered using monopolar, bipolar, and unipolar devices, and each method has theoretical limits of depth penetration. A variant of bipolar delivery is fractional RF delivery. In monopolar configurations, RF will penetrate deeply and return via a grounding electrode. Multiple devices are available and are detailed later in the text. RF thermal stimulation is believed to result in a microinflammatory process that promotes new collagen. By manipulating skin cooling, RF can also be used for heating and reduction of fat. Currently, the most common uses of RF-based devices are to noninvasively manage and treat skin tightening of lax skin (including sagging jowls, abdomen, thighs, and arms), as well as wrinkle reduction, cellulite improvement, and body contouring.
Wang, Xiaofei; Taylor, Steven; Wang, Yifen
2016-10-01
Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC-MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150-600 °C) and high-pressure pyrolysis processes.
Kim, Sung-Youn; Sagong, Hun-Gu; Choi, Sang Ho; Ryu, Sangryeol; Kang, Dong-Hyun
2012-02-01
The efficacy of radio-frequency (RF) heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice was investigated. A 27.12 MHz RF heating system consisted of two parallel-plate electrodes was used, with the sample being placed between them. Black peppers (whole and ground) and red peppers (+ 16 mesh, -16 + 25 mesh, and -25 mesh) inoculated with S. Typhimurium and E. coli O157:H7 were treated with RF energy during 50s for black peppers and 40s for red peppers, and color change of samples was evaluated after treatment. RF heating for 50s resulted in 2.80 to 4.29 log CFU/g reductions of S. Typhimurium and E. coli O157:H7 in black peppers and RF heating of red peppers for 40s reduced pathogens by 3.38 log CFU/g to more than 5 log CFU/g (below the detection limit) without affecting the color quality change. The results suggest that RF heating has the potential for novel thermal process to control foodborne pathogens in spice. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiaoming; Chen, Hui-jiuan; Chen, Xiaodong; Alfadhl, Yasir; Yu, Junsheng; Wen, Dongsheng
2015-03-01
In recent years, the application of nanomaterials to biological and biomedicine areas has attracted intensive interest. One of the hot topics is the nanomaterial mediated radiofrequency (RF) hyperthermia or ablation, i.e., using RF fields/waves to heat tumor tissues treated with nanomaterials to destroy cancerous cells while minimizing the side-heating effect. However, there are currently many contradictive results reported concerning the heating effect of nanomaterials under a RF field. This paper provided a comprehensive review to nanomaterial mediated RF ablation from both experimental and theoretical aspects. Three heating mechanisms were discussed, i.e., laser heating, magnetic field heating, and electric field heating in RF spectrum, with the focus on the last one. The results showed that while diluted pure metallic nanoparticles could be heated significantly by a laser through the surface plasmon resonance, they cannot be easily heated by a RF electric field. Further studies are proposed focusing on nanoparticle structure and morphology, electromagnetic frequency and localized heating effect to pave the way for future development.
Kangarlu, Allahyar; Shellock, Frank G; Chakeres, Donald W
2003-02-01
To investigate if the heat induced in biological tissues by typical radio frequency (RF) energy associated with an 8.0-Tesla magnetic resonance (MR) system causes excessive temperature changes. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast. A series of experiments were conducted with measurements obtained at RF power levels ranging from a specific absorption rate (SAR) of up to 4.0 W/kg for 10 minutes. The highest temperature increases were up to 0.7 degrees C. An inhomogeneous heating pattern was observed. In general, the deep regions within the phantom registered higher temperature increases compared to the peripheral sites. The expectation of an inhomogeneous RF distribution in ultra high field systems (> 4 T) was confirmed. At a frequency of 340 MHz and in-tissue RF wave length of about 10 cm, the RF inhomogeneity was measured to create higher temperatures in deeper regions of a human head phantom compared to peripheral tissues. Our results agree with the computational electromagnetic calculations for such frequencies. Importantly, these experiments indicated that there were no regions of heating that exceeded the current FDA guidelines. Copyright 2003 Wiley-Liss, Inc.
Radiofrequency Heating Pathways for Gold Nanoparticles
Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.
2015-01-01
This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620
NASA Astrophysics Data System (ADS)
Hopkins, Xiaoping; Gill, Waqas Amin; Kringel, Rosemarie; Wang, Guankui; Hass, Jamie; Acharya, Suresh; Park, Jungrae; Tak Jeon, In; An, Boo Hyun; Lee, Ji Sung; Ryu, Jong Eun; Hill, Rod; McIlroy, David; Kim, Young Keun; Choi, Daniel S.
2017-01-01
We present a novel method of radio frequency (RF)-mediated thermotherapy in tumors by remotely heating nickel (Ni)-gold (Au) core-shell nanowires (CSNWs). Ectopic pancreatic tumors were developed in nude mice to evaluate the thermotherapeutic effects on tumor progression. Tumor ablation was produced by RF-mediated thermotherapy via activation of the paramagnetic properties of the Ni-Au CSNWs. Histopathology demonstrated that heat generated by RF irradiation caused significant cellular death with pyknotic nuclei and nuclear fragmentation dispersed throughout the tumors. These preliminary results suggest that thermotherapy ablation induced via RF activation of nanowires provides a potential alternative therapy for cancer treatment.
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...
Ion Cyclotron Resonant Heating (ICRH) system used on the Tandem Mirror Experiment-Upgrade (TMX-U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, S.W.; Maxwell, T.M.; Antelman, D.R.
1985-11-11
Ion Cyclotron Resonant Heating (ICRH) is part of the plasma heating system used on the TMX-U experiment. Radio frequency (RF) energy is injected into the TMX-U plasma at a frequency near the fundamental ion resonance (2 to 5 MHz). The RF fields impart high velocities to the ions in a direction perpendicular to the TMX-U magnetic field. Particle collision then converts this perpendicular heating to uniform plasma heating. This paper describes the various aspects of the ICRH system: antennas, power supplies, computer control, and data acquisition. 4 refs., 10 figs.
DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.
Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrick, R.F.; Egan-Baum, B.; Murray, W.E. Jr
1980-05-07
On June 27, 1979, NIOSH conducted a walk-through survey of the radio-frequency (RF) heat sealing area at the S.I. Jacobson Manufacturing Company, Chicago, Illinois. The purpose of the study was to identify a population of workers which could be used in a study to determine if any health effects are associated with occupational exposures to RF radiation. Electric fields produced by the RF heat sealers were measured to document exposure levels. The electric field strength levels exceeded 200 V/M (duty cycle corrected) on five of the nine heat sealers evaluated. Confounding exposures were assessed and appear not to be amore » factor. Personnel record systems were evaluated as to their suitability for use in a study of reproductive histories. It appears from the personnel records that an appropriate cohort of RF heat sealer workers and a corresponding control group cannot be identified, therefore, the S.I. Jacobson Manufacturing Company will not be included in the NIOSH study. Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health.« less
Interview with Dr. Stuart O. Nelson
USDA-ARS?s Scientific Manuscript database
Research equipment and techniques used in exploring effects of radio-frequency (RF) dielectric heating on materials of interest in agriculture are described. Research findings are summarized for studies on stored-grain insect control by RF selective heating of the insects and resulting insect morta...
NASA Astrophysics Data System (ADS)
Prentice, Boone M.; McLuckey, Scott A.
2012-04-01
Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to `rf-heating' and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.
FREQUENCY CONTROL OF RF HEATING OF GASEOUS PLASMA
Herold, E.W.
1962-09-01
This invention relates to the heating of gaseous plasma by radiofrequency ion-cyclotron resonance heating. The cyclotron resonance frequencies are varied and this invention provides means for automatically controlling the frequency of the radiofrequency to maximize the rate of heating. To this end, a servo-loop is provided to sense the direction of plasma heating with frequency and a control signal is derived to set the center frequency of the radiofrequency energy employed to heat the plasma. (AEC)
NASA Astrophysics Data System (ADS)
Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.
2018-04-01
Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).
REGENERATION/REACTIVATION OF CARBON ADSORBENTS BY RADIO FREQUENCY (RF) INDUCTION HEATING
We will use the experimental results to verify the numerical models and then use the models in parametric studies to determine the relative importance of each of the governing phenomena: electrical properties, heat transfer, RF applicator and adsorbent bed geometry...
Radiofrequency heating pathways for gold nanoparticles.
Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J
2014-08-07
This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments.
NASA Astrophysics Data System (ADS)
Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.
2018-03-01
RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.
USDA-ARS?s Scientific Manuscript database
Radio frequency (RF) heating is a commonly used food processing technology that has been applied for drying and baking as well as thawing of frozen foods. Its use in pasteurization, as well as for sterilization and disinfection of foods, is more limited. This column will review various RF heating ap...
The radio frequency (RF) heating process can be used to volumetrically heat and thus decontaminate uncontrolled landfills and hazardous substances from spills. After the landfills are heated, decontamination of the hazardous substances occurs due to thermal decomposition, vaporiz...
Ling, Bo; Liu, Xiaoli; Zhang, Lihui; Wang, Shaojin
2018-03-13
Dielectric heating including microwave (MW) and radio frequency (RF) energy has been regarded as alternative thermal treatments for food processing. To develop effective rice bran (RB) stabilization treatments based on RF and MW heating, dielectric properties (DPs) with dielectric constant (ε') and loss factor (ε″) of RB samples at frequencies (10-3000 MHz), temperatures (25-100 °C), moisture content (MC, 10.36-24.69% w.b.) and three metal salt levels (0.05-2.00%) were determined by an open-ended coaxial probe and impedance analyzer. Results indicated that both ε' and ε″ of RB samples increased with increasing temperature and MC. The increase rate was greater at higher temperature and moisture levels than at lower levels, especially at frequencies lower than 300 MHz. Cubic order models were developed to best fit the relationship between DPs of RB samples and temperature/MC at five frequencies with R 2 greater than 0.994. Both ε″ and RF heating rate of RB samples increased significantly with added NaCl (2%), KCl (1%) and Na 6 O 18 P 6 (2%). The obtained data are useful in developing computer models and simulating dielectric heating for RB stabilization and may also provide theoretical basis for synergistic stabilization of RB under combined dielectric heating with metal salts.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-21
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-01
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Properties of radio-frequency heated argon confined uranium plasmas
NASA Technical Reports Server (NTRS)
1976-01-01
Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.
Al-Holy, M; Ruiter, J; Lin, M; Kang, D H; Rasco, B
2004-09-01
Recent regulatory concerns about the presence of the pathogen Listeria monocytogenes in ready-to-eat aquatic foods such as caviar has prompted the development of postpackaging pasteurization processes. However, caviar is heat labile, and conventional pasteurization processes affect the texture, color, and flavor of these foods negatively. In this study, chum salmon (Oncorhynchus keta, 2.5% total salt) caviar or ikura and sturgeon (Acipenser transmontanus, 3.5% total salt) caviar were inoculated with three strains of Listeria innocua in stationary phase at a level of more than 10(7) CFU/g. L innocua strains were used because they exhibit an equivalent response to L monocytogenes for many physicochemical processing treatments, including heat treatment. The products were treated by immersion in 500 IU/ml nisin solution and heat processed (an 8-D process without nisin or a 4-D process with 500 IU/ml nisin) in a newly developed radio frequency (RF; 27 MHz) heating method at 60, 63, and 65 degrees C. RF heating along with nisin acted synergistically to inactivate L. innocua cells and total mesophilic microorganisms. In the RF-nisin treatment at 65 degrees C, no surviving L. innocua microbes were recovered in sturgeon caviar or ikura. The come-up times in the RF-heated product were significantly lower compared with the water bath-heated caviar at all treatment temperatures. The visual quality of the caviar products treated by RF with or without nisin was comparable to the untreated control.
Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi
2017-10-01
The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.
Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf
2013-01-01
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device. PMID:23613896
Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf
2013-01-01
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm(3) iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
Dielectric Heaters for Testing Spacecraft Nuclear Reactors
NASA Technical Reports Server (NTRS)
Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas
2006-01-01
A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.
Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil
USDA-ARS?s Scientific Manuscript database
To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...
Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol
2015-10-24
Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.
On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, A. V., E-mail: Timofeev-AV@nrcki.ru
2015-11-15
During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma densitymore » profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.« less
Effect of frequency on the uniformity of symmetrical RF CCP discharges
NASA Astrophysics Data System (ADS)
Liu, Yue; Booth, Jean-Paul; Chabert, Pascal
2018-05-01
A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15–45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions.
USDA-ARS?s Scientific Manuscript database
Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....
Jeong, Seul-Gi; Kang, Dong-Hyun
2014-04-17
The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (P<0.05) reduced moisture content of both spices. These results suggest that RF heating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Numerical Study of HHFW Heating in FRC Plasmas
NASA Astrophysics Data System (ADS)
Ceccherini, Francesco; Galeotti, Laura; Brambilla, Marco; Dettrick, Sean; Yang, Xiaokang; TAE Team
2017-10-01
The TriAlpha Energy (TAE) code RF-Pisa is a Finite Larmor Radius (FLR) full wave code developed over the years to study RF heating in the Field Reversed Configuration (FRC) in both the ion and electron cyclotron regimes. The FLR approximation is perfectly adequate to address RF propagation and absorption at the fundamental and second harmonic frequencies (as in the minority heating scheme), but it is not able to describe higher order processes such as high-harmonic fast waves (HHFW). The latter ones have frequencies lying between the ion cyclotron and lower hybrid resonances and they may represent a viable path to develop an efficient method to deposit energy inside the FRC separatrix, as suggested by recent results obtained at NSTX. A significant upgrade of RF-Pisa to include HHFW has been undertaken. In particular, the so-called ``quasi local approximation'' originally proposed for toroidal geometries has been re-derived for the cylindrical geometry and a new HHFW version of RF-Pisa concurrent to the FLR version has been developed. Here we present the first results of the application of the new code to FRC equilibria and we discuss the features of the dispersion relations and the absorption processes which characterize this novel regime.
High stability buffered phase comparator
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1984-01-01
A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.
Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.
Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498
Ensuring safety of implanted devices under MRI using reversed RF polarization.
Overall, William R; Pauly, John M; Stang, Pascal P; Scott, Greig C
2010-09-01
Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm. 2010 Wiley-Liss, Inc.
Electron Heating Mode Transitions in Nitrogen (13.56 and 40.68) MHz RF-CCPs
NASA Astrophysics Data System (ADS)
Erozbek Gungor, Ummugul; Bilikmen, Sinan Kadri; Akbar, Demiral
2015-09-01
Capacitively coupled radio frequency plasmas (RF-CCPs) are commonly used in plasma material processing. Parametrical structure of the plasma determines the demands of processing applications. For example; high density plasmas in gamma mode are mostly preferred for etching applications while stabile plasmas in gamma mode are usually used in sputtering applications. For this reason, characterization of the plasma is very essential before surface modification of the materials. In this work, analysis of electron heating mode transition in high frequency (40.68 MHz) RF-CCP was deeply investigated. The plasma was generated in a home-made (500 × 400 mm2) stainless steel cylindrical reactor in which two identical (200 mm in diameter) electrodes were placed with 40 mm interval. In addition, L-type automatic matching network system was connected to the 40.68 MHz RF generator to get high accuracy. Moreover, the pure (99.995 %) nitrogen was used as an activation gas on account of having an appreciable impression in plasma processing applications. Furthermore, diagnostic measurements of the plasma were done by using the Impedans Langmuir single and double probe systems. It was found that two transition points; α- γ (pressure dependent) and γ- α (RF power dependent) were observed in both medium and high RF-CCPs. As a result, the α- γ pressure transition increased, whereas the γ- α power transition remained constant by changing the RF frequency sources.
Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator
NASA Astrophysics Data System (ADS)
Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki
2005-12-01
We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
RF heating of nanoclusters for cancer therapy
NASA Astrophysics Data System (ADS)
Letfullin, Renat R.; Letfullin, Alla R.; George, Thomas F.
2015-03-01
Nanodrugs selectively delivered to a tumor site can be activated by radiation for drug release, or nanoparticles (NPs) can be used as a drug themselves by producing biological damage in cancer cells through thermal, mechanical ablations or charged particle emission. Radio-frequency (RF) waves have an excellent ability to penetrate into the human body without causing healthy tissue damage, which provides a great opportunity to activate/heat NPs delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of NPs in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of NPs in the RF range. To resolve these weaknesses in the RF activation of NPs and dramatically increase absorption of contrast agents in tumor, we suggest aggregating the nanoclusters inside or on the surface of the cancer cells. We simulate space distribution of temperature changes inside and outside metal and dielectric nanopraticles/nanoclusters, determine the number of nanoparticles needed to form a cluster, and estimate the thermal damage area produced in surrounding medium by nanopraticles/nanoclusters heated in the RF field.
Electromagnetic Heating in a Model of Frozen Red Blood Cells
1988-10-18
Evaluation of radio frequency energy deposition in a model of a standard blood bag was made using thermometric and thermographic dosimetry. The results...images corroborate the thermometric results, RECOMMENDATIONS The results of this study show the ability of an RF-coil irradiating... thermometric and thermographic dosimetry of RF-induced heating of the model. MATERIALS AND METHODS A standard, 800-ml (12 cm x 21 cm
Winter, Lukas; Oezerdem, Celal; Hoffmann, Werner; van de Lindt, Tessa; Periquito, Joao; Ji, Yiyi; Ghadjar, Pirus; Budach, Volker; Wust, Peter; Niendorf, Thoralf
2015-09-22
Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by "fighting fire with fire". Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.
Pasteurization of shell eggs using radio frequency heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geveke, David J.; Bigley, Andrew B. W.; Brunkhorst, Christopher D.
The USDA-FSIS estimates that pasteurization of all shell eggs in the U.S. would reduce the annual number of illnesses by more than 110,000. However, less than 3% of shell eggs are commercially pasteurized. One of the main reasons for this is that the commercial hot water process requires as much as 60 min to complete. In the present study, a radio frequency (RF) apparatus was constructed, and a two-step process was developed that uses RF energy and hot water, to pasteurize eggs in less than half the time. In order to select an appropriate RF generator, the impedance of shellmore » eggs was measured in the frequency range of 10–70 MHz. The power density within the egg was modeled to prevent potential hotspots. Escherichia coli (ATCC 35218) was inoculated in the yolk to approximately 7.5 log CFU/ml. The combination process first heated the egg in 35.0 °C water for 3.5 min using 60 MHz RF energy. This resulted in the yolk being preferentially heated to 61 °C. Then, the egg was heated for an additional 20 min with 56.7 °C water. This two-step process reduced the population of E. coli by 6.5 log. The total time for the process was 23.5 min. By contrast, processing for 60 min was required to reduce the E. coli by 6.6 log using just hot water. The novel RF pasteurization process presented in this study was considerably faster than the existing commercial process. As a result, this should lead to an increase in the percentage of eggs being pasteurized, as well as a reduction of foodborne illnesses.« less
Pasteurization of shell eggs using radio frequency heating
Geveke, David J.; Bigley, Andrew B. W.; Brunkhorst, Christopher D.
2016-08-21
The USDA-FSIS estimates that pasteurization of all shell eggs in the U.S. would reduce the annual number of illnesses by more than 110,000. However, less than 3% of shell eggs are commercially pasteurized. One of the main reasons for this is that the commercial hot water process requires as much as 60 min to complete. In the present study, a radio frequency (RF) apparatus was constructed, and a two-step process was developed that uses RF energy and hot water, to pasteurize eggs in less than half the time. In order to select an appropriate RF generator, the impedance of shellmore » eggs was measured in the frequency range of 10–70 MHz. The power density within the egg was modeled to prevent potential hotspots. Escherichia coli (ATCC 35218) was inoculated in the yolk to approximately 7.5 log CFU/ml. The combination process first heated the egg in 35.0 °C water for 3.5 min using 60 MHz RF energy. This resulted in the yolk being preferentially heated to 61 °C. Then, the egg was heated for an additional 20 min with 56.7 °C water. This two-step process reduced the population of E. coli by 6.5 log. The total time for the process was 23.5 min. By contrast, processing for 60 min was required to reduce the E. coli by 6.6 log using just hot water. The novel RF pasteurization process presented in this study was considerably faster than the existing commercial process. As a result, this should lead to an increase in the percentage of eggs being pasteurized, as well as a reduction of foodborne illnesses.« less
JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments
NASA Astrophysics Data System (ADS)
Van Eester, D.; Lerche, E.; Andrew, Y.; Biewer, T. M.; Casati, A.; Crombé, K.; de la Luna, E.; Ericsson, G.; Felton, R.; Giacomelli, L.; Giroud, C.; Hawkes, N.; Hellesen, C.; Hjalmarsson, A.; Joffrin, E.; Källne, J.; Kiptily, V.; Lomas, P.; Mantica, P.; Marinoni, A.; Mayoral, M.-L.; Ongena, J.; Puiatti, M.-E.; Santala, M.; Sharapov, S.; Valisa, M.; JET EFDA contributors
2009-04-01
Recent JET experiments have been devoted to the study of (3He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[3He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfvén cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[3He] < 10%) favors minority heating while for X[3He] Gt 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[3He] (≈18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in (3He)-D plasmas are fairly narrow—giving rise to localized heat sources—the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of RF heating for impurity transport is also briefly summarized.
Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components
2015-06-19
localized glow discharge of the plasma ( corona ) while RF power is being applied. 8.4.3 RF Performance Changes If a breakdown occurs and damages the...in spacecraft components and systems. Ionization breakdown is a high-energy radio frequency (RF) discharge that can occur when the insulating media...energy can be discharged in a small volume, releasing large amounts of heat, melting local surfaces, and generating debris, all of which will likely
Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components
2015-06-19
localized glow discharge of the plasma ( corona ) while RF power is being applied. 8.4.3 RF Performance Changes If a breakdown occurs and damages the part...in spacecraft components and systems. Ionization breakdown is a high-energy radio frequency (RF) discharge that can occur when the insulating media...energy can be discharged in a small volume, releasing large amounts of heat, melting local surfaces, and generating debris, all of which will likely
Analytical and numerical study of New field emitter processing for superconducting cavities
NASA Astrophysics Data System (ADS)
Volkov, Vladimir; Petrov, Victor
2018-02-01
In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.
RF absorption and ion heating in helicon sources.
Kline, J L; Scime, E E; Boivin, R F; Keesee, A M; Sun, X; Mikhailenko, V S
2002-05-13
Experimental data are presented that are consistent with the hypothesis that anomalous rf absorption in helicon sources is due to electron scattering arising from parametrically driven ion-acoustic waves downstream from the antenna. Also presented are ion temperature measurements demonstrating anisotropic heating (T( perpendicular)>T(parallel)) at the edge of the discharge. The most likely explanation is ion-Landau damping of electrostatic slow waves at a local lower-hybrid-frequency resonance.
López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J
2009-04-01
The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.
Dynamics of charged particles in a Paul radio-frequency quadrupole trap
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.
1991-01-01
A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.
Direct measurement of density oscillation induced by a radio-frequency wave.
Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H
2007-08-01
An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected.
Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma
2010-06-18
We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.
Numerical investigations of MRI RF field induced heating for external fixation devices
2013-01-01
Background The magnetic resonance imaging (MRI) radio frequency (RF) field induced heating on external fixation devices can be very high in the vicinity of device screws. Such induced RF heating is related to device constructs, device placements, as well as the device insertion depth into human subjects. In this study, computational modeling is performed to determine factors associated with such induced heating. Methods Numerical modeling, based on the finite-difference time-domain (FDTD) method, is used to evaluate the temperature rises near external device screw tips inside the ASTM phantom for both 1.5-T and 3-T MRI systems. The modeling approach consists of 1) the development of RF coils for 1.5-T and 3-T, 2) the electromagnetic simulations of energy deposition near the screw tips of external fixation devices, and 3) the thermal simulations of temperature rises near the tips of these devices. Results It is found that changing insertion depth and screw spacing could largely affect the heating of these devices. In 1.5-T MRI system, smaller insertion depth and larger pin spacing will lead to higher temperature rise. However, for 3-T MRI system, the relation is not very clear when insertion depth is larger than 5 cm or when pin spacing became larger than 20 cm. The effect of connection bar material on device heating is also studied and the heating mechanism of the device is analysed. Conclusions Numerical simulation is used to study RF heating for external fixation devices in both 1.5-T and 3-T MRI coils. Typically, shallower insertion depth and larger pin spacing with conductive bar lead to higher RF heating. The heating mechanism is explained using induced current along the device and power decay inside ASTM phantom. PMID:23394173
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
Thermal Considerations of Space Solar Power Concepts with 3.5 GW RF Output
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2000-01-01
This paper presents the thermal challenge of the Space Solar Power (SSP) design concepts with a 3.5 GW radio-frequency (RF) output. High efficiency klystrons are thermally more favored than solid state (butterstick) to convert direct current (DC) electricity to radio-frequency (RF) energy at the transmitters in these concepts. Using klystrons, the heat dissipation is 0.72 GW. Using solid state, the heat dissipation is 2.33 GW. The heat dissipation of the klystrons is 85% at 500C, 10% at 300C, and 5% at 125C. All the heat dissipation of the solid state is at 100C. Using klystrons, the radiator area is 74,500 square m Using solid state, the radiator area is 2,362,200 square m Space constructable heat pipe radiators are assumed in the thermal analysis. Also, to make the SSP concepts feasible, the mass of the heat transport system must be minimized. The heat transport distance from the transmitters to the radiators must be minimized. It can be accomplished by dividing the radiator into a cluster of small radiators, so that the heat transport distances between the klystrons and radiators can be minimized. The area of each small radiator is on the order of 1 square m. Two concepts for accommodating a cluster of small radiators are presented. If the distance between the transmitters and radiators is 1.5 m or less, constant conductance heat pipes (CCHPs) are acceptable for heat transport. If the distance exceeds 1.5 m, loop heat pipes (LHPs) are needed.
Method of making radio frequency ion source antenna
Ehlers, Kenneth W.; Leung, Ka-Ngo
1988-01-01
In the method, the radio frequency (RF) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200.degree. C. to boil off the water from the binder, and then to about 750.degree. C.-850.degree. C. to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the RF antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the RF antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains apprxoimately 45% lead oxide.
Method of making radio frequency ion source antenna and such antenna
Ehlers, K.W.; Leung, K.N.
1985-05-22
In the method, the radio frequency (rf) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200/sup 0/C to boil off the water from the binder, and then to about 750 to 850/sup 0/C to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the rf antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the rf antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains approximately 45% lead oxide.
Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization
NASA Astrophysics Data System (ADS)
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-01
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-10
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
Enhanced soil vapor extraction with radio frequency heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowders, J.J.; Daniel, D.E.
1997-12-31
A field demonstration of enhanced soil vapor extraction using radio frequency (RF) heating to remove semi-volatiles from the subsurface is nearing completion. The site, a fire training area consisting of a well-graded sand with silt, had initial petroleum hydrocarbon concentrations up to 22,000 mg/kg. The treatment volume contained approximately 80 kg of diesel range organics (DRO, C-12 to C-20). Vapors are extracted from a central well while RF energy is supplied by two applicators positioned in vertical wells on either side of the extraction well. Temperatures in the center of the treatment zone have reached 140{degrees}C and at the treatmentmore » perimeter (2m radius) have reached 100{degrees}C to 120{degrees}C. Analyses of the condensed offgas show the chromatogram matches that for DRO with constituents up to C-20. Preliminary mass balance indicates that more than 65 kg of DRO have been removed from the site. The first 77 days of RF heating operation are reported in this paper. The project is continuing and final results will be reported at a later time.« less
Ballweg, Verena; Eibofner, Frank; Graf, Hansjorg
2011-10-01
State of the art to access radiofrequency (RF) heating near implants is computer modeling of the devices and solving Maxwell's equations for the specific setup. For a set of input parameters, a fixed result is obtained. This work presents a theoretical approach in the alternating current (ac) limit, which can potentially render closed formulas for the basic behavior of tissue heating near metallic structures. Dedicated experiments were performed to support the theory. For the ac calculations, the implant was modeled as an RLC parallel circuit, with L being the secondary of a transformer and the RF transmission coil being its primary. Parameters influencing coupling, power matching, and specific absorption rate (SAR) were determined and formula relations were established. Experiments on a copper ring with a radial gap as capacitor for inductive coupling (at 1.5 T) and on needles for capacitive coupling (at 3 T) were carried out. The temperature rise in the embedding dielectric was observed as a function of its specific resistance using an infrared (IR) camera. Closed formulas containing the parameters of the setup were obtained for the frequency dependence of the transmitted power at fixed load resistance, for the calculation of the resistance for optimum power transfer, and for the calculation of the transmitted power in dependence of the load resistance. Good qualitative agreement was found between the course of the experimentally obtained heating curves and the theoretically determined power curves. Power matching revealed as critical parameter especially if the sample was resonant close to the Larmor frequency. The presented ac approach to RF heating near an implant, which mimics specific values for R, L, and C, allows for closed formulas to estimate the potential of RF energy transfer. A first reference point for worst-case determination in MR testing procedures can be obtained. Numerical approaches, necessary to determine spatially resolved heating maps, can be supported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.
