Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems
NASA Astrophysics Data System (ADS)
Slotboom, J.
1993-10-01
This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.
Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying
The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less
Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K
2008-04-01
A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.
NASA Astrophysics Data System (ADS)
Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young
2015-01-01
A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.
Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Wagatsuma, Kazuaki
2017-07-01
This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, W. G.; Li, R. M.; Shi, J. J.
The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a highmore » RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).« less
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
Pulsed laser illumination of photovoltaic cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.
Effect of Nanosecond RF Pulses on Mitochondrial Membranes
NASA Astrophysics Data System (ADS)
Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.
2017-12-01
Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.
Short range RF communication for jet engine control
NASA Technical Reports Server (NTRS)
Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)
2007-01-01
A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.
BICMOS power detector for pulsed Rf power amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridge, Clayton D.
2016-10-01
A BiCMOS power detector for pulsed radio-frequency power amplifiers is proposed. Given the pulse waveform and a fraction of the power amplifier's input or output signal, the detector utilizes a low-frequency feedback loop to perform a successive approximation of the amplitude of the input signal. Upon completion of the successive approximation, the detector returns 9-bits representing the amplitude of the RF input signal. Using the pulse waveform from the power amplifier, the detector can dynamically adjust the rate of the binary search operation in order to return the updated amplitude information of the RF input signal at least every 1ms.more » The detector can handle pulse waveform frequencies from 50kHz to 10MHz with duty cycles in the range of 5- 50% and peak power levels of -10 to 10dBm. The signal amplitude measurement can be converted to a peak power measurement accurate to within ±0.6dB of the input RF power.« less
Pulsed laser illumination of photovoltaic cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.
1995-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.
Flying radio frequency undulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzikov, S. V.; Vikharev, A. A.; Savilov, A. V.
2014-07-21
A concept for the room-temperature rf undulator, designed to produce coherent X-ray radiation by means of a relatively low-energy electron beam and pulsed mm-wavelength radiation, is proposed. The “flying” undulator is a high-power short rf pulse co-propagating together with a relativistic electron bunch in a helically corrugated waveguide. The electrons wiggle in the rf field of the −1st spatial harmonic with the phase velocity directed in the opposite direction in respect to the bunch velocity, so that particles can irradiate high-frequency Compton's photons. A high group velocity (close to the speed of light) ensures long cooperative motion of the particlesmore » and the co-propagating rf pulse.« less
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Burum, D. P.; Elleman, D. D.
1977-01-01
Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
Semiconductor laser-based optoelectronics oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-08-01
We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Pulsed Laser Illumination of Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.
NASA Astrophysics Data System (ADS)
Wilby, W. A.; Brett, A. R. H.
Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.
NASA Astrophysics Data System (ADS)
Peterson, David; Coumou, David; Shannon, Steven
2015-11-01
Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.
2014-01-15
Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less
Recent Results With Coupled Opto-Electronic Oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.
1998-07-01
We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Recent results with the coupled opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-11-01
We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Characterization of RF front-ends by long-tail pulse response
NASA Astrophysics Data System (ADS)
Mazzaro, Gregory J.; Ranney, Kenneth I.
2010-04-01
The recognition of unauthorized communications devices at the entry-point of a secure location is one way to guard against the compromise of sensitive information by wireless transmission. Such recognition may be achieved by backscatter x-ray and millimeter-wave imaging; however, implementation of these systems is expensive, and the ability to image the contours of the human body has raised privacy concerns. In this paper, we present a cheaper and less-invasive radio-frequency (RF) alternative for recognizing wireless communications devices. Characterization of the device-under-test (DUT) is accomplished using a stepped-frequency radar waveform. Single-frequency pulses excite resonance in the device's RF front-end. Microsecond periods of zero-signal are placed between each frequency transition to listen for the resonance. The stepped-frequency transmission is swept through known communications bands. Reception of a long-tail decay response between active pulses indicates the presence of a narrowband filter and implies the presence of a front-end circuit. The frequency of the received resonance identifies its communications band. In this work, cellular-band and handheld-radio filters are characterized.
NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes
NASA Technical Reports Server (NTRS)
Burnham, Karen; Scully, Robert; Norgard, John
2013-01-01
The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability
NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes
NASA Technical Reports Server (NTRS)
Burnham, Karen; Scully, Robert C.; Norgard, John D.
2013-01-01
The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.
rf breakdown tests of mm-wave metallic accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-01-06
In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications
NASA Astrophysics Data System (ADS)
Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul
2015-09-01
The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.
Range gated strip proximity sensor
McEwan, T.E.
1996-12-03
A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.
Range gated strip proximity sensor
McEwan, Thomas E.
1996-01-01
A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Ionascu, D; Wilson, G
2014-06-01
Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less
Marco-Rius, Irene; Cao, Peng; von Morze, Cornelius; Merrit, Matthew; Moreno, Karlos X; Chang, Gene-Yuan; Ohliger, Michael A.; Pearce, David; Kurhanewicz, John; Larson, Peder E. Z.; Vigneron, Daniel B.
2016-01-01
Purpose To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized [2-13C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (~4.6 KHz at 3T). A novel multiband RF excitation pulse was designed for independent flip angle control over 5-6 spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. Methods Specialized multi-band SPSP RF pulses were designed, tested and applied to investigate hyperpolarized [2-13C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13C-MRS and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. Results The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was 2-5 times more [2-13C]phosphoenolpyruvate and about 19 times more [2-13C]glycerol 3-phosphate in the liver than in the kidney. Conclusion A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13C]dihydroxyacetone metabolism in rat liver and kidney. PMID:27017966
NASA Astrophysics Data System (ADS)
Dedrick, J.; Boswell, R. W.; Charles, C.
2010-09-01
Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.
Active control of the spatial MRI phase distribution with optimal control theory
NASA Astrophysics Data System (ADS)
Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin
2017-08-01
This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
Hybrid Modeling of SiH4/Ar Discharge in a Pulse Modulated RF Capacitively Coupled Plasma
NASA Astrophysics Data System (ADS)
Xi-Feng, Wang; Yuan-Hong, Song; You-Nian, Wang; PSEG Team
2015-09-01
Pulsed plasmas have offered important advantages in future micro-devices, especially for electronegative gas plasmas. In this work, a one-dimensional fluid and Monte-Carlo (MC) hybrid model is developed to simulate SiH4/Ar discharge in a pulse modulated radio-frequency (RF) capacitively coupled plasma (CCP). Time evolution densities of different species, such as electrons, ions, radicals, are calculated, as well as the electron energy probability function (EEPF) which is obtained by a MC simulation. By pulsing the RF source, the electron energy distributions and plasma properties can be modulated by pulse frequency and duty cycle. High electron energy tails are obtained during power-on period, with the SiHx densities increasing rapidly mainly by SiH4 dissociation. As the RF power is off, the densities in the bulk region decrease rapidly owing to high energy electrons disappear, but increase near electrodes since diffusion without the confinement of high electric field, which can prolong the time of radials deposition on the plate. Especially, in the afterglow, the increase of negative ions near the electrodes results from cool electron attachment, which are good for film deposition. This work was supported by the National Natural Science Foundation of China (Grant No. 11275038).
NASA Astrophysics Data System (ADS)
Shen, Ming; Trébosc, Julien; O'Dell, Luke A.; Lafon, Olivier; Pourpoint, Frédérique; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul
2015-09-01
We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) 14N coherences via spy 1H nuclei. These 1H-{14N} D-HMQC sequences differ not only by the order of 14N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the 14N Larmor frequency, ν0(14N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0(14N) or at the 14N overtone frequency, 2ν0(14N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different 1H-{14N} D-HMQC sequences, including those with 14N rectangular pulses at ν0(14N) for the indirect detection of homo-nuclear (i) 14N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the 14N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and L-histidine.HCl monohydrate, which contain 14N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the 1H-{14N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of 14N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone 1H-{14N} D-HMQC experiment increases for larger quadrupole interactions.
The state of technology in electromagnetic (RF) sensors (for lightning detection)
NASA Technical Reports Server (NTRS)
Shumpert, T. H.; Honnell, M. A.
1979-01-01
A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.
Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits
Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik
2017-01-01
Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373
Xu, Dan; King, Kevin F; Liang, Zhi-Pei
2007-10-01
A new class of spiral trajectories called variable slew-rate spirals is proposed. The governing differential equations for a variable slew-rate spiral are derived, and both numeric and analytic solutions to the equations are given. The primary application of variable slew-rate spirals is peak B(1) amplitude reduction in 2D RF pulse design. The reduction of peak B(1) amplitude is achieved by changing the gradient slew-rate profile, and gradient amplitude and slew-rate constraints are inherently satisfied by the design of variable slew-rate spiral gradient waveforms. A design example of 2D RF pulses is given, which shows that under the same hardware constraints the RF pulse using a properly chosen variable slew-rate spiral trajectory can be much shorter than that using a conventional constant slew-rate spiral trajectory, thus having greater immunity to resonance frequency offsets.
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil
USDA-ARS?s Scientific Manuscript database
To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...
RF extraction issues in the relativistic klystron amplifiers
NASA Astrophysics Data System (ADS)
Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.
1994-05-01
Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.
Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C
2010-02-26
In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.
The efficiency of photovoltaic cells exposed to pulsed laser light
NASA Technical Reports Server (NTRS)
Lowe, R. A.; Landis, G. A.; Jenkins, P.
1993-01-01
Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.
Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T
2008-01-01
We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.
NASA Astrophysics Data System (ADS)
Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen
2012-10-01
Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.
Local oscillator induced degradation of medium-term stability in passive atomic frequency standards
NASA Technical Reports Server (NTRS)
Dick, G. John; Prestage, John D.; Greenhall, Charles A.; Maleki, Lute
1990-01-01
As the performance of passive atomic frequency standards improves, a new limitation is encountered due to frequency fluctuations in an ancillary local oscillator (L.O.). The effect is due to time variation in the gain of the feedback which compensates L.O. frequency fluctuations. The high performance promised by new microwave and optical trapped ion standards may be severely compromised by this effect. Researchers present an analysis of this performance limitation for the case of sequentially interrogated standards. The time dependence of the sensitivity of the interrogation process to L.O. frequency fluctuations is evaluated for single-pulse and double-pulse Ramsey RF interrogation and for amplitude modulated pulses. The effect of these various time dependencies on performance of the standard is calculated for an L.O. with frequency fluctuations showing a typical 1/f spectral density. A limiting 1/sq. root gamma dependent deviation of frequency fluctuations is calculated as a function of pulse lengths, dead time, and pulse overlap. Researchers also present conceptual and hardware-oriented solutions to this problem which achieve a much more nearly constant sensitivity to L.O. fluctuations. Solutions involve use of double-pulse interrogation; alternate interrogation of multiple traps so that the dead time of one trap can be covered by operation of the other; and the use of double-pulse interrogation for two traps, so that during the time of the RF pulses, the increasing sensitivity of one trap tends to compensate for the decreasing sensitivity of the other. A solution making use of amplified-modulated pulses is also presented which shows nominally zero time variation.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.
Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A
2016-03-01
To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.
Corum, Curtis A; Idiyatullin, Djaudat; Snyder, Carl J; Garwood, Michael
2015-02-01
SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a "bulls-eye" artifact in SWIFT images. We present a method to cancel this interband crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy "gap cycling." We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Theoretical analysis reveals the mechanism for gap-cycling's effectiveness in canceling interband crosstalk in the received data. We show phantom and in vivo results demonstrating bulls-eye artifact free images. Gap cycling is an effective method to remove bulls-eye artifact resulting from interband crosstalk in SWIFT data. © 2014 Wiley Periodicals, Inc.
López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J
2009-04-01
The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.
Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saroop, Sudesh
1999-09-01
Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.
NASA Astrophysics Data System (ADS)
Vinding, Mads S.; Maximov, Ivan I.; Tošner, Zdeněk; Nielsen, Niels Chr.
2012-08-01
The use of increasingly strong magnetic fields in magnetic resonance imaging (MRI) improves sensitivity, susceptibility contrast, and spatial or spectral resolution for functional and localized spectroscopic imaging applications. However, along with these benefits come the challenges of increasing static field (B0) and rf field (B1) inhomogeneities induced by radial field susceptibility differences and poorer dielectric properties of objects in the scanner. Increasing fields also impose the need for rf irradiation at higher frequencies which may lead to elevated patient energy absorption, eventually posing a safety risk. These reasons have motivated the use of multidimensional rf pulses and parallel rf transmission, and their combination with tailoring of rf pulses for fast and low-power rf performance. For the latter application, analytical and approximate solutions are well-established in linear regimes, however, with increasing nonlinearities and constraints on the rf pulses, numerical iterative methods become attractive. Among such procedures, optimal control methods have recently demonstrated great potential. Here, we present a Krotov-based optimal control approach which as compared to earlier approaches provides very fast, monotonic convergence even without educated initial guesses. This is essential for in vivo MRI applications. The method is compared to a second-order gradient ascent method relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method, and a hybrid scheme Krotov-BFGS is also introduced in this study. These optimal control approaches are demonstrated by the design of a 2D spatial selective rf pulse exciting the letters "JCP" in a water phantom.
Radar cross calibration investigation TAMU radar polarimeter calibration measurements
NASA Technical Reports Server (NTRS)
Blanchard, A. J.; Newton, R. W.; Bong, S.; Kronke, C.; Warren, G. L.; Carey, D.
1982-01-01
A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described.
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
RF priming of a long pulse relativistic magnetron
NASA Astrophysics Data System (ADS)
White, William Michael
Rapid startup, increased pulsewidth and mode locking of magnetrons have been demonstrated experimentally on a relativistic magnetron by radio frequency (RF) priming. Experiments utilize a -300 kV, 2-8 kA, 300-500 ns electron beam to drive a Titan 6-vane relativistic magnetron (˜100 MW output power). The RF priming source is a 100 kW pulsed magnetron operating at 1.27-1.32 GHz. Tuning stubs were utilized in the Titan structure to adjust the operating frequency of the relativistic magnetron pi-mode upward by 30%. The tuning was guided by simulation in the MAGIC 3D code and experimental cold tests including a mapping of the azimuthal electric field inside the relativistic magnetron structure. The most successful tuning geometry was that of a standard anode resonant structure, but RF priming experiments were performed on a rising-sun structure as well. The Time Frequency Analysis (TFA) program was used to directly observe the effects of RF priming on the relativistic magnetron. RF priming was successful in decreasing mode competition by suppressing the generation of the 2pi/3-mode power by 41%. RF priming experiments were also successful in increasing microwave pulsewidth by 12% and decreasing microwave output delay by 22%. These improvements were observed while operating in a priming regime not satisfying Adler's Relation. Overall, the improvements made to the performance of the relativistic magnetron were modest because of the low priming power available (50-250 kW).
Study on the steady operating state of a micro-pulse electron gun.
Kui, Zhou; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Xing, Luo; Ziqin, Yang
2014-09-01
Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.
Concurrent recording of RF pulses and gradient fields - comprehensive field monitoring for MRI.
Brunner, David O; Dietrich, Benjamin E; Çavuşoğlu, Mustafa; Wilm, Bertram J; Schmid, Thomas; Gross, Simon; Barmet, Christoph; Pruessmann, Klaas P
2016-09-01
Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via (19) F NMR and simultaneously pick up RF pulses in the MRI system's (1) H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer
NASA Astrophysics Data System (ADS)
Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.
Heart Rate Detection During Sleep Using a Flexible RF Resonator and Injection-Locked PLL Sensor.
Kim, Sung Woo; Choi, Soo Beom; An, Yong-Jun; Kim, Byung-Hyun; Kim, Deok Won; Yook, Jong-Gwan
2015-11-01
Novel nonintrusive technologies for wrist pulse detection have been developed and proposed as systems for sleep monitoring using three types of radio frequency (RF) sensors. The three types of RF sensors for heart rate measurement on wrist are a flexible RF single resonator, array resonators, and an injection-locked PLL resonator sensor. To verify the performance of the new RF systems, we compared heart rates between presleep time and postsleep onset time. Heart rates of ten subjects were measured using the RF systems during sleep. All three RF devices detected heart rates at 0.2 to 1 mm distance from the skin of the wrist over clothes made of cotton fabric. The wrist pulse signals of a flexible RF single resonator were consistent with the signals obtained by a portable piezoelectric transducer as a reference. Then, we confirmed that the heart rate after sleep onset time significantly decreased compared to before sleep. In conclusion, the RF system can be utilized as a noncontact nonintrusive method for measuring heart rates during sleep.
Lorentz force detuning analysis of the Spallation Neutron Source (SNS) accelerating cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, R.R.; Matsumoto, K. Y.; Ciovati, G.