High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Repetitively Pulsed High Power RF Solid-State System
NASA Astrophysics Data System (ADS)
Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan
2017-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.
USDA-ARS?s Scientific Manuscript database
The dielectric properties of food greatly influence its interaction with RF and MW electromagnetic fields and subsequently determine the absorption of microwave energy and consequent heating behavior of food materials in microwave heating and processing applications. Microwave heating is usually re...
RF Plasma Heating in the PFRC-2 Device: Motivation, Goals and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, S.; Brunkhorst, C.; Glasser, A.
2011-12-23
The motivation for using radio frequency, odd-parity rotating magnetic fields for heating field-reversed-configuration (FRC) plasmas is explained. Calculations are presented of the expected electron and ion temperatures in the PFRC-2 device, currently under construction.
Electron Information in Single- and Dual-Frequency Capacitive Discharges at Atmospheric Pressure.
Park, Sanghoo; Choe, Wonho; Moon, Se Youn; Shi, Jian Jun
2018-05-14
Determining the electron properties of weakly ionized gases, particularly in a high electron-neutral collisional condition, is a nontrivial task; thus, the mechanisms underlying the electron characteristics and electron heating structure in radio-frequency (rf) collisional discharges remain unclear. Here, we report the electrical characteristics and electron information in single-frequency (4.52 MHz and 13.56 MHz) and dual-frequency (a combination of 4.52 MHz and 13.56 MHz) capacitive discharges within the abnormal α-mode regime at atmospheric pressure. A continuum radiation-based electron diagnostic method is employed to estimate the electron density (n e ) and temperature (T e ). Our experimental observations reveal that time-averaged n e (7.7-14 × 10 11 cm -3 ) and T e (1.75-2.5 eV) can be independently controlled in dual-frequency discharge, whereas such control is nontrivial in single-frequency discharge, which shows a linear increase in n e and little to no change in T e with increases in the rf input power. Furthermore, the two-dimensional spatiotemporal evolution of neutral bremsstrahlung and associated electron heating structures is demonstrated. These results reveal that a symmetric structure in electron heating becomes asymmetric (via a local suppression of electron temperature) as two-frequency power is simultaneously introduced.
NASA Astrophysics Data System (ADS)
Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald
2015-02-01
A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.
NASA Astrophysics Data System (ADS)
Nelson, David A.; Curran, Allen R.; Nyberg, Hans A.; Marttila, Eric A.; Mason, Patrick A.; Ziriax, John M.
2013-03-01
Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm-2) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (Tamb = 31 °C, PD = 8 mW cm-2). Skin temperature increases attributable to RF exposure were modest, with the exception of a ‘hot spot’ in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.
Nelson, David A; Curran, Allen R; Nyberg, Hans A; Marttila, Eric A; Mason, Patrick A; Ziriax, John M
2013-03-21
Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm(-2)) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (T(AMB) = 31 °C, PD = 8 mW cm(-2)). Skin temperature increases attributable to RF exposure were modest, with the exception of a 'hot spot' in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.
Guo, Q; Piyasena, P; Mittal, G S; Si, W; Gong, J
2006-04-01
The effectiveness of radio frequency (RF) cooking on the inactivation of Escherichia coli in ground beef and its effect on the shelf stability of ground beef were investigated with a comparison to hot water-bath cooking. E. coli K12 was used as a target bacterium instead of E. coli O157:H7. The ground beef samples inoculated with E. coli K12 (ampr) were heated until the centre temperature of each sample reached 72 degrees C. These samples were then stored at 4 degrees C for up to 30 days. The enumeration of E. coli K12, background E. coli and coliform counts in ground beef samples was carried out for shelf-life study. Although both methods significantly reduced E. coli K12 (ampr), E. coli and coliform counts and extended the shelf-life, RF cooking had a shorter cooking time, and more uniform heating. Thus, RF cooking of meat has a high potential as a substitute for the hot water-bath cooking.
Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model
Jones, Erick; Romero-Ortega, Mario
2016-01-01
Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population. PMID:26760033
Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy
NASA Astrophysics Data System (ADS)
Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael
2009-04-01
MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks
NASA Astrophysics Data System (ADS)
Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.
2005-09-01
To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.
Schlisselberg, Dov B; Kler, Edna; Kalily, Emmanuel; Kisluk, Guy; Karniel, Ohad; Yaron, Sima
2013-01-01
The consumer demand for fresh tasting, high quality, low salt, preservative-free meals which require minimal preparation time magnifies the safety concern and emphasizes the need to use innovative technologies for food processing. A modern technique to uniformly heat and cook foods is based on a combination of convection and controlled radio frequency (RF) energy. However any advantage conferred on meat cooked by this method would be lost if application of the technology results in decreased safety. Our main goal was to study the inactivation efficacy of this method of cooking against pathogens in ground meat in comparison to standard convection cooking. Meat balls were artificially inoculated with GFP expressing Escherichia coli, Salmonella Typhimurium and Listeria monocytogenes as well as spores of Bacillus cereus and Bacillus thuringiensis and cooked by convection heating (220°C, 40 min), by using energy generated from frequencies in the RF bandwidth (RF cooking, 7.5 min) or by combined heating (5.5 min), until the center temperature of each sample reached 73°C. The mean reductions in total indigenous bacteria obtained by RF and convection were 2.8 and 2.5 log CFU/g, respectively. Cooking of meat balls with convection reduced the E. coli population (8 log CFU/g) by 5.5 log CFU/g, whilst treatment with RF reduced E. coli population to undetectable levels. The mean reductions of S. Typhimurium obtained by RF and convection were 5.7 and 6.5 log CFU/g, respectively. The combined treatment reduced the Salmonella population to undetectable levels. In contrast, L. monocytogenes was poorly affected by RF cooking. The mean reduction of L. monocytogenes obtained by RF energy was 0.4 log CFU/g, while convection cooking resulted in undetectable levels. Interestingly, the combined treatment also resulted with undetectable levels of Listeria although time of cooking was reduced by 86%. One-step cooking had negligible effects on the Bacillus spores and therefore a 2-step treatment of RF or convection was applied. This 2-step treatment proved to be efficient with 4.5 log CFU/g reduction for both RF and convection. In conclusion, here we show that combination of RF with convection cooking resulted in similar or even better effects on selected foodborne pathogens compared to convection only, while the time required for safe cooking is cut down by up to 86%. The equal or better results in the levels of all investigated pathogens using RF with convection compared with convection only suggest that this technology looks promising and safe for ground beef cooking. Copyright © 2012 Elsevier B.V. All rights reserved.
Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...
2015-04-13
The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less
In vitro fertilization of mouse ova by spermatozoa exposed isothermally to radio-frequency radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, S.F.; Liu, L.M.; Graham, R.
Mouse spermatozoa were exposed in vitro for 1 h to 27- or 2,450-MHz CW RF radiation at SARs of 0 to 90 W/kg under isothermal (37 +/- 0.2 degrees C) conditions. Exposure at either frequency to RF radiation at SARs of 50 W/kg or greater resulted in a statistically significant reduction in the ability of irradiated sperm to fertilize mouse ova in vitro (P less than .05). Over the range of SARs there was no apparent difference in the effects of 27- vs. 2,450-MHz RF radiation. There were no readily detectable exposure effects on spermatozoan morphology, ultrastructure, or capacitation. Themore » reduction of in vitro fertilization is attributed to a direct effect of RF radiation on spermatozoa rather than to heating.« less
USDA-ARS?s Scientific Manuscript database
Dielectric property data are important in developing thermal treatments using radio frequency (RF) and microwave (MW) energy and essential to estimate the heating uniformity in electromagnetic fields. Dielectric properties of flour samples from four legumes (chickpea, green pea, lentil, and soybean)...
Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.
2012-10-01
Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.
Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields
NASA Astrophysics Data System (ADS)
Collins, Christian B.; Ackerson, Christopher J.
2018-02-01
The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.
High efficiency, oxidation resistant radio frequency susceptor
Besmann, Theodore M.; Klett, James W.
2004-10-26
An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.
Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.
Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B
2014-09-01
Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonsurgical tightening of skin laxity: a new radiofrequency approach.
Rusciani, Antonio; Curinga, Giuseppe; Menichini, Giulio; Alfano, Carmine; Rusciani, Luigi
2007-04-01
Improvement in skin laxity can be difficult to achieve without invasive surgical procedures. Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. RF technology produces an electric current that generates heat through resistance in the dermis and subcutaneous tissue. The thermal effect depends on the conductivity features of the treated tissue. When heated, collagen fibrils will denature and contract, which is believed to lead to the observed tissue tightening. Ninety-three consecutive patients with mild to moderate laxity were included in the study. The Surgitron Dual Frequency RF (Radiowave technology, Ellman International) was used to treat skin laxity. The application of RF energy took place in an ambulatory setting with no need for skin sterilization or anesthesia. Patients immediately noticed a microlifting retraction in the treated tissues according to the vectors mapped in the area. There were no significant complications and the majority of patients were satisfied with the procedure and able to return to their daily routine after leaving the office, thereby substantiating the popularity of noninvasive rejuvenating procedures.
ICRF-edge and surface interactions
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.; Myra, J. R.
2011-08-01
This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.
Si nanoparticles as sensitizers for radio frequency-induced cancer hyperthermia
NASA Astrophysics Data System (ADS)
Kabashin, A. V.; Tamarov, K. P.; Ryabchikov, Yu. V.; Osminkina, L. A.; Zinovyev, S. V.; Kargina, J. V.; Gongalsky, M. B.; Al-Kattan, A.; Yakunin, V. G.; Sentis, M. L.; Ivanov, A. V.; Nikiforov, V. N.; Kanavin, A. P.; Zavestovskaya, I. N.; Timoshenko, V. Y.
2016-03-01
We review our recently obtained data on the employment of Si nanoparticles as sensitizers of radiofrequency (RF) - induced hyperthermia for mild cancer therapy tasks. Such an approach makes possible the heating of aqueous suspensions of Si nanoparticles by tens of degrees Celsius under relatively low intensities (1-5 W/cm2) of 27 MHz RF radiation. The heating effect is demonstrated for nanoparticles synthesized by laser ablation in water and mechanical grinding of porous silicon, while laser-ablated nanoparticles demonstrate a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations. The observed RF heating effect can be explained in the frame of a model considering the polarization of Si NPs and electrolyte in the external oscillating electromagnetic field and the corresponding release of heat by electric currents around the nanoparticles. Our tests evidence relative safety of Si nanostructures and their efficient dissolution in physiological solutions, suggesting potential clearance of nanoparticles from a living organism without any side effects. Profiting from Si nanoparticle-based heating, we finally demonstrate an efficient treatment of Lewis Lung carcinoma in vivo. The obtained data promise a breakthrough in the development of mild, non-invasive methods for cancer therapy.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Sun, Tengfei; Ranjan, Ashish
2017-02-01
Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.
Zhang, Zhiqiang; Liao, Xiaoping
2017-01-01
To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively. PMID:28629144
Zhang, Zhiqiang; Liao, Xiaoping
2017-06-17
To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957
FinFET and UTBB for RF SOI communication systems
NASA Astrophysics Data System (ADS)
Raskin, Jean-Pierre
2016-11-01
Performance of RF integrated circuit (IC) is directly linked to the analog and high frequency characteristics of the transistors, the quality of the back-end of line process as well as the electromagnetic properties of the substrate. Thanks to the introduction of the trap-rich high-resistivity Silicon-on-Insulator (SOI) substrate on the market, the ICs requirements in term of linearity are fulfilled. Today partially depleted SOI MOSFET is the mainstream technology for RF SOI systems. Future generations of mobile communication systems will require transistors with better high frequency performance at lower power consumption. The advanced MOS transistors in competition are FinFET and Ultra Thin Body and Buried oxide (UTBB) SOI MOSFETs. Both devices have been intensively studied these last years. Most of the reported data concern their digital performance. In this paper, their analog/RF behavior is described and compared. Both show similar characteristics in terms of transconductance, Early voltage, voltage gain, self-heating issue but UTBB outperforms FinFET in terms of cutoff frequencies thanks to their relatively lower fringing parasitic capacitances.
Radio frequency heating: a potential method for post-harvest pest control in nuts and dry products
Wang, Shao-jin; Tang, Ju-ming
2004-01-01
The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applications. There is an urgent need to develop effective and economically viable alternative treatments to replace current phytosanitary and quarantine practices in order to maintain the competitiveness of US agriculture in domestic and international markets. With the reliable heating block system, the thermal death kinetics for fifth-instar codling moth, Indianmeal moth, and navel orangeworm were determined at a heating rate of 18 °C/min. A practical process protocol was developed to control the most heat resistant insect pest, fifth-instar navel orangeworm, in in-shell walnuts using a 27 MHz pilot scale radio frequency (RF) system. RF heating to 55 °C and holding in hot air for at least 5 min resulted in 100% mortality of the fifth-instar navel orangeworm. Rancidity, sensory qualities and shell characteristics were not affected by the treatments. If this method can be economically integrated into the handling process, it should have excellent potential as a disinfestation method for in-shell walnuts. PMID:15362185
Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas
NASA Astrophysics Data System (ADS)
Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul
2016-10-01
In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.
NASA Astrophysics Data System (ADS)
Chechkin, V. V.; Grigor'eva, L. I.; Pavlichenko, R. O.; Kulaga, A. Ye.; Zamanov, N. V.; Moiseenko, V. E.; Burchenko, P. Ya.; Lozin, A. V.; Tsybenko, S. A.; Tarasov, I. K.; Pankratov, I. M.; Grekov, D. L.; Beletskii, A. A.; Kasilov, A. A.; Voitsenya, V. S.; Pashnev, V. K.; Konovalov, V. G.; Shapoval, A. N.; Mironov, Yu. K.; Romanov, V. S.
2014-08-01
In the ℓ = 3 Uragan-3M torsatron, hydrogen plasma is produced and heated by RF fields in the Alfvén range of frequencies (ω ≲ ω ci ). To this end, a frame antenna with a broad spectrum of generated parallel wavenumbers is used. The RF discharge evolution is studied experimentally at different values of the RF power fed to the antenna (the anode voltage of the oscillator and the antenna current) and the initial pressure of the fueling gas. It is shown that, depending on the antenna current and hydrogen pressure, the discharge can operate in two regimes differing in the plasma density, temperature, and particle loss. The change in the discharge regime with increasing anode voltage is steplike in character. The particular values of the anode voltage and pressure at which the change occurs are affected by RF preionization or breakdown stabilization by a microwave discharge. The obtained results will be used in future experiments to choose the optimal regimes of the frame-antenna-produced RF discharge as a target for the production and heating of a denser plasma by another, shorter wavelength three-half-turn antenna.
A METHOD FOR IN-SITU CHARACTERIZATION OF RF HEATING IN PARALLEL TRANSMIT MRI
Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K.; Zhu, Yudong
2012-01-01
In ultra high field magnetic resonance imaging, parallel radio-frequency (RF) transmission presents both opportunities and challenges for specific absorption rate (SAR) management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local SAR by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, the present work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix was conducted in less than 200 minutes with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. PMID:22714806
Photonically enabled Ka-band radar and infrared sensor subscale testbed
NASA Astrophysics Data System (ADS)
Lohr, Michele B.; Sova, Raymond M.; Funk, Kevin B.; Airola, Marc B.; Dennis, Michael L.; Pavek, Richard E.; Hollenbeck, Jennifer S.; Garrison, Sean K.; Conard, Steven J.; Terry, David H.
2014-10-01
A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to study target scenarios in a laboratory setting. The linearity of Maxwell's equations allows the use of millimeter wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.
Monitoring of tissue ablation using time series of ultrasound RF data.
Imani, Farhad; Wu, Mark Z; Lasso, Andras; Burdette, Everett C; Daoud, Mohammad; Fitchinger, Gabor; Abolmaesumi, Purang; Mousavi, Parvin
2011-01-01
This paper is the first report on the monitoring of tissue ablation using ultrasound RF echo time series. We calcuate frequency and time domain features of time series of RF echoes from stationary tissue and transducer, and correlate them with ablated and non-ablated tissue properties. We combine these features in a nonlinear classification framework and demonstrate up to 99% classification accuracy in distinguishing ablated and non-ablated regions of tissue, in areas as small as 12mm2 in size. We also demonstrate significant improvement of ablated tissue classification using RF time series compared to the conventional approach of using single RF scan lines. The results of this study suggest RF echo time series as a promising approach for monitoring ablation, and capturing the changes in the tissue microstructure as a result of heat-induced necrosis.
Divertor heat flux simulations in ELMy H-mode discharges of EAST
NASA Astrophysics Data System (ADS)
Xia, T. Y.; Xu, X. Q.; Wu, Y. B.; Huang, Y. Q.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.; EAST Team
2017-11-01
This paper presents heat flux simulations for the ELMy H-mode on the Experimental Advanced Superconducting Tokamak (EAST) using a six-field two-fluid model in BOUT++. Three EAST ELMy H-mode discharges with different plasma currents I p and geometries are studied. The trend of the scrape-off layer width λq with I p is reproduced by the simulation. The simulated width is only half of that derived from the EAST scaling law, but agrees well with the international multi-machine scaling law. Note that there is no radio-frequency (RF) heating scheme in the simulations, and RF heating can change the boundary topology and increase the flux expansion. Anomalous electron transport is found to contribute to the divertor heat fluxes. A coherent mode is found in the edge region in simulations. The frequency and poloidal wave number kθ are in the range of the edge coherent mode in EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. Statistical analysis of the type of turbulence shows that the turbulence transport type (blobby or turbulent) does not influence the heat flux width scaling. The two-point model differs from the simulation results but the drift-based model shows good agreement with simulations.
Magnetic Resonance Mediated Radio Frequency Coagulation for Vascular Repair
NASA Astrophysics Data System (ADS)
Zhao, Ming
Purpose. Magnetic Resonance Mediated Radiofrequency Coagulation employs the RF heating effect of MRI scanning to coagulate biomaterials for repair of vascular defects. Coagulation of a protein biomaterial by MR-induced RF heating is a novel means to effect repair of defects such as aneurysms or arteriovenous malformations. Our novel method is to coagulate a thermosetting material (such as egg white, which can be used for investigating heat coagulation behavior and MR relaxation properties) delivered endovascularly by catheter and coagulated by RF-induced heating of an intracatheter resonant wire antenna in the scanner. Methods. Experiments were performed on a Siemens 1.5 T MRI scanner and a Bruker 14T NMR spectrometer. Egg white was brought to equilibrium at seven temperatures (20, 30, 40, 50, 60, 70 and 37 °C) in sequence. Measurement of the water spin-lattice relaxation time Ti, spin-spin relaxation time T2, spin-lattice relaxation time in the rotating frame T1p, or full width at half maximum of the MT spectrum were performed at each temperature. Relaxation parameters of raw egg white and egg white after coagulation at 70 °C were measured in the scanner at 20 °C to determine optimum inversion time, echo time and offset frequency for good image contrast between coagulated and uncoagulated protein. Finally, coagulation of egg white within a glass aneurysm phantom by RF heating in the scanner was performed to demonstrate the MR coagulation methodology and the ability to achieve image contrast between coagulated and uncoagulated biomaterial. Results. Water T2, T1p and MT gave the most definitive indication of the change from uncoagulated at low temperature to fully coagulated at 60 °C, while water T1 showed only the expected gradual increase with temperature, and no response to coagulation. MT weighted imaging is expected to be the optimum method to establish the coagulation condition of the biomaterial.
Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.
2014-01-01
Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099
Energy Saving Glass Lamination via Selective Radio Frequency Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Shawn M; Baranova, Inessa; Poley, Joseph
2012-02-27
This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates overmore » the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.« less
Energy Saving Glass Lamination via Selective Radio Frequency Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Shawn M.
2012-02-27
This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates overmore » the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.« less
4th Generation ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyneis, Claude M.; Leitner, D.; Todd, D.S.
2008-12-01
The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materialsmore » such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.« less
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
MM-wave cyclotron auto-resonance maser for plasma heating
NASA Astrophysics Data System (ADS)
Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.
2014-02-01
Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.
NASA Astrophysics Data System (ADS)
Qi, Jianwei; Chen, Zhangbo; Han, Wenjun; He, Danfeng; Yang, Yiming; Wang, Qingliang
2017-09-01
Functionally graded HA/Ti coatings were deposited on silicon and Ti6Al4V substrate by radio-frequency (RF) magnetron sputtering. The effect of RF-power, negative bias and heat-treatment on the microstructure, mechanical and electrochemical properties of the coatings were characterized by SEM, XRD, FTIR, AFM Nanoindentation and electrochemical workstation. The obtained results showed that the as-deposited HA/Ti coatings were characteristic of amorphous structure, which transformed into a crystal structure after heat-treatment, and reformed O-H peak. The content of crystallization was increasing with the increase of negative bias. A dense, homogenous, smooth and featured surface, and columnar cross-section structure was observed in SEM observation. AFM results showed that the surface roughness became higher after heat-treatment, and increased with increasing RF-power. The mechanical test indicated that the coating had a higher nanohardness (9.1 GPa) in the case of -100 V and 250 W than that of Ti6Al4V substrate, and a critical load as high as 17 ± 3.5 N. The electrochemical test confirmed the HA/Ti coating served as a stable protecting barrier in improving the corrosion resistance, which the corrosion current density was 1.3% of Ti6Al4V, but it was significantly influenced by RF-power and negative bias. The contact angle test demonstrated that all the coatings exhibited favorable hydrophilic properties, and it decreased by 20-25% compared to that untreated samples. Thus all results indicated that magnetron sputtering is a promising way for fabricating a better biocompatible ceramic coating by adjusting deposition parameters and post-deposition heat treatments.
Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.
1984-01-01
An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.
Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.
1986-01-01
An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.
Can we estimate the cellular phone RF peak output power with a simple experiment?
NASA Astrophysics Data System (ADS)
Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo
2016-07-01
Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.
Radio-frequency-assisted current startup in the fusion engineering device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.
1984-01-01
Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R{sub 0} = 4.8 m, a = 1.3 m, sigma = 1.6, B(R{sub 0}) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T {sub e} approx. = 100 eV, n {sub e} approx. = 10{supmore » 19} m{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a{sub 0} approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less
Radio-frequency-assisted current startup in the Fusion Engineering Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.; Kammash, T.; Martin Peng, Y.K.
1984-07-01
Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R/sub 0/ = 4.8 m, a = 1.3 m, sigma = 1.6, B(R/sub 0/) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T /sub e/ approx. = 100 eV, n /sub e/ approx. = 10/supmore » 19/ m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a/sub 0/ approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less
Kruse, Dustin E.; Stephens, Douglas N.; Lindfors, Heather A.; Ingham, Elizabeth S.; Paoli, Eric E.; Ferrara, Katherine W.
2012-01-01
Gold nanoparticles (GNPs) are non-toxic, can be functionalized with ligands, and preferentially accumulate in tumors. We have developed a 13.56 MHz radiofrequency-electromagnetic field (RF-EM) delivery system capable of generating high electric field strengths required for non-invasive, non-contact heating of GNPs. The bulk heating and specific heating rates were measured as a function of NP size and concentration. It was found that heating is both size and concentration dependent, with 5 nm particles producing a 50.6±0.2°C temperature rise in 30 s for 25 μg/mL gold (125 W input). The specific heating rate was also size and concentration dependent, with 5 nm particles producing a specific heating rate of 356±78 kW/g gold at 16 μg/mL (125 W input). Furthermore, we demonstrate that cancer cells incubated with GNPs are killed when exposed to 13.56 MHz RFEM fields. Compared to cells that were not incubated with GNPs, 3 out of 4 RF-treated groups showed a significant enhancement of cell death with GNPs (p<0.05). GNP-enhanced cell killing appears to require temperatures above 50°C for the experimental parameters used in this study. Transmission electron micrographs show extensive vacuolization with the combination of GNPs and RF treatment. PMID:21402506
Sánchez-Hernández, Lidia; Ferro-Flores, Guillermina; Jiménez-Mancilla, Nallely P; Luna-Gutiérrez, Myrna A; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Azorín-Vega, Erika; Isaac-Olivé, Keila
2015-12-01
Gold nanoparticles conjugated to cyclo-[Arg-Gly-Asp-D-Phe-Lys(Cys)] peptides (AuNP-c[RGDfK(C)]) have been reported as systems with specific cell internalization in breast cancer cells. AuNPs have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The aim of this research was to analyze, based on the Mie theory, the AuNP-c[RGDfK(C)] absorption cross-sections (C(abs)) of low-frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) and to compare their effect on MCF7 cell viability as thermal conversion sources in AuNPs (20 nm) located inside cells. Cell viability was assessed in MCF7 cells treated with AuNP-c[RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm2). In both cases (RF and laser) the presence of nanoparticles in cells caused a significant increase in the temperature of the medium (RF: AT = 29.9 ± 1.7 degrees C for AuNP compared to ΔT = 13.0 ± 1.4 degrees C for water; laser: ΔT = 13.5 ± 0.7 degrees C for AuNP compared to 3.3 ± 0.5 degrees C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located inside the cells (8.7?0.7% for laser compared to 19.4 ± 0.9% for RF). The differences obtained in C(abs) values (laser: 3.7 x 10- (16) m2; RF: 7.9 x 10-(23) m2) and the observed effect on MFC7 cell viability support two mechanisms previously proposed "wave energy absorption by AuNPs" when laser is used as a thermal conversion source, and "attenuation of the wave passing through the AuNP suspension" when RF is applied. The AuNP-c[RGDfK(C)] nanosystem shows suitable properties to improve hyperthermia treatments under laser irradiation due to a larger heat release inside cells.
Favazza, Christopher P; Edmonson, Heidi A; Ma, Chi; Shu, Yunhong; Felmlee, Joel P; Watson, Robert E; Gorny, Krzysztof R
2017-11-01
To assess risks of RF-heating of a vagus nerve stimulator (VNS) during 1.5 T prostate MRI using body coil transmit and to compare these risks with those associated with MRI head exams using a transmit/receive head coil. Spatial distributions of radio-frequency (RF) B1 fields generated by transmit/receive (T/R) body and head coils were empirically assessed along the long axis of a 1.5 T MRI scanner bore. Measurements were obtained along the center axis of the scanner and laterally offset by 15 cm (body coil) and 7 cm (head coil). RF-field measurements were supplemented with direct measurements of RF-heating of 15 cm long copper wires affixed to and submerged in the "neck" region of the gelled saline-filled (sodium chloride and polyacrylic acid) "head-and-torso" phantom. Temperature elevations at the lead tips were measured using fiber-optic thermometers with the phantom positioned at systematically increased distances from the scanner isocenter. B1 field measurements demonstrated greater than 10 dB reduction in RF power at distances beyond 28 cm and 24 cm from isocenter for body and head coil, respectively. Moreover, RF power from body coil transmit at distances greater than 32 cm from isocenter was found to be lower than from the RF power from head coil transmit measured at locations adjacent to the coil array at its opening. Correspondingly, maximum temperature elevations at the tips of the copper wires decreased with increasing distance from isocenter - from 7.4°C at 0 cm to no appreciable heating at locations beyond 40 cm. For the particular scanner model evaluated in this study, positioning an implanted VNS farther than 32 cm from isocenter (configuration achievable for prostate exams) can reduce risks of RF-heating resulting from the body coil transmit to those associated with using a T/R head coil. © 2017 American Association of Physicists in Medicine.
Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C
2010-01-01
The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.
Experimental Study of RF Sheath Formation on a Fast Wave Antenna and Limiter in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy
2015-11-01
Ion cyclotron resonance heating (ICRH) will be an essential component of heating power in ITER. During ICRH, radio frequency (RF) sheaths may form both at the exciting antenna and further away, e.g. in the divertor region, and may cause wall material sputtering and decreased RF power coupling to the plasma. It is important to do detailed laboratory experiments that fully diagnose the sheaths and wave fields. This is not possible in fusion devices. A new RF system has recently been constructed for performing such studies in the LAPD plasma column (ne ~1012 -1013cm-3 , Te ~ 1 - 10 eV ,B0 ~ 400 - 2000 G , diameter ~ 60cm , length ~ 18 m) . The RF system is capable of pulsing at the 1 Hz rep. rate of the LAPD plasma and operating between 2-6 MHz (1st - 9th harmonic of fci in H) with a power output of 200 kW. First results of this system driving a single-strap fast wave antenna will be presented. Emissive and Langmuir probe measurements in the vicinity of both the antenna and a remote limiter and wave coupling measured by magnetic pickup loops will be presented.
Far-Field RF Sheaths due to Shear Alfvén Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Carter, Troy; D'Ippolito, Daniel A.; Myra, James R.
2013-10-01
Ion cyclotron resonance heating (ICRH) is an important tool in current fusion experiments and will be an essential heating component in ITER. ICRH could be limited by deleterious effects due to the formation of radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. in the divertor region). Far-field sheaths are thought to be caused by the direct launch of or mode conversion to a shear Alfvén wave with an electric field component parallel to the background magnetic field at the wall. In this experiment a limiter plate was inserted into a cylindrical plasma in the LAPD (ne ~ 1010-11 cm-3, Te ~ 5 eV, B0 = 1.2 kG) and RF sheaths were created by directly launching the shear Alfven wave. Plasma potential measurements were made with an emissive probe. DC plasma potential rectification was observed along field lines connected to the plate, serving as an indirect measure of RF sheath formation. 2-D maps of plasma properties and rectified plasma potential will be presented. This research is part of an ongoing campaign to study the formation and structure of RF sheaths.
NASA Astrophysics Data System (ADS)
Lara, Nadia Chantal
Use of radiofrequency (RF) electric fields coupled with nanoparticles to enhance non-invasive hyperthermia in cancer cells and tumors sparked debate over the RF heating mechanisms of nanoparticles and the role of salts in heating. Under RF field exposure at 13.56 MHz, aqueous systems including electrolyte solutions, buffers, and blood, were shown to heat according to bulk material properties, regardless of composition. This universal aqueous heating behavior extended to suspensions of nanoparticles such as gold nanoparticles, full-length and ultra-short single-walled carbon nanotubes, and water-soluble fullerene derivatives. These suspensions displayed the same RF heating properties as saline solutions of the same conductivity, indicating that these nanoparticles themselves do not contribute to RF heating by any unique mechanism; rather, they modulate bulk conductivity, which in turn affects bulk RF heating. At 13.56 MHz, peak heating for an aqueous system occurs at a conductivity of 0.06 S/m, beyond which increases in conductivity result in reduced heating rates. Biologically relevant materials, such as blood, intra- and extracellular fluids, and most human tissues, exceed this peak heating conductivity, precluding the use of conductive materials for RF heating rate enhancement. Instead, kosmotropic or water-structuring materials, including sugars, glycols, zwitterionic molecules, and a water-soluble fullerene derivative, when added to blood or phosphate buffered saline reduced the bulk conductivity of these materials and enhanced their heating rates accordingly. A dielectric heating rate model taking into account the geometry of the sample under RF exposure was used to explain the experimental RF heating behavior of aqueous solutions and semi-aqueous materials, which generated distinct RF heating curves due to differences in bulk dielectric and physical properties.
Health Issues: Do Cell Phones Pose a Health Hazard?
... confused with the effects from other types of electromagnetic energy. Very high levels of electromagnetic energy, such as is found in X-rays ... light, infrared radiation (heat) and other forms of electromagnetic radiation with relatively low frequencies. While RF energy ...
Inductive Electron Heating Revisited
NASA Astrophysics Data System (ADS)
Tuszewski, M.
1996-11-01
Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.
Anis, Samsudin; Zainal, Z A
2013-12-01
This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electron heating and the Electrical Asymmetry Effect in capacitively coupled RF discharges
NASA Astrophysics Data System (ADS)
Schulze, Julian
2011-10-01
For applications of capacitive radio frequency discharges, the control of particle distribution functions at the substrate surface is essential. Their spatio-temporal shape is the result of complex heating mechanisms of the respective species. Enhanced process control, therefore, requires a detailed understanding of the heating dynamics. There are two known modes of discharge operation: α- and γ-mode. In α-mode, most ionization is caused by electron beams generated by the expanding sheaths and field reversals during sheath collapse, while in γ-mode secondary electrons dominate the ionisation. In strongly electronegative discharges, a third heating mode is observed. Due to the low electron density in the discharge center the bulk conductivity is reduced and a high electric field is generated to drive the RF current through the discharge center. In this field, electrons are accelerated and cause significant ionisation in the bulk. This bulk heating mode is observed experimentally and by PIC simulations in CF4 discharges. The electron dynamics and mode transitions as a function of driving voltage and pressure are discussed. Based on a detailed understanding of the heating dynamics, the concept of separate control of the ion mean energy and flux in classical dual-frequency discharges is demonstrated to fail under process relevant conditions. To overcome these limitations of process control, the Electrical Asymmetry Effect (EAE) is proposed in discharges driven at multiple consecutive harmonics with adjustable phase shifts between the driving frequencies. Its concept and a recipe to optimize the driving voltage waveform are introduced. The functionality of the EAE in different gases and first applications to large area solar cell manufacturing are discussed. Finally, limitations caused by the bulk heating in strongly electronegative discharges are outlined.
Modelling transport phenomena in a multi-physics context
NASA Astrophysics Data System (ADS)
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Francesco
2015-01-22
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. Inmore » the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.« less
Monitoring local heating around an interventional MRI antenna with RF radiometry
Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.
2015-01-01
Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or the extra space needed to accommodate alternative thermal transducers. A RF radiometer could be integrated in a MRI scanner to permit “self-monitoring” for assuring device safety and/or monitoring delivery of thermal therapy. PMID:25735295
Effect of heating scheme on SOL width in DIII-D and EAST
Wang, L.; Makowski, M. A.; Guo, H. Y.; ...
2017-03-10
Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less
Effect of heating scheme on SOL width in DIII-D and EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Makowski, M. A.; Guo, H. Y.
Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less
NASA Astrophysics Data System (ADS)
Shihab, Mohammed
2018-06-01
The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.
Ion plating with an induction heating source
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1976-01-01
Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.
Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G
2002-03-01
To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
Micro-fabricated DC comparison calorimeter for RF power measurement.
Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel
2014-10-27
Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.
Organic Synthesis Using Microwaves and Supported Reagents
In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...
Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.
2017-01-01
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors. PMID:28287120
Ware, Matthew J; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A; Corr, Stuart J
2017-03-13
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.
NASA Astrophysics Data System (ADS)
Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.
2017-03-01
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.
Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2009-05-01
A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).
Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen
2017-07-02
We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.
In Vivo Radiofrequency Heating in Swine in a 3T (123.2 MHz) Birdcage Whole-Body Coil
Shrivastava, Devashish; Utecht, Lynn; Tian, Jinfeng; Hughes, John; Vaughan, J. Thomas
2014-01-01
Purpose To study in vivo radiofrequency (RF) heating produced due to power deposition from a 3T (Larmour frequency = 123.2 MHz), birdcage, whole-body coil. Methods The RF heating was simulated in a digital swine by solving the mechanistic generic bioheat transfer model (GBHTM) and the conventional, empirical Pennes bioheat transfer equation for the following two cases: (1) when the porcine head was in the isocenter, and (2) when the porcine trunk was in the isocenter. The simulation results were validated by making direct fluoroptic temperature measurements in the skin, brain, simulated hot regions, and rectum of ten swine (Case 1, N= 5, mean animal weight = 84.03 ± 6.85 kg, Whole-body average SAR = 2.65 ± 0.22 W/kg; Case 2, N= 5, mean animal weight = 81.59 ± 6.23 kg, Whole-body average SAR = 2.77 ± 0.26 W/kg) during one hour of exposure to a turbo spin echo sequence. Results The GBHTM simulated the RF heating more accurately compared to the Pennes equation. In vivo temperatures exceeded safe temperature thresholds with allowable SAR exposures. Hot regions may be produced deep inside the body, away from the skin. Conclusion SAR exposures to produce safe temperature thresholds may need re-investigation. PMID:24259413
Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen
2017-01-01
We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications. PMID:28671600
NASA Technical Reports Server (NTRS)
Martin, J. J.; Bragg-Sitton, S. M.; Reid, R. S.; Stewart, E. T.; Davis, J. D.
2011-01-01
A series of 16 Mo-44.5%Re alloy/sodium heat pipes will be experimentally tested to examine heat pipe aging. To support this evaluation, an environmental test chamber and a number of auxiliary subsystems are required. These subsystems include radio frequency (RF) power supplies/inductive coils, recirculation water coolant loops, and chamber gas conditioning. The heat pipes will be grouped, based on like power and gas mixture requirements, into three clusters of five units each, configured in a pentagonal arrangement. The highest powered heat pipe will be tested separately. Test chamber atmospheric purity is targeted at <0.3 ppb oxygen at an approximate operating pressure of 76 torr (.1.5 psia), maintained by active purification (oxygen level is comparable to a 10(exp -6) torr environment). Treated water will be used in two independent cooling circuits to remove .85 kW. One circuit will service the RF hardware while the other will maintain the heat pipe calorimetry. Initial procedures for the startup and operation of support systems have been identified. Each of these subsystems is outfitted with a variety of instrumentation, integrated with distributed real-time controllers and computers. A local area network provides communication between all devices. This data and control network continuously monitors the health of the test hardware, providing warning indicators followed by automatic shutdown should potentially damaging conditions develop. During hardware construction, a number of checkout tests.many making use of stainless steel prototype heat pipes that are already fabricated.will be required to verify operation.
Development of fundamental power coupler for C-ADS superconducting elliptical cavities
NASA Astrophysics Data System (ADS)
Gu, Kui-Xiang; Bing, Feng; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo
2017-06-01
5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven sub-critical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper. Supported by China ADS Project (XDA03020000) and National Natural Science Foundation of China (11475203)
Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S
2016-02-01
The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.
High Frequency Plasma Generators for Ion Thrusters
NASA Technical Reports Server (NTRS)
Divergilio, W. F.; Goede, H.; Fosnight, V. V.
1981-01-01
The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.
Ball, Richard D
2014-01-01
Radiofrequency ablation (RFA) is a safe and effective pain therapy used to create sensory dysfunction in appropriate nerves via thermal damage. While commonly viewed as a simple process, RF heating is actually quite complex from an electrical engineering standpoint, and it is difficult for the non-electrical engineer to achieve a thorough understanding of the events that occur. RFA is highly influenced by the configuration and properties of the peri-electrode tissues. To rationally discuss the science of RFA requires that examples be procedure-specific, and lumbar RFA is the procedure selected for this review. Adequate heating of the lumbar medial branch has many potential failure points, and the underlying science is discussed with recommendations to reduce the frequency of failure in heating target tissues. Important technical details of the procedure that are not generally appreciated are discussed, and the status quo is challenged on several aspects of accepted technique. The rationale underlying electrode placement and the limitations of RF heating are, for the most part, commonly misunderstood, and there may even need to be significant changes in how lumbar radiofrequency rhizotomy (RFR) is performed. A new paradigm for heating target tissue may be of value. Foremost in developing best practices for this procedure is avoiding pitfalls. Good RF heating and medial branch lesioning are the rewards for understanding how the process functions, attention to detail, and meticulous attention to electrode positioning.
NASA Technical Reports Server (NTRS)
Noever, David A.; Koczor, Ronald J.
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.
Experimental Study of RF Sheaths due to Shear Alfvén Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; van Compernolle, Bart; Pribyl, Patrick; Carter, Troy
2014-10-01
Ion cyclotron resonance heating (ICRH) is an important tool in current fusion heating experiments and will be an essential part of heating power in ITER. Radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. the divertor region) form during ICRH and may cause deleterious effects, such as destruction of wall materials and plasma impurity generation. In this study a shear Alfvén wave is launched from an antenna in the LAPD bulk plasma (ne ~ 1012 cm-3, Te ~ 5 eV, B0 = 1.8 kG, diameter = 60 cm, length = 18 m) and forms an RF sheath on a limiter plate. Plasma potential rectification is observed with an emissive probe in the bulk plasma only on field lines connected to the limiter. The largest enhancement occurs inside the current channel of the Alfvén wave. Plasma potential measurements at various axial distances from the limiter show the rectification decreases with distance. 2-D maps of plasma potential as well as E = - ∇Φ will be presented. The scaling of sheath potential with wave power and plasma parameters will also be shown.
Cleaning of inner vacuum surfaces in the Uragan-3M facility by radio-frequency discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozin, A. V., E-mail: alexlozin@meta.ua; Moiseenko, V. E.; Grigor’eva, L. I.
2013-08-15
A method for cleaning vacuum surfaces by a low-temperature (T{sub e} ∼ 10 eV) relatively dense (n{sub e} ≈ 10{sup 12} cm{sup −3}) plasma of an RF discharge was developed and successfully applied at the Uragan-3M torsatron. The convenience of the method is that it can be implemented with the same antenna system and RF generators that are used to produce and heat the plasma in the operating mode and does not require retuning the frequencies of the antennas and RF generators. The RF discharge has a high efficiency from the standpoint of cleaning vacuum surfaces. After performing a seriesmore » of cleanings by the low-temperature RF discharge plasma (about 20000 pulses), (i) the intensity of the CIII impurity line was substantially reduced, (ii) a quasi-steady operating mode with a duration of up to 50 ms, a plasma density of n{sub e} ≈ 10{sup 12} cm{sup −3}, and an electron temperature of up to T{sub e} ∼ 1 keV was achieved, and (iii) mass spectrometric analysis of the residual gas in the chamber indicated a significant reduction in the impurity content.« less
Influence of Water Content on RF and Microwave Dielectric Behavior of Foods
USDA-ARS?s Scientific Manuscript database
Abstract The importance of dielectric properties of food materials are discussed with respect to their influence on the heating of materials by radio-frequency and microwave energy and their use for rapid, nondestructive sensing of quality characteristics of such materials. Data are presented graph...
Influence of Water content of RF and Microwave Dielectric Properties of Foods
USDA-ARS?s Scientific Manuscript database
ABSTRACT The importance of dielectric properties of food materials is discussed with respect to their influence on the heating of materials by radio-frequency and microwave energy and their use for rapid, nondestructive sensing of quality characteristics of such materials. Data are presented graph...
El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
NASA Astrophysics Data System (ADS)
Pinsker, R. I.
2014-10-01
In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Caneses, Juan Francisco; Blackwell, Boyd; Plasma Research Laboratory Team
2013-10-01
In this work we provide an analytical model that allows one to quantitatively assess the RF compensation performance and suitability of the double probe technique for use in RF generated plasma. The model is based in the theory of the self-bias effect as described in Braithwaite's work, which we extend to include the time resolved behavior of floating probes. We provide experimental verification for this model and show that the theory of transient RF self-bias probes and harmonic current detection probes are limiting cases of this extended model. Furthermore, the model shows that the RF compensation is solely dependent on the sheath impedance, the probe's stray capacitance to ground and RF frequency. In addition, we use these results to implement a double probe system for use in high density helicon plasma where heat loads could potentially damage the intricate components in an RF compensating circuit. Finally we use this model to (1) recommend ways to extend the operational regime of double probes where the plasma conditions would render them unsuitable and to (2) comment on the use of this model to aid design of RF compensated Langmuir probes.
Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio
2014-06-01
It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly "trial and error," with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.
Baker-Jarvis, James; Kim, Sung
2012-01-01
The goal of this paper is to overview radio-frequency (RF) electromagnetic interactions with solid and liquid materials from the macroscale to the nanoscale. The overview is geared toward the general researcher. Because this area of research is vast, this paper concentrates on currently active research areas in the megahertz (MHz) through gigahertz (GHz) frequencies, and concentrates on dielectric response. The paper studies interaction mechanisms both from phenomenological and fundamental viewpoints. Relaxation, resonance, interface phenomena, plasmons, the concepts of permittivity and permeability, and relaxation times are summarized. Topics of current research interest, such as negative-index behavior, noise, plasmonic behavior, RF heating, nanoscale materials, wave cloaking, polaritonic surface waves, biomaterials, and other topics are overviewed. Relaxation, resonance, and related relaxation times are overviewed. The wavelength and material length scales required to define permittivity in materials is discussed. PMID:26900513
Plasma current start-up experiments without the central solenoid in the TST-2 spherical tokamak
NASA Astrophysics Data System (ADS)
Takase, Y.; Ejiri, A.; Shiraiwa, S.; Adachi, Y.; Ishii, N.; Kasahara, H.; Nuga, H.; Ono, Y.; Oosako, T.; Sasaki, M.; Shimada, Y.; Sumitomo, N.; Taguchi, I.; Tojo, H.; Tsujimura, J.; Ushigome, M.; Yamada, T.; Hanada, K.; Hasegawa, M.; Idei, H.; Nakamura, K.; Sakamoto, M.; Sasaki, K.; Sato, K. N.; Zushi, H.; Nishino, N.; Mitarai, O.
2006-08-01
Several techniques for initiating the plasma current without the use of the central solenoid are being developed in TST-2. While TST-2 was temporarily located at Kyushu University, two types of start-up scenarios were demonstrated. (1) A plasma current of 4 kA was generated and sustained for 0.28 s by either electron cyclotron wave or electron Bernstein wave, without induction. (2) A plasma current of 10 kA was obtained transiently by induction using only outboard poloidal field coils. In the second scenario, it is important to supply sufficient power for ionization (100 kW of EC power was sufficient in this case), since the vertical field during start-up is not adequate to maintain plasma equilibrium. In addition, electron heating experiments using the X-B mode conversion scenario were performed, and a heating efficiency of 60% was observed at a 100 kW RF power level. TST-2 is now located at the Kashiwa Campus of the University of Tokyo. Significant upgrades were made in both magnetic coil power supplies and RF systems, and plasma experiments have restarted. RF power of up to 400 kW is available in the high-harmonic fast wave frequency range around 20 MHz. Four 200 MHz transmitters are now being prepared for plasma current start-up experiments using RF power in the lower-hybrid frequency range. Preparations are in progress for a new plasma merging experiment (UTST) aimed at the formation and sustainment of ultra-high β ST plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois
2014-12-15
Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate themore » feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.« less
Perspectives on setting limits for RF contact currents: a commentary.
Tell, Richard A; Tell, Christopher A
2018-01-15
Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the practical conditions of real world exposure for contact currents such as contact resistance, size and shape of the contact electrode and applied force at the point of contact; (3) consistency of how contact currents are applied in research studies across different researchers; (4) effects of frequency.
Respiratory and thermoregulatory responses of rabbits breathing carbon dioxide during heat exposure.
Maskrey, M; Nicol, S C
1976-01-01
1. Rabbits were clipped and exposed in turn to three environmental conditions: control (C), cold exposure (CE) and water deprivation (WD). Following each type of treatment, the rabbits were exposed to an ambient temperature (Ta) of 35 degrees C for 1 hr. Throughout this period they breathed either normal atmospheric air or 6% CO2 in air. 2.During heat exposure, measurements were made of the respiratory responses and of the O2 consumption (Vo2) of the rabbits. Rectal temperature (Tre) was measured immediately before and again immediately after heat exposure. 3. When subjected to cold exposure or water deprivation the rabbits showed an initial decrease in respiratory frequency (RF) and an initial increase in VT when compared with controls. There was no difference in VE. Rabbits breathing 6% CO2 showed an increase in VT and VE and a decrease in RF when compared with rabbits breathing atmospheric air. In all cases a change in VT or RF was associated with a reciprocal change in the other parameter. 4. The respiratory responses to breathing 6% CO2 were essentially similar in treated and control rabbits, from which it is concluded that neither cold exposure nor water deprivation alter the sensitivity of the medullary respiratory centre to the respiratory drive from the central chemosensors. 5. The increase in Tre during heat exposure was significantly less in rabbits breathing 6% CO2 than in rabbits breathing atmospheric air. However, there was no significant over-all difference in VO2 between rabbits breathing CO2 and those breathing air. From this it is concluded that increased ventilation induced by CO2 causes a greater dissipation of heat than does thermally-induced panting. 6. It is concluded that VT is controlled by the level of blood PCO2 whereas RF is controlled by thermoregulatory requirements. It is further concluded that the reciprocal relationship between VT and RF is regulated in such a way as to maintain VE at the appropriate level for effecting gaseous exchange and evaporative heat loss. PMID:978578
Kohno, H.; Myra, J. R.
2017-07-24
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, H.; Myra, J. R.
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Measured performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite for the first 90 operating days in orbit are presented. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power processing system (PPS), and a variable-conductance heat pipe system (VCHPS). The OST, a traveling-wave tube augmented with a 10-stage depressed collector, has an overall saturated average efficiency of 51.5 percent and an average saturated radiofrequency (RF) output power at center-band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 percent to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the body of the OST to a 52-centimeter by 124-centimeter (20.5-in. by 48.75-in.) radiator fin, maintained by the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, RF output power, efficiency, and distortions. Communications characteristics were evaluated by using both video and audio modulated signals.
A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver
Andreano, Anita; Brace, Christopher L
2012-01-01
Purpose To determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. Materials and Methods A total of sixty heating cycles (20 s at 90 W) were performed in normal, RF ablated and microwave ablated liver tissues (n=10 RF and n=10 microwave in each tissue type). Heating cycles were performed using a 480 kHz generator and 3 cm cooled-tip electrode (RF) or a 2.45 GHz generator and 14-gauge monopole (microwave) and designed to isolate direct heating from each energy type. Tissue temperatures were measured using fiberoptic thermosensors 5, 10 and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates and maximal temperatures were compared using mixed effects regression models. Results No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P>0.05). Microwaves produced significantly more rapid heating than RF at 5, 10 and 15mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21 and 0.17 vs. 0.09 °C/s; P<.05); and at 5 and 10mm in ablated tissues (2.3 ± 1.4 vs. 0.7 ± 0.3, 0.5 ± 0.3 vs. 0.2 ± 0.0 C/s, P<.05). The radial depth of heating was approximately 5mm greater for microwaves than RF. Conclusions Direct heating obtained with 2.45 GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480 kHz RF energy. Keywords: microwave ablation, direct heating, thermal ablation PMID:22572764
Belenky, Inna; Margulis, Ariel; Elman, Monica; Bar-Yosef, Udi; Paun, Silviu D
2012-03-01
Because of its high efficiency and safety, radiofrequency (RF) energy is widely used in the dermatological field for heating biological tissue in various esthetic applications, including skin tightening, skin lifting, body contouring, and cellulite reduction. This paper reviews the literature on the use of nonablative RF energy in the esthetic field and its scientific background. The purpose of this article is to describe in detail the extensive use of medical devices based on RF technology, the development of these medical devices over the years, and recent developments and trends in RF technology. The authors conducted a systematic search of publications that address safety and efficacy issues, technical system specifications, and clinical techniques. Finally, the authors focused on their own clinical experiences with the use of patented Channeling Optimized RF Energy technique and mechanical massage. An in-vivo study was conducted in domestic pigs, with a thermal video camera. Twenty-seven female patients participated in a cellulite and body shaping study. The treatments were conducted according to a three-phase protocol. An additional 16 females participated in a skin tightening case study. All of the patients underwent three treatment sessions at 3-week intervals, each according to a protocol specific to the area being treated. The review of the literature on RF-based systems revealed that these systems are safe, with low risks for potential side effects, and effective for cellulite, body contouring, and skin tightening procedures. The in-vivo measurements confirmed the theory that the penetration depth of RF is an inverse function of its frequency, and using a vacuum mechanism makes an additional contribution to the RF energy penetration. The heating effect of RF was also found to increase blood circulation and to induce collagen remodeling. The results from the cellulite and body shaping treatments showed an overall average improvement of 55% in the appearance of cellulite, with an average circumferential reduction of 3.31 cm in the buttocks, 2.94 cm in the thighs, and 2.14 cm in the abdomen. The results from the skin tightening procedure showed moderate improvement of skin appearance in 50% and significant improvement in 31%. At the follow-up visits the results were found to be sustained without any significant side effects. Of all tissue heating techniques, RF-based technologies appear to be the most established and clinically proven. The design and specifications of the described vacuumassisted bipolar RF device fall within the range of the specifications currently prescribed for esthetic, nonablative RF systems.
The Multiple Gyrotron System on the DIII-D Tokamak
Lohr, J.; Anderson, J.; Brambila, R.; ...
2015-08-28
A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less
Error sources affecting thermocouple thermometry in RF electromagnetic fields.
Chakraborty, D P; Brezovich, I A
1982-03-01
Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.
Miniature lowpass filters in low loss 9k7 LTCC
Dai, Steve; Hsieh, Lung -Hwa
2015-07-01
DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less
Miniature lowpass filters in low loss 9k7 LTCC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve; Hsieh, Lung -Hwa
DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less
Miniature low-pass filter in low-loss 9k7 LTCC
Dai, Steve Xunhu; Hsieh, Lung -Hwa
2015-09-30
DuPont 9k7 low-temperature cofired ceramic (LTCC) is a low-loss, or high-quality-factor Q, tape system targeting at radio frequency (RF) applications. This paper reports on the effect of a critical process parameter, the heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. Furthermore, miniaturized multilayer low-pass filters (LPF) with a widemore » stopband were fabricated to showcase the technology.« less
NASA Technical Reports Server (NTRS)
Smetana, J.; Curren, A. N.
1979-01-01
The performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite (CTS) measured during its first 2 years in orbit are presented. The TEP consists of a nominal 200 watt output stage tube (OST), a supporting power processing system (PPS), and a variable conductance heat pipe system (VCHPS). The OST, a traveling wave tube augmented with a 10 stage depressed collector has an overall saturated average efficiency of 51.5 percent and an average saturated radio frequency (rf) output power at center band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the OST to a 52 by 124 centimeter radiator fin, maintained the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, rf output power, thermal performance, and efficiency. Communications characteristics were evaluated by using both video and audio modulated signals. On four occasions, the TEP experienced temporary thermal control system malfunctions. The anomalies were terminated safely, and the problem was investigated because of the potential for TEP damage due to the signficant temperature increases. Safe TEP operating procedures were established.
An RF dosimeter for independent SAR measurement in MRI scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.
2013-12-15
Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less
Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosea, J C; Perkins, R J; Jaworski, M A
RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over themore » tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.« less
Monitoring local heating around an interventional MRI antenna with RF radiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu
Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RFmore » transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or the extra space needed to accommodate alternative thermal transducers. A RF radiometer could be integrated in a MRI scanner to permit “self-monitoring” for assuring device safety and/or monitoring delivery of thermal therapy.« less
Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel
2014-10-01
Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.