2001-01-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac. Cavities with geometrical {beta} values of {beta}=0.61 and {beta}=0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes. Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Lorentz force detuning. In addition, the pulsed RF induces cyclic Lorentz pressures that mechanically excite themore » cavities, producing a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
Lustenberger, Caroline; Murbach, Manuel; Dürr, Roland; Schmid, Marc Ralph; Kuster, Niels; Achermann, Peter; Huber, Reto
2013-09-01
Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (SWA, 0.75-4.5 Hz). Pulse-modulated radiofrequency electromagnetic fields (RF EMF, carrier frequency 900 MHz) are capable to modulate these electroencephalographic (EEG) characteristics of sleep. The aim of our study was to explore possible mechanisms how RF EMF affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes. Sixteen male subjects underwent 2 experimental nights, one of them with all-night 0.25-0.8 Hz pulsed RF EMF exposure. All-night EEG was recorded. To investigate RF EMF induced changes in overnight performance improvement, subjects were trained for both nights on a motor task in the evening and the morning. We obtained good sleep quality in all subjects under both conditions (mean sleep efficiency > 90%). After pulsed RF EMF we found increased SWA during exposure to pulse-modulated RF EMF compared to sham exposure (P < 0.05) toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased RF EMF burst-related response in the SWA range, indicated by an increase in event-related EEG spectral power and phase changes in the SWA range. Notably, during exposure, sleep-dependent performance improvement in the motor sequence task was reduced compared to the sham condition (-20.1%, P = 0.03). The changes in the time course of SWA during the exposure night may reflect an interaction of RF EMF with the renormalization of cortical excitability during sleep, with a negative impact on sleep-dependent performance improvement. Copyright © 2013 Elsevier Inc. All rights reserved.
Carrier-Envelope Phase Effect on Atomic Excitation by Few-Cycle rf Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hebin; Welch, George R.; Sautenkov, Vladimir A.
2010-03-12
We present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency. The phase difference between the carrier and the envelope of the pulses has a significant effect on the excitation of atomic coherence and population transfer. We provide a theoretical description of this phenomenon using density matrix equations. Wemore » discuss the implications and possible applications of our results.« less
Tracking Servobridge Detector. Volume 1
1976-12-15
34 _ - b[ Section 1 ABSTRACT 1.0 General This report is in three volumes - Volume I describes technically the Tracking Servo Bridge Detector in final...28 4.1.9.2 Typical Pulse Generator ....... ............... ... 29 4.1.10 Unlock Alarm .......... ..................... .... 30 4.1.11.1 DC...46 4.3.8.4 RF Oucput Harmonic Distortion vs. Frequency Plot . . .. 48 4.3.8.5 Generator Input Level Limits vs. Frequency Plot. . . .. 49 4.3.8.6 RF
van Kalleveen, I M L; Kroeze, H; Sbrizzi, A; Boer, V O; Reerink, O; Philippens, M E P; van de Berg, C A T; Luijten, P R; Klomp, D W J
2016-07-01
The high precession frequency in ultrahigh field MRI coincides with reduced RF penetration, increased RF power deposition and consequently can lead to reduced scan efficiency. However, the shorter wavelength enables the use of efficient antennas rather than loop coils. In fact, ultrathin monopole antennas have been demonstrated at 7 T, which fit in natural cavities like the rectum in the human body. As the RF field generated by the antenna provides an extremely nonuniform B1 field, the use of conventional RF pulses will lead to severe image distortions and highly nonuniform contrast. However, using the two predominant dimensions (orthogonal to the antenna), 2D RF pulses can be designed that counteract the nonuniform B1 into uniform flip angles. In this study the authors investigate the use of an ultrathin antenna not only for reception, but also for transmission in 7 T MRI of the rectum. The 2D radially compensating excitation (2D RACE) pulse was designed in matlab. SAR calculations between the 2D RACE pulse and an adiabatic RF pulse (BIR-4) have been obtained, to visualize the gain in decreasing the SAR when using the 2D RACE pulse instead of an adiabatic RF pulse. The authors used the 7 T whole body MR system in combination with an internally placed monopole antenna used for transceiving and obtained 3D gradient echo images with a conventional sinc pulse and with the 2D RACE pulse. For extra clarity, they also reconstructed an image where the receive field of the antenna was removed. Comparing the results of the SAR simulations of the 2D RACE pulse with a BIR-4 pulse shows that for low flip angles (θ < 41°) the SAR can be decreased with a factor of 4.8 or even more, when using the 2D RACE pulse. Relative to a conventional sinc excitation, the 2D RACE pulse achieves more uniform flip angle distributions than a BIR-4 pulse with a smaller SAR increase (16 × versus 64 ×). The authors have shown that the 2D RACE pulse provides more homogeneous flip angles for gradient echo sequences when compared to a conventional sinc pulse albeit at increased SAR. However, when compared to adiabatic RF pulses, as shown by simulations, the SAR of the 2D RACE pulse can be an order of magnitude less. Phantom and in vivo human rectum images are obtained to demonstrate that the 2D RACE pulse can provide a uniform excitation while transmitting with a single ultrathin endorectal antenna at 7 T. The combination of thin rectal antennas with efficient uniform transmit can open up new possibilities in high resolution imaging of rectal cancer.
A METHOD FOR IN-SITU CHARACTERIZATION OF RF HEATING IN PARALLEL TRANSMIT MRI
Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K.; Zhu, Yudong
2012-01-01
In ultra high field magnetic resonance imaging, parallel radio-frequency (RF) transmission presents both opportunities and challenges for specific absorption rate (SAR) management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local SAR by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, the present work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix was conducted in less than 200 minutes with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. PMID:22714806
Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael
2017-09-01
To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.
UWB multi-burst transmit driver for averaging receivers
Dallum, Gregory E
2012-11-20
A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).
Lorentz Force Detuning Analysis of the SNS Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Mitchell; K. Matsumoto; G. Ciovati
2001-09-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac Cavities with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Ised RF induces cyclic Lorentz pressures that mechanically excite the cavities, producingmore » a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
NASA Astrophysics Data System (ADS)
Ozharar, Sarper
This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.
Study on the steady operating state of a micro-pulse electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kui, Zhou; Xing, Luo; Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang 621900
Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed,more » constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.« less
NASA Astrophysics Data System (ADS)
Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.
2018-04-01
Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.
Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad
2016-04-01
The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.
Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A
2015-03-01
This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.
RF Pulse Design using Nonlinear Gradient Magnetic Fields
Kopanoglu, Emre; Constable, R. Todd
2014-01-01
Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.
Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.
Transient effects in π-pulse sequences in MAS solid-state NMR
NASA Astrophysics Data System (ADS)
Hellwagner, Johannes; Wili, Nino; Ibáñez, Luis Fábregas; Wittmann, Johannes J.; Meier, Beat H.; Ernst, Matthias
2018-02-01
Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung
2015-08-15
Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P{sub 2 MHz} = 2 MHz) and high (P{sub 13.56 MHz} = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF{sub 4} (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers frommore » 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P{sub 13.56 MHz}; however, it shows opposite trends with P{sub 2 MHz}. It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant.« less
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Röschmann, P
1987-01-01
This study presents experimental results about the effective depth of penetration and about the radiofrequency (rf) power absorption in humans as a function of frequency. The frequency range investigated covers 10 up to 220 MHz. For the main part, the results were derived from bench measurements of the quality factor Q, and of the resonance frequency shift due to the loading of the coil. Different types of head-, body-, and surface coils were investigated loaded with volunteers or metallic phantoms. For spin-echo imaging at 2 T (85 MHz), the local specific absorption rate (SAR) was found to be approximately equal to 0.05 W/kg using a pi pulse of 1-ms duration and pulse repetition time TR = 1 s. Measurements of the quality factor Q as a function of frequency show that the SAR depends upon the frequency f according to approximately f2.15. The effective depth of rf penetration as derived drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging with B1 penetrating from practically all sides into the object should be possible up to 220 MHz (5 T) with SAR values staying within the local limit of 2 W/kg as set by the FDA. Whole-body imaging of large subjects as well as surface coil imaging is depth limited above 100-MHz frequency. Perturbation methods are applied in order to separate the total rf power deposition in the patient into dielectric and magnetic contributions. The observed effects due to interactions of rf magnetic fields with biological tissue contradict predictions based on homogeneous tissue models. A refined tissue model with regions of high electrical conductivity, subdivided by quasi-insulating adipose layers, provides a rationale for a better understanding of the underlying processes. At frequencies below 100 MHz, the rf power deposition in patients is apparently more evenly distributed over the exposed body volume than currently assumed.
Ultrasonic ranging and data telemetry system
Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.
1990-01-01
An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
High gradient tests of metallic mm-wave accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2017-05-10
This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less
High gradient tests of metallic mm-wave accelerating structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon
This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less
Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffer, J.; Encalada, N.; Huang, M.
We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.
Pulsed beam tests at the SANAEM RFQ beamline
NASA Astrophysics Data System (ADS)
Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.
2017-07-01
A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.
Repetitively Pulsed High Power RF Solid-State System
NASA Astrophysics Data System (ADS)
Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan
2017-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.
Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
Graves, W. S.; Bessuille, J.; Brown, P.; ...
2014-12-01
A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standingwave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. Themore » entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 × 10¹¹ photons/second in a 5% bandwidth and the brilliance is 2 × 10¹² photons/(sec mm² mrad² 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.« less
Study of RF breakdown and multipacting in accelerator components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in
2014-07-01
Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, L. W.; Lin, L.; Huang, S. L.
We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.
Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.
Lin, James C; Wang, Zhangwei
2010-04-01
The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.
Femtosecond Timekeeping: Slip-Free Clockwork for Optical Timescales
NASA Astrophysics Data System (ADS)
Herman, D.; Droste, S.; Baumann, E.; Roslund, J.; Churin, D.; Cingoz, A.; Deschênes, J.-D.; Khader, I. H.; Swann, W. C.; Nelson, C.; Newbury, N. R.; Coddington, I.
2018-04-01
The generation of true optical time standards will require the conversion of the highly stable optical-frequency output of an optical atomic clock to a high-fidelity time output. We demonstrate a comb-based clockwork that phase-coherently integrates ˜7 ×1020 optical cycles of an input optical frequency to create a coherent time output. We verify the underlying stability of the optical timing system by comparing two comb-based clockworks with a common input optical frequency and show <20 fs total time drift over the 37-day measurement period. Both clockworks also generate traditional timing signals including an optical pulse per second and a 10-MHz rf reference. The optical pulse-per-second time outputs remain synchronized to 240 attoseconds (240 as) at 1000 s. The phase-coherent 10-MHz rf outputs are stable to near a part in 1019 . Fault-free timekeeping from an optical clock to femtosecond level over months is an important step in replacing the current microwave time standard by an optical standard.
Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon
2017-01-01
Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources. PMID:28067288
NASA Astrophysics Data System (ADS)
Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon
2017-01-01
Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.
Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon
2017-01-09
Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today's ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.
Automatic NMR field-frequency lock-pulsed phase locked loop approach.
Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J
1978-06-01
A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.
Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia
2015-09-01
Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.
Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna
NASA Technical Reports Server (NTRS)
Sands, O. Scott
2003-01-01
When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.
Start-Up of a Pulsed Beam Free Electron Laser (FEL) Oscillator
1983-04-01
By slightly increasing the frequency of the R.F. accelerating field, Wacc during the start-up period, i.e., decreasing the beam pulse separation, the...levels. The required fractional increase in Wacc is 16L 1- 6L2 1/Lbow 10 - 6 for the parameters of ref. (3,4). The same 6 effect may also be realized
NASA Technical Reports Server (NTRS)
Lund, G. F.; Westbrook, R. M.; Fryer, T. B.
1980-01-01
The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation
NASA Astrophysics Data System (ADS)
Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang
2017-09-01
Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.
Characteristics of pulsed dual frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young
2015-01-01
To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.
Theory and Practice in ICRF Antennas for Long Pulse Operation
NASA Astrophysics Data System (ADS)
Colas, L.; Faudot, E.; Brémond, S.; Heuraux, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Tore Supra Team
2005-09-01
Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20s×8MW and 60s×4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC E×B0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.
Theory and Practice in ICRF Antennas for Long Pulse Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colas, L.; Bremond, S.; Mitteau, R.
2005-09-26
Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot patternmore » was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.« less
UWB dual burst transmit driver
Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA
2012-04-17
A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
Investigation of Readout RF Pulse Impact on the Chemical Exchange Saturation Transfer Spectrum
Huang, Sheng-Min; Jan, Meei-Ling; Liang, Hsin-Chin; Chang, Chia-Hao; Wu, Yi-Chun; Tsai, Shang-Yueh; Wang, Fu-Nien
2015-01-01
Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses. Both theoretical computer simulation and phantom experiments were performed to examine the influence of readout RF pulses. Our results showed that the length of readout RF pulses has unremarkable impact on the Z-spectrum and CEST effect in both computer simulation and phantom experiment. Moreover, we demonstrated that multiple refocusing RF pulses used in rapid acquisition with relaxation enhancement (RARE) sequence induced no obvious saturation transfer contrast. Therefore, readout RF pulse has negligible effect on CEST Z-spectrum and the optimization of readout RF pulse length can be disregarded in CEST imaging protocol. PMID:26455576
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-11-30
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less
A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate
NASA Astrophysics Data System (ADS)
Reed, Galen D.; Larson, Peder E. Z.; von Morze, Cornelius; Bok, Robert; Lustig, Michael; Kerr, Adam B.; Pauly, John M.; Kurhanewicz, John; Vigneron, Daniel B.
2012-04-01
A rapid echo planar imaging sequence for dynamic imaging of [1-13C] lactate and [1-13C] pyruvate simultaneously was developed. Frequency-based separation of these metabolites was achieved by spatial shifting in the phase-encoded direction with the appropriate choice of echo spacing. Suppression of the pyruvate-hydrate and alanine resonances is achieved through an optimized spectral-spatial RF waveform. Signal sampling efficiency as a function of pyruvate and lactate excitation angle was simulated using two site exchange models. Dynamic imaging is demonstrated in a transgenic mouse model, and phantom validations of the RF pulse frequency selectivity were performed.
RF Frequency Oscillations in the Early Stages of Vacuum Arc Collapse
NASA Technical Reports Server (NTRS)
Griffin, Steven T.; Thio, Y. C. Francis
2003-01-01
RF frequency oscillations may be produced in a typical capacitive charging / discharging pulsed power system. These oscillations may be benign, parasitic, destructive or crucial to energy deposition. In some applications, proper damping of oscillations may be critical to proper plasma formation. Because the energy deposited into the plasma is a function of plasma and circuit conditions, the entire plasma / circuit system needs to be considered as a unit To accomplish this, the initiation of plasma is modeled as a time-varying, non-linear element in a circuit analysis model. The predicted spectra are compared to empirical power density spectra including those obtained from vacuum arcs.
Noise and interference study for satellite lightning sensor
NASA Technical Reports Server (NTRS)
Herman, J. R.
1981-01-01
The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) lightning and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which lightning RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from lightning flashes is developed. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the lightning spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF lightning pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.
Broadband excitation in nuclear magnetic resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tycko, Robert
1984-10-01
Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along withmore » computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The second additional topic is the construction of iterative schemes for narrowband population inversion. The use of sequences that invert spin populations only over a narrow range of rf field amplitudes to spatially localize NMR signals in an rf field gradient is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films
NASA Astrophysics Data System (ADS)
Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.
2017-07-01
We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.
Predicting the effect of relaxation during frequency-selective adiabatic pulses
NASA Astrophysics Data System (ADS)
Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus
2017-11-01
Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-03-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-02-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
New Methods of Low-Field MRI for Application to Traumatic Brain Injury
2014-04-01
resonance, and the sequences must be modified to allow for EPR saturation pulses. A difficulty of OMRI is the need for high power radio - frequency (RF...sign and construction of a rotating radio - frequency coil system for applications in magnetic reso- nance. IEEE transactions on bio-medical...1 AD_________________ Award Number: W81XWH- 11 -2-0076
Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates
NASA Astrophysics Data System (ADS)
Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.
2013-09-01
In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.
NASA Astrophysics Data System (ADS)
Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo
2007-01-01
Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.
NASA Astrophysics Data System (ADS)
Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young
2016-09-01
Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.
Polarization transfer NMR imaging
Sillerud, Laurel O.; van Hulsteyn, David B.
1990-01-01
A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power
NASA Astrophysics Data System (ADS)
Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.
2013-11-01
An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.
Plasma Switch for High-Power Active Pulse Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, Jay L.