Detection of radio frequency perturbations using an ion beam diagnostic (abstract)
NASA Astrophysics Data System (ADS)
Howard, S.; Si, J.; Crowley, T. P.; Connor, K. A.; Schoch, P. M.; Schatz, J. G.
2001-01-01
Presently, experiments are underway at the Plasma Dynamics Laboratory at Rensselaer Polytechnic Institute to demonstrate that the techniques developed for heavy ion beam probe diagnostics (HIBP) can be used to measure radio frequency (rf) fluctuations in plasmas. We hope to measure fluctuations in plasma density and magnetic and electric fields. This will provide a direct measurement of the electric and magnetic fields in the plasma during ICRF heating and thereby improve understanding of heating deposition and wave physics. In addition, the field and the density measurements will be used to determine the plasma reaction to the heating experiments. It is expected that the density measurements will be easiest to interpret, while the electric field measurement will be the most difficult to interpret. The diagnostic issues that will be important in taking data at rf frequencies include faster electronics, signal levels, and path effects. We have used a current to voltage amplifier design to measure 0-500 kHz fluctuations in several previous experiments. By reducing the gain and changing some components, a very similar design is capable of operation at rf frequencies. The modified circuit has been tested up to 15 MHz and worked well. The number of beam ions striking the detector plate in one rf period will be too small to obtain good enough statistics for fluctuation measurements, and therefore, averages over many cycles will be required. We expect to be able to achieve millisecond time resolution in the experiments. The global nature of the modes will tend to make path effects important in the HIBP signals. On the other hand, since the beam will take more than one period to cross the plasma, phase shifts may cancel some of these effects. In addition, a path effect term due to dA/dt will be much more important relative to the electric potential than in lower frequency experiments. The initial experimental plan is to do a series of measurements in which a lithium ion beam passes through an argon helicon plasma. The helicon plasma was chosen because its high density (of order 1019 m-3) will produce a larger HIBP signal than can be obtained from other small plasmas. The helicon plasma is formed within a solenoidal magnetic field of 1 kG on axis. The plasma is excited by an rf antenna that is a modification of the type used in Boswell's experiments.1 The rf power source is presently a 500 W, 13.56 MHz generator. From calculation of final trajectories we have determined that 16-29 keV Li ions can be used to probe a plasma with 1 kG magnetic field on axis. If the signal levels with a lithium beam are too small, a molecular hydrogen source will be used. For testing the basic operation of the ion beam probe we will use a simple plate detector mounted on the output flange. These preliminary experiments will be used to determine the feasibility of measuring density and magnetic field fluctuations. A second set of experiments using a more traditional HIBP energy analyzer as a detector is also planned. This detector will also be able to measure electric field effects on the probing ions. It will also be less sensitive to UV noise from the plasma.
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy Dilek, C.A.; Jarosch, T.R.; Fliermans, C.B.
The overall objective of the Integrated Demonstration Project for the Remediation of Organics at Nonarid Sites at the Savannah River Site (SRS) is to evaluate innovative remediation, characterization, and monitoring systems to facilitate restoration of contaminated sites. The first phase of the demonstration focused on the application and development of in situ air stripping technologies to remediate sediments and groundwater contaminated with volatile organic compounds (VOCs). The second phase focused on the enhancement of the in situ air stripping process by adding selected nutrients to stimulate naturally occurring microorganisms that degrade VOCs. The purpose of the third phase was tomore » evaluate the use of heating technologies [radio frequency (rf) and ohmic heating] to enhance the removal of contamination from clay layers where mass transfer is limited. The objective of this report is to document pretest and post-test data collected in support of the rf heating demonstration. The following data are discussed in this report: (1) a general description of the site including piezometers and sensors installed to monitor the remedial process; (2) stratigraphy, lithology, and a detailed geologic cross section of the study site; (3) tabulations of pretest and post-test moisture and VOC content of the sediments; (4) sampling and analysis procedures for sediment samples; (5) microbial abundance and diversity; (6) three-dimensional images of pretest and post-test contaminant distribution; (7) volumetric calculations.« less
SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 2, 1976
1976-02-01
34""" ■■■I"" ^"■’ " """"^ R-F Heating of Sporadic E-Layer (abstract) Effects of ionospheric heating by powerful r-f emission on the sporadic E-layers are...situation is just the reverse. Here heating by powerful r-f fields decreases its electron density and increases its thickness. At mean latitudes...T - 2, it decreases by 18% [Ignat’yev, Yu. A. Effect on the sporadic E-layer of ionospheric heating by powerful r-f emission. IVUZ
Immunologic Interrelationships of Coliform Heat-Labile and Heat-Stable Enterotoxins
1980-01-15
PUBLICATIONS Supported by Contract No. DAMD 17-77-C-7032 1. Klipstein FA, Engert RF: Immunological interrelationships between cholera toxin and the...heat-labile and heat-stable enterotoxins of coliform bacteria. Infec Immun 18:110, 1977 2. Klipstein FA, Engert RF: Immunological relationship of...different preparations of coliform enterotoxins. Infec Immun 21:771, 1978 3. Klipstein FA, Engert RF: Reversal of jejunal water secretion by glucose in
Immunological Interrelationships of Coliform Heat-Labile and Heat-Stable Enterotoxins
1981-01-01
FA, Engert RF: Immunological interrelationships between cholera toxin and the heat-labile and heat-stable enterotoxins of coliforn, bacteria. Infec...Irnmun 18:110, 1977 2. Klipstein FA, Engert RF: Immunological relaticnsh~p of different preparations of coliform enterotoxins. Infec Immun 21:771, 1918...3 Klipstein FA, Engert RF: Reversal of jejunal water secretion by glucose in rats exposed to coliform enterotoxcins. Gastroenterology 75:255, 1978 4
Ultra-high vacuum photoelectron linear accelerator
Yu, David U.L.; Luo, Yan
2013-07-16
An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.
Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo
2016-03-15
Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less
High-temperature material characterization for multispectral window
NASA Astrophysics Data System (ADS)
Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.
2017-05-01
A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.
Radio frequency sustained ion energy
Jassby, Daniel L.; Hooke, William M.
1977-01-01
Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.
Estimates of RF-induced erosion at antenna-connected beryllium plasma-facing components in JET
Klepper, C. C.; Borodin, D.; Groth, M.; ...
2016-01-18
Radio-frequency (RF)-enhanced surface erosion of beryllium (Be) plasma-facing components is explored, for the first time, using the ERO code. We applied the code in order to measure the RF-enhanced edge Be line emission at JET Be outboard limiters, in the presence of high-power, ion cyclotronresonance heating (ICRH) in L-mode discharges. In this first modelling study, the RF sheath effect from an ICRH antenna on a magnetically connected, limiter region is simulated by adding a constant potential to the local sheath, in an attempt to match measured increases in local Be I and Be II emission of factors of 2 3.more » It was found that such increases are readily simulated with added potentials in the range of 100 200 V, which is compatible with expected values for potentials arising from rectification of sheath voltage oscillations from ICRH antennas in the scrape-off layer plasma. We also estimated absolute erosion values within the uncertainties in local plasma conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.
Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed reduced with the FA antenna configuration, the mechanism determining the SOL plasma potential in the presence of ICRF and its impact on impurity contamination and sources remains to be understood.« less
Staud, Roland; Weyl, Elizabeth E.; Riley, Joseph L.; Fillingim, Roger B.
2014-01-01
Background In healthy individuals slow temporal summation of pain or wind-up (WU) can be evoked by repetitive heat-pulses at frequencies of ≥.33 Hz. Previous WU studies have used various stimulus frequencies and intensities to characterize central sensitization of human subjects including fibromyalgia (FM) patients. However, many trials demonstrated considerable WU-variability including zero WU or even wind-down (WD) at stimulus intensities sufficient for activating C-nociceptors. Additionally, few WU-protocols have controlled for contributions of individual pain sensitivity to WU-magnitude, which is critical for WU-comparisons. We hypothesized that integration of 3 different WU-trains into a single WU-response function (WU-RF) would not only control for individuals’ pain sensitivity but also better characterize their central pain responding including WU and WD. Methods 33 normal controls (NC) and 38 FM patients participated in a study of heat-WU. We systematically varied stimulus intensities of.4 Hz heat-pulse trains applied to the hands. Pain summation was calculated as difference scores of 1st and 5th heat-pulse ratings. WU-difference (WU-Δ) scores related to 3 heat-pulse trains (44°C, 46°C, 48°C) were integrated into WU-response functions whose slopes were used to assess group differences in central pain sensitivity. WU-aftersensations (WU-AS) at 15 s and 30 s were used to predict clinical FM pain intensity. Results WU-Δ scores linearly accelerated with increasing stimulus intensity (p<.001) in both groups of subjects (FM>NC) from WD to WU. Slope of WU-RF, which is representative of central pain sensitivity, was significantly steeper in FM patients than NC (p<.003). WU-AS predicted clinical FM pain intensity (Pearson’s r = .4; p<.04). Conclusions Compared to single WU series, WU-RFs integrate individuals’ pain sensitivity as well as WU and WD. Slope of WU-RFs was significantly different between FM patients and NC. Therefore WU-RF may be useful for assessing central sensitization of chronic pain patients in research and clinical practice. PMID:24558475
NASA Astrophysics Data System (ADS)
Bora, B.; Soto, L.
2014-08-01
Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.
Airborne RF Measurement System and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.
Darrow, D S; Cecil, F E; Kiptily, V; Fullard, K; Horton, A; Murari, A
2010-10-01
The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.
A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.
RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.
Bushberg, Jerrold T; Tupin, J Paul
2017-05-01
The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.
NMR imaging of cell phone radiation absorption in brain tissue
Gultekin, David H.; Moeller, Lothar
2013-01-01
A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293
NMR imaging of cell phone radiation absorption in brain tissue.
Gultekin, David H; Moeller, Lothar
2013-01-02
A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.
Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.; Clifford, T.; Giordano, S.
1984-01-01
The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less
Dynamics of electrostatic fluctuations in the edge plasma in the U-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshansky, V. V.; Stepanov, K. N.; Tarasov, M. I.
2010-10-15
Results are presented from experimental and theoretical investigations of oscillatory and wave phenomena observed in the edge region in the U-3M torsatron during plasma creation and heating by an RF discharge in the ICR frequency range, accompanied by a transition to improved confinement. The main results are reported of diagnostic measurements of the spectral composition of oscillations, as well as of how the phase and amplitude relationships depend on time and on the RF power during its injection into the plasma. The measurements were carried out with electrostatic probes positioned at the edge of the plasma confinement region. The experimentalmore » results are interpreted using the kinetic theory of the electron-ion parametric instability of a plasma in the ion cyclotron frequency range and are compared with the results of numerical simulations.« less
Waveguide to Core: A New Approach to RF Modelling
NASA Astrophysics Data System (ADS)
Wright, John; Shiraiwa, Syunichi; Rf-Scidac Team
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL) and core propagation [Shiraiwa, NF 2017]. Calculations with this technique naturally capture wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss. The main motivating insight is that the core plasma region having closed flux surfaces requires a hot plasma dielectric while the open field line region in the scrape-off layer needs only a cold plasma dielectric. Spectral approaches work well for the former and finite elements work well for the latter. The validity of this process follows directly from the superposition principle of Maxwell's equations making this technique exact. The method is independent of the codes or representations used and works for any frequency regime. Applications to minority heating in Alcator C-Mod and ITER and high harmonic heating in NSTX-U will be presented in single pass and multi-pass regimes. Support from DoE Grant Number DE-FG02-91-ER54109 (theory and computer resources) and DE-FC02-01ER54648 (RF SciDAC).
Multi-level RF identification system
Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.
2004-07-20
A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.
Immunologic Interrelationships of Coliform Heat-Labile and Heat-Stable Enterotoxins
1979-01-15
Animal, Resources, National Academy of Sciences National Research Council. -. - L S~- A - - -7- PUBLICATIONS 1. Klipstein FA, Engert RF: Immunological... Engert RF: Immunological relationship of different preparations of coliform enterotoxins. Infec Immun 21:771, 1978 3. Klipstein FA, Engert RF...Reversal of jejunal water secretion by glucose in rats exposed to coliform enterotoxins. Gastroenterology 75:255, 1978 4. Klipstein FA, Rowe B, Engert RF
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Reliability of Cascaded THz Frequency Chains with Planar GaAs Circuits
NASA Technical Reports Server (NTRS)
Maiwald, Frank; Schlecht, Erich; Lin, Robert; Ward, John; Pearson, John; Siegel, Peter; Mehdi, Imran
2004-01-01
Planar GaAs Schottky diodes will be utilized for all of the LO chains on the HIPI instrument for the Herschel Space Observatory. A better understanding of device degradation mechanisms is desirable in order to specify environmental and operational conditions that do not reduce device life times. Failures and degradation associated with ESD (Electrostatic Discharge), high temperatures, DC currents and RF induced current and heating have been investigated. The goal is to establish a procedure to obtain the safe operating range for a given frequency multiplier.
Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane
NASA Astrophysics Data System (ADS)
Osaka, Yugo; Kobayashi, Noriyuki; Razzak, M. A.; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko
Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility.
Characteristics of the three-half-turn-antenna-driven RF discharge in the Uragan-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigor’eva, L. I.; Chechkin, V. V., E-mail: chechkin@ipp.kharkov.ua; Moiseenko, V. E.
In the ℓ = 3 Uragan-3M torsatron hydrogen plasma is produced by RF fields in the Alfvén range of frequencies (ω ≤ ω{sub ci}). The initial (target) plasma with the line-averaged density of units 10{sup 12} cm{sup −3} is produced by a frame antenna with a broad spectrum of generated parallel wavenumbers. After this, to heat the plasma and bring its density to ∼10{sup 13} cm{sup –3}, another, shorter wavelength three-half-turn antenna with large transverse currents is used. The behavior of the density, electron temperature, and loss of the plasma supported by the three-half-turn antenna is studied depending on themore » RF power fed to the antenna and initial values of the density and electron temperature supplied by the frame antenna.« less
Design, construction and test of RF solid state power amplifier for IRANCYC-10
NASA Astrophysics Data System (ADS)
Azizi, H.; Dehghan, M.; Abbasi Davani, F.; Ghasemi, F.
2018-03-01
In this paper, design, simulation and construction of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. The Push-Pull designed amplifier can generate 750 W at the operating frequency of 71 MHz continous wave (CW). In this study, achieving the best efficiency of the amplifier, as well as reducing overall volume using baluns, were two important goals. The new offered water-cooled heat sink was used for cooling the amplifier which increases the operating life of the transistor. The gain and PAE of the SSPA were obtained 20 dB and 77.7%, respectively. The simulated and measured RF results are in good agreement with each other. The results show that, using an RF transformer in matching impedance of matching networks, it causes a smaller size and also a better amplifier performance.
Immunological Interrelationships of Coliform Heat-Labile and Heat-Stable Enterotoxins
1981-09-01
FA, Engert RF: Immunological interrelationships between cholera toxin and the heat -labile and hoat-stable enterotoxins of coliform bacteria. Infec...Immun 18:110, 1977 2. Klipstein FA, Engert RF: Immunological relationship of different preparations of coliform enterotoxins. Infec Immun 21:771, 1978...3. Klipstein FA, Engert RF: Reversal of jejunal water secretion by glucose in rats exposed to coliform enterotoxins. Gastroenteroloj y 75:255, 1978 4
"Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.
d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef
2005-09-01
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.
Numerical design of RF ablation applicator for hepatic cancer treatment
NASA Astrophysics Data System (ADS)
Rakhmadi, Aditya; Basari
2017-02-01
Currently, cancer has become one of health problems that is difficult to be overcomed. This disease is not only difficult to be cured, but also to be detected and may cause death. For this reason, RF ablation treatment method is proposed to cure cancer. RF ablation therapy is a method in which an applicator is inserted into the body to kill cancer cells by heating the cells. The cancer cells are exposed to the temperature more than 60°C in short duration (few second to few minutes) so thus cell destruction occurs locally. For the sake of the successful treatment, a minimally invasive method is selected in order for perfect local temperature distribution in cancer cells can be achieved. In this paper, a coax-fed dipole-type applicator with interstitial irradiation technique is proposed aimed at RF ablation into hepatic cells. Numerical simulation is performed to obtain a suitable geometric dimension at operating frequency around 2.45 GHz, in order to localize the ablation area. The proposed applicator is inserted into a simple phantom representing an adult human body model in which normal and cancerous liver cells. The simulated results show that the proposed applicator is able to operate at center frequency of 2.355 GHz with blood droplet-type ablation zone and the temperature around the cancer cell by 60°C can be achieved.
Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi
2015-02-21
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-21
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-01
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas
NASA Astrophysics Data System (ADS)
Ioannidis, Zisis C.; Ram, Abhay K.; Hizanidis, Kyriakos; Tigelis, Ioannis G.
2017-10-01
In modern magnetic fusion devices, such as tokamaks and stellarators, radio frequency (RF) waves are commonly used for plasma heating and current profile control, as well as for certain diagnostics. The frequencies of the RF waves range from ion cyclotron frequency to the electron cyclotron frequency. The RF waves are launched from structures, like waveguides and current straps, placed near the wall in a very low density, tenuous plasma region of a fusion device. The RF electromagnetic fields have to propagate through this scrape-off layer before coupling power to the core of the plasma. The scrape-off layer is characterized by turbulent plasmas fluctuations and by blobs and filaments. The variations in the edge density due to these fluctuations and filaments can affect the propagation characteristics of the RF waves—changes in density leading to regions with differing plasma permittivity. Analytical full-wave theories have shown that scattering by blobs and filaments can alter the RF power flow into the core of the plasma in a variety of ways, such as through reflection, refraction, diffraction, and shadowing [see, for example, Ram and Hizanidis, Phys. Plasmas 23, 022504 (2016), and references therein]. There are changes in the wave vectors and the distribution of power-scattering leading to coupling of the incident RF wave to other plasma waves, side-scattering, surface waves, and fragmentation of the Poynting flux in the direction towards the core. However, these theoretical models are somewhat idealized. In particular, it is assumed that there is step-function discontinuity in the density between the plasma inside the filament and the background plasma. In this paper, results from numerical simulations of RF scattering by filaments using a commercial full-wave code are described. The filaments are taken to be cylindrical with the axis of the cylinder aligned along the direction of the ambient magnetic field. The plasma inside and outside the filament is assumed to be cold. There are three primary objectives of these studies. The first objective is to validate the numerical simulations by comparing with the analytical results for the same plasma description—a step-function discontinuity in density. A detailed comparison of the Poynting flux shows that numerical simulations lead to the same results as those from the theoretical model. The second objective is to extend the simulations to take into account a smooth transition in density from the background plasma to the interior of the filament. The ensuing comparison shows that the deviations from the results of the theoretical model are quite small. The third objective is to consider the scattering process for situations well beyond a reasonable theoretical analysis. This includes scattering off multiple filaments with different densities and sizes. Simulations for these complex arrangements of filaments show that, in spite of the obvious limitations, the essential physics of RF scattering is captured by the analytical theory for a single filament.
Assessment of a field-aligned ICRF antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wukitch, S. J.; Brunner, D.; Ennever, P.
Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore themore » underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated E∥. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.« less
Winkler, Itai; Adam, Dan
2011-05-01
The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is similar in size to a measurement of the lesion from gross pathology, with a correlation coefficient of 0.743. Copyright © 2011. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bonoli, Paul
2014-10-01
This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-03-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-02-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prestemon, S,; Trillaud, F.; Caspi, S.
2008-08-17
The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECRmore » ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.« less
Radiofrequency heating of metallic dental devices during 3.0 T MRI
Hasegawa, M; Miyata, K; Abe, Y; Ishigami, T
2013-01-01
Objectives: To estimate the risk of injury from radiofrequency (RF) heating of metallic dental devices in use during 3.0 T MRI. Methods: The whole-body specific absorption rate (WB-SAR) was calculated on the basis of saline temperature elevation under the maximum RF irradiation for 15 min to determine the operation parameters for the heating test. The temperature changes of three types of three-unit bridges, a full-arch fixed dental prosthesis and an orthodontic appliance in use during MRI with a 3.0 T MR system (Magnetom® Verio; Siemens AG, Erlangen, Germany) were then tested in accordance with the American Society for Testing and Materials F2182-09 standardized procedure under the maximum RF heating during 15 min RF irradiation. Results: The system console-predicted WB-SAR was approximately 1.4 W kg−1 and that measured with a saline phantom was 2.1 W kg−1. In the assessment of RF heating, the highest temperature increase was +1.80 °C in the bridges, +1.59 °C in the full-arch fixed dental prosthesis and +2.61 °C in the orthodontic appliance. Conclusions: The relatively minor RF heating of dental casting material-based prostheses in Magnetom Verio systems in the normal operating mode should not pose a risk to patients. However, orthodontic appliances may exhibit RF heating above the industrial standard (CENELEC standard prEN45502-2-3); therefore, the wire should be removed from the bracket or a spacer should be used between the appliance and the oral mucosa during MRI. PMID:23520391
Formation of artificial plasma disturbances in the lower ionosphere
NASA Astrophysics Data System (ADS)
Bakhmet'eva, N. V.; Frolov, V. L.; Vyakhirev, V. D.; Kalinina, E. E.; Bolotin, I. A.; Akchurin, A. D.; Zykov, E. Yu.
2012-06-01
We present the results of experiments on sounding the disturbed ionospheric region produced by the high-power RF radiation of the "Sura" heating facility, which were performed simultaneously at two observation points. One point is located on the territory of the heating facility the other, and the other, at the observatory of Kazan State University (the "Observatory" point) in 170 km to the East from the facility. The experiments were aimed at studying the mechanism of formation of artificial disturbances in the lower ionosphere in the case of reflection of a high-power wave in the F region and determining the parameters of the signals of backscattering from artificial electron density irregularities which are formed as a result of ionospheric perturbations. The ionosphere was modified by a high-power RF O-mode wave, which was emitted by the transmitters of the "Sura" facility, in sessions several seconds or minutes long. The disturbed region was sounded using the vertical-sounding technique at the "Vasil'sursk" laboratory by the partial-reflection facility at a frequency of 2.95 MHz, and by the modified ionospheric station "Tsiklon" at ten frequencies ranged from 2 to 6.5 MHz at the "Observatory" point. At the same time, vertical-sounding ionograms were recorded in the usual regime. At the reception points, simultaneous changes in the amplitudes of the vertical-sounding signals and the aspect backscattering signals were recorded. These records correlate with the periods of operation of the heating facility. The characteristics and dynamics of the signals are discussed.
NASA Astrophysics Data System (ADS)
Lara, Nadia C.; Haider, Asad A.; Wilson, Lon J.; Curley, Steven A.; Corr, Stuart J.
2017-01-01
Aqueous and nanoparticle-based solutions have been reported to heat when exposed to an alternating radiofrequency (RF) electric-field. Although the theoretical models have been developed to accurately model such a behavior given the solution composition as well as the geometrical constraints of the sample holder, these models have not been investigated across a wide-range of solutions where the dielectric properties differ, especially with regard to the real permittivity. In this work, we investigate the RF heating properties of non-aqueous solutions composed of ethanol, propylene glycol, and glycine betaine with and without varying amounts of NaCl and LiCl. This allowed us to modulate the real permittivity across the range 25-132, as well as the imaginary permittivity across the range 37-177. Our results are in excellent agreement with the previously developed theoretical models. We have shown that different materials generate unique RF heating curves that differ from the standard aqueous heating curves. The theoretical model previously described is robust and accounts for the RF heating behavior of materials with a variety of dielectric properties, which may provide applications in non-invasive RF cancer hyperthermia.
Noninductive RF startup in CDX-U
NASA Astrophysics Data System (ADS)
Jones, B.; Majeski, R.; Efthimion, P.; Kaita, R.; Menard, J.; Munsat, T.; Takase, Y.
1998-11-01
For the spherical torus (ST) to prove viable as a reactor, it will be necessary to devise techniques for noninductive plasma startup. Initial studies of noninductive plasma initiation have been performed on CDX-U, using the 100 kW high harmonic fast wave (HHFW) system in combination with the 1 kW 2.45 GHz electron cyclotron heating system used for breakdown. Modest density (ne ~ 10^12 cm-3), low temperature (5 eV) plasmas were formed, but the density profile was peaked far off-axis, very near the HHFW antenna. High neutral fill pressures were also required. In upcoming experiments, up to 500 kW of low frequency RF power will utilized for heating and noninductive current drive in the mode conversion regime in a target noninductive plasma formed by a combination of 5.6 and 14 GHz ECH (40 kW total). Modeling will be presented which indicates that startup to plasma currents of 60 kA is feasible with this system.
NASA Astrophysics Data System (ADS)
Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.
2017-10-01
Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.
Pandey, Arun; Bandyopadhyay, M; Sudhir, Dass; Chakraborty, A
2017-10-01
Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.
Mailankot, Maneesh; Kunnath, Anil P; Jayalekshmi, H; Koduru, Bhargav; Valsalan, Rohith
2009-01-01
Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. Male albino Wistar rats (10-12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.
Human health effects of EMFs: The cost of doing nothing
NASA Astrophysics Data System (ADS)
Carpenter MD, David O.
2010-04-01
Everyone is exposed to electromagnetic fields (EMFs) from electricity (extremely low frequency, ELF), communication frequencies and wireless devices (radiofrequency, RF), as well as naturally occurring EMFs. Concern of health hazards from EMFs has increased as the use of mobile phones and other wireless devices has grown in all segments of the population, especially children. While there has been strong evidence for an association between leukemia and residential or occupational exposure to ELF EMFs for many years, the standards in existence are not sufficiently stringent to protect from an increased risk of cancer. ELF EMFs also increase risk of at least two types of neurodegenerative diseases. For RF EMFs, standards are set at levels designed to avoid tissue heating, in spite of many reports of biological effects at intensities too low to cause significant heating. Recent evidence demonstrates elevations in risk of brain cancer and acoustic neuroma only on the side of the head where individuals used their mobile phone. Individuals who begin exposure at younger ages are more vulnerable. These data indicate that the existing standards for radiofrequency exposure are not adequate. While there are many unanswered questions, the cost of doing nothing may result in an increasing number of people, many of them young, developing these diseases.
Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.
Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C
2018-02-01
Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Generation of whistler-wave heated discharges with planar resonant RF networks.
Guittienne, Ph; Howling, A A; Hollenstein, Ch
2013-09-20
Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.
Simulation of dust voids in complex plasmas
NASA Astrophysics Data System (ADS)
Goedheer, W. J.; Land, V.
2008-12-01
In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.
Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry.
Simonis, Frank F J; Petersen, Esben T; Bartels, Lambertus W; Lagendijk, Jan J W; van den Berg, Cornelis A T
2015-03-01
MR thermometry (MRT) is a noninvasive method for measuring temperature that can potentially be used for radio frequency (RF) safety monitoring. This application requires measuring absolute temperature. In this study, a multigradient-echo (mGE) MRT sequence was used for that purpose. A drawback of this sequence, however, is that its accuracy is affected by background gradients. In this article, we present a method to minimize this effect and to improve absolute temperature measurements using MRI. By determining background gradients using a B0 map or by combining data acquired with two opposing readout directions, the error can be removed in a homogenous phantom, thus improving temperature maps. All scans were performed on a 3T system using ethylene glycol-filled phantoms. Background gradients were varied, and one phantom was uniformly heated to validate both compensation approaches. Independent temperature recordings were made with optical probes. Errors correlated closely to the background gradients in all experiments. Temperature distributions showed a much smaller standard deviation when the corrections were applied (0.21°C vs. 0.45°C) and correlated well with thermo-optical probes. The corrections offer the possibility to measure RF heating in phantoms more precisely. This allows mGE MRT to become a valuable tool in RF safety assessment. © 2014 Wiley Periodicals, Inc.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.