2013-11-04
Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ?more » 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.« less
NASA Astrophysics Data System (ADS)
Orlianges, Jean-Christophe; Crunteanu, Aurelian; Pothier, Arnaud; Merle-Mejean, Therese; Blondy, Pierre; Champeaux, Corinne
2012-12-01
Titanium dioxide presents a wide range of technological application possibilities due to its dielectric, electrochemical, photocatalytic and optical properties. The three TiO2 allotropic forms: anatase, rutile and brookite are also interesting, since they exhibit different properties, stabilities and growth modes. For instance, rutile has a high dielectric permittivity, of particular interest for the integration as dielectric in components such as microelectromechanical systems (MEMS) for radio frequency (RF) devices. In this study, titanium dioxide thin films are deposited by pulsed laser deposition. Characterizations by Raman spectroscopy and X-ray diffraction show the evolution of the structural properties. Thin films optical properties are investigated using spectroscopic ellipsometry and transmission measurements from UV to IR range. Co-planar waveguide (CPW) devices are fabricated based on these films. Their performances are measured in the RF domain and compared to simulation, leading to relative permittivity values in the range 30-120, showing the potentialities of the deposited material for capacitive switches applications.
van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J
2015-08-01
Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.
Winkler, Itai; Adam, Dan
2011-05-01
The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is similar in size to a measurement of the lesion from gross pathology, with a correlation coefficient of 0.743. Copyright © 2011. Published by Elsevier Inc.
Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.
Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür
2014-09-01
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.
NASA Astrophysics Data System (ADS)
Goldberg, S. Nahum; Gazelle, G. Scott
1998-04-01
Radiofrequency (RF) tumor ablation has been demonstrated as a reliable method for creating thermally induced coagulation necrosis using either a percutaneous approach with image- guidance or direct surgical application of thin electrodes into treated tissues. Early clinical trials with this technology have studied the treatment of hepatic, cerebral, and bony malignancies. The extent of coagulation necrosis induced with conventional monopolar radiofrequency electrodes is dependent on overall energy deposition, the duration of RF application, and RF electrode tip length and gauge. This article will discuss these technical considerations with the goal of defining optimal parameters for RF ablation. Strategies to further increase induced coagulation necrosis including: multiprobe and bipolar arrays, and internally-cooled RF electrodes, with or without pulsed-RF or cluster technique will be presented. The development and laboratory results for many of these radiofrequency techniques, initial clinical results, and potential biophysical limitations to RF induced coagulation, such as perfusion mediated tissue cooling (vascular flow) will likewise be discussed.
Calibration of a speckle-based compressive sensing receiver
NASA Astrophysics Data System (ADS)
Sefler, George A.; Shaw, T. Justin; Stapleton, Andrew D.; Valley, George C.
2017-02-01
Optical speckle in a multimode waveguide has been proposed to perform the function of a compressive sensing (CS) measurement matrix (MM) in a receiver for GHz-band radio frequency (RF) signals. Unlike other devices used for the CS MM, e.g. the digital micromirror device (DMD) used in the single pixel camera, the elements of the speckle MM are not known before use and must be measured and calibrated. In our system, the RF signal is modulated on a repetitively pulsed chirped wavelength laser source, generated from mode-locked laser pulses that have been dispersed in time or from an electrically addressed distributed Bragg reflector laser. Next, the optical beam with RF propagates through a multimode fiber or waveguide, which applies different weights in wavelength (or equivalently time) and space and performs the function of the CS MM. The output of the guide is directed to or imaged on a bank of photodiodes with integration time set to the pulse length of the chirp waveform. The output of each photodiode is digitized by an analog-to-digital converter (ADC), and the data from these ADCs are used to form the CS measurement vector. Accurate recovery of the RF signal from CS measurements depends critically on knowledge of the weights in the MM. Here we present results using a stable wavelength laser source to probe the guide.
RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission
NASA Astrophysics Data System (ADS)
Garwood, Michael; Uğurbil, Kamil
2018-06-01
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
NASA Astrophysics Data System (ADS)
Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.
2017-11-01
In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.
a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-05-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.
Status and operation of the Linac4 ion source prototypes
NASA Astrophysics Data System (ADS)
Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.
2014-02-01
CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.
1981-10-07
new instrument (cf. Fig. 1) is simply a four - quadrant ring-diode multi- 5 plier (Fig. 2). The reference frequency (RF) and local oscillator (LO) inputs...movement, and scan speed of the corner-cube. Other Components. A rotating-sector chopper modulates the laser pulse train at a frequency of approximately 50...the cross-correlation experiment. In this application, the detection bandpass is simply displaced from DC to the chopper frequency; problems arising
The development of data acquisition and processing application system for RF ion source
NASA Astrophysics Data System (ADS)
Zhang, Xiaodan; Wang, Xiaoying; Hu, Chundong; Jiang, Caichao; Xie, Yahong; Zhao, Yuanzhe
2017-07-01
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi-threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
Directions for rf-controlled intelligent microvalve
NASA Astrophysics Data System (ADS)
Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek
2001-03-01
In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.
Parallel transmission RF pulse design with strict temperature constraints.
Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher
2017-05-01
RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.
Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures
NASA Astrophysics Data System (ADS)
Cahill, Alexander David
Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.
High-gradient, pulsed operation of superconducting niobium cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campisi, I.E.; Farkas, Z.D.
1984-02-01
Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30more » figures, 2 tables.« less
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
NASA Astrophysics Data System (ADS)
Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Development of an X-band 25 watt traveling-wave tube
NASA Technical Reports Server (NTRS)
Roberts, L. A.; Knight, R. I.
1972-01-01
The development of a 25 watt high efficiency travelingwave tube at 8.5 GHz for space communications and telemetry applications is reported. Described is the design basis for the tube, which is known as the WJ-3703. Because of the combined high efficiency and high frequency requirements, the helix and body dimensions are very small and require special techniques for various assembly and construction procedures. These are described in detail. Measurement results of focusing tests and RF operation are given, but only pulsed RF performance of the tubes was obtained.
Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Plasma wake field XUV radiation source
Prono, Daniel S.; Jones, Michael E.
1997-01-01
A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisi, Marco, E-mail: marco.grisi@epfl.ch; Gualco, Gabriele; Boero, Giovanni
In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm{sup 2}. It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of aboutmore » 150 μm external diameter, a {sup 1}H spin sensitivity of about 1.5 × 10{sup 13} spins/Hz{sup 1/2} is achieved at 7 T.« less
Ion tracking in photocathode rf guns
NASA Astrophysics Data System (ADS)
Lewellen, John W.
2002-02-01
Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.
NASA Astrophysics Data System (ADS)
Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.
2009-10-01
Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.
NASA Astrophysics Data System (ADS)
Faillon, G.
1985-10-01
It is pointed out that klystrons representing high-power RF sources are mainly used in applications related to radars and scientific instrumentation. High peak power pulsed klystrons are discussed. It is found that a large number of linacs are powered by S-band klystrons (2.856 or 2.9985 GHz) with pulse durations of a few microseconds. Special precautions are being taken to insure that the breakdown voltage will not be reached, and very thin titanium coatings are employed to protect the ceramic against discharges. Attention is given to very large pulse width tubes, CW tubes, and limits of the power-frequency domain.
gr-MRI: A software package for magnetic resonance imaging using software defined radios.
Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.
Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel
2016-01-01
Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521
NASA Astrophysics Data System (ADS)
Mako, Frederick M.; Len, L. K.
1999-05-01
We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated, in a microwave cavity, self-bunching, cold electron emission, long life, and tolerance to contamination. The cold process is based on secondary electron emission. FMT has studied using simulation codes the resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 500 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ˜5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ˜40 ps long micro-bunches at ˜20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. Approximately 5.8×1013 micro-bunches or 62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 45 A in the macro-pulse. The third project is a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. A point design was performed at an rf output power of 150 MW at 34.2 GHz. The resulting system efficiency is 53% and the gain is 60 dB. The system efficiency includes the input cavity efficiency, input driver efficiency (a 50 MW klystron at 11.4 GHz), output cavity efficiency, and the post-acceleration efficiency.
Role of photoacoustics in optogalvanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, D.; McGlynn, S.P.
1990-09-15
Time-resolved laser optogalvanic (LOG) signals have been induced by pulsed laser excitation (l{ital s}{sub {ital j}}{r arrow}2{ital p}{sub {ital k}}, Paschen notation) of a {approximately}30 MHz radio-frequency (rf) discharge in neon at {approximately}5 torr. Dramatic changes of the shape/polarity of certain parts of the LOG signals occur when the rf excitation frequency is scanned over the electrical resonance peak of the plasma and the associated driving/detecting circuits. These effects are attributed to ionization rate changes (i.e., laser-induced alterations of the plasma conductivity), with concomitant variations in the plasma resonance characteristics. In addition to ionization rate changes, it is shown thatmore » photoacoustic (PA) effects also play a significant role in the generation of the LOG signal. Those parts of the LOG signal that are invariant with respect to the rf frequency are attributed to a PA effect. The similarity of LOG signal shapes from both rf and dc discharges suggests that photoacoustics play a similar role in the LOG effect in dc discharges. Contrary to common belief, most reported LOG signal profiles, ones produced by excitation to levels that do not lie close to the ionization threshold, appear to be totally mediated by the PA effect.« less
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar
2008-12-01
Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.
2009-08-01
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.
The RF-powered surface wave sensor oscillator--a successful alternative to passive wireless sensing.
Avramov, Ivan D
2004-09-01
A novel, passive wireless surface acoustic wave (SAW) sensor providing a highly coherent measurand proportional frequency, frequency modulated (FM) with identification (ID) data and immune to interference with multiple-path signals is described. The sensor is appropriate for bandwidth-limited applications requiring high-frequency accuracy. It comprises a low-power oscillator, stabilized with the sensing SAW resonator and powered by the rectified radio frequency (RF) power of the interrogating signal received by an antenna on the sensor part. A few hundred microwatts of direct current (DC) power are enough to power the sensor oscillator and ID modulation circuit and achieve stable operation at 1.0 and 2.49 GHz. Reliable sensor interrogation was achieved over a distance of 0.45 m from a SAW-based interrogation unit providing 50 mW of continuous RF power at 915 MHz. The -30 to -35 dBm of returned sensor power was enough to receive the sensor signal over a long distance and through several walls with a simple superheterodyne FM receiver converting the sensor signal to a low measurand proportional intermediate frequency and retrieving the ID data through FM detection. Different sensor implementations, including continuous and pulsed power versions and the possibility of transmitting data from several measurands with a single sensor, are discussed.
Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Milton, S. V.
For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive controlmore » (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.« less
Radio frequency discharge with control of plasma potential distribution.
Dudnikov, Vadim; Dudnikov, A
2012-02-01
A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.
A simple device for long-term radar cross section recordings.
Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni
2009-05-01
A sample and hold circuit with settable delay can be used for recording of radar echo amplitude variations having time scales up to 100 s at the selected range bin in systems utilizing short rf pulses. The design is based on two integrated circuits and gives 1% uncertainty for 70 ns pulses. The key benefit is a real-time display of lengthy amplitude variations because the sample rate is defined by the radar pulse repetition frequency. Additionally we get a reduction in file size at least by the inverse of the radar's duty cycle. Examples of 10 and 100 s recordings with a Ka-band short pulse radar are described.
Dzimitrowicz, Anna; Bielawska-Pohl, Aleksandra; diCenzo, George C; Jamroz, Piotr; Macioszczyk, Jan; Klimczak, Aleksandra; Pohl, Pawel
2018-06-02
An innovative and environmentally friendly method for the synthesis of size-controlled silver nanoparticles (AgNPs) is presented. Pectin-stabilized AgNPs were synthesized in a plasma-reaction system in which pulse-modulated radio-frequency atmospheric-pressure glow discharge (pm-rf-APGD) was operated in contact with a flowing liquid electrode. The use of pm-rf-APGD allows for better control of the size of AgNPs and their stability and monodispersity. AgNPs synthesized under defined operating conditions exhibited average sizes of 41.62 ± 12.08 nm and 10.38 ± 4.56 nm, as determined by dynamic light scattering and transmission electron microscopy (TEM), respectively. Energy-dispersive X-ray spectroscopy (EDS) confirmed that the nanoparticles were composed of metallic Ag. Furthermore, the ξ-potential of the AgNPs was shown to be -43.11 ± 0.96 mV, which will facilitate their application in biological systems. Between 70% and 90% of the cancerous cells of the human melanoma Hs 294T cell line underwent necrosis following treatment with the synthesized AgNPs. Furthermore, optical emission spectrometry (OES) identified reactive species, such as NO, NH, N₂, O, and H, as pm-rf-APGD produced compounds that may be involved in the reduction of the Ag(I) ions.
Radio frequency magnetic field limits of Nb and Nb 3Sn
Posen, S.; Valles, N.; Liepe, M.
2015-07-21
Superconducting radio frequency (srf) cavities, essential components of many large particle accelerators, rely on the metastable flux-free state of superconducting materials. In this Letter, we present results of experiments measuring the magnetic field limits of two srf materials, Nb and Nb 3Sn. Resonators made using these materials were probed using both high power rf pulses and dc magnetic fields. Nb, which is the current standard material for srf cavities in applications, was found to be limited by the superheating field H sh when prepared using methods to avoid excessive rf dissipation at high fields. Nb 3Sn, which is a promisingmore » alternative material that is still in the early stages of development for srf purposes, was found to be limited between the onset field of metastability H c1 and H sh. Furthermore, analysis of the results shows that the limitation is consistent with nucleation of flux penetration at defects in the rf layer.« less
NASA Astrophysics Data System (ADS)
Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter
2013-11-01
Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.
Cleaning of inner vacuum surfaces in the Uragan-3M facility by radio-frequency discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozin, A. V., E-mail: alexlozin@meta.ua; Moiseenko, V. E.; Grigor’eva, L. I.
2013-08-15
A method for cleaning vacuum surfaces by a low-temperature (T{sub e} ∼ 10 eV) relatively dense (n{sub e} ≈ 10{sup 12} cm{sup −3}) plasma of an RF discharge was developed and successfully applied at the Uragan-3M torsatron. The convenience of the method is that it can be implemented with the same antenna system and RF generators that are used to produce and heat the plasma in the operating mode and does not require retuning the frequencies of the antennas and RF generators. The RF discharge has a high efficiency from the standpoint of cleaning vacuum surfaces. After performing a seriesmore » of cleanings by the low-temperature RF discharge plasma (about 20000 pulses), (i) the intensity of the CIII impurity line was substantially reduced, (ii) a quasi-steady operating mode with a duration of up to 50 ms, a plasma density of n{sub e} ≈ 10{sup 12} cm{sup −3}, and an electron temperature of up to T{sub e} ∼ 1 keV was achieved, and (iii) mass spectrometric analysis of the residual gas in the chamber indicated a significant reduction in the impurity content.« less
Röschmann, P
1991-10-01
The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.
Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. Copyright © 2015 Elsevier Inc. All rights reserved.
ICRF-edge and surface interactions
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.; Myra, J. R.
2011-08-01
This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.
ICRH system performance during ITER-Like Wall operations at JET and the outlook for DT campaign
NASA Astrophysics Data System (ADS)
Monakhov, Igor; Blackman, Trevor; Dumortier, Pierre; Durodié, Frederic; Jacquet, Philippe; Lerche, Ernesto; Noble, Craig
2017-10-01
Performance of JET ICRH system since installation of the metal ITER-Like Wall (ILW) has been assessed statistically. The data demonstrate steady increase of the RF power coupled to plasmas over recent years with the maximum pulse-average and peak values exceeding respectively 6MW and 8MW in 2016. Analysis and extrapolation of power capabilities of conventional JET ICRH antennas is provided and key performance-limiting factors are discussed. The RF plant operational frequency options are presented highlighting the issues of efficient ICRH application within a foreseeable range of DT plasma scenarios.
Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas
2018-07-01
T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Design of an RF System for Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Kauffold, J. X.; Seltzman, A. H.; Anderson, J. K.; Nonn, P. D.; Forest, C. B.
2010-11-01
Motivated by the possibility of current profile control a 5.5GHz RF system for EBW is being developed. The central component is a standard radar Klystron with 1.2MW peak power and 4μs typical pulse length. Meaningful experiments require RF pulse lengths similar to the characteristic electron confinement times in MST necessitating the creation of a power supply providing 80kV at 40A for 10ms. A low inductance IGBT network switches power at 20kHz from an electrolytic capacitor bank into the primary of a three-phase resonant transformer system that is then rectified and filtered. The system uses three magnetically separate transformers with microcrystalline iron cores to provide suitable volt-seconds and low hysteresis losses. Each phase has a secondary with a large leakage inductance and a parallel capacitor providing a boost ratio greater than 60:1 with a physical turns ratio of 13.5:1. A microprocessor feedback control system varies the drive frequency around resonance to regulate the boost ratio and provide a stable output as the storage bank discharges. The completed system will deliver RF to the plasma boundary where coupling to the Bernstein mode and subsequent heating and current drive can occur.
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef
2014-10-01
A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.
Low-voltage high-reliability MEMS switch for millimeter wave 5G applications
NASA Astrophysics Data System (ADS)
Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.
2018-07-01
Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.
Modular compact solid-state modulators for particle accelerators
NASA Astrophysics Data System (ADS)
Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.
2017-12-01
The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.
Radiofrequency pulse design in parallel transmission under strict temperature constraints.
Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre
2014-09-01
To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.
Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.
Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias
2015-06-01
To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE
NASA Astrophysics Data System (ADS)
Roy, Soumya S.; Stevanato, Gabriele; Rayner, Peter J.; Duckett, Simon B.
2017-12-01
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼ 3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE.
Roy, Soumya S; Stevanato, Gabriele; Rayner, Peter J; Duckett, Simon B
2017-12-01
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15 N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15 N signal enhancement within 2 s of RF pulsing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
Prantil, Matthew A.; Cormier, Eric; Dawson, Jay W.; ...
2013-08-19
An 11 GHz fiber laser built on a modulated CW platform is described and characterized. This compact, vibrationinsensitive, fiber based system can be operated at wavelengths compatible with high energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micro-pulses produced at a macro-pulse rate of 83 kHz where the macro-pulse and micro-pulse energies are 1.8 μJ and 3.2 nJ respectively. Micro-pulse durations of 850 fs are demonstrated. Finally, we discuss extensions to shortermore » duration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanova, M. A.; Zyryanov, S. M.; Faculty of Physics, Moscow State University, MSU, Moscow
Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtualmore » IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization in the sheath on the origin and intensity of low-energy peaks in IED is discussed compared to ion charge-exchange collisions. Obviously, the extrapolation of the “virtual IED sensor” approach to higher pressures requires developing some other sheath models, taking into account both ion and electron collisions and probably including even a model of the whole plasma volume instead of plasma sheath one.« less
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
Sensitivity enhancements in MQ-MAS NMR of spin-5/2 nuclei using modulated rf mixing pulses
NASA Astrophysics Data System (ADS)
Vosegaard, Thomas; Massiot, Dominique; Grandinetti, Philip J.
2000-08-01
An X- overlineX pulse train with stepped modulation frequency was employed to enhance the multiple-quantum to single-quantum coherence transfer in the mixing period of the multiple-quantum magic-angle spinning (MQ-MAS) experiment for spin I=5/2 nuclei. Two MQ-MAS pulse sequences employing this mixing scheme for the triple-to-single and quintuple-to-single quantum coherence transfers have been designed and their performance is demonstrated for 27Al on samples of NaSi 3AlO 8 and 9Al 2O 3·2B 2O 3 . Compared to the standard single-pulse mixing sequences, the sensitivity is approximately doubled in the present experiments.
Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien
2016-06-01
A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Arulkumaran, S.; Ng, G. I.; Lee, C. H.; Liu, Z. H.; Radhakrishnan, K.; Dharmarasu, N.; Sun, Z.
2010-11-01
Studies on the influence of quiescent-gate ( Vgs0) and quiescent-drain ( Vds0) bias stresses in rf-plasma MBE grown AlGaN/GaN high-electron-mobility transistors (HEMTs) were performed. The increase of drain current ( ID) collapse by quiescent-bias-stress in AlGaN/GaN HEMTs were observed using pulsed (pulse width = 200 ns; pulse period = 1 ms) IDS- VDS characteristics. The Si 3N 4 passivation suppressed about 80% ID collapse in quiescent-bias-point stressed HEMTs. The remaining 20% ID collapse were not suppressed which may be coming from buffer-related traps. However, more than 10% of ID collapse suppression was observed on un-stressed or fresh-HEMTs. Similarly, improved cut-off frequency ( fT), maximum oscillation frequency ( fmax) and device output power ( Pout) values were also observed on the un-stressed HEMTs. The Si 3N 4 passivation completely suppressed the ID collapse in un-stressed or fresh-HEMTs which leads to 70% improvement in fT and 60% improvement in the device Pout. The Si 3N 4 passivation did not completely suppress ID collapse in the quiescent-bias stressed-HEMTs. This may be due to the generation of additional surface-related traps in the HEMTs by quiescent-bias-stresses.
III-V on silicon micro-photonic circuits for frequency downconversion of RF signals
NASA Astrophysics Data System (ADS)
Roelkens, G.; Keyvaninia, S.; Tassaert, M.; Latkowski, S.; Bente, E.; Mariën, J.; Thomassen, L.; Baets, R.
2017-11-01
RF frequency downconverters are of key importance in communication satellites. Classically, this is implemented using an electronic mixer. In this paper we explore the use of photonic technology to realize the same functionality. The potential advantages of such an approach compared to the classical microwave solutions are that it is lighter weight, has lower power consumption and can be made smaller if photonic technology is used. An additional advantage is the fact that the optical local oscillator (LO) reference can easily be transported over longer distances than the equivalent LO signal in the microwave domain due to the large bandwidth and low loss and dispersion of optical fiber. Another big advantage is that one can envision the use of short pulse trains as the LO - starting off from a sinusoidal RF reference - in order to exploit subsampling. Subsampling avoids the need for high frequency LO references, which is especially valuable if a downconversion over several 10s of GHz is required. In this paper we present the operation principle of such a photonic frequency downconverter and describe the performance of the developed micro-photonic building blocks required for this functionality. These micro-photonic building blocks are implemented on a III-V semiconductor-on-silicon photonic platform. The components include a micro-photonic hybridly modelocked laser, a 30GHz electroabsorption modulator and an intermediate frequency (1.5GHz) photodetector.
Economic Evaluation of “Pulse Dose” Radiofrequency in the Treatment of Occipital Neuralgia Headache
Giovannini, Vittoria; Pusateri, Rachele; Russo, Viera; Viscardi, Daniela; Palomba, Rosa
2012-01-01
Headache occipital neuralgia is an example of pain-disease for which treatment both pharmacological protocols and invasive methods are used. Among the latter, the RF (Radiofrequency) pulse-dose has been of interest for the prospects of analgesic efficacy, safety and patient compliance, although at the moment only data concerning the pulsed RF and not the RF pulse-dose, that represents its evolution, are discussed in scientific literature. The purpose of this study is a “simple” economic evaluation of this method in headache occipital neuralgia. PMID:23905049
Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhenbang; Huang, Hua; Lei, Lurong
2015-09-15
To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is aboutmore » 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.« less
Lightning Mapping and Leader Propagation Reconstruction using LOFAR-LIM
NASA Astrophysics Data System (ADS)
Hare, B.; Ebert, U.; Rutjes, C.; Scholten, O.; Trinh, G. T. N.
2017-12-01
LOFAR (LOw Frequency ARray) is a radio telescope that consists of a large number of dual-polarized antennas spread over the northern Netherlands and beyond. The LOFAR for Lightning Imaging project (LOFAR-LIM) has successfully used LOFAR to map out lightning in the Netherlands. Since LOFAR covers a large frequency range (10-90 MHz), has antennas spread over a large area, and saves the raw trace data from the antennas, LOFAR-LIM can combine all the strongest aspects of both lightning mapping arrays and lightning interferometers. These aspects include a nanosecond resolution between pulses, nanosecond timing accuracy, and an ability to map lightning in all 3 spatial dimensions and time. LOFAR should be able to map out overhead lightning with a spatial accuracy on the order of meters. The large amount of complex data provide by LOFAR has presented new data processing challenges, such as handling the time offsets between stations with large baselines and locating as many sources as possible. New algorithms to handle these challenges have been developed and will be discussed. Since the antennas are dual-polarized, all three components of the electric field can be extracted and the structure of the R.F. pulses can be investigated at a large number of distances and angles relative to the lightning source, potentially allowing for modeling of lightning current distributions relevant to the 10 to 90 MHz frequency range. R.F. pulses due to leader propagation will be presented, which show a complex sub-structure, indicating intricate physics that could potentially be reconstructed.
Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2010-07-01
Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.
NASA Astrophysics Data System (ADS)
Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro
2015-01-01
We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.
Initial operation of high power ICRF system for long pulse in EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.
2015-12-10
The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less
NASA Astrophysics Data System (ADS)
Duckitt, W. D.; Conradie, J. L.; van Niekerk, M. J.; Abraham, J. K.; Niesler, T. R.
2018-07-01
iThemba LABS has successfully designed a new broadband digital low-level RF control system for cyclotrons, that operates over the wide frequency range of 2-100 MHz and can achieve peak-peak amplitude and phase stabilities of 0.01% and 0.01°, respectively. The presented system performs direct digital synthesis (DDS) to directly convert the digital RF signals to analog RF and local-oscillator (LO) signals with 16-bit amplitude accuracy, programmable in steps of 1 μHz and 0.0001°. Down-conversion of the RF pick-up signals to an optimal intermediate frequency (IF) of 1 MHz and sampling of the IF channels by 16-bit, single sample-latency 10 MHz ADCs was implemented to allow digital high-speed low-latency in-phase/quadrature (I/Q) demodulation of the IF channels within the FPGA. This in turn allows efficient real-time digital closed-loop control of the amplitude and phase of the RF drive-signal to be achieved. The systems have been successfully integrated at iThemba LABS into the K = 8 and K = 10 injector cyclotrons (SPC1, and SPC2), the K = 200 separated sector cyclotron (SSC), the SSC flat-topping system, the pulse-selector system and the AX , J, and K-line RF bunchers. The systems have led to a substantial improvement in the beam quality of the SSC at iThemba LABS with a reduction in beam losses by more than 90%. The design, implementation and performance is discussed.
SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers
NASA Astrophysics Data System (ADS)
Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier
2015-12-01
SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.
Demonstration of Electro-Osmotic Pulse Technology in Earth-Covered Magazines at Fort A.P. Hill, VA
2009-08-01
Electromagnetic Radiation to Ordnance ( HERO ) Evaluation Tests were conducted on magazines to detect any radio frequency (RF) emissions produced and to...measure electromagnetic (EM) radiation from the anodes installed in the magazines. The detailed results of a HERO ( Hazards of Electromagnetic ...reinforcement steel ........................................................... 14 3.3.6 Testing for electromagnetic radiation hazards
NASA Astrophysics Data System (ADS)
Li, Ningzhi; Li, Shizhe; Shen, Jun
2017-06-01
In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (<= 4 Tesla (T)) to keep the local and averaged specific absorption rate (SAR) under the safety guidelines established by the International Electrotechnical Commission (IEC) and the US Food and Drug Administration (FDA). Alternately, carboxylic/amide carbons are coupled to protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-01-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-06-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J
2003-07-01
Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for systematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen design criteria were transformation of I(z)-->I(x) over resonance offsets of +/- 20 kHz and RF variability of +/-5%, with a pulse length of 2 ms. Simulations of the resulting pulse transform I(z)-->0.995I(x) over the target ranges in resonance offset and RF variability. Acceptably uniform excitation is obtained over a much larger range of RF variability (approximately 45%) than the strict design limits. The pulse performs well in simulations that include homonuclear and heteronuclear J-couplings. Experimental spectra obtained from 100% 13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and reducing pulse length, we demonstrate experimental excitation of 1H over +/-32 kHz, with phase variations in the spectra <8 degrees and peak amplitudes >93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible by applying more sophisticated implementations of the optimal control formalism.
Deuterium results at the negative ion source test facility ELISE
NASA Astrophysics Data System (ADS)
Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.
2018-05-01
The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.
NASA Astrophysics Data System (ADS)
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meljanac, Daniel, E-mail: dmeljan@irb.hr; Plodinec, Milivoj; Siketić, Zdravko
2016-03-15
Thin ZnO:Al layers were deposited by pulsed laser deposition in vacuum and in oxygen atmosphere at gas pressures between 10 and 70 Pa and by applying radio-frequency (RF) plasma. Grazing incidence small angle x-ray scattering and grazing incidence x-ray diffraction (GIXRD) data showed that an increase in the oxygen pressure leads to an increase in the roughness, a decrease in the sample density, and changes in the size distribution of nanovoids. The nanocrystal sizes estimated from GIXRD were around 20 nm, while the sizes of the nanovoids increased from 1 to 2 nm with the oxygen pressure. The RF plasma mainly influenced themore » nanostructural properties and point defects dynamics. The photoluminescence consisted of three contributions, ultraviolet (UV), blue emission due to Zn vacancies, and red emission, which are related to an excess of oxygen. The RF excitation lowered the defect level related to blue emission and narrowed the UV luminescence peak, which indicates an improvement of the structural ordering. The observed influence of the deposition conditions on the film properties is discussed as a consequence of two main effects: the variation of the energy transfer from the laser plume to the growing film and changes in the growth chemistry.« less
Thin-film cadmium telluride photovoltaic cells
NASA Astrophysics Data System (ADS)
Compaan, A. D.; Bohn, R. G.
1994-09-01
This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.
Synchronization of pulses from mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, G.T.
A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less
Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A
2009-12-01
Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.
Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang
2017-04-03
Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.
Tunable Optical True-Time Delay Devices Would Exploit EIT
NASA Technical Reports Server (NTRS)
Kulikov, Igor; DiDomenico, Leo; Lee, Hwang
2004-01-01
Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.
A home-built digital optical MRI console using high-speed serial links.
Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong
2015-08-01
To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.
Irastorza, Ramiro M; d'Avila, Andre; Berjano, Enrique
2018-02-01
The use of ultra-short RF pulses could achieve greater lesion depth immediately after the application of the pulse due to thermal latency. A computer model of irrigated-catheter RF ablation was built to study the impact of thermal latency on the lesion depth. The results showed that the shorter the RF pulse duration (keeping energy constant), the greater the lesion depth during the cooling phase. For instance, after a 10-second pulse, lesion depth grew from 2.05 mm at the end of the pulse to 2.39 mm (17%), while after an ultra-short RF pulse of only 1 second the extra growth was 37% (from 2.22 to 3.05 mm). Importantly, short applications resulted in deeper lesions than long applications (3.05 mm vs. 2.39 mm, for 1- and 10-second pulse, respectively). While shortening the pulse duration produced deeper lesions, the associated increase in applied voltage caused overheating in the tissue: temperatures around 100 °C were reached at a depth of 1 mm in the case of 1- and 5-second pulses. However, since the lesion depth increased during the cooling period, lower values of applied voltage could be applied in short durations in order to obtain lesion depths similar to those in longer durations while avoiding overheating. The thermal latency phenomenon seems to be the cause of significantly greater lesion depth after short-duration high-power RF pulses. Balancing the applied total energy when the voltage and duration are changed is not the optimal strategy since short pulses can also cause overheating. © 2017 Wiley Periodicals, Inc.
Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory
NASA Astrophysics Data System (ADS)
Buakor, K.; Rimjaem, S.
2017-09-01
Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.
Upgrade to a programmable timing system for the KOMAC proton linac and multi-purpose beam lines
NASA Astrophysics Data System (ADS)
Song, Young-Gi
2016-09-01
The KOMAC facility consists of low-energy components, including a 50-keV ion source, a lowenergy beam transport (LEBT), a 3-MeV radio-frequency quadrupole (RFQ), and a 20-MeV drift tube linac (DTL), as well as high-energy components, including seven DTL tanks for the 100-MeV proton beam. The KOMAC includes ten beam lines, five for 20-MeV beams and five for 100-MeV beams. The peak beam current and the maximum beam duty are 20 mA and 24% for the 20-MeV linac and 20 mA and 8% for the 100-MeV linac, respectively. Four high-voltage convertor modulators are used. Each modulator drives two or three klystrons. The peak output power is 5.8 MW, and the average power is 520 kW with a duty of 9%. The pulse width and repetition rate are 1.5 ms and 60 Hz, respectively. Each component of the pulsed operation mode has a timing trigger signal with precision synchronization. A timing system for beam extraction and for diagnostic components is required to provide precise pulse signals synchronized with a 300-MHz RF reference frequency. In addition, the timing parameters should be capable of real-time changes in accordance with the beam power. The KOMAC timing system has been upgraded to a programmable Micro Research Finland (MRF) event timing system that is synchronized with the RF, AC main frequency and with the global positioning system (GPS) 1-PPS signal. The event timing system consists of an event generator (EVG) and an event receiver (EVR). The event timing system is integrated with the KOMAC control system by using experimental physics and industrial control system (EPICS) software. For preliminary hardware and software testing, a long operation test with a synchronization of 300-MHz RF reference and 60-Hz AC has been completed successfully. In this paper, we will describe the software implementation, the testing, and the installation of the new timing system.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Injection locked coupled opto-electronic oscillator for optical frequency comb generation
NASA Astrophysics Data System (ADS)
Williams, Charles; Mandridis, Dimitrios; Davila-Rodriguez, Josue; Delfyett, Peter J.
2011-06-01
A CW injection locked Coupled Opto-Electronic Oscillator (COEO) is presented with a 10.24 GHz spaced optical frequency comb output as well as a low noise RF output. A modified Pound-Drever-Hall scheme is employed to ensure long-term stability of the injection lock, feeding back into the cavity length to compensate for cavity resonance drifts relative to the injection seed frequency. Error signal comparison to an actively mode-locked injection locked laser is presented. High optical signal-to-noise ratio of ~35 dB is demonstrated with >20 comblines of useable bandwidth. The optical linewidth, in agreement with injection locking theory, reduces to that of the injection seed frequency, <5 kHz. Low amplitude and absolute phase noise are presented from the optical output of the laser system. The integrated pulse-to-pulse energy fluctuation was found to be reduced by up to a factor of two due to optical injection. Additional decreases were shown for varying injection powers.