NASA Astrophysics Data System (ADS)
Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; MacFall, James; Dewhirst, Mark; Das, Shiva K.
2012-04-01
This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types may be used to construct customized phantoms that are tailored for different anatomical sites.
Study of selective heating at ion cyclotron resonance for the plasma separation process
NASA Astrophysics Data System (ADS)
Compant La Fontaine, A.; Pashkovsky, V. G.
1995-12-01
The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.
Multipactor susceptibility on a dielectric with two carrier frequencies
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Verboncoeur, John; Zhang, Peng
2018-04-01
This work investigates multipactor discharge on a single dielectric surface with two carrier frequencies of an rf electric field. We use Monte Carlo simulations and analytical calculations to obtain susceptibility diagrams in terms of the rf electric field and normal electric field due to the residual charge on the dielectric. It is found that in contrast to the single frequency case, in general, the presence of a second carrier frequency of the rf electric field increases the threshold of the magnitude of the rf electric field to initiate multipactor. The effects of the relative strength and phase, and the frequency separation of the two carrier frequencies are examined. The conditions to minimize mulitpactor are derived.
Design of Refractory Metal Life Test Heat Pipe and Calorimeter
NASA Technical Reports Server (NTRS)
Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.
2010-01-01
Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy
Graf, Hansjörg; Steidle, Günter; Schick, Fritz
2007-11-01
To examine gradient switching-induced heating of metallic parts. Copper and titanium frames and sheets ( approximately 50 x 50 mm(2), 1.5 mm thick, frame width = 3 mm) surrounded by air were positioned in the scanner perpendicular to the static field horizontally 20 cm off-center. During the execution of a sequence (three-dimensional [3D] true fast imaging with steady precession [True-FISP], TR = 6.4 msec) exploiting the gradient capabilities (maximum gradient = 40 mT/m, maximum slew rate = 200 T/m/second), heating was measured with an infrared camera. Radio frequency (RF) amplitude was set to zero volts. Heating of a copper frame with a narrowing to 1 mm over 20 mm at one side was examined in air and in addition surrounded by several liters of gelled saline using fiber-optic thermography. Further heating studies were performed using an artificial hip made of titanium, and an aluminum replica of the hip prosthesis with the same geometry. For the copper specimens, considerable heating (>10 degrees C) in air and in gelled saline (>1.2 degrees C) could be observed. Heating of the titanium specimens was markedly less ( approximately 1 degrees C in air). For the titanium artificial hip no heating could be detected, while the rise in temperature for the aluminum replica was approximately 2.2 degrees C. Heating of more than 10 degrees C solely due to gradient switching without any RF irradiation was demonstrated in isolated copper wire frames. Under specific conditions (high gradient duty cycle, metallic loop of sufficient inductance and low resistance, power matching) gradient switching-induced heating of conductive specimens must be considered.
Role of thermal resistance on the performance of superconducting radio frequency cavities
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2017-03-07
Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less
Role of thermal resistance on the performance of superconducting radio frequency cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Variable frequency matching to a radiofrequency source immersed in vacuum
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Bish, A.
2013-09-01
A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882-14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters.
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
Investigation of the RF efficiency of inductively coupled hydrogen plasmas at 1 MHz
NASA Astrophysics Data System (ADS)
Rauner, D.; Mattei, S.; Briefi, S.; Fantz, U.; Hatayama, A.; Lettry, J.; Nishida, K.; Tran, M. Q.
2017-08-01
The power requirements of RF heated sources for negative hydrogen ions in fusion are substantial, which poses strong demands on the generators and components of the RF circuit. Consequently, an increase of the RF coupling efficiency would be highly beneficial. Fundamental investigations of the RF efficiency in inductively coupled hydrogen and deuterium discharges in cylindrical symmetry are conducted at the lab experiment CHARLIE. The experiment is equipped with several diagnostics including optical emission spectroscopy and a movable floating double probe to monitor the plasma parameters. The presented investigations are performed in hydrogen at a varying pressure between 0.3 and 10 Pa, utilizing a conventional helical ICP coil driven at a frequency of 1 MHz and a fixed power of 520 W for plasma generation. The coupling efficiency is strongly affected by the variation in pressure, reaching up to 85 % between 1 and 3 Pa while dropping down to only 50 % at 0.3 Pa, which is the relevant operating pressure for negative hydrogen ion sources for fusion. Due to the lower power coupling, also the measured electron density at 0.3 Pa is only 5 . 1016 m-3, while it reaches up to 2.5 . 1017 m-3 with increasing coupling efficiency. In order to gain information on the spatially resolved aspects of RF coupling and plasma heating which are not diagnostically accessible, first simulations of the discharge by an electromagnetic Particle-In-Cell Monte Carlo collision method have been conducted and are compared to the measurement data. At 1 Pa, the simulated data corresponds well to the results of both axially resolved probe measurements and radially resolved emission profiles obtained via OES. Thereby, information regarding the radial distribution of the electron density and mean energy is provided, revealing a radial distribution of the electron density which is well described by a Bessel profile.
A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging
Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.
2016-01-01
Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977
The development of data acquisition and processing application system for RF ion source
NASA Astrophysics Data System (ADS)
Zhang, Xiaodan; Wang, Xiaoying; Hu, Chundong; Jiang, Caichao; Xie, Yahong; Zhao, Yuanzhe
2017-07-01
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi-threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
Du, Xiangying; Qiu, Bensheng; Zhan, Xiangcan; Kolmakova, Antonina; Gao, Fabao; Hofmann, Lawrence V; Cheng, Linzhao; Chatterjee, Subroto; Yang, Xiaoming
2005-09-01
To evaluate the feasibility of radiofrequency (RF)-enhanced vascular gene transduction and expression by using a magnetic resonance (MR) imaging-heating guidewire as an intravascular heating vehicle during MR imaging-guided therapy. The institutional committee for animal care and use approved the experimental protocol. The study included in vitro evaluation of the use of RF energy to enhance gene transduction and expression in vascular cells, as well as in vivo validation of the feasibility of intravascular MR imaging-guided RF-enhanced vascular gene transduction and expression in pig arteries. For in vitro experiments, approximately 10(4) vascular smooth muscle cells were seeded in each of four chambers of a cell culture plate. Next, 1 mL of a green fluorescent protein gene (gfp)-bearing lentivirus was added to each chamber. Chamber 4 was heated at approximately 41 degrees C for 15 minutes by using an MR imaging-heating guidewire connected to a custom RF generator. At day 6 after transduction, the four chambers were examined and compared at confocal microscopy to determine the efficiency of gfp transduction and expression. For the in vivo experiments, a lentivirus vector bearing a therapeutic gene, vascular endothelial growth factor 165 (VEGF-165), was transferred by using a gene delivery balloon catheter in 18 femoral-iliac arteries (nine artery pairs) in domestic pigs and Yucatan pigs with atherosclerosis. During gene infusion, one femoral-iliac artery in each pig was heated to approximately 41 degrees C with RF energy transferred via the intravascular MR imaging-heating guidewire, while the contralateral artery was not heated (control condition). At day 6, the 18 arteries were harvested for quantitative Western blot analysis to compare VEGF-165 transduction and expression efficiency between RF-heated and nonheated arterial groups. Confocal microscopy showed gfp expression in chamber 4 that was 293% the level of expression in chamber 1 (49.6% +/- 25.8 vs 16.8% +/- 8.0). Results of Western blot analysis showed VEGF-165 expression for normal arteries in the RF-heated group that was 300% the level of expression in the nonheated group (70.4 arbitrary units [au] +/- 107.1 vs 23.5 au +/- 29.8), and, for atherosclerotic arteries in the RF-heated group, 986% the level in the nonheated group (129.2 au +/- 100.3 vs 13.1 au +/- 4.9). Simultaneous monitoring and enhancement of vascular gene delivery and expression is feasible with the MR imaging-heating guidewire.
Polarity Control and Doping in Aluminum Gallium Nitride
2013-06-01
cooled quartz tube and a radio frequency (RF-)induction heated SiC coated graphite susceptor. Growth temperatures of 500–1250°C can be attained. The...will be discussed in the following. Lateral polar structures used in Chapter 4 for second harmonic generation were patterned into microns-wide stripes ...lateral polar structures. The second step included the patterning of the AlN nucleation layer into periodic stripes or circles by lithography and
Current Status and Perspectives of Hyperthermia in Cancer Therapy
NASA Astrophysics Data System (ADS)
Hiraoka, Masahiro; Nagata, Yasushi; Mitsumori, Michihide; Sakamoto, Masashi; Masunaga, Shin-ichiro
2004-08-01
Clinical trials of hyperthermia in combination with radiation therapy or chemotherapy undertaken over the past decades in Japan have been reviewed. Originally developed heating devices were mostly used for these trials, which include RF (radiofrequency) capacitive heating devices, a microwave heating device with a lens applicator, an RF intracavitary heating device, an RF current interstitial heating device, and ferromagnetic implant heating device. Non-randomized trials for various cancers, demonstrated higher response rate in thermoradiotherapy than in radiotherapy alone. Randomized trials undertaken for esophageal cancers also demonstrated improved local response with the combined use of hyperthermia. Furthermore, the complications associated with treatment were not generally serious. These clinical results indicate the benefit of combined treatment of hyperthermia and radiotherapy for various malignancies. On the other hand, the presently available heating devices are not satisfactory from the clinical viewpoints. With the advancement of heating and thermometry technologies, hyperthermia will be more widely and safely used in the treatment of cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Changjuan; Huang Zhengxu; Gao Wei
2008-01-15
We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with thismore » instrument.« less
Elman, Monica; Vider, Itzhak; Harth, Yoram; Gottfried, Varda; Shemer, Avner
2010-04-01
Abstract The last few years have shown an increased demand for non-invasive skin tightening to improve body contour. Since light (lasers or intense pulsed light sources) has a limited ability to penetrate deep into the tissue, radio frequency (RF) modalities were introduced for the reduction of lax skin to achieve skin tightening and body circumference reduction. This study presents the use of the novel 3DEEP technology for body contouring. 3DEEP is a next generation RF technology that provides targeted heating to deeper skin layers without pain or other local or systemic side effects associated with the use of the earlier generation RF systems available today. The study included 30 treatment areas on 23 healthy volunteers at two sites. The treatment protocol included four weekly and two bi-weekly (n= 6) treatments on different body areas. Results were evaluated by standardized photography and by circumference measurements at the treatment area, and were compared to changes in body weight. Significant improvement could be observed in wrinkles and skin laxity, and in the appearance of stretch marks and cellulite. Some changes appeared as early as after a single treatment. Circumference changes of up to 4.3 cm were measured.
Magnetic Resonance Mediated Radiofrequency Ablation.
Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L
2018-02-01
To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.
Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.
McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Ripley, Edward B [Knoxville, TN
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
Status and operation of the Linac4 ion source prototypes
NASA Astrophysics Data System (ADS)
Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.
2014-02-01
CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.
Production of high-density highly-ionized helicon plasmas in the ProtoMPEX
NASA Astrophysics Data System (ADS)
Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.
2017-10-01
High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Mailankot, Maneesh; Kunnath, Anil P; Jayalekshmi, H; Koduru, Bhargav; Valsalan, Rohith
2009-01-01
INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10–12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility. PMID:19578660
Auxiliary coil controls temperature of RF induction heater
NASA Technical Reports Server (NTRS)
1966-01-01
Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST
NASA Astrophysics Data System (ADS)
Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.
2017-08-01
An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.
Vicente-Pérez, Ricardo; Avendaño-Reyes, Leonel; Mejía-Vázquez, Ángel; Álvarez-Valenzuela, F Daniel; Correa-Calderón, Abelardo; Mellado, Miguel; Meza-Herrera, Cesar A; Guerra-Liera, Juan E; Robinson, P H; Macías-Cruz, Ulises
2016-01-01
Rectal temperature (RT) is the foremost physiological variable indicating if an animal is suffering hyperthermia. However, this variable is traditionally measured by invasive methods, which may compromise animal welfare. Models to predict RT have been developed for growing pigs and lactating dairy cows, but not for pregnant heat-stressed ewes. Our aim was to develop a prediction equation for RT using non-invasive physiological variables in pregnant ewes under heat stress. A total of 192 records of respiratory frequency (RF) and hair coat temperature in various body regions (i.e., head, rump, flank, shoulder, and belly) obtained from 24 Katahdin × Pelibuey pregnant multiparous ewes were collected during the last third of gestation (i.e., d 100 to lambing) with a 15 d sampling interval. Hair coat temperatures were taken using infrared thermal imaging technology. Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equations. All predictor variables were positively correlated (P<0.01; r=0.59-0.67) with RT. The adjusted equation which best predicted RT (P<0.01; Radj(2)=56.15%; CV=0.65%) included as predictors RF and head and belly temperatures. Comparison of predicted and observed values for RT indicates a suitable agreement (P<0.01) between them with moderate accuracy (Radj(2)=56.15%) when RT was calculated with the adjusted equation. In general, the final equation does not violate any assumption of multiple regression analysis. The RT in heat-stressed pregnant ewes can be predicted with an adequate accuracy using non-invasive physiologic variables, and the final equation was: RT=35.57+0.004 (RF)+0.067 (heat temperature)+0.028 (belly temperature). Copyright © 2015 Elsevier Ltd. All rights reserved.
Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.
Fazal, Sajid; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy
2017-08-30
This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl 2 , which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.
Microstrip-antenna design for hyperthermia treatment of superficial tumors.
Montecchia, F
1992-06-01
Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative conditions: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicate that: i) the operating frequency is either single or multiple according to the applicator-mode, "resonant" or "traveling-wave," and can be chosen in the useful frequency range for hyperthermia (200-1000 MHz) according to the tumor cross-section and depth; ii) the heating pattern flexibility increases going from the simple geometry disk to the annular-slot and spiral applicators; iii) a distilled-water bolus is required; iv) the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance.
Variable Specific Impulse Magnetoplasma Rocket Engine
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R. (Inventor)
2002-01-01
An engine is disclosed, including a controllable output plasma generator, a controllable heater for selectably raising a temperature of the plasma connected to an outlet of the plasma generator, and a nozzle connected to an outlet of the heater, through which heated plasma is discharged to provide thrust. In one embodiment, the source of plasma is a helicon generator. In one embodiment, the heater is an ion cyclotron resonator. In one embodiment, the nozzle is a radially diverging magnetic field disposed on a discharge side of the heater so that helically travelling particles in the beater exit the heater at high axial velocity. A particular embodiment includes control circuits for selectably directing a portion of radio frequency power from an RF generator to the helicon generator and to the cyclotron resonator so that the thrust output and the specific impulse of the engine can be selectively controlled. A method of propelling a vehicle is also disclosed. The method includes generating a plasma, heating said plasma, and discharging the heated plasma through a nozzle. In one embodiment, the nozzle is a diverging magnetic field. In this embodiment, the heating is performed by applying a radio frequency electro magnetic field to the plasma at the ion cyclotron frequency in an axially polarized DC magnetic field.
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
Iterative Methods to Solve Linear RF Fields in Hot Plasma
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2014-10-01
Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.
Real-time two-dimensional temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2009-01-01
We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.
Some Notes on Sparks and Ignition of Fuels
NASA Technical Reports Server (NTRS)
Fisher, Franklin A.
2000-01-01
This report compliments a concurrent analysis of the electromagnetic field threat to the fuel system of a transport aircraft. The accompanying effort assessed currents, voltages and power levels that may be induced upon fuel tank wiring from radio transmitters (inside and outside the aircraft). In addition to this, it was also essential to determine how much voltage, current, or power is required to create a fuel-vapor ignition hazard. The widely accepted minimum guideline for aircraft fuel-vapor ignition is the application of a 0.2 millijoule energy level. However, when considering radio frequency (RF) sources, this guideline is seriously inadequate. This report endeavors to bridge the gap between a traditional understanding of electrical breakdown, heating and combustion; and supplement the knowledge with available information regarding aircraft fuel-vapor ignition by RF sources
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; ...
2015-12-17
Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less
NASA Astrophysics Data System (ADS)
Vickers, H.; Baddeley, L.
2011-11-01
RF heating of the F region plasma at high latitudes has long been known to produce electron temperature increases that can vary from tens to hundreds of percent above the background, unperturbed level. In contrast, artificial ionospheric modification experiments conducted using the Space Plasma Exploration by Active Radar (SPEAR) heating facility on Svalbard have often failed to produce obvious enhancements in the electron temperatures when measured using the European Incoherent Scatter Svalbard radar (ESR), colocated with the heater. Contamination of the ESR ion line spectra by the zero-frequency purely growing mode (PGM) feature is known to persist at varying amplitudes throughout SPEAR heating, and such spectral features can lead to significant temperature underestimations when the incoherent scatter spectra are analyzed using conventional methods. In this study, we present the first results of applying a recently developed technique to correct the PGM-contaminated spectra to SPEAR-enhanced ESR spectra and derive an alternative estimate of the SPEAR-heated electron temperature. We discuss how the effectiveness of the spectrum corrections can be affected by the data variance, estimated over the integration period. The subsequent electron temperatures, inferred from corrected spectra, range from a few tens to a few hundred Kelvin above the average background temperature. These temperatures are found to be in reasonable agreement with the theoretical “enhanced” temperature, calculated for the peak of the stationary temperature perturbation profile, when realistic absorption effects are accounted for.
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
Resonance properties of the biological objects in the RF field
NASA Astrophysics Data System (ADS)
Cocherova, E.; Kupec, P.; Stofanik, V.
2011-12-01
Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called "resonance frequency". The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.
Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.
Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd
2008-01-01
Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913
Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team
2017-10-01
Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.
New ion trap for atomic frequency standard applications
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Dick, G. J.; Maleki, L.
1989-01-01
A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.
Shrinkable sleeve eliminates shielding gap in RF cable
NASA Technical Reports Server (NTRS)
1965-01-01
RF shielding gap between an RF cable and a multipin connector is eliminated by a sleeve assembly installed between the connector and the terminated portion of the shielding. The assembly is enclosed in a heat-shrinkable plastic sleeve which completes the continuous RF shield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Ionascu, D; Wilson, G
2014-06-01
Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less
Heart rate variability affected by radiofrequency electromagnetic field in adolescent students.
Misek, Jakub; Belyaev, Igor; Jakusova, Viera; Tonhajzerova, Ingrid; Barabas, Jan; Jakus, Jan
2018-05-01
This study examines the possible effect of radiofrequency (RF) electromagnetic fields (EMF) on the autonomic nervous system (ANS). The effect of RF EMF on ANS activity was studied by measuring heart rate variability (HRV) during ortho-clinostatic test (i.e., transition from lying to standing and back) in 46 healthy grammar school students. A 1788 MHz pulsed wave with intensity of 54 ± 1.6 V/m was applied intermittently for 18 min in each trial. Maximum specific absorption rate (SAR 10 ) value was determined to 0.405 W/kg. We also measured the respiration rate and estimated a subjective perception of EMF exposure. RF exposure decreased heart rate of subjects in a lying position, while no such change was seen in standing students. After exposure while lying, a rise in high frequency band of HRV and root Mean Square of the Successive Differences was observed, which indicated an increase in parasympathetic nerve activity. Tympanic temperature and skin temperature were measured showing no heating under RF exposure. No RF effect on respiration rate was observed. None of the tested subjects were able to distinguish real exposure from sham exposure when queried at the end of the trial. In conclusion, short-term RF EMF exposure of students in a lying position during the ortho-clinostatic test affected ANS with significant increase in parasympathetic nerve activity compared to sham exposed group. Bioelectromagnetics. 39:277-288, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François
The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatiblemore » with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.« less
Characterization of an Outdoor Ambient Radio Frequency Environment
2016-02-16
radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating
NASA Astrophysics Data System (ADS)
Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.
2001-10-01
A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.
Ion Cyclotron Heating on Proto-MPEX
NASA Astrophysics Data System (ADS)
Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.
2016-10-01
Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.; Krishnagopal, S.
2011-12-01
Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.
NASA Astrophysics Data System (ADS)
Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.
2015-01-01
Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.
Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David
2010-09-27
We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.
Frequency-locked chaotic opto-RF oscillator.
Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc
2016-06-15
A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.
NASA Astrophysics Data System (ADS)
Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.
2018-01-01
This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.
Retrospective analysis of RF heating measurements of passive medical implants.
Song, Ting; Xu, Zhiheng; Iacono, Maria Ida; Angelone, Leonardo M; Rajan, Sunder
2018-05-09
The test reports for the RF-induced heating of metallic devices of hundreds of medical implants have been provided to the U.S. Food and Drug Administration as a part of premarket submissions. The main purpose of this study is to perform a retrospective analysis of the RF-induced heating data provided in the reports to analyze the trends and correlate them with implant geometric characteristics. The ASTM-based RF heating test reports from 86 premarket U.S. Food and Drug Administration submissions were reviewed by three U.S. Food and Drug Administration reviewers. From each test report, the dimensions and RF-induced heating values for a given whole-body (WB) specific absorption rate (SAR) and local background (LB) SAR were extracted and analyzed. The data from 56 stents were analyzed as a subset to further understand heating trends and length dependence. For a given WB SAR, the LB/WB SAR ratio varied significantly across the test labs, from 2.3 to 11.3. There was an increasing trend on the temperature change per LB SAR with device length. The maximum heating for stents occurred at lengths of approximately 100 mm at 3 T, and beyond 150 mm at 1.5 T. Differences in the LB/WB SAR ratios across testing labs and various MRI scanners could lead to inconsistent WB SAR labeling. Magnetic resonance (MR) conditional labeling based on WB SAR should be derived from a conservative estimate of global LB/WB ratios. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Microwave transmission efficiency and simulations of electron plasma in ELTRAP device
NASA Astrophysics Data System (ADS)
Ikram, M.; Mushtaq, A.; Ali, S.
2017-11-01
A Thomson backscattering experiment has been performed in a Penning-Malmberg device ELTRAP. To estimate the minimum sensitivity of diagnostics, we have computed the signal to noise ratio and found that the present bunch has a number density of 4.3 × 108 cm-3, which is three orders of magnitude less than the desired density of 1011 cm-3. To increase the signal level from the RF studies to the GHz range, the transmission efficiency from the rectangular waveguide orthogonally coupled to a prototype circular waveguide was experimentally analyzed on a test-bench. It is observed that the lengths of waveguides play an important role in the transmission efficiency and return loss. When the length of the optimum rectangular waveguide (>2 λg = 31 cm) is reduced to 7 cm, due to geometrical constraints of the ELTRAP device, consequently, the transmission efficiency is also reduced and shifts away from the maximum 3 GHz operating frequency. The useful frequency band is then reduced with the increasing length of the prototype circular waveguide (102 cm). Using the electromagnetic Particle-In-Cell simulations involving the electron cyclotron resonance heating (ECRH), we have utilized a magnetic field of 0.1 T resonating with 2.8 GHz RF drive during each time step (1 ps) having the power level of 0.04 V to the middle and to the end of the trap. A more efficient increase in the radial and azimuthal temperature profiles is observed as compared to the axial temperature profile. The reason is the use of ECRH to heat electrons in cyclotron motion, which is completely kinetic and magnetron motion which is almost entirely potential based. The axial motion interchanges in between the kinetic and potential with a slight enhancement in axial motion to maintain the total canonical angular momentum conserved. The temperature profile of the confined electron plasma increases with the variation of densities from 5 × 107 m-3 to 1012 m-3. The major heating effect occurs when the RF power is injected from the position close to one end with respect to the middle position of the trap.
[Percutaneous radiofrequency ablation of osteoid osteomas: technique and results].
Bruners, P; Penzkofer, T; Günther, R W; Mahnken, A
2009-08-01
Osteoid osteoma is a benign primary bone tumor that typically occurs in children and young adults. Besides local pain, which is often worse at night, prompt relief due to medication with acetylsalicylic acid (ASS) is characteristic for this bone lesion. Because long-term medication with ASS does not represent an alternative treatment strategy due to its potentially severe side effects, different minimally invasive image-guided techniques for the therapy of osteoid osteoma have been developed. In this context radiofrequency (RF) ablation in particular has become part of the clinical routine. The technique and results of image-guided RF ablation are compared to alternative treatment strategies. Using this technique, an often needle-shaped RF applicator is percutaneously placed into the tumor under image guidance. Then a high-frequency alternating current is applied by the tip of the applicator which leads to ionic motion within the tissue resulting in local heat development and thus in thermal destruction of the surrounding tissue including the tumor. The published primary and secondary success rates of this technique are 87 and 83 %, respectively. Surgical resection and open curettage show comparable success rates but are associated with higher complication rates. In addition image-guided RF ablation of osteoid osteomas is associated with low costs. In conclusion image-guided RF ablation can be considered the gold standard for the treatment of osteoid osteoma.
Plasma source development for fusion-relevant material testing
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...
2017-05-01
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Plasma source development for fusion-relevant material testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
2010-01-01
high-speed flows is problematic due to their low forcing frequency (for mechanical actuators) and low forcing amplitude (for piezo actuators...very low fraction of DC power is coupled to the actuators (5-10%), with the rest of the power dissipated in massive ballast resistors acting as heat... resistors . The use of high-power resistors also significantly increases the weight and size of the plasma generator and makes scaling to a large number of
The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device
2011-11-01
stack between the GaN and Substrate layers. The University of Bristol recently reported that this TBR in commercial devices on Silicon Carbide ( SiC ...Circuit RF Radio Frequency PA Power Amplifier SiC Silicon Carbide FEA Finite Element Analysis heff Effective Heat transfer Coefficient (W/m 2 K...substrate material switched from sapphire to silicon , and by another factor of two from silicon to SiC . TABLE 1: SAMPLE RESULTS FROM DOUGLAS ET AL. FOR
Recent Upgrades and Extensions of the ASDEX Upgrade ECRH System
NASA Astrophysics Data System (ADS)
Wagner, Dietmar; Stober, Jörg; Leuterer, Fritz; Monaco, Francesco; Münich, Max; Schmid-Lorch, Dominik; Schütz, Harald; Zohm, Hartmut; Thumm, Manfred; Scherer, Theo; Meier, Andreas; Gantenbein, Gerd; Flamm, Jens; Kasparek, Walter; Höhnle, Hendrik; Lechte, Carsten; Litvak, Alexander G.; Denisov, Gregory G.; Chirkov, Alexey; Popov, Leonid G.; Nichiporenko, Vadim O.; Myasnikov, Vadim E.; Tai, Evgeny M.; Solyanova, Elena A.; Malygin, Sergey A.
2011-03-01
The multi-frequency Electron Cyclotron Heating (ECRH) system at the ASDEX Upgrade tokamak employs depressed collector gyrotrons, step-tunable in the range 105-140 GHz. The system is equipped with a fast steerable launcher allowing for remote steering of the ECRH RF beam during the plasma discharge. The gyrotrons and the mirrors are fully integrated in the discharge control system. The polarization can be controlled in a feed-forward mode. 3 Sniffer probes for millimeter wave stray radiation detection have been installed.
The Pelleve procedure: an effective method for facial wrinkle reduction and skin tightening.
Stampar, Michael
2011-05-01
Devices using radiofrequency (RF) energy and electrical energy to deliver a controlled thermal injury to heat skin have proliferated within the nonablative skin treatment market since the introduction of Thermage in 2002. By delivering continuous monopolar RF energy, rather than pulsed heating, and repeatedly bringing the skin to therapeutic temperatures until maximal contraction is obtained, the Pelleve Procedure can give obvious cosmetic results confluently over all treated areas painlessly and with no downtime. In this article, the technique, mechanism of continuous RF heating, and apparent treatment requirements to produce these results are presented. Some controversies are also addressed. Copyright © 2011 Elsevier Inc. All rights reserved.