Parallel transmission RF pulse design for eddy current correction at ultra high field.
Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando
2012-08-01
Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.
Staud, Roland; Weyl, Elizabeth E.; Riley, Joseph L.; Fillingim, Roger B.
2014-01-01
Background In healthy individuals slow temporal summation of pain or wind-up (WU) can be evoked by repetitive heat-pulses at frequencies of ≥.33 Hz. Previous WU studies have used various stimulus frequencies and intensities to characterize central sensitization of human subjects including fibromyalgia (FM) patients. However, many trials demonstrated considerable WU-variability including zero WU or even wind-down (WD) at stimulus intensities sufficient for activating C-nociceptors. Additionally, few WU-protocols have controlled for contributions of individual pain sensitivity to WU-magnitude, which is critical for WU-comparisons. We hypothesized that integration of 3 different WU-trains into a single WU-response function (WU-RF) would not only control for individuals’ pain sensitivity but also better characterize their central pain responding including WU and WD. Methods 33 normal controls (NC) and 38 FM patients participated in a study of heat-WU. We systematically varied stimulus intensities of.4 Hz heat-pulse trains applied to the hands. Pain summation was calculated as difference scores of 1st and 5th heat-pulse ratings. WU-difference (WU-Δ) scores related to 3 heat-pulse trains (44°C, 46°C, 48°C) were integrated into WU-response functions whose slopes were used to assess group differences in central pain sensitivity. WU-aftersensations (WU-AS) at 15 s and 30 s were used to predict clinical FM pain intensity. Results WU-Δ scores linearly accelerated with increasing stimulus intensity (p<.001) in both groups of subjects (FM>NC) from WD to WU. Slope of WU-RF, which is representative of central pain sensitivity, was significantly steeper in FM patients than NC (p<.003). WU-AS predicted clinical FM pain intensity (Pearson’s r = .4; p<.04). Conclusions Compared to single WU series, WU-RFs integrate individuals’ pain sensitivity as well as WU and WD. Slope of WU-RFs was significantly different between FM patients and NC. Therefore WU-RF may be useful for assessing central sensitization of chronic pain patients in research and clinical practice. PMID:24558475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.
2008-01-01
High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less
Mapping thunder sources by inverting acoustic and electromagnetic observations
NASA Astrophysics Data System (ADS)
Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.
2014-12-01
We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.
NASA Astrophysics Data System (ADS)
Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing
2008-10-01
We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.
Symmetric operation of the resonant exchange qubit
NASA Astrophysics Data System (ADS)
Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand
2017-07-01
We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated rf pulses. We find that the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between rf drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to 32 π pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of symmetric configurations in the operation of triple-dot qubits.
Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications
NASA Astrophysics Data System (ADS)
Tiwat, Pongthavornkamol; Lei, Pang; Xinhua, Wang; Sen, Huang; Guoguo, Liu; Tingting, Yuan; Xinyu, Liu
2015-07-01
An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented. Project supported by the National Natural Science Foundation of China (No. 61204086).
NASA Technical Reports Server (NTRS)
Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.
1979-01-01
The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois
2014-12-15
Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate themore » feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.« less
STREAK CAMERA MEASUREMENTS OF THE APS PC GUN DRIVE LASER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooling, J. C.; Lumpkin, A. H.
We report recent pulse-duration measurements of the APS PC Gun drive laser at both second harmonic and fourth harmonic wavelengths. The drive laser is a Nd:Glass-based chirped pulsed amplifier (CPA) operating at an IR wavelength of 1053 nm, twice frequency-doubled to obtain UV output for the gun. A Hamamatsu C5680 streak camera and an M5675 synchroscan unit are used for these measurements; the synchroscan unit is tuned to 119 MHz, the 24th subharmonic of the linac s-band operating frequency. Calibration is accomplished both electronically and optically. Electronic calibration utilizes a programmable delay line in the 119 MHz rf path. Themore » optical delay uses an etalon with known spacing between reflecting surfaces and is coated for the visible, SH wavelength. IR pulse duration is monitored with an autocorrelator. Fitting the streak camera image projected profiles with Gaussians, UV rms pulse durations are found to vary from 2.1 ps to 3.5 ps as the IR varies from 2.2 ps to 5.2 ps.« less
Surface plasma source with saddle antenna radio frequency plasma generator.
Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R
2012-02-01
A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less
Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, Auralee; Biedron, Sandra; Bowring, Daniel
2016-06-01
As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequencymore » of the RFQ.« less
Architecture for a 1-GHz Digital RADAR
NASA Technical Reports Server (NTRS)
Mallik, Udayan
2011-01-01
An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.
NASA Astrophysics Data System (ADS)
Ipe, N. E.; McCall, R. C.; Baker, E. D.
1986-05-01
The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.
Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X
NASA Astrophysics Data System (ADS)
Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.
2003-02-01
Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to depression voltages of 33 kV. The output beam of the gyrotron is injected into an RF-tight microwave chamber which is equipped with two water-cooled mirrors directing the beam towards the 1 MW water load. The second mirror inside the microwave chamber contains a directional output coupler formed by a row of holes in the mirror surface. A diode detector is connected to the directional coupler and the forward power can be determined once the signal has been calibrated. This was performed by calorimetric measurement of the RF wave in short-pulse measurements. The mode purity of the Gaussian beam was measured by an IR camera and a thin dielectric target plate placed at different positions across the RF beam. The measured beam distribution agrees very well with the theoretical predictions. After some problems with the RF load, long-pulse operation was performed: The power measurements were done by the signal of the diode detector placed at the second mirror. The measured output power of the calorimetric RF-load normally shows values reduced by about 20%. Output powers of 1 MW could be achieved for 10 s, and an energy as high as 90 MJ per pulse has been produced with an output power of 0.64 MW. The pulse lengths were mainly determined by the preset values, and due to lack of experimental time no attempt was made to increase the pulse length. Only for a 100 s pulse with 0.74 MW output power, a limitation was found due to a pressure increase beyond about 10-7mbar. The gyrotron was sent back to the manufacturer Thales Electron Devices for a visual inspection, and an improved prototype was built and delivered to Forschungszentrum Karlsruhe in the middle of April 2002.
Probe Measurements of Parameters of Streamers of Nanosecond Frequency Crown Discharge
NASA Astrophysics Data System (ADS)
Ponizovskiy, A. Z.; Gosteev, S. G.
2017-12-01
Investigations of the parameters of single streamers of nanosecond frequency corona discharge, creating a voluminous low-temperature plasma in extended coaxial electrode systems, are performed. Measurements of the parameters of streamers were made by an isolated probe situated on the outer grounded electrode. Streamers were generated under the action of voltage pulses with a front of 50-300 ns, duration of 100-600 ns, and amplitude up to 100 kV at the frequency of 50-1000 Hz. The pulse voltage, the total current of the corona, current per probe, and glow in the discharge gap were recorded in the experiments. It was established that, at these parameters of pulse voltage, streamers propagate at an average strength of the electric field of 4-10 kV/cm. Increasing the pulse amplitude leads to an increase in the number of streamers hitting the probe, an increase in the average charge of the head of a streamer, and, as a consequence, an increase in the total streamer current and the energy introduced into the gas. In the intervals up to 3 cm, streamer breakdown at an average field strength of 5-10 kV/cm is possible. In longer intervals, during the buildup of voltage after generation of the main pulse, RF breakdown is observed at E av ≈ 4 kV/cm.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Artifacts correction for T1rho imaging with constant amplitude spin-lock
NASA Astrophysics Data System (ADS)
Chen, Weitian
2017-01-01
T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.
Hartmann-Hahn 2D-map to optimize the RAMP-CPMAS NMR experiment for pharmaceutical materials.
Suzuki, Kazuko; Martineau, Charlotte; Fink, Gerhard; Steuernagel, Stefan; Taulelle, Francis
2012-02-01
Cross polarization-magic angle spinning (CPMAS) is the most used experiment for solid-state NMR measurements in the pharmaceutical industry, with the well-known variant RAMP-CPMAS its dominant implementation. The experimental work presented in this contribution focuses on the entangled effects of the main parameters of such an experiment. The shape of the RAMP-CP pulse has been considered as well as the contact time duration, and a particular attention also has been devoted to the radio-frequency (RF) field inhomogeneity. (13)C CPMAS NMR spectra have been recorded with a systematic variation of (13)C and (1)H constant radiofrequency field pair values and represented as a Hartmann-Hahn matching two-dimensional map. Such a map yields a rational overview of the intricate optimal conditions necessary to achieve an efficient CP magnetization transfer. The map also highlights the effects of sweeping the RF by the RAMP-CP pulse on the number of Hartmann-Hahn matches crossed and how RF field inhomogeneity helps in increasing the CP efficiency by using a larger fraction of the sample. In the light of the results, strategies for optimal RAMP-CPMAS measurements are suggested, which lead to a much higher efficiency than constant amplitude CP experiment. Copyright © 2012 John Wiley & Sons, Ltd.
A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas.
Lee, Seung Bae; Yin, Ming; Manns, Joseph R; Ghovanloo, Maysam
2013-07-01
A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403-490 MHz band with a wide bandwidth of 18 MHz. The frequency-shift keying (FSK) PWM demodulator in the FPGA is a time-to-digital converter with 304 ps resolution, which converts the analog pulse width information to 16-bit digital samples. Automated frequency tracking has been implemented in the Rx to lock onto the free-running voltage-controlled oscillator in the transmitter (Tx). Two antennas and two parallel RF paths are used to increase the wireless coverage area. BCI-2000 graphical user interface has been adopted and modified to acquire, visualize, and record the recovered neural signals in real time. The AO module picks three demultiplexed channels and converts them into analog signals for direct observation on an oscilloscope. One of these signals is further amplified to generate an audio output, offering users the ability to listen to ongoing neural activity. Bench-top testing of the Rx performance with a 32-channel WINeR-6 Tx showed that the input referred noise of the entire system at a Tx-Rx distance of 1.5 m was 4.58 μV rms with 8-bit resolution at 640 kSps. In an in vivo experiment, location-specific receptive fields of hippocampal place cells were mapped during a behavioral experiment in which a rat completed 40 laps in a large circular track. Results were compared against those acquired from the same animal and the same set of electrodes by a commercial hardwired recording system to validate the wirelessly recorded signals.
A Wideband Dual-Antenna Receiver for Wireless Recording From Animals Behaving in Large Arenas
Lee, Seung Bae; Yin, Ming; Manns, Joseph R.
2014-01-01
A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403–490 MHz band with a wide bandwidth of 18 MHz. The frequency-shift keying (FSK) PWM demodulator in the FPGA is a time-to-digital converter with 304 ps resolution, which converts the analog pulse width information to 16-bit digital samples. Automated frequency tracking has been implemented in the Rx to lock onto the free-running voltage-controlled oscillator in the transmitter (Tx). Two antennas and two parallel RF paths are used to increase the wireless coverage area. BCI-2000 graphical user interface has been adopted and modified to acquire, visualize, and record the recovered neural signals in real time. The AO module picks three demultiplexed channels and converts them into analog signals for direct observation on an oscilloscope. One of these signals is further amplified to generate an audio output, offering users the ability to listen to ongoing neural activity. Bench-top testing of the Rx performance with a 32-channel WINeR-6 Tx showed that the input referred noise of the entire system at a Tx–Rx distance of 1.5 m was 4.58 μVrms with 8-bit resolution at 640 kSps. In an in vivo experiment, location-specific receptive fields of hippocampal place cells were mapped during a behavioral experiment in which a rat completed 40 laps in a large circular track. Results were compared against those acquired from the same animal and the same set of electrodes by a commercial hardwired recording system to validate the wirelessly recorded signals. PMID:23428612
Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert
Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.
2017-01-01
Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949
NASA Astrophysics Data System (ADS)
Bilalic, Rusmir
A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.
Long pulse EBW start-up experiments in MAST
Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; ...
2015-03-12
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less
Long pulse EBW start-up experiments in MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less
Long Pulse EBW Start-up Experiments in MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, V. F.; Bigelow, Tim S; Caughman, J. B. O.
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (0) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less
High-order multiband encoding in the heart.
Cunningham, Charles H; Wright, Graham A; Wood, Michael L
2002-10-01
Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application. Copyright 2002 Wiley-Liss, Inc.
Potential GPRS 900/180-MHz and WCDMA 1900-MHz interference to medical devices.
Iskra, Steve; Thomas, Barry W; McKenzie, Ray; Rowley, Jack
2007-10-01
This study compared the potential for interference to medical devices from radio frequency (RF) fields radiated by GSM 900/1800-MHz, general packet radio service (GPRS) 900/1800-MHz, and wideband code division multiple access (WCDMA) 1900-MHz handsets. The study used a balanced half-wave dipole antenna, which was energized with a signal at the standard power level for each technology, and then brought towards the medical device while noting the distance at which interference became apparent. Additional testing was performed with signals that comply with the requirements of the international immunity standard to RF fields, IEC 61000-4-3. The testing provides a sense of the overall interference impact that GPRS and WCDMA (frequency division duplex) may have, relative to current mobile technologies, and to the internationally recognized standard for radiated RF immunity. Ten medical devices were tested: two pulse oximeters, a blood pressure monitor, a patient monitor, a humidifier, three models of cardiac defibrillator, and two models of infusion pump. Our conclusion from this and a related study on consumer devices is that WCDMA handsets are unlikely to be a significant interference threat to medical electronics at typical separation distances.
Krehlik, Przemyslaw; Schnatz, Harald; Sliwczynski, Lukasz
2017-12-01
We describe a fiber-optic solution for simultaneous distribution of all signals generated at today's most advanced time and frequency laboratories, i.e., an ultrastable optical reference frequency derived from an optical atomic clock, a radio frequency precisely linked to a realization of the SI-Second, and a realization of an atomic timescale, being the local representation of the virtual, global UTC timescale. In our solution both the phase of the optical carrier and the delay of electrical signals (10-MHz frequency reference and one-pulse-per-second time tags) are stabilized against environmental perturbations influencing the fiber link instability and accuracy. We experimentally demonstrate optical transfer stabilities of and for 100 s averaging period, for optical carrier and 10-MHz signals, respectively.
Nested-cone transformer antenna
Ekdahl, C.A.
1991-05-28
A plurality of conical transmission lines are concentrically nested to form an output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated. 6 figures.
Nested-cone transformer antenna
Ekdahl, Carl A.
1991-01-01
A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.
Experimental Study of RF Sheath Formation on a Fast Wave Antenna and Limiter in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy
2015-11-01
Ion cyclotron resonance heating (ICRH) will be an essential component of heating power in ITER. During ICRH, radio frequency (RF) sheaths may form both at the exciting antenna and further away, e.g. in the divertor region, and may cause wall material sputtering and decreased RF power coupling to the plasma. It is important to do detailed laboratory experiments that fully diagnose the sheaths and wave fields. This is not possible in fusion devices. A new RF system has recently been constructed for performing such studies in the LAPD plasma column (ne ~1012 -1013cm-3 , Te ~ 1 - 10 eV ,B0 ~ 400 - 2000 G , diameter ~ 60cm , length ~ 18 m) . The RF system is capable of pulsing at the 1 Hz rep. rate of the LAPD plasma and operating between 2-6 MHz (1st - 9th harmonic of fci in H) with a power output of 200 kW. First results of this system driving a single-strap fast wave antenna will be presented. Emissive and Langmuir probe measurements in the vicinity of both the antenna and a remote limiter and wave coupling measured by magnetic pickup loops will be presented.
Goodrich, K C; Blatter, D D; Parker, D L; Du, Y P; Meyer, K J; Bernstein, M A
1996-06-01
The authors compare the effectiveness of various magnetic resonance (MR) angiography acquisition strategies in enhancing the visibility of small intracranial vessels. Blood vessel contrast-to-noise ratio (CNR) in time-of-flight MR angiography was studied as a function of vessel size and several selectable imaging parameters. Contrast-to-noise measurements were made on 257 vessel segments ranging in size from 0.3 mm to 4.2 mm in patients who recently had undergone intraarterial cerebral angiography. Imaging parameters studied included magnetization transfer, spatially variable radio frequency (RF) pulse profile (ramped RF), and imaging slab thickness. The combination of thin slabs (16 slices/slab), ramped RF, and magnetization transfer resulted in the highest CNR for all but the smallest vessel sizes. The smallest vessels (< 0.5 mm) had the highest CNR, using the thick slab (64 slices/slab) with ramped RF and magnetization transfer. Magnetization transfer always improved vessel CNR, but the improvement diminished as the slab thickness was reduced. The CNR increased with a decrease in slab thickness for all but the smallest vessel sizes. Overall, the results provide a quantitative demonstration that inflow enhancement of blood is reduced for small vessels. Thus, whereas magnetization transfer is important at all vessel sizes, it becomes the primary factor in improving the visibility of the smallest vessels.
Interaction of UV laser pulses with reactive dusty plasmas
NASA Astrophysics Data System (ADS)
van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes
2016-09-01
This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.
NASA Astrophysics Data System (ADS)
Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.
2013-05-01
High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.
Low temperature probe for dynamic nuclear polarization and multiple-pulse solid-state NMR.
Cho, HyungJoon; Baugh, Jonathan; Ryan, Colm A; Cory, David G; Ramanathan, Chandrasekhar
2007-08-01
Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP) experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs. We have designed two probes-one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF and gradient coils.
Saddle antenna radio frequency ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R.; Murray, S.
Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA withmore » RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.« less
Reticular influences on primary and augmenting responses in the somatosensory cortex.
Steriade, M; Morin, D
1981-01-26
The effects of brief, conditioning trains of high-frequency pulses to the midbrain reticular formation (RF) on primary and augmenting responses of somatosensory (SI) cortex were investigated. Testing stimulation was applied to the ventrobasal (VB) thalamus or to the white matter (WM) beneath SI in VB-lesioned animals. The RF-elicited EEG activation was associated with increased firing rates of SI neurons, enhanced probability of early synaptic discharges to VB or WM stimuli, and significantly reduced duration of the suppressed firing period following an afferent VB or WM volley. The diminished latency of the postinhibitory rebound under RF stimulation had the consequence that, within 10/sec shock-train, the second stimulus was delivered following completion of the rebound component and, instead of an augmented potential, generated a field response of primary-type. The dependence of the RF-induced change in augmenting potentials upon the sharpening effect exerted on the preceding inhibitory-rebound sequence was corroborated by analyzing the RF influence on neurons with different time-course of recovery from inhibition. The replacement of augmenting potentials by primary responses under RF stimulation is advanced as the mechanism behind the obliteration of spontaneously developing 'type I' spindle-waves during EEG arousal. The demonstration of RF influences on SI responses to WM stimulation in VB-lesioned animals points out the cortical level of the effects. The reticulo-thalamo-cortical pathways underlying these influences are discussed.
2006-04-15
was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier
Quadrature mixture LO suppression via DSW DAC noise dither
Dubbert, Dale F [Cedar Crest, NM; Dudley, Peter A [Albuquerque, NM
2007-08-21
A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despax, B.; Makasheva, K.; CNRS, LAPLACE, F-31062 Toulouse cedex 09
2012-11-01
A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towardsmore » the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.« less
Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra
NASA Astrophysics Data System (ADS)
Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team
2014-02-01
On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.
The set of triple-resonance sequences with a multiple quantum coherence evolution period
NASA Astrophysics Data System (ADS)
Koźmiński, Wiktor; Zhukov, Igor
2004-12-01
The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com
A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less
A simple 5-DoF MR-compatible motion signal measurement system.
Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae
2011-09-01
The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.
Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr
2013-09-17
Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.
A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey; Agustsson, R.; Hartzell, J
A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power testsmore » of the cathode assembly of the new gun.« less
Development of sub-100 femtosecond timing and synchronization system
NASA Astrophysics Data System (ADS)
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Development of sub-100 femtosecond timing and synchronization system.
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
RF-photonic chirp encoder and compressor for seamless analysis of information flow.
Zalevsky, Zeev; Shemer, Amir; Zach, Shlomo
2008-05-26
In this paper we realize an RF photonic chirp compression system that compresses a continuous stream of incoming RF data (modulated on top of an optical carrier) into a train of temporal short pulses. Each pulse in the train can be separated and treated individually while being sampled by low rate optical switch and without temporal loses of the incoming flow of information. Each such pulse can be filtered and analyzed differently. The main advantage of the proposed system is its capability of being able to handle, seamlessly, high rate information flow with all-optical means and with low rate optical switches.
Phase incremented echo train acquisition applied to magnetic resonance pore imaging
NASA Astrophysics Data System (ADS)
Hertel, S. A.; Galvosas, P.
2017-02-01
Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.
Development for a supercompact X -band pulse compression system and its application at SLAC
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen; ...
2017-11-09
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
Development for a supercompact X -band pulse compression system and its application at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
Erdogan, Ali; Grumbrecht, Stephan; Neumann, Thomas; Neuzner, Joerg; Pitschner, Heinz F
2003-01-01
The aim of the study was to compare the diameter of endomyocardial lesions induced with the delivery of microwave, cooled, or pulsed energy versus conventional RF energy. In vitro tests were performed in fresh endomyocardial preparations of pig hearts in a 10-L bath of NaCl 0.9% solution at 37 degrees C and constant 1.5 L/min flow. Ablation 7 Fr catheters with 4-mm tip electrodes were used, except for the delivery of microwave energy. Energy delivery time was set to 60 s/50 W in all experiments. Cooled energy delivery was performed with a closed irrigation catheter. Pulsed energy delivery was performed using a special controller with a duty-cycle of 5 ms. Microwave energy was delivered with a 2.5-GHz generator and 10-mm antenna. Electrode temperature and impedance were measured simultaneously. After ablation, lesion length, width, and depth were measured with microcalipers, and volume calculated by a formula for ellipsoid bodies. Each energy delivery mode was tested in ten experiments. The deepest lesions were created with cooled energy delivery, and the largest volume by microwave energy delivery. Pulsed RF produced significantly deeper lesions than conventional RF energy delivery. Cooled or pulsed RF energy delivery created deeper transmural lesions than conventional RF. To create linear lesions at anatomically complex sites (isthmus), microwave energy seemed superior by rapidly creating deep and long lesions.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
Compact rf polarizer and its application to pulse compression systems
Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...
2016-06-01
We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less
Towards Precision Measurement of the 21S0-31D2 Two-Photon Transition in Atomic Helium
NASA Astrophysics Data System (ADS)
Huang, Yi-Jan; Guan, Yu-Chan; Suen, Te-Hwei; Wang, Li-Bang; Shy, Jow-Tsong
2017-04-01
We intend to accurately measure the frequency for 2S-3D two-photon transition and to deduce the 2S ionization energy to an accuracy below 100 kHz from the theoretical calculation of the 3D state. In this talk, we present a precision measurement of the 21S0 -31D2 two-photon transition in atomic helium at 1009 nm. A master oscillator power amplifier (MOPA) is seeded by an external cavity diode laser (ECDL) is constructed to generate more than 700 mW laser power with TEM00 beam profile at 1009 nm. To observe the two-photon transition, a helium cell is placed inside a power enhancement optical cavity and the helium atoms at 21S metastable level are prepared by a pulsed RF discharge and monitor the 668 nm 31D2 to 21P1 fluorescence after RF discharge is turned off . The absolute frequency metrology of the ECDL is carried out by an Er-fiber optical frequency comb (OFC). The two-photon spectrum is obtained by tuning the repetition frequency of the OFC. The 21S0-31D2 frequency is determined to be 594414291.967 (80) MHz in He-4. More results will be presented at the annual meeting.
Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun
NASA Astrophysics Data System (ADS)
Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.
2002-08-01
In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.
Different auditory feedback control for echolocation and communication in horseshoe bats.
Liu, Ying; Feng, Jiang; Metzner, Walter
2013-01-01
Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.
Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats
Liu, Ying; Feng, Jiang; Metzner, Walter
2013-01-01
Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137
Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders
NASA Astrophysics Data System (ADS)
Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.
2000-04-01
In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.
Micropower RF material proximity sensor
McEwan, Thomas E.
1998-01-01
A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is of the sensor. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt's configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna.
Micropower RF material proximity sensor
McEwan, T.E.
1998-11-10
A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is disclosed. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt`s configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna. 5 figs.
PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables
NASA Astrophysics Data System (ADS)
Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.
Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.
Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating
NASA Astrophysics Data System (ADS)
Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.
2001-10-01
A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.
Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki
2004-05-01
An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.
LLRF System for the Fermilab Muon g-2 and Mu2e Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, P.; Chase, B.
The Mu2e experiment measures the conversion rate of muons into electrons and the Muon g-2 experiment measures the muon magnetic moment. Both experiments require 53 MHz batches of 8 GeV protons to be re-bunched into 150 ns, 2.5 MHz pulses for extraction to the g-2 target for Muon g-2 and to a delivery ring with a single RF cavity running at 2.36 MHz for Mu2e. The LLRF system for both experiments is implemented in a SOC FPGA board integrated into the existing 53 MHz LLRF system in a VXI crate. The tight timing requirements, the large frequency difference and themore » non-harmonic relationship between the two RF systems provide unique challenges to the LLRF system design to achieve the required phase alignment specifications for beam formation, transfers and beam extinction between pulses. The new LLRF system design for both projects is described and the results of the initial beam commissioning tests for the Muon g-2 experiment are presented.« less
The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes
NASA Astrophysics Data System (ADS)
Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.
The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.
An Electronic Patch for wearable health monitoring by reflectance pulse oximetry.
Haahr, Rasmus G; Duun, Sune B; Toft, Mette H; Belhage, Bo; Larsen, Jan; Birkelund, Karen; Thomsen, Erik V
2012-02-01
We report the development of an Electronic Patch for wearable health monitoring. The Electronic Patch is a new health monitoring system incorporating biomedical sensors, microelectronics, radio frequency (RF) communication, and a battery embedded in a 3-dimensional hydrocolloid polymer. In this paper the Electronic Patch is demonstrated with a new optical biomedical sensor for reflectance pulse oximetry so that the Electronic Patch in this case can measure the pulse and the oxygen saturation. The reflectance pulse oximetry solution is based on a recently developed annular backside silicon photodiode to enable low power consumption by the light emitting components. The Electronic Patch has a disposable part of soft adhesive hydrocolloid polymer and a reusable part of hard polylaurinlactam. The disposable part contains the battery. The reusable part contains the reflectance pulse oximetry sensor and microelectronics. The reusable part is 'clicked' into the disposable part when the patch is prepared for use. The patch has a size of 88 mm by 60 mm and a thickness of 5 mm.
Design of an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.
A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.
Eichner, Cornelius; Wald, Lawrence L; Setsompop, Kawin
2014-10-01
Simultaneous multislice (SMS) acquisition enables increased temporal efficiency of MRI. Nonetheless, MultiBand (MB) radiofrequency (RF) pulses used for SMS can cause large energy deposition. Power independent of number of slices (PINS) pulses reduce RF power at cost of reduced bandwidth and increased off-resonance dependency. This work improves PINS design to further reduce energy deposition, off-resonance dependency and peak power. Modifying the shape of MB RF-pulses allows for mixing with PINS excitation, creating a new pulse type with reduced energy deposition and SMS excitation characteristics. Bloch Simulations were used to evaluate excitation and off-resonance behavior of this "MultiPINS" pulse. In this work, MultiPINS was used for whole-brain MB = 3 acquisition of high angular and spatial resolution diffusion MRI at 7 Tesla in 3 min. By using MultiPINS, energy transmission and peak power for SMS imaging can be significantly reduced compared with PINS and MB pulses. For MB = 3 acquisition in this work, MultiPINS reduces energy transmission by up to ∼50% compared with PINS pulses. The energy reduction was traded off to shorten the MultiPINS pulse, yielding higher signal at off-resonances for spin-echo acquisitions. MB and PINS pulses can be combined to enable low energy and peak power SMS acquisition. Copyright © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Marshall, J.; Farrell, W.; Houser, G.; Bratton, C.
1999-01-01
In recent laboratory experiments, measurements were made of microsecond radio-wave (RF) bursts emitted by grains of sand as they energetically circulated in a closed, electrically ungrounded chamber. The bursts appeared to result from nanoscale electrical discharging from grain surfaces. Both the magnitude and wave form of the RF pulses varied with the type of material undergoing motion. The release of RF from electrical discharging is a well-known phenomenon, but it is generally measured on much larger energy scales (e.g., in association with lightning or electrical motors). This phenomenon might be used to detect, on planetary surfaces, the motion and composition of sand moving over dunes, the turbulent motion of fine particles in dust storms, highly-energetic grain and rock collisions in volcanic eruptions, and frictional grinding of granular materials in dry debris flows, landslides, and avalanches. The occurrence of these discharges has been predicted from theoretical considerations Additional information is contained in the original.
Schmitter, Sebastian; Bock, Michael; Johst, Sören; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2011-01-01
Cerebral 3D time of flight (TOF) angiography significantly benefits from ultra high fields, mainly due to higher SNR and to longer T1 relaxation time of static brain tissues, however, SAR significantly increases with B0. Thus, additional RF pulses commonly used at lower field strengths to improve TOF contrast such as saturation of venous signal and improved background suppression by magnetization transfer typically cannot be used at higher fields. In this work we aimed at reducing SAR for each RF pulse category in a TOF sequence. We use the VERSE principle for the slab selective TOF excitation as well as the venous saturation RF pulses. Additionally, MT pulses are implemented by sparsely applying the pulses only during acquisition of the central k-space lines to limit their SAR contribution. Image quality, angiographic contrast and SAR reduction were investigated as a function of VERSE parameters and of the total number of MT pulses applied. Based on these results, a TOF protocol was generated that increases the angiographic contrast by more than 50% and reduces subcutaneous fat signal while keeping the resulting SAR within regulatory limits. PMID:22139829
Esmekaya, Meric Arda; Aytekin, Ebru; Ozgur, Elcin; Güler, Göknur; Ergun, Mehmet Ali; Omeroğlu, Suna; Seyhan, Nesrin
2011-12-01
The mutagenic and morphologic effects of 1.8GHz Global System for Mobile Communications (GSM) modulated RF (radiofrequency) radiation alone and in combination with Ginkgo biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (hPBLs) were investigated in this study using Sister Chromatid Exchange (SCE) and electron microscopy. Cell viability was assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. The lymphocyte cultures were exposed to GSM modulated RF radiation at 1.8GHz for 6, 8, 24 and 48h with and without EGb 761. We observed morphological changes in pulse-modulated RF radiated lymphocytes. Longer exposure periods led to destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial crista occurred in cells exposed to RF for 8h and 24h and were more pronounced in cells exposed for 48h. Cytoplasmic lysis and destruction of membrane integrity of cells and nuclei were also seen in 48h RF exposed cells. There was a significant increase (p<0.05) in SCE frequency in RF exposed lymphocytes compared to sham controls. EGb 761 pre-treatment significantly decreased SCE from RF radiation. RF radiation also inhibited cell viability in a time dependent manner. The inhibitory effects of RF radiation on the growth of lymphoctes were marked in longer exposure periods. EGb 761 pre-treatment significantly increased cell viability in RF+EGb 761 treated groups at 8 and 24h when compared to RF exposed groups alone. The results of our study showed that RF radiation affects cell morphology, increases SCE and inhibits cell proliferation. However, EGb 761 has a protective role against RF induced mutagenity. We concluded that RF radiation induces chromosomal damage in hPBLs but this damage may be reduced by EGb 761 pre-treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro
2017-01-01
A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon
2003-09-01
The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.
Elman, Monica; Vider, Itzhak; Harth, Yoram; Gottfried, Varda; Shemer, Avner
2010-04-01
Abstract The last few years have shown an increased demand for non-invasive skin tightening to improve body contour. Since light (lasers or intense pulsed light sources) has a limited ability to penetrate deep into the tissue, radio frequency (RF) modalities were introduced for the reduction of lax skin to achieve skin tightening and body circumference reduction. This study presents the use of the novel 3DEEP technology for body contouring. 3DEEP is a next generation RF technology that provides targeted heating to deeper skin layers without pain or other local or systemic side effects associated with the use of the earlier generation RF systems available today. The study included 30 treatment areas on 23 healthy volunteers at two sites. The treatment protocol included four weekly and two bi-weekly (n= 6) treatments on different body areas. Results were evaluated by standardized photography and by circumference measurements at the treatment area, and were compared to changes in body weight. Significant improvement could be observed in wrinkles and skin laxity, and in the appearance of stretch marks and cellulite. Some changes appeared as early as after a single treatment. Circumference changes of up to 4.3 cm were measured.
Magnetic Resonance Mediated Radiofrequency Ablation.
Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L
2018-02-01
To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.
Real-time two-dimensional temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2009-01-01
We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.
NASA Astrophysics Data System (ADS)
Saisut, J.; Kusoljariyakul, K.; Rimjaem, S.; Kangrang, N.; Wichaisirimongkol, P.; Thamboon, P.; Rhodes, M. W.; Thongbai, C.