Jarrard, Jerry; Wizeman, Bill; Brown, Robert H; Mitzner, Wayne
2010-11-27
Bronchial thermoplasty is a novel technique designed to reduce an airway's ability to contract by reducing the amount of airway smooth muscle through controlled heating of the airway wall. This method has been examined in animal models and as a treatment for asthma in human subjects. At the present time, there has been little research published about how radiofrequency (RF) energy and heat is transferred to the airways of the lung during bronchial thermoplasty procedures. In this manuscript we describe a computational, theoretical model of the delivery of RF energy to the airway wall. An electro-thermal finite-element-analysis model was designed to simulate the delivery of temperature controlled RF energy to airway walls of the in vivo lung. The model includes predictions of heat generation due to RF joule heating and transfer of heat within an airway wall due to thermal conduction. To implement the model, we use known physical characteristics and dimensions of the airway and lung tissues. The model predictions were tested with measurements of temperature, impedance, energy, and power in an experimental canine model. Model predictions of electrode temperature, voltage, and current, along with tissue impedance and delivered energy were compared to experiment measurements and were within ± 5% of experimental averages taken over 157 sample activations.The experimental results show remarkable agreement with the model predictions, and thus validate the use of this model to predict the heat generation and transfer within the airway wall following bronchial thermoplasty. The model also demonstrated the importance of evaporation as a loss term that affected both electrical measurements and heat distribution. The model predictions showed excellent agreement with the empirical results, and thus support using the model to develop the next generation of devices for bronchial thermoplasty. Our results suggest that comparing model results to RF generator electrical measurements may be a useful tool in the early evaluation of a model.
Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736
Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudino, N., E-mail: natalia.gudino@nih.gov; Sonmez, M.; Nielles-Vallespin, S.
2015-01-15
Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, amore » minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating reduction of the guidewire were successfully performed in vivo with the proposed hardware and phase control. Conclusions: Phantom and in vivo data demonstrated that additional degrees of freedom in a parallel transmission system can be used to control RF induced heating in long conductors. A novel constrained optimization approach to reduce device heating was also presented that can be run in just few seconds and therefore could be added to an iMRI protocol to improve RF safety.« less
NASA Astrophysics Data System (ADS)
Rybyanets, A. N.; Naumenko, A. A.
The paper introduces an innovative combinational treatment method based on ultrasonic standing waves (USW) technology for noninvasive surgical, therapeutic, lypolitic or cosmetic treatment of tissues including subcutaneous adipose tissue, cellulite or skin on arbitrary body part of patient. The method is based on simultaneous or successive applying of constructively interfering physically and biologically sensed influences: USW, ultrasonic shear waves, radio-frequency (RF) heating, and vacuum massage. The paper provides basic physical principles of USW as well as critical comparison of USW and HIFU methods. The results of finite-elements and finite- difference modeling of USW transducer design and nodal pattern structure in tissue are presented. Biological effects of USW-tissue interaction and synergetic aspects of USW and RF combination are explored. Combinational treatment transducer designs and original in-vitro experiments on tissues are described.
Numerical models of cell death in RF ablation with monopolar and bipolar probes
NASA Astrophysics Data System (ADS)
Bright, Benjamin M.; Pearce, John A.
2013-02-01
Radio frequency (RF) is used clinically to treat unresectible tumors. Finite element modeling has proven useful in treatment planning and applicator design. Typically isotherms in the middle 50s °C have been used as the parameter of assessment in these models. We compare and contrast isotherms for multiple known Arrhenius thermal damage predictors including collagen denaturation, vascular disruption, liver coagulation and cell death. Models for RITA probe geometries are included in the study. Comparison to isotherms is sensible when the activation time is held constant, but varies considerably when heating times vary. The purpose of this paper is to demonstrate the importance of looking at specific processes and keeping track of the methods used to derive the Arrhenius coefficients in order to study the extremely complex cell death processes due to thermal therapies.
ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor
NASA Astrophysics Data System (ADS)
Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun
2017-10-01
Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.
Schmidtmann, Gunnar; Kingdom, Frederick A A
2017-05-01
Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conceptual design of the EU DEMO EC-system: main developments and R&D achievements
NASA Astrophysics Data System (ADS)
Granucci, G.; Aiello, G.; Alberti, S.; Avramidis, K. A.; Braunmüller, F.; Bruschi, A.; Chelis, J.; Franck, J.; Figini, L.; Gantenbein, G.; Garavaglia, S.; Grossetti, G.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Kalaria, P.; Latsas, G.; Moro, A.; Pagonakis, I. Gr.; Peponis, D.; Poli, E.; Rispoli, N.; Rzesnicki, T.; Scherer, T.; Strauss, D.; Thumm, M.; Tigelis, I.; Tsironis, C.; Wu, C.; Franke, T.; Tran, M. Q.
2017-11-01
For the development of a DEMOnstration Fusion Power Plant the design of auxiliary heating systems is a key activity in order to achieve controlled burning plasma. The present heating mix considers electron cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) with a target power to the plasma of about 50 MW for each system. The main tasks assigned to the EC system are plasma breakdown and assisted start-up, heating to L-H transition and plasma current ramp up to burn, MHD stability control and assistance in plasma current ramp down. The consequent requirements are used for the conceptual design of the EC system, from the RF source to the launcher, with an extensive R&D program focused on relevant technologies to be developed. Gyrotron: the R&D and Advanced Developments on EC RF sources are targeting for gyrotrons operating at 240 GHz, considered as optimum EC Current Drive frequency in case of higher magnetic field than for the 2015 EU DEMO1 baseline. Multi-purpose (multi-frequency) and frequency step-tunable gyrotrons are under investigation to increase the flexibility of the system. As main targets an output power of significantly above 1 MW (target: 2 MW) and a total efficiency higher than 60% are set. The principle feasibility at limits of a 236 GHz, conventional-cavity and, alternatively, of a 238 GHz coaxial-cavity gyrotron are under investigation together with the development of a synthetic diamond Brewster-angle window technology. Advanced developments are on-going in the field of multi-stage depressed collector technologies. Transmission line (TL): different TL options are under investigation and a preliminary study of an evacuated quasi-optical multiple-beam TL, considered for a hybrid solution, is presented and discussed in terms of layout, dimensions and theoretical losses. Launcher: remote steering antennas have been considered as a possible launcher solution especially under the constraints to avoid movable mirrors close to the plasma. With dedicated beam tracing calculations, the deposition locations coverage and the wave absorption efficiency have been investigated, considering a selection of frequencies, injection angles and launching points. An option for the EC system structure is proposed in clusters, in order to allow the necessary redundancy and flexibility to guarantee the required EC power in the different phases of the plasma pulse. Number and composition of the clusters are analysed to have high availability and therefore maximum reliability with a minimum number of components.
Measurements and modeling of radio frequency field structures in a helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. A.; Chen, Guangye; Arefiev, A. V.
2011-01-01
Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.
Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H
2012-02-01
The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.
Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma
Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.
1988-01-01
A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.
NASA Astrophysics Data System (ADS)
Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Störi, H.
2012-02-01
The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H- volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e- and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H- ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H- ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.
Sucrose modulation of radiofrequency-induced heating rates and cell death.
Pulikkathara, Merlyn; Mark, Colette; Kumar, Natasha; Zaske, Ana Maria; Serda, Rita E
2017-09-01
Applied radiofrequency (RF) energy induces hyperthermia in tissues, facilitating vascular perfusion This study explores the impact of RF radiation on the integrity of the luminal endothelium, and then predominately explores the impact of altering the conductivity of biologically-relevant solutions on RF-induced heating rates and cell death. The ability of cells to survive high sucrose (i.e. hyperosmotic conditions) to achieve lower conductivity as a mechanism for directing hyperthermia is evaluated. RF radiation was generated using a capacitively-coupled radiofrequency system operating at 13.56 MHz. Temperatures were recorded using a FLIR SC 6000 infrared camera. RF radiation reduced cell-to-cell connections among endothelial cells and altered cell morphology towards a more rounded appearance at temperatures reported to cause in vivo vessel deformation. Isotonic solutions containing high sucrose and low levels of NaCl displayed low conductivity and faster heating rates compared to high salt solutions. Heating rates were positively correlated with cell death. Addition of sucrose to serum similarly reduced conductivity and increased heating rates in a dose-dependent manner. Cellular proliferation was normal for cells grown in media supplemented with 125 mM sucrose for 24 hours or for cells grown in 750 mM sucrose for 10 minutes followed by a 24 h recovery period. Sucrose is known to form weak hydrogen bonds in fluids as opposed to ions, freeing water molecules to rotate in an oscillating field of electromagnetic radiation and contributing to heat induction. The ability of cells to survive temporal exposures to hyperosmotic (i.e. elevated sucrose) conditions creates an opportunity to use sucrose or other saccharides to selectively elevate heating in specific tissues upon exposure to a radiofrequency field.
Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells
NASA Astrophysics Data System (ADS)
Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.
1988-02-01
Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazinette, R.; SIAME, Université de Pau et des Pays de l'Adour, Pau; Paillol, J.
The aim of this paper is to better understand the transition from Townsend to radio-frequency homogeneous dielectric barrier discharge (DBD) at atmospheric pressure. The study is done in an Ar/NH{sub 3} Penning mixture for an electrode configuration adapted to roll-to-roll plasma surface treatment. The study was led in a frequency range running from 50 kHz up to 8.3 MHz leading to different DBD modes with a 1 mm gas gap: Glow (GDBD), Townsend (TDBD), and Radio-frequency (RF-DBD). In the frequency range between TDBD and RF-DBD, from 250 kHz to 2.3 MHz, additional discharges are observed outside the inter-electrode gas gap. Because each high voltagemore » electrode are inside a dielectric barrel, these additional discharges occur on the side of the barrel where the gap is larger. They disappear when the RF-DBD mode is attained in the 1 mm inter-electrode gas gap, i.e., for frequencies equal or higher than 3 MHz. Fast imaging and optical emission spectroscopy show that the additional discharges are radio-frequency DBDs while the inter-electrode discharge is a TDBD. The RF-DBD discharge mode is attained when electrons drift becomes low enough compared to the voltage oscillation frequency to limit electron loss at the anode. To check that the additional discharges are due to a larger gas gap and a lower voltage amplitude, the TDBD/RF-DBD transition is investigated as a function of the gas gap and the applied voltage frequency and amplitude. Results show that the increase in the frequency at constant gas gap or in the gas gap at constant frequency allows to obtain RF-DBD instead of TDBD. At low frequency and large gap, the increase in the applied voltage allows RF-DBD/TDBD transition. As a consequence, an electrode configuration allowing different gap values is a solution to successively have different discharge modes with the same applied voltage.« less
Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team
2016-10-01
Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.
Design of an RF System for Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Kauffold, J. X.; Seltzman, A. H.; Anderson, J. K.; Nonn, P. D.; Forest, C. B.
2010-11-01
Motivated by the possibility of current profile control a 5.5GHz RF system for EBW is being developed. The central component is a standard radar Klystron with 1.2MW peak power and 4μs typical pulse length. Meaningful experiments require RF pulse lengths similar to the characteristic electron confinement times in MST necessitating the creation of a power supply providing 80kV at 40A for 10ms. A low inductance IGBT network switches power at 20kHz from an electrolytic capacitor bank into the primary of a three-phase resonant transformer system that is then rectified and filtered. The system uses three magnetically separate transformers with microcrystalline iron cores to provide suitable volt-seconds and low hysteresis losses. Each phase has a secondary with a large leakage inductance and a parallel capacitor providing a boost ratio greater than 60:1 with a physical turns ratio of 13.5:1. A microprocessor feedback control system varies the drive frequency around resonance to regulate the boost ratio and provide a stable output as the storage bank discharges. The completed system will deliver RF to the plasma boundary where coupling to the Bernstein mode and subsequent heating and current drive can occur.
RF HEATING OF MRI-ASSISTED CATHETER STEERING COILS FOR INTERVENTIONAL MRI
Settecase, Fabio; Hetts, Steven W.; Martin, Alastair J.; Roberts, Timothy P. L.; Bernhardt, Anthony F.; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L.; Kucharzyk, Walter; Wilson, Mark W.
2010-01-01
RATIONALE AND OBJECTIVES To assess magnetic resonance imaging (MRI) radiofrequency (RF) related heating of conductive wire coils used in magnetically steerable endovascular catheters. MATERIALS AND METHODS A 3-axis microcoil was fabricated onto a 1.8 Fr catheter tip. In vitro testing was performed in a 1.5 T MRI system using an agarose gel filled vessel phantom, a transmit/receive body RF coil and a steady state free precession (SSFP) pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from magnet isocenter and varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with SSFP pulse sequence on and off, and under physiologic flow and zero flow conditions. RESULTS In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from magnet isocenter. For a single axis microcoil, maximal temperature increases were 0.73-1.91°C in air and 0.45-0.55°C in saline. In vivo, delayed contrast enhanced MRI revealed no evidence of vascular injury and histopathological sections from the common carotid arteries confirmed the lack of vascular damage. CONCLUSIONS Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. PMID:21075019
Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham
2018-03-01
Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.
The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...
Challenges in Radiofrequency Pasteurization of Shell Eggs: Coagulation Rings.
Lau, Soon Kiat; Thippareddi, Harshavardhan; Jones, David; Negahban, Mehrdad; Subbiah, Jeyamkondan
2016-10-01
A total of 50 different configurations of simple radiofrequency (RF) heating at 27.12 MHz of a shell egg were simulated using a finite element model with the purpose of pasteurizing the egg. Temperature-dependent thermal and dielectric properties of the yolk, albumen, and shell were measured, fitted, and introduced into the model. A regression equation that relates the top electrode voltage to the gap between the electrodes and vertical position of the egg was developed. Simulation and experimental results had good agreement in terms of temperature deviation (root mean squared error ranged from 0.35 °C to 0.48 °C) and both results demonstrated the development of a "coagulation ring" around the air cell. The focused heating near the air cell of the egg prevented pasteurization of the egg due to its impact on quality (coagulation). Analysis of the electric field patterns offered a perspective on how nonuniform RF heating could occur in heterogeneous food products. The results can be used to guide development of RF heating for heterogeneous food products and further development of RF pasteurization of eggs. © 2016 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, M. H.; Gonin, I.; Passarelli, D.
2016-01-22
Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics andmore » Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.« less
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
rf breakdown tests of mm-wave metallic accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-01-06
In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less
Microwave Assisted Helicon Plasmas
NASA Astrophysics Data System (ADS)
McKee, John; Caron, David; Jemiolo, Andrew; Scime, Earl
2017-10-01
The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed in both Ar and He. While small enhancement of ion lines is seen in Ar, ion lines not normally present in He are observed during microwave injection. U.S. National Science Foundation Grant No. PHY-1360278.
History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators
NASA Astrophysics Data System (ADS)
Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.
2016-04-01
This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.
Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.
2016-01-01
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833
Ion cyclotron range of frequencies heating of plasma with small impurity production
Ohkawa, Tihiro
1987-01-01
Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.
UWB multi-burst transmit driver for averaging receivers
Dallum, Gregory E
2012-11-20
A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).
Technical Reports - FY16 Q1 - October-December 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lordi, Vincenzo; Rubenstein, Brenda M.; Ray, Keith G.
2016-01-20
Recent experiments have demonstrated that the frequency dependence of motional heating rates in ion traps can vary dramatically with temperature.1-6 More specifically, it has been shown that, at temperatures below roughly 70 K, heating rates are substantially lower than those observed at temperatures above 70 K.1,2 These observations, combined with experiments that show that ion bombardment may also reduce heating rates,4,5 suggest that one potential source of heating may be the presence of unwanted adatoms on trap surfaces. Based upon this evidence, this past quarter, we have used our previously detailed microscopic model of anomalous heating to study which adatomsmore » may be responsible for the observed temperature-dependent scaling of motional heating rates with frequency. We have also examined the validity of one of the key assumptions in our model - that surface adatom dipoles can be accurately obtained from a variational ansatz - by using more direct DFT calculations of the dipole moments. Our current results suggest that the adatoms potentially responsible for the observed motional heating rates should bind weakly to the electrode surface and likely have a mass that exceeds that of Ne. Preliminary DFT calculations suggest that an analytical adatom dipole model,9 previously used in the ion trap noise literature7 to obtain the dipole as a function of adatom-surface distance, may be insufficiently accurate. Therefore, we are working toward obtaining a tabulation of the distance-dependent dipole for several adsorbates using first principles calculations for more accurate input to the heating model. The accurate calculation of the adatom dipole is important because its fluctuation is what couples to and heats the trapped ion qubit. Future work will focus on calculating the frequency spectra of a variety of hydrocarbons, which should have the binding characteristics identified below as necessary for reproducing experimental results. Upcoming efforts will moreover be directed toward deriving an improved microscopic model of heating which will enable direct comparisons of heating rates with measured ion-surface distances and will more accurately account for experimental parameters such as the trapping frequency, ion-electrode distance, and RF power applied to the electrodes.« less
Sheppard, Asher R; Swicord, Mays L; Balzano, Quirino
2008-10-01
The complexity of interactions of electromagnetic fields up to 10(12) Hz with the ions, atoms, and molecules of biological systems has given rise to a large number of established and proposed biophysical mechanisms applicable over a wide range of time and distance scales, field amplitudes, frequencies, and waveforms. This review focuses on the physical principles that guide quantitative assessment of mechanisms applicable for exposures at or below the level of endogenous electric fields associated with development, wound healing, and excitation of muscles and the nervous system (generally, 1 to 10(2) V m(-1)), with emphasis on conditions where temperature increases are insignificant (<1 K). Experiment and theory demonstrate possible demodulation at membrane barriers for frequencies < or =10 MHz, but not at higher frequencies. Although signal levels somewhat below system noise can be detected, signal-to-noise ratios substantially less than 0.1 cannot be overcome by cooperativity, signal averaging, coherent detection, or by nonlinear dynamical systems. Sensory systems and possible effects on biological magnetite suggest paradigms for extreme sensitivity at lower frequencies, but there are no known radiofrequency (RF) analogues. At the molecular level, vibrational modes are so overdamped by water molecules that excitation of molecular modes below the far infrared cannot occur. Two RF mechanisms plausibly may affect biological matter under common exposure conditions. For frequencies below approximately 150 MHz, shifts in the rate of chemical reactions can be mediated by radical pairs and, at all frequencies, dielectric and resistive heating can raise temperature and increase the entropy of the affected biological system.
Viallon, Magalie; Terraz, Sylvain; Roland, Joerg; Dumont, Erik; Becker, Christoph D; Salomir, Rares
2010-04-01
MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. RF heating in saline gels and in ex vivo tissues was performed with MR-compatible bipolar and monopolar electrodes inside a 1.5 T MR clinical scanner. Ultrasonography simultaneous to PRFS MRT was achieved using a MR-compatible phased-array ultrasonic transducer. PRFS MRT was performed interleaved in three orthogonal planes and compared to measurements from fluoroptic sensors, under low and, respectively, high RFA power levels. Control experiments were performed to isolate the main source of errors in standard PRFS thermometry. Ultrasonography, MRI and digital camera pictures clearly demonstrated generation of bubbles every time when operating the radio frequency equipment at therapeutic powers (> or = 30 W). Simultaneous bimodal (ultrasonography and MRI) monitoring of high power RF heating demonstrated a correlation between the onset of the PRFS-thermometry errors and the appearance of bubbles around the applicator. In an ex vivo study using a bipolar RF electrode under low power level (5 W), the MR measured temperature curves accurately matched the reference fluoroptic data. In similar ex vivo studies when applying higher RFA power levels (30 W), the correlation plots of MR thermometry versus fluoroptic data showed large errors in PRFS-derived temperature (up to 45 degrees C absolute deviation, positive or negative) depending not only on fluoroptic tip position but also on the RF electrode orientation relative to the B0 axis. Regions with apparent decrease in the PRFS-derived temperature maps as much as 30 degrees C below the initial baseline were visualized during RFA high power application. Ex vivo data were corrected assuming a Gaussian dynamic source of susceptibility, centered in the anode/cathode gap of the RF bipolar electrode. After correction, the temperature maps recovered the revolution symmetry pattern predicted by theory and matched the fluoroptic data within 4.5 degrees C mean offset. RFA induces dynamic changes in magnetic bulk susceptibility in biological tissue, resulting in large and spatially dependent errors of phase-subtraction-only PRFS MRT and unexploitable thermal dose maps. These thermometry artifacts were strongly correlated with the appearance of transient cavitation. A first-order dynamic model of susceptibility provided a useful method for minimizing these artifacts in phantom and ex vivo experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.
2015-12-10
Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the Nationalmore » Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes mentioned above.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, Nicola; Jaeger, E. F.; Lau, Cornwall H
2015-01-01
Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the Nationalmore » Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to "conventional" tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes mentioned above.« less
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
Ultra High-Speed Radio Frequency Switch Based on Photonics.
Ge, Jia; Fok, Mable P
2015-11-26
Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
Radio frequency sheaths in an oblique magnetic field
Myra, James R.; D'Ippolito, Daniel A.
2015-06-01
The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less
Experimental study of unipolar arcs in a low pressure mercury discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.T.
1979-12-31
An experimental study of unipolar arcs was conducted in a low pressure mercury discharge inductively heated with RF. The results were found to be consistent with the concept of a sheath mechanism for driving the unipolar arcs. Floating double-probe measurements of the unipolar arc plasma parameters yielded electron temperatures of approx. 2 eV and electron number densities of approx. 1 x 10/sup 11/ cm/sup -3/ assuming quasi-neutral plasma conditions. The variation of the unipolar arc current with: (1) the RF power input; and (2) the metal surface area exposed to the plasma verified the predicted dependence of the arc currentmore » on the plasma parameters and the metal surface area. Finally, alternative mechanisms for sustaining the observed arcs by high frequency rectification were ruled out on the basis of the recorded current waveforms of the unipolar arcs.« less
NASA Astrophysics Data System (ADS)
Li, Shi-na; Ma, Rui-xin; Ma, Chun-hong; Li, Dong-ran; Xiao, Yu-qin; He, Liang-wei; Zhu, Hong-min
2013-05-01
Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10-4Ω·cm-1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm-3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.
Technique for Predicting the RF Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, M.; Reddell, J.
1998-01-01
This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.
Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems
NASA Astrophysics Data System (ADS)
Slotboom, J.
1993-10-01
This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.
Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures
NASA Astrophysics Data System (ADS)
Cahill, Alexander David
Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
T-gate aligned nanotube radio frequency transistors and circuits with superior performance.
Che, Yuchi; Lin, Yung-Chen; Kim, Pyojae; Zhou, Chongwu
2013-05-28
In this paper, we applied self-aligned T-gate design to aligned carbon nanotube array transistors and achieved an extrinsic current-gain cutoff frequency (ft) of 25 GHz, which is the best on-chip performance for nanotube radio frequency (RF) transistors reported to date. Meanwhile, an intrinsic current-gain cutoff frequency up to 102 GHz is obtained, comparable to the best value reported for nanotube RF transistors. Armed with the excellent extrinsic RF performance, we performed both single-tone and two-tone measurements for aligned nanotube transistors at a frequency up to 8 GHz. Furthermore, we utilized T-gate aligned nanotube transistors to construct mixing and frequency doubling analog circuits operated in gigahertz frequency regime. Our results confirm the great potential of nanotube-based circuit applications and indicate that nanotube transistors are promising building blocks in high-frequency electronics.
Plasma production by helicon and slow waves.
Sakawa, Youichi; Kunimatsu, Hiroyuki; Kikuchi, Hideki; Fukui, Yasuaki; Shoji, Tatsuo
2003-03-14
The observation of slow-wave sustained (SW) discharge in a whistler- or helicon-wave range of frequency is made using high-frequency and very-high-frequency bands of rf. The SW discharge occurs at an extremely low rf power and plasma density, which are lower than a capacitive-coupling discharge region.
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Initial operation of high power ICRF system for long pulse in EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.
2015-12-10
The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less
X-ray analysis of electron Bernstein wave heating in MST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.
2016-11-15
A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Nakano, Yudai; Ando, Akira
2017-07-01
A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.
Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas
NASA Astrophysics Data System (ADS)
Kuley, Animesh; Bao, Jian; Lin, Zhihong
2015-11-01
Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.
Estimation of RF energy absorbed in the brain from mobile phones in the Interphone Study.
Cardis, E; Varsier, N; Bowman, J D; Deltour, I; Figuerola, J; Mann, S; Moissonnier, M; Taki, M; Vecchia, P; Villegas, R; Vrijheid, M; Wake, K; Wiart, J
2011-09-01
The objective of this study was to develop an estimate of a radio frequency (RF) dose as the amount of mobile phone RF energy absorbed at the location of a brain tumour, for use in the Interphone Epidemiological Study. We systematically evaluated and quantified all the main parameters thought to influence the amount of specific RF energy absorbed in the brain from mobile telephone use. For this, we identified the likely important determinants of RF specific energy absorption rate during protocol and questionnaire design, we collected information from study subjects, network operators and laboratories involved in specific energy absorption rate measurements and we studied potential modifiers of phone output through the use of software-modified phones. Data collected were analysed to assess the relative importance of the different factors, leading to the development of an algorithm to evaluate the total cumulative specific RF energy (in joules per kilogram), or dose, absorbed at a particular location in the brain. This algorithm was applied to Interphone Study subjects in five countries. The main determinants of total cumulative specific RF energy from mobile phones were communication system and frequency band, location in the brain and amount and duration of mobile phone use. Though there was substantial agreement between categorisation of subjects by cumulative specific RF energy and cumulative call time, misclassification was non-negligible, particularly at higher frequency bands. Factors such as adaptive power control (except in Code Division Multiple Access networks), discontinuous transmission and conditions of phone use were found to have a relatively minor influence on total cumulative specific RF energy. While amount and duration of use are important determinants of RF dose in the brain, their impact can be substantially modified by communication system, frequency band and location in the brain. It is important to take these into account in analyses of risk of brain tumours from RF exposure from mobile phones.
Estimation of RF energy absorbed in the brain from mobile phones in the Interphone Study
Varsier, N; Bowman, J D; Deltour, I; Figuerola, J; Mann, S; Moissonnier, M; Taki, M; Vecchia, P; Villegas, R; Vrijheid, M; Wake, K; Wiart, J
2011-01-01
Objectives The objective of this study was to develop an estimate of a radio frequency (RF) dose as the amount of mobile phone RF energy absorbed at the location of a brain tumour, for use in the Interphone Epidemiological Study. Methods We systematically evaluated and quantified all the main parameters thought to influence the amount of specific RF energy absorbed in the brain from mobile telephone use. For this, we identified the likely important determinants of RF specific energy absorption rate during protocol and questionnaire design, we collected information from study subjects, network operators and laboratories involved in specific energy absorption rate measurements and we studied potential modifiers of phone output through the use of software-modified phones. Data collected were analysed to assess the relative importance of the different factors, leading to the development of an algorithm to evaluate the total cumulative specific RF energy (in joules per kilogram), or dose, absorbed at a particular location in the brain. This algorithm was applied to Interphone Study subjects in five countries. Results The main determinants of total cumulative specific RF energy from mobile phones were communication system and frequency band, location in the brain and amount and duration of mobile phone use. Though there was substantial agreement between categorisation of subjects by cumulative specific RF energy and cumulative call time, misclassification was non-negligible, particularly at higher frequency bands. Factors such as adaptive power control (except in Code Division Multiple Access networks), discontinuous transmission and conditions of phone use were found to have a relatively minor influence on total cumulative specific RF energy. Conclusions While amount and duration of use are important determinants of RF dose in the brain, their impact can be substantially modified by communication system, frequency band and location in the brain. It is important to take these into account in analyses of risk of brain tumours from RF exposure from mobile phones. PMID:21659468
Kubilius, Rokas; Pedersen, Geir
2016-10-01
There is an increased need to detect, identify, and monitor natural and manmade seabed gas leaks. Fisheries echosounders are well suited to monitor large volumes of water and acoustic frequency response [normalized acoustic backscatter, when a measure at one selected frequency is used as a denominator, r(f)] is commonly used to identify echoes from fish and zooplankton species. Information on gas plume r(f) would be valuable for automatic detection of subsea leaks and for separating bubble plumes from natural targets such as swimbladder-bearing fish. Controlled leaks were produced with a specially designed instrument frame suspended in mid-water in a sheltered fjord. The frame was equipped with echosounders, stereo-camera, and gas-release nozzles. The r(f) of laterally observed methane, carbon dioxide, and air plumes (0.040-29 l/min) were measured at 70, 120, 200, and 333 kHz, with bubble sizes determined optically. The observed bubble size range (1-25 mm) was comparable to that reported in the literature for natural cold seeps of methane. A negative r(f) with increasing frequency was observed, namely, r(f) of about 0.7, 0.6, and 0.5 at 120, 200, and 333 kHz when normalized to 70 kHz. Measured plume r(f) is also compared to resolved, single bubble target strength-based, and modeled r(f).