2011-05-01
The Plasma and Beam Physics Research Facility at Chiang Mai University has established a THz facility to focus on the study of ultra-short electron pulses. Short electron bunches can be generated from a system that consists of a radio-frequency (RF) gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator as a post-acceleration section. The alpha magnet is a conventional and simple instrument for low-energy electron bunch compression. With the alpha magnet constructed in-house, several hundred femtosecond electron bunches for THz radiation production can be generated from the thermionic RF gun. The construction and performance of the alpha magnet, as well as some experimental results, are presented in this paper.
Detection of acoustic waves by NMR using a radiofrequency field gradient
NASA Astrophysics Data System (ADS)
Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J.; Franconi, Jean-Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D.
2003-03-01
A B1 field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 1 3¯3 1¯ RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.
Detection of acoustic waves by NMR using a radiofrequency field gradient.
Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D
2003-03-01
A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.
Small-tip fast recovery imaging using non-slice-selective tailored tip-up pulses and RF-spoiling
Nielsen, Jon-Fredrik; Yoon, Daehyun; Noll, Douglas C.
2012-01-01
Small-tip fast recovery (STFR) imaging is a new steady-state imaging sequence that is a potential alternative to balanced steady-state free precession (bSSFP). Under ideal imaging conditions, STFR may provide comparable signal-to-noise ratio (SNR) and image contrast as bSSFP, but without signal variations due to resonance offset. STFR relies on a tailored “tip-up”, or “fast recovery”, RF pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip-up pulse is based on the acquisition of a separate off-resonance (B0) map. Unfortunately, the design of fast (a few ms) slice- or slab-selective RF pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on non-slice-selective tip-up pulses, which simplifies the RF design problem significantly. Out-of-slice magnetization pathways are suppressed using RF-spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady-state T2/T1-weighted imaging with intrinsic suppression of cerebrospinal fluid, through-plane vessel signal, and off-resonance artifacts. In the future we expect STFR imaging to benefit significantly from parallel excitation hardware and high-order gradient shim systems. PMID:22511367
NASA Astrophysics Data System (ADS)
Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian
2017-11-01
Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated by pulsed power and is nearly constant over the entire modulation period, but the density of SiH2 shows a detectable decline in the afterglow. However, because of a much smaller content of SiH2, the deposition rate hardly shows any variation under the selected waveform of the pulse.
RF-Plasma Source Commissioning in Indian Negative Ion Facility
NASA Astrophysics Data System (ADS)
Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.
2011-09-01
The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.
CW injection locking for long-term stability of frequency combs
NASA Astrophysics Data System (ADS)
Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.
2009-05-01
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).
Electromagnetic Effices from Impacts on Spacecraft
NASA Astrophysics Data System (ADS)
Close, Sigrid
2018-04-01
Hypervelocity micro particles, including meteoroids and space debris with masses < 1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.
2015-08-27
applied reverse voltage [8], [9]. In this report, the experimental results of a varactor diode NLTL built with 30 sections are presented. Besides, Spice ...capacitive line (NLCL) using commercial BT and PZT ceramic capacitors. Corresponding NLCL Spice simulation is provided for comparison with experimental...the output pulse. In special for PZT, Spice simulation of a line with respective linear capacitors illustrates its weak nonlinearity as the
2016-01-27
presented. Besides, Spice simulation provides an excellent way of studying the NLTL principle operation by comparing them with the experimental...high voltage nonlinear capacitive line (NLCL) using commercial BT and PZT ceramic capacitors. Corresponding NLCL Spice simulation is provided for...which causes a long tail on the output pulse. In special for PZT, Spice simulation of a line with respective linear capacitors illustrates its weak
2006-04-14
the EOPM (~1 mW) was amplified by injection locking of a high power diode laser and further amplified to ~300 mW with a semiconductor optical ...The spectra of 8 GHz CW phase modulated signals in cascaded injection locking system from (a) master laser ; (b) the first slave, and (c) the second...cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients, Spatial
Storage of RF photons in minimal conditions
NASA Astrophysics Data System (ADS)
Cromières, J.-P.; Chanelière, T.
2018-02-01
We investigate the minimal conditions to store coherently a RF pulse in a material medium. We choose a commercial quartz as a memory support because it is a widely available component with a high Q-factor. Pulse storage is obtained by varying dynamically the light-matter coupling with an analog switch. This parametric driving of the quartz dynamics can be alternatively interpreted as a stopped-light experiment. We obtain an efficiency of 26%, a storage time of 209 μs and a time-to-bandwidth product of 98 by optimizing the pulse temporal shape. The coherent character of the storage is demonstrated. Our goal is to connect different types of memories in the RF and optical domain for quantum information processing. Our motivation is essentially fundamental.
Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A
2016-02-01
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.
2016-02-15
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less
Airborne RF Measurement System and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.
Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.
Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A
2017-10-01
To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián
2017-12-01
LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.
Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared.
Key, Douglas J
2007-02-01
To compare single-treatment facial skin tightening achieved with the current radiofrequency (RF) protocol with single-treatment tightening achieved with the long-pulsed, 1064-nm Nd:YAG laser. A total of 12 patients were treated with RF energy on one side of the face and laser energy on the other. Results were evaluated on a numerical scale (0-12 with 12 = greatest enhancement) from pre- and posttreatment photographs by a blinded panel. Upper face improvement (posttreatment score minus pretreatment score) was essentially the same on both sides (30.2 and 31.3% improvement for laser and RF, respectively, P=0.89). Lower face improvement was greater in the laser-treated side (35.7 and 23.8% improvement for laser and RF, respectively), but the difference was not significant (P=0.074). Overall face improvement was significantly greater on the laser-treated side (47.5 and 29.8% improvement for laser and RF, respectively, P=0.028). A single high-fluence treatment with the long-pulse 1064-nm Nd:YAG laser may improve skin laxity more than a single treatment with the RF device. Further controlled split-face or very large non-self controlled studies are needed to conclusively determine the relative efficacies of the two technologies. (c) 2007 Wiley-Liss, Inc.
Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.
2018-05-01
When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
Feng, Shuo
2014-01-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns. PMID:24834420
Feng, Shuo; Ji, Jim
2014-04-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.
Multi-level RF identification system
Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.
2004-07-20
A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, C.; Eather, R.
1993-09-30
A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power rf heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu ormore » mouse user interaction.« less
A Two-stage Injection-locked Magnetron for Accelerators with Superconducting Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, Grigory; Flanagan, Gene; Johnson, Rolland
2012-05-01
A concept for a two-stage injection-locked CW magnetron intended to drive Superconducting Cavities (SC) for intensity-frontier accelerators has been proposed. The concept considers two magnetrons in which the output power differs by 15-20 dB and the lower power magnetron being frequency-locked from an external source locks the higher power magnetron. The injection-locked two-stage CW magnetron can be used as an RF power source for Fermilab's Project-X to feed separately each of the 1.3 GHz SC of the 8 GeV pulsed linac. We expect output/locking power ratio of about 30-40 dB assuming operation in a pulsed mode with pulse duration ofmore » ~ 8 ms and repetition rate of 10 Hz. The experimental setup of a two-stage magnetron utilising CW, S-band, 1 kW tubes operating at pulse duration of 1-10 ms, and the obtained results are presented and discussed in this paper.« less
Pipe, J G
1999-11-01
Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin density, M0, and by the T1, T2, and T2* time constants. Knowledge of these parameters allows one to calculate the resulting signal from a given tissue for a given MR imaging experiment.
The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.
Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael
2006-03-01
The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.
Schmitter, Sebastian; Wu, Xiaoping; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2015-11-01
Two-spoke parallel transmission (pTX) radiofrequency (RF) pulses have been demonstrated in cardiac MRI at 7T. However, current pulse designs rely on a single set of B1(+)/B0 maps that may not be valid for subsequent scans acquired at another phase of the respiration cycle because of organ displacement. Such mismatches may yield severe excitation profile degradation. B1(+)/B0 maps were obtained, using 16 transmit channels at 7T, at three breath-hold positions: exhale, half-inhale, and inhale. Standard and robust RF pulses were designed using maps obtained at exhale only, and at multiple respiratory positions, respectively. Excitation patterns were analyzed for all positions using Bloch simulations. Flip-angle homogeneity was compared in vivo in cardiac CINE acquisitions. Standard one- and two-spoke pTX RF pulses are sensitive to breath-hold position, primarily due to B1(+) alterations, with high dependency on excitation trajectory for two spokes. In vivo excitation inhomogeneity varied from nRMSE = 8.2% (exhale) up to 32.5% (inhale) with the standard design; much more stable results were obtained with the robust design with nRMSE = 9.1% (exhale) and 10.6% (inhale). A new pTX RF pulse design robust against respiration induced variations of B1(+)/B0 maps is demonstrated and is expected to have a positive impact on cardiac MRI in breath-hold, free-breathing, and real-time acquisitions. © 2014 Wiley Periodicals, Inc.
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
Experiments with trapped ions and ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Johnson, Kale Gifford
Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing, and 3D imaging of atoms from static to higher frequency motion. These ultrafast atomic qubit manipulation tools demonstrate inherent advantages over conventional techniques, offering a fundamentally distinct regime of control and speed not previously achievable.
Takahashi, Kazunori; Ando, Akira
2017-06-02
An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100 μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.
Advanced sensor systems for biotelemetry
NASA Technical Reports Server (NTRS)
Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor); Hines, John W. (Inventor); Somps, Christopher J. (Inventor)
2003-01-01
The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.
Advanced Sensor Systems for Biotelemetry
NASA Technical Reports Server (NTRS)
Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)
2003-01-01
The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.
Heart rate variability affected by radiofrequency electromagnetic field in adolescent students.
Misek, Jakub; Belyaev, Igor; Jakusova, Viera; Tonhajzerova, Ingrid; Barabas, Jan; Jakus, Jan
2018-05-01
This study examines the possible effect of radiofrequency (RF) electromagnetic fields (EMF) on the autonomic nervous system (ANS). The effect of RF EMF on ANS activity was studied by measuring heart rate variability (HRV) during ortho-clinostatic test (i.e., transition from lying to standing and back) in 46 healthy grammar school students. A 1788 MHz pulsed wave with intensity of 54 ± 1.6 V/m was applied intermittently for 18 min in each trial. Maximum specific absorption rate (SAR 10 ) value was determined to 0.405 W/kg. We also measured the respiration rate and estimated a subjective perception of EMF exposure. RF exposure decreased heart rate of subjects in a lying position, while no such change was seen in standing students. After exposure while lying, a rise in high frequency band of HRV and root Mean Square of the Successive Differences was observed, which indicated an increase in parasympathetic nerve activity. Tympanic temperature and skin temperature were measured showing no heating under RF exposure. No RF effect on respiration rate was observed. None of the tested subjects were able to distinguish real exposure from sham exposure when queried at the end of the trial. In conclusion, short-term RF EMF exposure of students in a lying position during the ortho-clinostatic test affected ANS with significant increase in parasympathetic nerve activity compared to sham exposed group. Bioelectromagnetics. 39:277-288, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Azhari, Afreen; Kuwano, Yuki; Xiao, Xia; Kikkawa, Takamaro
2018-01-01
A 3-20 GHz transmit/receive (T/R) double-pole-16-throw (DP16T) switching matrix has been developed on a printed circuit board (PCB) to control sixteen antennas in a radar-based portable breast-cancer detection system. The DP16T switch consists of four 65 nm CMOS 0.01-20 GHz double-pole-four-throw (DP4T) switches. The proposed switch increase the number of T/R combinations to 224 from the 196 of a conventional switching matrix in order to construct high-resolution images. Using this switch and a 4 × 4 slot antenna array, a 10 × 10 mm2 aluminum target was detected with an 8-GHz-center-frequency Gaussian monocycle pulse. The power consumption of the switch is only 1.2 mW. To the best of the authors’ knowledge, this is the first T/R radio frequency (RF) DP16T switching matrix, which was realized with four CMOS DP4T switches on a PCB and was measured with RF PCB connectors.
Ferroelectric Emission Cathodes for Low-Power Electric Propulsion
NASA Technical Reports Server (NTRS)
Kovaleski, Scott D.; Burke, Tom (Technical Monitor)
2002-01-01
Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.
New mechanism for lightning initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussel-Dupre, R.; Buchwald, M.; Gurevich, A.
1996-10-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). To distinguish radio-frequency (rf) signals generated by lightning from the electromagnetic pulse produced by a nuclear explosion, it is necessary to understand the fundamental nature of thunderstorm discharges. The recent debate surrounding the origin of transionospheric pulse pairs (TIPPs) detected by the BLACKBEARD experiment aboard the ALEXIS satellite illustrates this point. We have argued that TIPP events could originate from the upward propagating discharges recently identified by optical images taken from the ground, from airplanes, and from the spacemore » shuttle. In addition, the Gamma Ray Observatory (GRO) measurements of x-ray bursts originating from thunderstorms are almost certainly associated with these upward propagating discharges. When taken together, these three measurements point directly to the runaway electron mechanism as the source of the upward discharges. The primary goal of this research effort was to identify the specific role played by the runaway-air-breakdown mechanism in the general area of thunderstorm electricity and in so doing develop lightning models that predict the optical, rf, and x-ray emissions that are observable from space.« less
NASA Astrophysics Data System (ADS)
Surmeneva, M. A.; Tyurin, A. I.; Teresov, A. D.; Koval, N. N.; Pirozhkova, T. S.; Shuvarin, I. A.; Surmenev, R. A.
2015-11-01
The morphology, elemental, phase composition, nanohardness, and Young's modulus of the hydroxyapatite (HA) coating deposited via radio frequency (RF) magnetron sputtering onto the AZ31 surface were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and nanoindentationtechniques. The calcium phosphate (Ca/P) molar ratio of the HA coating deposited via RF-magnetron sputtering onto AZ31 substrates according to EDX was 1.57+0.03. The SEM experiments revealed significant differences in the morphology of the HA film deposited on untreated and treated with the pulsed electron beam (PEB) AZ31 substrate. Nanoindentation studies demonstrated significant differences in the mechanical responses of the HA film deposited on the initial and PEB-modified AZ31 substrates. The nanoindentation hardness and the Young's modulus of the HA film on the magnesium alloy modified using the PEB treatment were higher than that of the HA layer on the untreated substrate. Moreover, the HA film fabricated onto the PEB-treated surface was more resistant to plastic deformation than the same film on the untreated AZ31 surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Sampriti; Pilipenko, Roman; /Fermilab
2010-01-01
Superconducting accelerators, such as the International Linear Collider (ILC), rely on very high Q accelerating cavities to achieve high electric fields at low RF power. Such cavities have very narrow resonances: a few kHz with a 1.3GHz resonance frequency for the ILC. Several mechanical factors cause tune shifts much larger than this: pressure variations in the liquid helium bath; microphonics from pumps and other mechanical devices; and for a pulsed machine such as the ILC, Lorentz force detuning (pressure from the contained RF field). Simple passive stiffening is limited by many manufacturing and material considerations. Therefore, active tuning using piezomore » actuators is needed. Here we study a supply for their operation. Since commercial power amplifiers are expensive, we analyzed the characteristics of four power amplifiers: (iPZD) built by Istituto Nazionale di Fisica Nucleare (Sezione di Pisa); and a DC-DC converter power supply built in Fermilab (Piezo Master); and two commercial amplifiers, Piezosystem jena and Piezomechanik. This paper presents an analysis and characterization of these amplifiers to understand the cost benefit and reliability when using in a large scale, pulsed beam accelerator like the ILC.« less
Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J
2016-05-01
In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.
2016-05-15
In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.
RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps
NASA Astrophysics Data System (ADS)
Minayeva, Olga; Doughty, Douglas
2007-10-01
Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.
NASA Astrophysics Data System (ADS)
Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald
2015-02-01
A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.
Q-switched slab RF discharge CO laser
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kochetkov, Yu V.; Kozlov, A. Yu; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemtsov, D. S.
2017-05-01
A compact repetitively pulsed cryogenically cooled slab RF discharge CO laser with double path V-type laser resonator equipped with external Q-switching system based on rotating mirror was developed and studied. The laser produced mid-IR (λ ~ 5-7 µm) radiation pulses of ~1 ÷ 2 µs duration (FWHM), peak power up to ~3 kW, and pulse repetition rate up to 130 Hz. Averaged output laser power reached 0.5 W, the laser spectrum consisted of ~80 laser lines with individual peak power up to 80 W.
Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; ...
2015-04-22
Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less
Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H
2012-02-01
The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.
NASA Astrophysics Data System (ADS)
Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Störi, H.
2012-02-01
The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H- volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e- and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H- ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H- ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.
Radiofrequency fields in MAS solid state NMR probes
NASA Astrophysics Data System (ADS)
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.
Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2016-06-01
We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals.