Proposed Cavity for Reduced Slip-Stacking Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, J.; Zwaska, R.
This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we findmore » the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.« less
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Ion Bernstein wave heating research
NASA Astrophysics Data System (ADS)
Ono, Masayuki
1993-02-01
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and nonlinear heating processes have been observed. Interestingly, improvement of plasma confinement was also observed in the PLT and Alcator-C experiments, opening up the possible use of IBW's for the active control of plasma transport. Two theoretical explanations have been proposed: one based on four-wave mixing of IBW with low-frequency turbulence, the other on the nonlinear generation of a velocity-shear layer. Both models are consistent with the observed threshold power level of a few hundred kW in the experiments. Experiments on lower field plasmas on JFTII-M [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 350] and DIII-D [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 314] have raised some concern with the IBW wave-launching process. The experiments showed serious impurity release from the walls but little or no core heating, a combination of circumstances strongly suggestive of edge heating. Possible parasitic channels could include the excitation of short wavelength modes by the Faraday shield's fringing fields, antenna-sheath-wave excitation, an axial-convective loss channel, and nonlinear processes such as parametric instability and ponderomotive effects. Suggested remedies include changes in the antenna phasing, the use of low-Z insulators, operating at higher frequencies, positioning the plasma differently with respect to the antenna, eliminating the Faraday shields, and using a waveguide launcher. The recent JIPPTII-U experiment, employing a 0-π phased antenna array with a higher frequency 130 MHz source, demonstrated that those remedies can indeed work. Looking to the future, one seeks additional ways in which IBWH can improve tokamak performance. The strong ponderomotive potential of the IBWH antenna may be used to stabilize external kinks and, acting as an rf limiter, to control the plasma edge. Control of the plasma pressure profile with local IBWH heating is already an important part of the Princeton Beta Experiment-Modified (PBX-M) [Ninth Topical Conference on Radio-Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] program in its exploration of the second-stability regime. Application of IBWH may also improve the performance of neutral beam heating and the efficiency and localization of lower-hybrid current drive for current profile control. Used with pellet injection, IBWH may also prolong the period of good confinement. The three planned high-power IBWH experiments covering vastly different parameters: f=40-80 MHz for PBX-M; f=130 MHz for JIPPT-II-U; and f=430 MHz for the Frascati Tokamak-Upgrade (FT-U) [16th European Physical Society Conference on Controlled Fusion and Plasma Physics, Venice, Italy, 1989 (European Physical Society, Amsterdam, 1989), Vol. III, p. 1069] appear to be well positioned to explore these possibilities and to clarify other issues including the physics of wave launching and associated nonlinear processes.
Study of RF breakdown and multipacting in accelerator components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in
2014-07-01
Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less
Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying
The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less
Monitoring evolution of HIFU-induced lesions with backscattered ultrasound
NASA Astrophysics Data System (ADS)
Anand, Ajay; Kaczkowski, Peter J.
2003-04-01
Backscattered radio frequency (rf) data from a modified commercial ultrasound scanner were collected in a series of in vitro experiments in which high intensity focused ultrasound (HIFU) was used to create lesions in freshly excised bovine liver tissue. Two signal processing approaches were used to visualize the temporal evolution of lesion formation. First, apparent tissue motion due to temperature rise was detected using cross-correlation techniques. Results indicate that differential processing of travel time can provide temperature change information throughout the therapy delivery phase and after HIFU has been turned off, over a relatively large spatial region. Second, changes in the frequency spectrum of rf echoes due to changes in the scattering properties of the heated region were observed well before the appearance of hyper-echogenic spots in the focal zone. Furthermore, the increase in attenuation in the lesion zone changes the measured backscatter spectrum from regions distal to it along the imaging beam. Both effects were visualized using spectral processing and display techniques that provide a color spatial map of these features for the clinician. Our results demonstrate potential for these ultrasound-based techniques in targeting and monitoring of HIFU therapy, and perhaps post-treatment visualization of HIFU-induced lesions.
Design of low loss helix circuits for interference fitted and brazed circuits
NASA Technical Reports Server (NTRS)
Jacquez, A.
1983-01-01
The RF loss properties and thermal capability of brazed helix circuits and interference fitted circuits were evaluated. The objective was to produce design circuits with minimum RF loss and maximum heat transfer. These circuits were to be designed to operate at 10 kV and at 20 GHz using a gamma a approximately equal to 1.0. This represents a circuit diameter of only 0.75 millimeters. The fabrication of this size circuit and the 0.48 millimeter high support rods required considerable refinements in the assembly techniques and fixtures used on lower frequency circuits. The transition from the helices to the waveguide was designed and the circuits were matched from 20 to 40 GHz since the helix design is a broad band circuit and at a gamma a of 1.0 will operate over this band. The loss measurement was a transmission measurement and therefore had two such transitions. This resulting double-ended match required tuning elements to achieve the broad band match and external E-H tuners at each end to optimize the match for each frequency where the loss measurement was made. The test method used was a substitution method where the test fixture was replaced by a calibrated attenuator.
Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.
2014-06-01
The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
ISM band to U-NII band frequency transverter and method of frequency transversion
Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO
2006-04-04
A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.
ISM band to U-NII band frequency transverter and method of frequency transversion
Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO
2006-09-12
A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.
Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating
Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.
A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.
Theory of ion Bernstein wave induced shear suppression of turbulence
NASA Astrophysics Data System (ADS)
Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.
1994-06-01
The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.
Recent research trends of radio-frequency biosensors for biomolecular detection.
Lee, Hee-Jo; Yook, Jong-Gwan
2014-11-15
This article reviews radio-frequency (RF) biosensors based on passive and/or active devices and circuits. In particular, we focus on RF biosensors designed for detection of various biomolecules such as biotin-streptavidin, DNA hybridization, IgG, and glucose. The performance of these biosensors has been enhanced by the introduction of various sensing schemes with diverse nanomaterials (e.g., carbon nanotubes, graphene oxide, magnetic and gold nanoparticles, etc.). In addition, the RF biosensing platforms that can be associated with an RF active system are discussed. Finally, the challenges of RF biosensors are presented and suggestions are made for their future direction and prospects. Copyright © 2014 Elsevier B.V. All rights reserved.
All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.
Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In
2016-09-05
An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical
Experimental Study of Convective Cells and RF Sheaths Excited by a Fast Wave Antenna in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy; van Eester, Dirk; Crombé, Kristel
2016-10-01
Ion cyclotron resonance heating (ICRH) will be essential for ITER where it is planned to couple 20 MW to the plasma. During ICRH, radio frequency (RF) sheaths may form on the antenna or farther away, and convective cells are suspected to form adjacent to ICRH antennas, negatively affecting both machine and plasma performance. The LAPD (ne 10 12 - 13cm-3 , Te 1-10 eV, B0 0.4 to 2 kG, diameter 60 cm, length 17m) is an ideal device for performing detailed experiments to fully diagnose these phenomena. A 200 kW RF system capable of pulsing at the 1 Hz. rep. rate of the LAPD and operating from 2 to 2.5 MHz has been constructed to perform such studies. B0 can be adjusted so that this encompasses the 1st to 7th harmonic of fci in H plasmas. Emissive, Mach, Langmuir, and B-field probes measured plasma potential, bulk plasma flows, wave patterns, ne, and Te in 2D planes at various axial locations from the antenna. Plasma potential enhancements of up to 90 V along magnetic field lines connected to the antenna and induced ExB flows consistent in structure with convective cells were observed. Details of these observations along with power scaling of RF sheath voltage and convective cell flows will be presented.
NASA Astrophysics Data System (ADS)
Golovin, Yuri I.; Klyachko, Natalia L.; Majouga, Alexander G.; Sokolsky, Marina; Kabanov, Alexander V.
2017-02-01
The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.
Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles
DOT National Transportation Integrated Search
2007-01-26
The Aerospace Corporation was tasked to assess radio frequency (RF) blackout phenomena caused by plasma generation around vehicles during reentry and presently known methodologies for mitigation of this condition inhibiting communications. The purpos...
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
Persaud, A.; Seidl, P. A.; Ji, Q.; ...
2017-10-26
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
New technology based on clamping for high gradient radio frequency photogun
NASA Astrophysics Data System (ADS)
Alesini, David; Battisti, Antonio; Ferrario, Massimo; Foggetta, Luca; Lollo, Valerio; Ficcadenti, Luca; Pettinacci, Valerio; Custodio, Sean; Pirez, Eylene; Musumeci, Pietro; Palumbo, Luigi
2015-09-01
High gradient rf photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. In the present paper we present the design of a new rf photogun recently developed in the framework of the SPARC_LAB photoinjector activities at the laboratories of the National Institute of Nuclear Physics in Frascati (LNF-INFN, Italy). This design implements several new features from the electromagnetic point of view and, more important, a novel technology for its realization that does not involve any brazing process. From the electromagnetic point of view the gun presents high mode separation, low peak surface electric field at the iris and minimized pulsed heating on the coupler. For the realization, we have implemented a novel fabrication design that, avoiding brazing, strongly reduces the cost, the realization time and the risk of failure. Details on the electromagnetic design, low power rf measurements and high power radiofrequency and beam tests performed at the University of California in Los Angeles (UCLA) are discussed in the paper.
NASA Astrophysics Data System (ADS)
Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro
The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Seidl, P. A.; Ji, Q.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI.
Settecase, Fabio; Hetts, Steven W; Martin, Alastair J; Roberts, Timothy P L; Bernhardt, Anthony F; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L; Kucharzyk, Walter; Wilson, Mark W
2011-03-01
The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73°C to 1.91°C in air and 0.45°C to 0.55°C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
Ohira, Takashi; Higashibata, Akira; Seki, Masaya; Kurata, Yoichi; Kimura, Yayoi; Hirano, Hisashi; Kusakari, Yoichiro; Minamisawa, Susumu; Kudo, Takashi; Takahashi, Satoru; Ohira, Yoshinobu; Furukawa, Satoshi
2017-08-01
The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box ( Atrogin-1 ), and muscle RING-finger protein-1 ( MuRF-1 ), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1 , but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α ), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1 α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
NASA Astrophysics Data System (ADS)
Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young
2015-01-01
A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.
Lantow, M; Schuderer, J; Hartwig, C; Simkó, M
2006-01-01
The goal of this study was to investigate whether radiofrequency (RF) electromagnetic-field (EMF) exposure at 1800 MHz causes production of free radicals and/or expression of heat-shock proteins (HSP70) in human immune-relevant cell systems. Human Mono Mac 6 and K562 cells were used to examine free radical release after exposure to incubator control, sham, RF EMFs, PMA, LPS, heat (40 degrees C) or co-exposure conditions. Several signals were used: continuous-wave, several typical modulations of the Global System for Mobile Communications (GSM): GSM-non DTX (speaking only), GSM-DTX (hearing only), GSM-Talk (34% speaking and 66% hearing) at specific absorption rates (SARs) of 0.5, 1.0, 1.5 and 2.0 W/kg. Heat and PMA treatment induced a significant increase in superoxide radical anions and in ROS production in the Mono Mac 6 cells when compared to sham and/or incubator conditions. No significant differences in free radical production were detected after RF EMF exposure or in the respective controls, and no additional effects on superoxide radical anion production were detected after co-exposure to RF EMFs+PMA or RF EMFs+LPS. The GSM-DTX signal at 2 W/kg produced a significant difference in free radical production when the data were compared to sham because of the decreasing sham value. This difference disappeared when data were compared to the incubator controls. To determine the involvement of heat-shock proteins as a possible inhibitor of free radical production, we investigated the HSP70 expression level after different RF EMF exposures; no significant effects were detected.
MR Coagulation: A Novel Minimally Invasive Approach to Aneurysm Repair.
Cohen, Ouri; Zhao, Ming; Nevo, Erez; Ackerman, Jerome L
2017-11-01
To demonstrate a proof of concept of magnetic resonance (MR) coagulation, in which MR imaging scanner-induced radiofrequency (RF) heating at the end of an intracatheter long wire heats and coagulates a protein solution to effect a vascular repair by embolization. MR coagulation was simulated by finite-element modeling of electromagnetic fields and specific absorption rate (SAR) in a phantom. A glass phantom consisting of a spherical cavity joined to the side of a tube was incorporated into a flow system to simulate an aneurysm and flowing blood with velocities of 0-1.7 mL/s. A double-lumen catheter containing the wire and fiberoptic temperature sensor in 1 lumen was passed through the flow system into the aneurysm, and 9 cm 3 of protein solution was injected into the aneurysm through the second lumen. The distal end of the wire was laid on the patient table as an antenna to couple RF from the body coil or was connected to a separate tuned RF pickup coil. A high RF duty-cycle turbo spin-echo pulse sequence excited the wire such that RF energy deposited at the tip of the wire coagulated the protein solution, embolizing the aneurysm. The protein coagulation temperature of 60°C was reached in the aneurysm in ∼12 seconds, yielding a coagulated mass that largely filled the aneurysm. The heating rate was controlled by adjusting pulse-sequence parameters. MR coagulation has the potential to embolize vascular defects by coagulating a protein solution delivered by catheter using MR imaging scanner-induced RF heating of an intracatheter wire. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.
Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald
2011-11-01
MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a reliable, compact, flexible, and relatively safe marker for clinical use.
Thermal Modeling for the Next Generation of Radiofrequency Exposure Limits: Commentary.
Foster, Kenneth R; Ziskin, Marvin C; Balzano, Quirino
2017-07-01
This commentary evaluates two sets of guidelines for human exposure to radiofrequency (RF) energy, focusing on the frequency range above the "transition" frequency at 3-10 GHz where the guidelines change their basic restrictions from specific absorption rate to incident power density, through the end of the RF band at 300 GHz. The analysis is based on a simple thermal model based on Pennes' bioheat equation (BHTE) (Pennes 1948) assuming purely surface heating; an Appendix provides more details about the model and its range of applicability. This analysis suggests that present limits are highly conservative relative to their stated goals of limiting temperature increase in tissue. As applied to transmitting devices used against the body, they are much more conservative than product safety standards for touch temperature for personal electronics equipment that are used in contact with the body. Provisions in the current guidelines for "averaging time" and "averaging area" are not consistent with scaling characteristics of the bioheat equation and should be refined. The authors suggest the need for additional limits on fluence for protection against brief, high intensity pulses at millimeter wave frequencies. This commentary considers only thermal hazards, which form the basis of the current guidelines, and excludes considerations of reported "non-thermal" effects of exposure that would have to be evaluated in the process of updating the guidelines.
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
Enhanced modulation rates via field modulation in spin torque nano-oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.
Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less
Ji, Yiyi; Hoffmann, Werner; Pham, Michal; Dunn, Alexander E; Han, Haopeng; Özerdem, Celal; Waiczies, Helmar; Rohloff, Michael; Endemann, Beate; Boyer, Cyrille; Lim, May; Niendorf, Thoralf; Winter, Lukas
2018-04-01
To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B 0 = 7 T) to examine the characteristics and applicability of the switch. The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org. © 2018 International Society for Magnetic Resonance in Medicine.
Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats.
Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Paval, Jaijesh; Kedage, Vivekananda; Bhat, M Shankaranarayana; Nayak, Satheesha; Bhat, P Gopalakrishna
2013-07-01
In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6-8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm(2) for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.
Nanoelectronics and Plasma Processing---The Next 15 Years and Beyond
NASA Astrophysics Data System (ADS)
Lieberman, Michael A.
2006-10-01
The number of transistors per chip has doubled every 2 years since 1959, and this doubling will continue over the next 15 years as transistor sizes shrink. There has been a 25 million-fold decrease in cost for the same performance, and in 15 years a desktop computer will be hundreds of times more powerful than one today. Transistors now have 37 nm (120 atoms) gate lengths and 1.5 nm (5 atoms) gate oxide thicknesses. The smallest working transistor has a 5 nm (17 atoms) gate length, close to the limiting gate length, from simulations, of about 4 nm. Plasma discharges are used to fabricate hundreds of billions of these nano-size transistors on a silicon wafer. These discharges have evolved from a first generation of ``low density'' reactors capacitively driven by a single source, to a second generation of ``high density'' reactors (inductive and electron cyclotron resonance) having two rf power sources, in order to control independently the ion flux and ion bombarding energy to the substrate. A third generation of ``moderate density'' reactors, driven capacitively by one high and one low frequency rf source, is now widely used. Recently, triple frequency and combined dc/dual frequency discharges have been investigated, to further control processing characteristics, such as ion energy distributions, uniformity, and plasma etch selectivities. There are many interesting physics issues associated with these discharges, including stochastic heating of discharge electrons by dual frequency sheaths, nonlinear frequency interactions, powers supplied by the multi-frequency sources, and electromagnetic effects such as standing waves and skin effects. Beyond the 4 nm transistor limit lies a decade of further performance improvements for conventional nanoelectronics, and beyond that, a dimly-seen future of spintronics, single-electron transistors, cross-bar latches, and molecular electronics.
Breakdown-Resistant RF Connectors for Vacuum
NASA Technical Reports Server (NTRS)
Caro, Edward R.; Bonazza, Walter J.
1987-01-01
Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.
NASA Astrophysics Data System (ADS)
Dutta, Arka; Koley, Kalyan; Sarkar, Chandan K.
2014-11-01
In this paper, a systematic RF performance analysis of double-gate strained silicon (DGSS) nMOSFETs is presented. The analysis is focused upon impact of Germanium mole-fraction variation on RF performance of underlap engineered DGSS nMOSFET. The RF performance of the device is analysed as a function of intrinsic RF figure of merits (FOMs) including non-quasi static effects (NQS). The RF FOMs are represented by the intrinsic gate to source/drain capacitance (Cgs and Cgd) and resistance (Rgs and Rgd), the transport delay (τm), the intrinsic inductance (Lsd), the cut-off frequency (fT), and the maximum oscillation frequency (fMAX). The results of the study suggested a significant improvement in the device performance, up to 40% increase in Germanium mole fraction (χ).
Pneumothorax as a complication of percutaneous radiofrequency ablation for lung neoplasms.
Yamagami, Takuji; Kato, Takeharu; Hirota, Tatsuya; Yoshimatsu, Rika; Matsumoto, Tomohiro; Nishimura, Tsunehiko
2006-10-01
The present study was performed to determine the frequency of the complication of pneumothorax after radiofrequency (RF) ablation for lung neoplasms and risk factors affecting such pneumothoraces. The study was based on 129 consecutive sessions of percutaneous RF ablation of lung neoplasms under real-time computed tomographic fluoroscopic guidance performed in a single institution between May 2003 and November 2005 in 41 patients (17 women, 24 men; mean age, 63 years; age range, 29-82 y). Correlation was determined between the incidence of pneumothorax after RF ablation and multiple factors: sex, age, presence of emphysema, lesion size, lesion depth, contact of tumor with pleura, number of punctures, maximum power of RF generator, period of ablation, tissue temperature at the end of the RF ablation session, and patient position during the procedure. Management of each case of iatrogenic pneumothorax was reviewed. Pneumothorax after RF ablation occurred in 38 of 129 RF ablation sessions (29.5%). Fourteen of the 38 cases were treated by manual aspiration, and 24 were simply observed. In five cases (3.9%), chest tube placement was required as therapy for pneumothorax. The risk of pneumothorax was significantly increased in patients with pulmonary emphysema. The frequency of pneumothorax after RF ablation in our experience is similar to the frequency of pneumothorax after lung biopsy reported in the literature. Various conditions for RF ablation did not influence the incidence of pneumothorax. Emphysema was the only individual factor that correlated significantly with the development of iatrogenic pneumothorax.
Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation
Ormesher, Richard C.; Bickel, Douglas L
2012-10-23
The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin
2015-11-10
A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.
NASA Astrophysics Data System (ADS)
Lee, Jung Yeol; Verboncoeur, John P.; Lee, Hae June
2018-04-01
The transition of electron energy probability functions (EEPFs) through the change of heating mode is an important issue in plasma science. A well-known example is that the increase of gas pressure, which was analyzed in terms of the ratio of the energy relaxation mean free path to the electrode gap distance, changes the EEPF from bi-Maxwellian to Maxwellian or Druyvesteyn. In this study, a new aspect of the temporal decay of kinetic energy during the energy relaxation time is theoretically analyzed and compared with a particle-in-cell Monte Carlo collision simulation of capacitively coupled plasmas. A fully kinetic description of electron transport and collisions shows drastic changes of EEPFs with the variation of the driving frequency due to the heating mode transition.
The state of technology in electromagnetic (RF) sensors (for lightning detection)
NASA Technical Reports Server (NTRS)
Shumpert, T. H.; Honnell, M. A.
1979-01-01
A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.
Ibrahim, Tamer S; Tang, Lin
2007-06-01
To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.
RF number as a new index for assessing combustion hazard of flammable gases.
Kondo, Shigeo; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira
2002-08-05
A new index called RF number has been proposed for assessing the combustion hazard of all sorts of flammable gases and their mixtures. RF number represents the total expectancy of combustion hazard in terms of flammability limits and heat of combustion for each known and unknown compounds. The advantage of RF number over others such as R-index and F-number for classification of combustion hazard has been highlighted.
NASA Astrophysics Data System (ADS)
Lu, L.; Colas, L.; Jacquot, J.; Després, B.; Heuraux, S.; Faudot, E.; Van Eester, D.; Crombé, K.; Křivská, A.; Noterdaeme, J.-M.; Helou, W.; Hillairet, J.
2018-03-01
In order to model the sheath rectification in a realistic geometry over the size of ion cyclotron resonant heating (ICRH) antennas, the self-consistent sheaths and waves for ICH (SSWICH) code couples self-consistently the RF wave propagation and the DC SOL biasing via nonlinear RF and DC sheath boundary conditions applied at plasma/wall interfaces. A first version of SSWICH had 2D (toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement magnetic field B 0 and only included the evanescent slow wave (SW) excited parasitically by the ICRH antenna. The main wave for plasma heating, the fast wave (FW) plays no role on the sheath excitation in this version. A new version of the code, 2D SSWICH-full wave, was developed based on the COMSOL software, to accommodate full RF field polarization and shaped walls tilted with respect to B 0 . SSWICH-full wave simulations have shown the mode conversion of FW into SW occurring at the sharp corners where the boundary shape varies rapidly. It has also evidenced ‘far-field’ sheath oscillations appearing at the shaped walls with a relatively long magnetic connection length to the antenna, that are only accessible to the propagating FW. Joint simulation, conducted by SSWICH-full wave within a multi-2D approach excited using the 3D wave coupling code (RAPLICASOL), has recovered the double-hump poloidal structure measured in the experimental temperature and potential maps when only the SW is modelled. The FW contribution on the potential poloidal structure seems to be affected by the 3D effects, which was ignored in the current stage. Finally, SSWICH-full wave simulation revealed the left-right asymmetry that has been observed extensively in the unbalanced strap feeding experiments, suggesting that the spatial proximity effects in RF sheath excitation, studied for SW only previously, is still important in the vicinity of the wave launcher under full wave polarizations.
Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS
NASA Astrophysics Data System (ADS)
Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo
2014-01-01
The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.
2017-12-01
Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, P.E.
1975-03-01
An analytical study has been performed to assess the feasibility of using aerodynamically heated thermoelectric convertors to power RF proximity fuzes. The collective results of this study indicate that such a thermoelectric power supply is feasible for use with 20 mm projectiles and is compatible with the existing RF fuze circuit and safe arming distance requirements. A disc module concept has evolved from this study involving thin-film bismuth telluride as the basic thermoelectric element. Preliminary experimental studies were completed in order to identify principal parameters for the bismuth telluride.
Ways of Noninvasive Facial Skin Tightening and Fat Reduction.
Fritz, Klaus; Salavastru, Carmen
2016-06-01
For skin tightening, ablative and nonablative lasers have been used with various parameters full or fractionated. Currently, other energy-based technologies have been developed such as radiofrequency (RF) from mono- to multipolar, microneedling RF, and high-intensity focused ultrasound. They heat up the tissue to a clinical endpoint. Temperatures above 42°C stimulate fibroblasts to produce more collagen and some technologies produce small coagulation points that allow to shrink and to tighten the tissue with less downtime or side effects. Alternative treatments not based on heat can be chemical peels from light to deep and microneedling without RF. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Rf-assisted current startup in FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.; Peng, Y.K.M.; Kammash, T.
1981-01-01
Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at approximately 90 GHz is used to create a small volume of high conductivity plasma near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sub o/ approximately 0.2-0.4 m) current channel to be established with a relatively low initial loop voltage (<25 V). During the subsequent plasma expansionmore » and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less
Woolery-Lloyd, Heather; Kammer, Jenna N
2011-01-01
Skin tightening describes the treatment of skin laxity via radiofrequency (RF), ultrasound, or light-based devices. Skin laxity on the face is manifested by progressive loss of skin elasticity, loosening of the connective tissue framework, and deepening of skin folds. This results in prominence of submandibular and submental tissues. Genetic factors (chronological aging) and extrinsic factors (ultraviolet radiation) both contribute to skin laxity. There are many RF, ultrasound, and light-based devices directed at treating skin laxity. All of these devices target and heat the dermis to induce collagen contraction. Heating of the dermis causes collagen denaturation and immediate collagen contraction in addition to long-term collagen remodeling. Via RF, light, or ultrasound, these skin tightening devices deliver heat to the dermis to create new collagen and induce skin tightening. This chapter will provide an overview of the various skin tightening devices. Copyright © 2011 S. Karger AG, Basel.
Meo, Sultan Ayoub; Alsubaie, Yazeed; Almubarak, Zaid; Almutawa, Hisham; AlQasem, Yazeed; Hasanato, Rana Muhammed
2015-11-13
Installation of mobile phone base stations in residential areas has initiated public debate about possible adverse effects on human health. This study aimed to determine the association of exposure to radio frequency electromagnetic field radiation (RF-EMFR) generated by mobile phone base stations with glycated hemoglobin (HbA1c) and occurrence of type 2 diabetes mellitus. For this study, two different elementary schools (school-1 and school-2) were selected. We recruited 159 students in total; 96 male students from school-1, with age range 12-16 years, and 63 male students with age range 12-17 years from school-2. Mobile phone base stations with towers existed about 200 m away from the school buildings. RF-EMFR was measured inside both schools. In school-1, RF-EMFR was 9.601 nW/cm² at frequency of 925 MHz, and students had been exposed to RF-EMFR for a duration of 6 h daily, five days in a week. In school-2, RF-EMFR was 1.909 nW/cm² at frequency of 925 MHz and students had been exposed for 6 h daily, five days in a week. 5-6 mL blood was collected from all the students and HbA1c was measured by using a Dimension Xpand Plus Integrated Chemistry System, Siemens. The mean HbA1c for the students who were exposed to high RF-EMFR was significantly higher (5.44 ± 0.22) than the mean HbA1c for the students who were exposed to low RF-EMFR (5.32 ± 0.34) (p = 0.007). Moreover, students who were exposed to high RF-EMFR generated by MPBS had a significantly higher risk of type 2 diabetes mellitus (p = 0.016) relative to their counterparts who were exposed to low RF-EMFR. It is concluded that exposure to high RF-EMFR generated by MPBS is associated with elevated levels of HbA1c and risk of type 2 diabetes mellitus.
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
Analysis of RF emissions from laser induced breakdown of atmospheric air and metals
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; Lakshmi, Vinoth Kumar; Elle, Manikanta; Chelikani, Leela
2013-10-01
The low frequency (RF, microwave) emissions from laser produced plasma (LPP) are of great interest because of their variety of applications. The RF waves emitted by the nanosecond LPP of atmospheric air and metal (Al, Cu) targets were detected using antennas over frequency ranges (30 MHz-18 GHz) and were monitored using a spectrum analyzer (3 Hz-50 GHz). With different target materials, the dominant emission lines were observed to fall in different specific frequency ranges within the detection limit. The emissions from Cu were in the higher frequency range (100-200 MHz) than that of Al (30-100 MHz) may be due to the higher electron density of Cu, which contributes to the LPP conductivity. From the LPP of atmospheric air, the RF output was found to be increasing with the input laser energy up to certain value, beyond which almost no emission was observed. This effect is attributed to the modification in the net induced dipole moment due to the multiple plasma sources in the LPP at higher input laser energies. The detected radiation was observed to be dependent on laser and antenna polarization. Further studies may lead to an efficient technique for material identification from the RF characteristic peaks.
Boulant, Nicolas; Bottlaender, Michel; Uhrig, Lynn; Giacomini, Eric; Luong, Michel; Amadon, Alexis; Massire, Aurélien; Larrat, Benoît; Vignaud, Alexandre
2015-01-01
An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal. Copyright © 2014 John Wiley & Sons, Ltd.
Inductive current startup in large tokamaks with expanding minor radius and RF assist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1983-01-01
Auxiliary RF heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device, is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx.90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10/sup 19/m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sup 0/ approx.< 0.4 m)more » current channel to be established with a relatively low initial loop voltage (approx.< 25 V as opposed to approx.100 V without RF assist). During the subsequent plasma expansion and current ramp phase, additional RF power is introduced to reduce volt-second consumption due to plasma resistance. To study the preheating phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
Parise, M.
2018-05-18
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
NASA Astrophysics Data System (ADS)
Parise, M.
2018-05-01
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.
Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
2018-04-23
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, George
This was a collaboration between UCSD and MIT to study the effective application of ion-cyclotron heating (ICRH) on the EAST tokamak, located in China. The original goal was for UCSD to develop a diagnostic that would allow measurement of the steady state, or DC, convection pattern that develops on magnetic field lines that attach or connect to the ICRH antenna. This diagnostic would then be used to develop techniques and approaches that minimize or even eliminate such DC convection during application of strong ICRH heating. This was thought to then indicate reduction or elimination of parasitic losses of heating power,more » and thus be an indicator of effective RF heating. The original plan to use high speed digital gas-puff imaging (GPI) of the antenna-edge plasma region in EAST was ultimately unsuccessful due to limitations in machine and camera operations. We then decided to attempt the same experiment on the ALCATOR C-MOD tokamak at MIT which had a similar instrument already installed. This effort was ultimately successful, and demonstrated that the underlying idea of using GPI as a diagnostic for ICRH antenna physics would, in fact, work. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced E x B flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E-r were observed to increase with the toroidal magnetic field strength B and the ICRF power. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the probe measurements of poloidal phase velocity. The results suggest that effective ICRH heating with reduced impurity production is possible when the antenna/box system is designed so as to reduce the RF-induced image currents that flow in the grounded conducting antenna frame elements that surround the RF antenna current straps.« less
Non-Ionizing Radiation From Wireless Technology| RadTown ...
2017-10-31
Cell phones emit radio frequency (RF) energy. The Federal Communications Commission (FCC) sets safety guidelines to limit RF exposure from wireless devices. Scientists continue to study the effects of long-term exposure to low levels of RF.
Operation of the ORNL High Particle Flux Helicon Plasma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.
2011-12-23
A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less
Operation of the ORNL High Particle Flux Helicon Plasma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B
2011-01-01
A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less
NASA Astrophysics Data System (ADS)
Banerjee, Koushik; Sharma, Hemant; Sengupta, Anasuya
Wireless sensor networks (WSNs) are ad hoc wireless networks that are written off as spread out structure and ad hoc deployment. Sensor networks have all the rudimentary features of ad hoc networks but to altered points—for instance, considerably lesser movement and far more energy necessities. Commonly used technology for communication is radio frequency (RF) communications. Free-space optics (FSO) is relatively new technology which has the prospective to deliver remarkable increases in network lifetime of WSN. Hybrid RF/FSO communications has been suggested to decrease power consumption by a single sensor node. It is observed that security plays a very important role for either RF WSN or hybrid RF/FSO WSN as those are vulnerable to numerous threats. In this paper, various possible attacks in RF/FSO WSN are discussed and aimed to propose some way out from those attacks.
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.
Modeling of an 8-12 GHz receiver front-end based on an in-line MEMS frequency discriminator
NASA Astrophysics Data System (ADS)
Chu, Chenlei; Liao, Xiaoping
2018-06-01
This paper focuses on the modeling of an 8-12 GHz RF (radio frequency) receiver front-end based on an in-line MEMS (microelectromechanical systems) frequency discriminator. Actually, the frequency detection is realized by measuring the output dc thermal voltage generated by the MEMS thermoelectric power sensor. Based on this thermal voltage, it has a great potential to tune the resonant frequency of the VCO (voltage controlled oscillator) in the RF receiver front-end application. The equivalent circuit model of the in-line frequency discriminator is established and the measurement verification is also implemented. Measurement and simulation results show that the output dc thermal voltage has a nearly linear relation with frequency. A new construction of RF receiver front-end is then obtained by connecting the in-line frequency discriminator with the voltage controlling port of VCO. Lastly, a systemic simulation is processed by computer-aided software and the real-time simulation waveform at each key point is observed clearly.
Physics-based parametrization of the surface impedance for radio frequency sheaths
Myra, J. R.
2017-07-07
The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less
DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, F.E. Jr.
Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less
Physics-based parametrization of the surface impedance for radio frequency sheaths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myra, J. R.
The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gahan, D.; Hopkins, M. B.; Dolinaj, B.
2008-03-15
A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupledmore » plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.« less
Monochromatic coherent transition and diffraction radiation from a relativistic electron bunch train
NASA Astrophysics Data System (ADS)
Naumenko, G.; Potylitsyn, A.; Shevelev, M.; Karataev, P.; Shipulya, M.; Bleko, V.
2018-04-01
Electron beams of most accelerators have a bunched structure and are synchronized with the accelerating RF field. Due to modulation of the electron beam with frequency ν RF one can expect to observe resonances with frequencies ν k=kṡ ν RF in radiation spectrum generated via any spontaneous emission mechanism (k is an integer and the resonance order). In this paper we present the results of spectral measurements of coherent transition radiation (CTR) generated by an electron bunch train from the Tomsk microtron with ν RF=2.63GHz in the spectral frequency range from 8 to 35 GHz. We also measured the spectrum of coherent diffraction radiation and demonstrated that the observed spectra in both cases consist of monochromatic lines. For spectral measurements the Martin-Puplett interferometer with spectral resolution of 800 MHz (FWMH) was employed. Using a waveguide frequency cut-off we were able to exclude several spectral lines to observe higher resonance orders of up to k =7.
Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.
2015-02-17
Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunchmore » from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.« less
Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.
Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M
2009-08-01
Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.
Radio frequency switching network: a technique for infrared sensing
NASA Astrophysics Data System (ADS)
Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.
2016-10-01
This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.
Gannon, Christopher J; Patra, Chitta Ranjan; Bhattacharya, Resham; Mukherjee, Priyabrata; Curley, Steven A
2008-01-01
Background Novel approaches to treat human cancer that are effective with minimal toxicity profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2) external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal destruction of malignant cells. GNPs (5 nm diameter) were added to 2 human cancer cell lines (Panc-1, Hep3B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and propidium iodide-fluorescence associated cell sorting (PI-FACS) assessed cell proliferation and GNP-related cytotoxicity. Other GNP-treated cells were exposed to a 13.56 MHz RF field for 1, 2, or 5 minutes, and then incubated for 24 hours. PI-FACS measured RF-induced cytotoxicity. Results GNPs had no impact on cellular proliferation by MTT assay. PI-FACS confirmed that GNPs alone produced no cytotoxicity. A GNP dose-dependent RF-induced cytotoxicity was observed. For Hep3B cells treated with a 67 μM/L dose of GNPs, cytotoxicity at 1, 2 and 5 minutes of RF was 99.0%, 98.5%, and 99.8%. For Panc-1 cells treated at the 67 μM/L dose, cytotoxicity at 1, 2, and 5 minutes of RF was 98.5%, 98.7%, and 96.5%. Lower doses of GNPs were associated with significantly lower rates of RF-induced thermal cytotoxicity for each cell line (P < 0.01). Cells not treated with GNPs but treated with RF for identical time-points had less cytotoxicity (Hep3B: 17.6%, 21%, and 75%; Panc-1: 15.3%, 26.4%, and 39.8%, all P < 0.01). Conclusion We demonstrate that GNPs 1) have no intrinsic cytotoxicity or anti-proliferative effects in two human cancer cell lines in vitro and 2) GNPs release heat in a focused external RF field. This RF-induced heat release is lethal to cancer cells bearing intracellular GNPs in vitro. PMID:18234109
NASA Astrophysics Data System (ADS)
Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.
2006-04-01
This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give ground to the idea that in ITER it should be possible to find conditions in which the risk of accumulation of metals such as nickel can be contained.
Sabato, Alessandro; Feng, Maria Q
2014-09-05
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.
Hasan, Abul; Helaoui, Mohamed; Ghannouchi, Fadhel M
2017-08-29
In this article, a novel tunable, blocker and clock jitter tolerant, low power, quadrature phase shift frequency selective (QPS-FS) receiver with energy harvesting capability is proposed. The receiver's design embraces and integrates (i) the baseband to radio frequency (RF) impedance translation concept to improve selectivity over that of conventional homodyne receiver topologies and (ii) broadband quadrature phase shift circuitry in the RF path to remove an active multi-phase clock generation circuit in passive mixer (PM) receivers. The use of a single local oscillator clock signal with a passive clock division network improves the receiver's robustness against clock jitter and reduces the source clock frequency by a factor of N, compared to PM receivers using N switches (N≥4). As a consequence, the frequency coverage of the QPS-FS receiver is improved by a factor of N, given a clock source of maximum frequency; and, the power consumption of the whole receiver system can eventually be reduced. The tunable QPS-FS receiver separates the wanted RF band signal from the unwanted blockers/interferers. The desired RF signal is frequency down-converted to baseband, while the undesired blocker/interferer signals are reflected by the receiver, collected and could be energy recycled using an auxiliary energy harvesting device.
Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Wagatsuma, Kazuaki
2017-07-01
This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.
High power water load for microwave and millimeter-wave radio frequency sources
Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.
1999-01-01
A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.
Tuner design and RF test of a four-rod RFQ
NASA Astrophysics Data System (ADS)
Zhou, QuanFeng; Zhu, Kun; Guo, ZhiYu; Kang, MingLei; Gao, ShuLi; Lu, YuanRong; Chen, JiaEr
2011-12-01
A mini-vane four-rod radio frequency quadruple (RFQ) accelerator has been built for neutron imaging. The RFQ will operate at 201.5 MHz, and its length is 2.7 m. The original electric field distribution along the electrodes is not flat. The resonant frequency needs to be tuned to the operating value. And the frequency needs to be compensated for temperature change during high power RF test and beam test. As tuning such a RFQ is difficult, plate tuners and stick tuners are designed. This paper will present the tuners design, the tuning procedure, and the RF properties of the RFQ.
47 CFR 95.607 - CB transmitter modification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting frequencies, increased modulation level, a different form of modulation, or increased TP (RF... modulating frequency, typically 0.1 seconds at maximum power) or peak envelope power (TP averaged during 1 RF cycle at the highest crest of the modulation envelope), as measured at the transmitter output antenna...
[Percutaneous ablation of malignant kidney tumors in rabbits by low frequency radio energy].
Moskovitz, B; Nativ, O; Sabo, E; Barbara, Y; Mordohovich, D; Kaftori, Y; Shalhav, A; Goldwasser, B
1998-01-01
Radio-frequency (RF) current has been used successfully to ablate normal human tissue. To investigate further the clinical application of this modality in tumors, we studied the potential of using RF percutaneously to destroy experimental kidney tumors. 35 outbred albino rabbits underwent direct-implantation of renal VX2 tumor during open surgery. After 21 days, ultrasonography was performed to show tumor presence and size. A shielded RF needle was designed to be inserted percutaneously through an introduction needle. An electrical insulation shield covering the RF needle was retractable, controlling the length of exposure of the RF needle inside the tissue. 22 days after tumor implantation, RF was applied via this special needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery, while in another group treatment was percutaneous, the needle guided by palpation of the tumor. Rabbits were killed 3 days later and revealed 4-25 mm intra-tumoral RF-induced lesions. A direct relation was found between lesion size and the power and duration of RF applied (at 7.5 W, R = 0.48, and P = 0.32). Based on our preliminary results we can conclude that RF may have clinical applications in the near future for percutaneous local tumor control in parenchymal organs.
NASA Astrophysics Data System (ADS)
Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.
2008-11-01
Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.
A low-frequency versatile wireless power transfer technology for biomedical implants.
Jiang, Hao; Zhang, Junmin; Lan, Di; Chao; Liou, Shyshenq; Shahnasser, Hamid; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo
2013-08-01
Implantable biomedical sensors and actuators are highly desired in modern medicine. In many cases, the implant's electrical power source profoundly determines its overall size and performance . The inductively coupled coil pair operating at the radio-frequency (RF) has been the primary method for wirelessly delivering electrical power to implants for the last three decades . Recent designs significantly improve the power delivery efficiency by optimizing the operating frequency, coil size and coil distance . However, RF radiation hazard and tissue absorption are the concerns in the RF wireless power transfer technology (RF-WPTT) , . Also, it requires an accurate impedance matching network that is sensitive to operating environments between the receiving coil and the load for efficient power delivery . In this paper, a novel low-frequency wireless power transfer technology (LF-WPTT) using rotating rare-earth permanent magnets is demonstrated. The LF-WPTT is able to deliver 2.967 W power at ∼ 180 Hz to an 117.1 Ω resistor over 1 cm distance with 50% overall efficiency. Because of the low operating frequency, RF radiation hazard and tissue absorption are largely avoided, and the power delivery efficiency from the receiving coil to the load is independent of the operating environment. Also, there is little power loss observed in the LF-WPTT when the receiving coil is enclosed by non-magnetic implant-grade stainless steel.
Cost studies of thermally enhanced in situ soil remediation technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremser, J.; Booth, S.R.
1996-05-01
This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies willmore » ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.« less
Radio Frequency Microelectromechanical Systems [Book Chapter Manuscript
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordquist, Christopher; Olsson, Roy H.
2014-12-15
Radio frequency microelectromechanical system (RF MEMS) devices are microscale devices that achieve superior performance relative to other technologies by taking advantage of the accuracy, precision, materials, and miniaturization available through microfabrication. To do this, these devices use their mechanical and electrical properties to perform a specific RF electrical function such as switching, transmission, or filtering. RF MEMS has been a popular area of research since the early 1990s, and within the last several years, the technology has matured sufficiently for commercialization and use in commercial market systems.
Equivalent circuit of radio frequency-plasma with the transformer model
NASA Astrophysics Data System (ADS)
Nishida, K.; Mochizuki, S.; Ohta, M.; Yasumoto, M.; Lettry, J.; Mattei, S.; Hatayama, A.
2014-02-01
LINAC4 H- source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H- source, to that of final amplifier. We model RF plasma inside the H- source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.
Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, Michael P.; Reddell, Jerry P.
1997-01-01
This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.
Noise elimination method using a transmission line for the diagnostics of radio frequency plasma
NASA Astrophysics Data System (ADS)
Shimizu, K.; Hallil, A.; Amemiya, H.
1997-04-01
A filter using a transmission line formed by a cascade connection of inverted L-type networks has been developed to reject the distortion of the probe characteristics by rf (radio-frequency) noise. Each inverse L network consists of two coaxial cables with the same physical constant and length. The filter can remove discrete frequency components including the fundamental and harmonic components, the cut-off frequencies being determined by the distributed circuit constant and the length of the cables. By inserting different kinds of the network in cascade, many noise components associated with the rf frequency can be eliminated at the end section of the filter. Experiments have been performed in rf plasmas by inserting three kinds of inverted L networks with the frequency f (13.56 MHz), 2 f and 4f as the cut-off frequency. Distortion free probe characteristics have been obtained, from which accurate determination of plasma parameter such as the electron energy distribution is possible.
Stepped frequency ground penetrating radar
Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.
1994-01-01
A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeown, J.; Labrie, J.P.
1983-08-01
A general purpose finite element computer code called MARC is used to calculate the temperature distribution and dimensional changes in linear accelerator rf structures. Both steady state and transient behaviour are examined with the computer model. Combining results from MARC with the cavity evaluation computer code SUPERFISH, the static and dynamic behaviour of a structure under power is investigated. Structure cooling is studied to minimize loss in shunt impedance and frequency shifts during high power operation. Results are compared with an experimental test carried out on a cw 805 MHz on-axis coupled structure at an energy gradient of 1.8 MeV/m.more » The model has also been used to compare the performance of on-axis and coaxial structures and has guided the mechanical design of structures suitable for average gradients in excess of 2.0 MeV/m at 2.45 GHz.« less
Tang, T B; Smith, S; Flynn, B W; Stevenson, J T M; Gundlach, A M; Reekie, H M; Murray, A F; Renshaw, D; Dhillon, B; Ohtori, A; Inoue, Y; Terry, J G; Walton, A J
2008-09-01
A wireless power transfer and communication system based on near-field inductive coupling has been designed and implemented. The feasibility of using such a system to remotely control drug release from an implantable drug delivery system is addressed. The architecture of the wireless system is described and the signal attenuation over distance in both water and phosphate buffered saline is studied. Additionally, the health risk due to exposure to radio frequency (RF) radiation is examined using a biological model. The experimental results demonstrate that the system can trigger the release of drug within 5 s, and that such short exposure to RF radiation does not produce any significant (
High Efficiency push-pull class E amplifiers for fusion rocket engines
NASA Astrophysics Data System (ADS)
Gaitan, Gabriel; Ham, Eric; Cohen, S. A.; Swanson, Charles; Chen, Minjie; Brunkhorst, Christopher
2017-10-01
In a Field Reversed Configuration fusion reactor, ions in the plasma are heated by an antenna operating at RF frequencies. This paper presents how push-pull class E amplifiers can be used to efficiently drive this antenna in the MHz range, from 0.5MHz to 4 MHz, while maintaining low harmonic content in the output signal. We offer four different configurations that present a trade-off between efficiency and low harmonic content. The paper presents theoretical values and breadboard results from these configurations, which operate at a power of around 100W. For a practical design, multiple amplifiers would be linked in parallel and would power the RF antenna at around 1MW. These designs provide multiple different options for reactor systems that could be used in a variety of applications, from power plants on the ground to rocket engines in space. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.
O'Neill, W E
1985-12-01
The responses of 682 single-units in the inferior colliculus (IC) of 13 mustached bats (Pteronotus parnellii parnellii) were measured using pure tones (CF), frequency modulations (FM) and pairs of CF-FM signals mimicking the species' biosonar signal, which are stimuli known to be essential to the responses of CF/CF and FM-FM facilitation neurons in auditory cortex. Units were arbitrarily classified into 'reference frequency' (RF), 'FM2' and 'Non-echolocation' (NE) categories according to the relationship of their best frequencies (BF) to the biosonar signal frequencies. RF units have high Q10dB values and are tuned to the reference frequency of each bat, which ranged between 60.73 and 62.73 kHz. FM2 units had BF's between 50 and 60 kHz, while NE units had BF's outside the ranges of the RF and FM2 classes. PST histograms of the responses revealed discharge patterns such as 'onset', 'onset-bursting' (most common), 'on-off', 'tonic-on','pauser', and 'chopper'. Changes in discharge patterns usually resulted from changes in the frequency and/or intensity of the stimuli, most often involving a change from onset-bursting to on-off. Different patterns were also elicited by CF and FM stimuli. Frequency characteristics and thresholds to CF and FM stimuli were measured. RF neurons were very sharply tuned with Q10dB's ranging from 50-360. Most (92%) also responded to FM2 stimuli, but 78% were significantly more sensitive (greater than 5 dB) to CF stimuli, and only 3% had significantly lower thresholds to FM2. The best initial frequency for FM2 sweeps in RF units was 65.35 +/- 2.138 kHz (n = 118), well above the natural frequency of the 2nd harmonic. FM2 and NE units were indistinguishable from each other, but were quite different from RF units: 41% of these two classes had lower thresholds to CF, 49% were about equally sensitive, and 10% had lower thresholds to FM. For FM2 units, mean best initial frequency for FM was 60.94 kHz +/- 3.162 kHz (n = 114), which is closely matched to the 2nd harmonic in the biosonar signal. Very few units (5) responded only to FM signals, i.e., were FM-specialized. The characteristics of spike-count functions were determined in 587 units. The vast majority (79%) of RF units (n = 228) were nonmonotonic, and about 22% had upper-thresholds.(ABSTRACT TRUNCATED AT 400 WORDS)
The report describes in a historical context the experiments that have been performed to examine the biological responses caused by exposure to low frequency electromagnetic radiation directly or as modulation of RF carrier waves. A detailed review is provided of the independentl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2012-06-15
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, M.; Reid, J.; Yakovlev, V.
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetitio n rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis invest igating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, M.; Reid, J.; Yakovlev, V.
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Seth, Sudeshna; Mandal, Aditya
2013-02-15
Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less
Stable fiber-optic time transfer by active radio frequency phase locking.
Yin, Feifei; Wu, Zhongle; Dai, Yitang; Ren, Tianpeng; Xu, Kun; Lin, Jintong; Tang, Geshi
2014-05-15
In this Letter we demonstrate a fiber link capable of stable time signal transfer utilizing our active long-distance radio frequency (RF) stabilization technology. Taking advantage of the chromatic dispersion in optical fiber, our scheme compensates dynamically the link delay variation by tuning the optical carrier wavelength to phase lock a round-trip RF reference. Since the time signal and the RF reference are carried by the same optical carrier, a highly stable time transfer is achieved at the same time. Experimentally, we demonstrate a stability of the time signal transfer over 50-km fiber with a time deviation of 40 ps at 1-s average and 2.3 ps at 1000-s average. The performance of the RF reference delivery is also tested, with an Allan deviation of 2×10(-15) at 1000-s average. According to our proposal, a simultaneous stable time and frequency transfer is expected.
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.
Study of temperature effect on junctionless Si nanotube FET concerning analog/RF performance
NASA Astrophysics Data System (ADS)
Tayal, Shubham; Nandi, Ashutosh
2018-06-01
This paper for the first time investigates the effect of temperature variation on analog/RF performance of SiO2 as well as high-K gate dielectric based junctionless silicon nanotube FET (JL-SiNTFET). It is observed that the change in temperature does not variate the analog/RF performance of junctionless silicon nanotube FET by substantial amount. By increasing the temperature from 77 K to 400 K, the deterioration in intrinsic dc gain (AV) is marginal that is only ∼3 dB. Furthermore, the variation in cut-off frequency (fT), maximum oscillation frequency (fMAX), and gain-frequency product (GFP) with temperature is also minimal in JLSiNT-FET. More so, the same trend is observed even at scaled gate length (Lg = 15 nm). Furthermore, we have observed that the use of high-K gate dielectric deteriorates the analog/RF performance of JLSiNT-FET. However, the use of high-K gate dielectric negligibly changes the effect of temperature variation on analog/RF performance of JLSINT-FET device.
Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels
2012-09-01
A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.
Gap length effect on electron energy distribution in capacitive radio frequency discharges
NASA Astrophysics Data System (ADS)
You, S. J.; Kim, S. S.; Kim, Jung-Hyung; Seong, Dae-Jin; Shin, Yong-Hyeon; Chang, H. Y.
2007-11-01
A study on the dependence of electron energy distribution function (EEDF) on discharge gap size in capacitive rf discharges was conducted. The evolution of the EEDF over a gap size range from 2.5to7cm in 65mTorr Ar discharges was investigated both experimentally and theoretically. The measured EEDFs exhibited typical bi-Maxwellian forms with low energy electron groups. A significant depletion in the low energy portion of the bi-Maxwellian was found with decreasing gap size. The results show that electron heating by bulk electric fields, which is the main heating process of the low-energy electrons, is greatly enhanced as the gap size decreases, resulting in the abrupt change of the EEDF. The calculated EEDFs based on nonlocal kinetic theory are in good agreement with the experiments.
Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie
2013-01-01
Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542
Perera, Reshani H; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M; Broome, Ann-Marie; Exner, Agata A
2014-06-01
Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43 ºC) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation.
NASA Astrophysics Data System (ADS)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less
Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
Flying radio frequency undulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzikov, S. V.; Vikharev, A. A.; Savilov, A. V.
2014-07-21
A concept for the room-temperature rf undulator, designed to produce coherent X-ray radiation by means of a relatively low-energy electron beam and pulsed mm-wavelength radiation, is proposed. The “flying” undulator is a high-power short rf pulse co-propagating together with a relativistic electron bunch in a helically corrugated waveguide. The electrons wiggle in the rf field of the −1st spatial harmonic with the phase velocity directed in the opposite direction in respect to the bunch velocity, so that particles can irradiate high-frequency Compton's photons. A high group velocity (close to the speed of light) ensures long cooperative motion of the particlesmore » and the co-propagating rf pulse.« less
Spin-Flipping Polarized Deuterons At COSY
NASA Astrophysics Data System (ADS)
Yonehara, K.; Krisch, A. D.; Morozov, V. S.; Raymond, R. S.; Wong, V. K.; Bechstedt, U.; Gebel, R.; Lehrach, A.; Lorenz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Eversheim, D.; Hinterberger, F.; Rohdjess, H.; Ulbrich, K.; Scobel, W.
2004-02-01
We recently stored a 1.85 GeV/c vertically polarized deuteron beam in the COSY Ring in Jülich; we then spin-flipped it by ramping a new air-core rf dipole's frequency through an rf-induced spin resonance to manipulate the polarization direction of the deuteron beam. We first experimentally determined the resonance's frequency and set the dipole's rf voltage to its maximum; then we varied its frequency ramp time and frequency range. We used the EDDA detector to measure the vector and tensor polarization asymmetries. We have not yet extracted the deuteron's tensor polarization spin-flip parameters from the measured data, since our short run did not provide adequate tensor analyzing-power data at 1.85 GeV/c. However, with a 100 Hz frequency ramp and our longest ramp time of 400 s, the deuterons' vector polarization spin-flip efficiency was 48±1%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rome, M.; Cavaliere, F.; Maero, G.
2013-03-19
Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli,more » F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Rome, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Rome, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.« less
Relativistic theory of radiofrequency current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; Metens, T.
1991-05-01
A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less
NASA Astrophysics Data System (ADS)
Wilby, W. A.; Brett, A. R. H.
Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.
2017-09-14
e.g. 000111) may be emitted along an ultra- high frequency (UHF) communications path as a possible waveform state generated by some circuit...Positive Rate TN True Negative TNR True Negative Rate TVR True Verification Rate Tx Transmitter UHF Ultra High Frequency 21 BIOLOGICALLY...otherwise healthy RF networks. More specifically, a representative miniaturized ultra- high frequency (UHF) CubeSat uplink access boundary, protected