Trillo, María A; Cid, María Antonia; Martínez, Maria Antonia; Page, Juan E; Esteban, Jaime; Úbeda, Alejandro
2011-07-01
The present study investigates the response of two human cancer cell lines to a 24-h treatment with a 2.2-GHz, pulse-modulated (5 µs pulse duration, 100 Hz repetition rate) radar-like signal at an average SAR = 0.023 W/kg, using a newly designed setup for in vitro exposure to radiofrequency (RF) fields. A complete discretized model of the setup was created for numerical dosimetry using finite-difference time-domain (FDTD) software, SEMCAD X. The average dose of RF radiation absorbed by the cultures was calculated to be subthermal (ΔT < 0.1 °C). The RF exposure induced a consistent, statistically significant reduction in the cell number (13.5% below controls, P < 0.001) in the neuroblastoma NB69 line. This effect was accompanied with slight but statistically significant increases in the proportions of cells in phases G0/G1 and G2/M of the cell cycle (6% and 9%, respectively; P < 0.05 over controls). By contrast, the hepatocarcinoma cell line HepG2 did not respond to the same RF treatment. These results indicate that a pulse-modulated RF radiation with high instantaneous amplitude and low average power can induce cytostatic responses on specific, sensitive cancer cell lines. The effect would be mediated, at least in part, by alterations in the kinetics of the cell cycle. Copyright © 2011 Wiley-Liss, Inc.
A different approach to multiplicity-edited heteronuclear single quantum correlation spectroscopy
NASA Astrophysics Data System (ADS)
Sakhaii, Peyman; Bermel, Wolfgang
2015-10-01
A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of 13C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD]r,x element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear 1JHC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and/or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed.
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
Sadick, Neil; Sorhaindo, Lian
2005-05-01
Radiofrequency (RF) and combined RF light source technologies have established themselves as safe and effective treatment modalities for several dermatologic procedures, including skin tightening, hair and leg vein removal, acne scarring, skin rejuvenation, and wrinkle reduction. This article reviews the technology, clinical applications, and recent advances of RF and combined RF light/laser source technologies in aesthetic medicine.
Maleke, C; Konofagou, E E
2008-03-21
FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 degrees C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 microm degrees C(-1)(r=0.93, p<.005). After sustained heating, the tissue became irreversibly stiffer, followed by an associated decrease in the HMI displacement (-0.79 microm degrees C(-1), r=-0.92, p<0.001). Repeated experiments showed a reproducible pattern of the HMI displacement changes with a temperature at a slope equal to 0.8+/-0.11 and -0.79+/-0.14 microm degrees C(-1), prior to and after lesion formation in seven bovine liver samples, respectively. This technique was thus capable of following the protein-denatured lesion formation based on the variation of the HMI displacements. This method could, therefore, be applied for real-time monitoring of temperature-related stiffness changes of tissues during FUS, HIFU or other thermal therapies.
Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.
2006-01-01
The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilhem, D.; Achard, J.; Bertrand, B.
2009-11-26
The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and willmore » be installed and commissioned on plasma during the fall of 2009.« less
Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.
Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J
2006-10-01
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.
Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators
NASA Astrophysics Data System (ADS)
Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.
In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Schmitter, Sebastian; DelaBarre, Lance; Wu, Xiaoping; Greiser, Andreas; Wang, Dingxin; Auerbach, Edward J; Vaughan, J Thomas; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2013-11-01
Higher signal to noise ratio (SNR) and improved contrast have been demonstrated at ultra-high magnetic fields (≥7 Tesla [T]) in multiple targets, often with multi-channel transmit methods to address the deleterious impact on tissue contrast due to spatial variations in B1 (+) profiles. When imaging the heart at 7T, however, respiratory and cardiac motion, as well as B0 inhomogeneity, greatly increase the methodological challenge. In this study we compare two-spoke parallel transmit (pTX) RF pulses with static B1 (+) shimming in cardiac imaging at 7T. Using a 16-channel pTX system, slice-selective two-spoke pTX pulses and static B1 (+) shimming were applied in cardiac CINE imaging. B1 (+) and B0 mapping required modified cardiac triggered sequences. Excitation homogeneity and RF energy were compared in different imaging orientations. Two-spoke pulses provide higher excitation homogeneity than B1 (+) shimming, especially in the more challenging posterior region of the heart. The peak value of channel-wise RF energy was reduced, allowing for a higher flip angle, hence increased tissue contrast. Image quality with two-spoke excitation proved to be stable throughout the entire cardiac cycle. Two-spoke pTX excitation has been successfully demonstrated in the human heart at 7T, with improved image quality and reduced RF pulse energy when compared with B1 (+) shimming. Copyright © 2013 Wiley Periodicals, Inc.
Ökmen, Burcu Metin; Ökmen, Korgün
2017-11-01
Shoulder pain can be difficult to treat due to its complex anatomic structure, and different treatment methods can be used. We aimed to examine the efficacy of photobiomodulation therapy (PBMT) and suprascapular nerve (SSN)-pulsed radiofrequency (RF) therapy. In this prospective, randomized, controlled, single-blind study, 59 patients with chronic shoulder pain due to impingement syndrome received PBMT (group H) or SSN-pulsed RF therapy (group P) in addition to exercise therapy for 14 sessions over 2 weeks. Records were taken using visual analog scale (VAS), Shoulder Pain and Disability Index (SPADI), and Nottingham Health Profile (NHP) scoring systems for pretreatment (PRT), posttreatment (PST), and PST follow-up at months 1, 3, and 6. There was no statistically significant difference in initial VAS score, SPADI, and NHP values between group H and group P (p > 0.05). Compared to the values of PRT, PST, and PST at months 1, 3, and 6, VAS, SPADI, and NHP values were statistically significantly lower in both groups (p < 0.001). There was no statistically significant difference at all measurement times in VAS, SPADI, and NHP between the two groups. We established that PBMT and SSN-pulsed RF therapy are effective methods, in addition to exercise therapy, in patients with chronic shoulder pain. PBMT seems to be advantageous compared to SSN-pulsed RF therapy, as it is a noninvasive method.
Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV
NASA Astrophysics Data System (ADS)
Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.
2014-03-01
We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.
Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection.
Ozana, Nisan; Bauer, Reuven; Ashkenazy, Koby; Sasson, Nissim; Schwarz, Ariel; Shemer, Amir; Zalevsky, Zeev
2018-05-03
In previous works, an optical technique for extraction and separation of remote static vibrations has been demonstrated. In this paper, we will describe an approach in which RF speckle movement is used to extract remote vibrations of a static target. The use of conventional radar Doppler methods is not suitable for detecting vibrations of static targets. In addition, the speckle method has an important advantage, in that it is able to detect vibrations at far greater distances than what is normally detected in classical optical methods. The experiment described in this paper was done using a motorized vehicle, which engine was turned on and off. The results showed that the system was able to distinguish between the different engine states, and in addition, was able to determine the vibration frequency of the engine. The first step towards real time detection of human vital signs using RF speckle patterns is presented.
NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Neubauer, M.
A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less
Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI
NASA Astrophysics Data System (ADS)
Jiang, Xu
Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance frequency centered at -2.58+/-0.05 ppm, at 7 T. T1 contrast was found to be dominated by MP fraction, with iron only modestly contributing even in the iron-rich regions of brain.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelletti, A.; /CERN; Dolgashev, V.
A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less
Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.
2013-08-01
The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.
Radiofrequency pulse design using nonlinear gradient magnetic fields.
Kopanoglu, Emre; Constable, R Todd
2015-09-01
An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.
Radiofrequency fields in MAS solid state NMR probes.
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...
2016-12-09
Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
NASA Astrophysics Data System (ADS)
Majewski, Kurt
2018-03-01
Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.
Multipactor susceptibility on a dielectric with two carrier frequencies
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Verboncoeur, John; Zhang, Peng
2018-04-01
This work investigates multipactor discharge on a single dielectric surface with two carrier frequencies of an rf electric field. We use Monte Carlo simulations and analytical calculations to obtain susceptibility diagrams in terms of the rf electric field and normal electric field due to the residual charge on the dielectric. It is found that in contrast to the single frequency case, in general, the presence of a second carrier frequency of the rf electric field increases the threshold of the magnitude of the rf electric field to initiate multipactor. The effects of the relative strength and phase, and the frequency separation of the two carrier frequencies are examined. The conditions to minimize mulitpactor are derived.
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Variable frequency matching to a radiofrequency source immersed in vacuum
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Bish, A.
2013-09-01
A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882-14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters.
An all-solid-state CO2 laser driver
NASA Astrophysics Data System (ADS)
Birx, Daniel
1991-03-01
New, all-solid-state pulse generators are described which meet military requirements for an efficient, reliable pulsed power source to drive a space based CO2 laser. These SCR-commutated, nonlinear magnetic pulse compressors are fully-compatible with the present Spectra Technologies laser head design planned for use on LOWKATER. By employing SCRs rather than thyratron commutators, these pulsers should provide a significant increase in reliability over the current generation of pulsed power drivers. The first pulser which was designed and constructed was denoted COLD-I. COLD-I was designed to meet the original LOWKATER specifications and delivered at 150 joule, 20 kV pulse into a laser load at 10 to 20 Hz repetition rate. The second pulser, denoted COLD-II, was designed to provide a 45 joule, 500 nsec duration pulse at a voltage of 20 kV and a repetition rate of 1 kHz peak and 50 to 100 Hz average. The electrical efficiency was measured to be 80 percent with an input drive of 500 VDC. This pulse served as a design verification testbed for a third pulser, presently designed but not constructed and denoted COLD-III. COLD-III would be capable of producing 36 joules at the same pulse length and repetition rate at voltages of 20 kV. The Phase-II effort was a high risk, high payoff effort aimed at developing a light weight, high reliability RF power source for advanced RF CO2 laser heads under development. COLD-IV a Branched Magnetic RF Nonlinear Magnetic Pulse Compressor was built as a bread
Overview of long pulse H-mode operation on EAST
NASA Astrophysics Data System (ADS)
Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.
Prospective Motion Correction using Inductively-Coupled Wireless RF Coils
Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland
2013-01-01
Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444
Design and experiment of a directional coupler for X-band long pulse high power microwaves.
Bai, Zhen; Li, Guolin; Zhang, Jun; Jin, Zhenxing
2013-03-01
Higher power and longer pulse are the trend of the development of high power microwave (HPM), and then some problems emerge in measuring the power of HPM because rf breakdown is easier to occur under the circumstance of high power (the level of gigawatt) and long pulse (about 100 ns). In order to measure the power of the dominant TM₀₁ mode of an X-band long pulse overmoded HPM source, a directional coupler with stable coupling coefficient, high directivity, and high power handling capacity in wide band is investigated numerically and experimentally. At the central frequency 9.4 GHz, the simulation results show that the coupling coefficient is -59.6 dB with the directivity of 35 dB and the power handling capacity of 2 GW. The coupling coefficient is calibrated to be accordant with the simulation results. The high power tests are performed on an X-band long pulse HPM source, whose output mode is mainly TM₀₁ mode, and the results show that the measured power and waveform of the directional coupler have a good consistency with the far-field measuring results.
Pulsed field gradients in simulations of one- and two-dimensional NMR spectra.
Meresi, G H; Cuperlovic, M; Palke, W E; Gerig, J T
1999-03-01
A method for the inclusion of the effects of z-axis pulsed field gradients in computer simulations of an arbitrary pulsed NMR experiment with spin (1/2) nuclei is described. Recognizing that the phase acquired by a coherence following the application of a z-axis pulsed field gradient bears a fixed relation to its order and the spatial position of the spins in the sample tube, the sample is regarded as a collection of volume elements, each phase-encoded by a characteristic, spatially dependent precession frequency. The evolution of the sample's density matrix is thus obtained by computing the evolution of the density matrix for each volume element. Following the last gradient pulse, these density matrices are combined to form a composite density matrix which evolves through the rest of the experiment to yield the observable signal. This approach is implemented in a program which includes capabilities for rigorous inclusion of spin relaxation by dipole-dipole, chemical shift anisotropy, and random field mechanisms, plus the effects of arbitrary RF fields. Mathematical procedures for accelerating these calculations are described. The approach is illustrated by simulations of representative one- and two-dimensional NMR experiments. Copyright 1999 Academic Press.
Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé
2015-12-01
Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.
Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.
Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald
2011-11-01
MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a reliable, compact, flexible, and relatively safe marker for clinical use.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A. V.; Agustsson, R.; Berg, W. J.
We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less
Smirnov, A. V.; Agustsson, R.; Berg, W. J.; ...
2015-09-29
We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less
Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST
NASA Astrophysics Data System (ADS)
Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.
2017-08-01
An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.
Experimental Studies of Compact Toroidal Plasma on BCTX
NASA Astrophysics Data System (ADS)
Morse, Edward C.; Coomer, Eric D.; Hartman, Charles W.
1998-11-01
The Berkeley Compact Toroid Experiment (BCTX) is a spheromak-type magnetically confined fusion confinement experiment. The plasma is formed using a Marshall gun and injected into a 70 cm diameter copper flux conserver. The BCTX device has an RF heating sy stem which can deliver twenty megawatts of RF power for 100 μs pulse length. The RF system operates at 450 MHz, and energy is coupled into the plasma by lower hybrid waves. The purpose of the experiment is to assess the energy-confining capability of the spheromak plasma configuration by using the RF power as a heat pulse and determining the decay rate of the plasma temperature following the heat pulse. Electron temperatures up to 150 eV have been measured in BCTX using Thomson scattering. Core dens ities have been measured with the Raman-calibrated Thomson system in the 2 arrow 5 × 10^14 per cc range. Other diagnostics include magnetic probes, a laser interferometer electron density measurement, three UV spectrometers for impurity l ine radiation, and an ion Doppler temperature measurement. Some data will be presented which shows the effects of an axial pinch being present in the device, giving the device a nonzero q at the wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François
The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatiblemore » with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.« less
Shahmirzadi, Danial; Li, Ronny X; Konofagou, Elisa E
2012-11-01
Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV² and E measurements using the combined simulation and experimental findings (R² = 0.98) confirming the relationship established by the aforementioned equation.
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
Ultrasound generation with high power and coil only EMAT concepts.
Rueter, Dirk; Morgenstern, Tino
2014-12-01
Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
X-Ray Pulse Selector With 2 ns Lock-in Phase Setting And Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindenau, B.; Raebiger, J.; Polachowski, S.
2004-05-12
Selector devices, which are based on magnetically suspended, high speed triangular shutter rotors, have been designed and built in cooperation with ESRF, APS, and recently Spring-8 for time resolved studies with isolated x-ray pulses at white beam lines. The x-ray pulse selection is accomplished by means of a beam channel along one of the edges of the triangular rotor, which opens once per revolution. Entrance and exit apertures of the channel can be designed wedge shaped for variable tuning of the channel height between 0.1 mm to 0.9 mm. At the 1 kHz maximum operation frequency of a 220 mmmore » diameter disk with 190 mm channel length, the practicable open times of the channel are demonstrated to range down to 200 ns. The selector drive electronics is directly coupled to the storage ring RF clock for rotational phase control. It allows for continuous selector operation in phase locked mode to the temporal pulse structure of the synchrotron at 2 ns RMS stability. The phase angle between the pulse transmission period and the synchrotron bunch sequence can be adjusted with similar precision for X-ray pulse selection according to the experimental needs. ID09, Michael Wulff ; BioCARS 14-BM, Reinhard Pahl; BL40-XU, Shin-ichi Adachi.« less
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
Microelectronic bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.
1975-01-01
The possibility of using RF fields to power biologically implanted transmitters used in biomedical experiments was investigated. This approach would be especially useful when animal subjects are strapped in chairs or confined in cages. A telemetry system using an external source of energy has the additional advantage of not being limited in operation by battery lifetime and can therefore operate for virtually infinite lengths of time. A description of a system based on this principle is given. Progress in the development of battery-driven transmitters is also reported, including an ingestible temperature telemetry system and a resistance-to-pulse frequency convertor for implantable temperature telemetry systems.
Dissipative dark soliton in a complex plasma.
Heidemann, R; Zhdanov, S; Sütterlin, R; Thomas, H M; Morfill, G E
2009-04-03
The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.
Dissipative Dark Soliton in a Complex Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidemann, R.; Zhdanov, S.; Suetterlin, R.
2009-04-03
The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.
Virtual IED sensor at an rf-biased electrode in low-pressure plasma
NASA Astrophysics Data System (ADS)
Bogdanova, Maria; Lopaev, Dmitry; Zyryanov, Sergey; Rakhimov, Alexander
2016-09-01
The majority of present-day technologies resort to ion-assisted processes in rf low-pressure plasma. In order to control the process precisely, the energy distribution of ions (IED) bombarding the sample placed on the rf-biased electrode should be tracked. In this work the ``Virtual IED sensor'' concept is considered. The idea is to obtain the IED ``virtually'' from the plasma sheath model including a set of externally measurable discharge parameters. The applicability of the ``Virtual IED sensor'' concept was studied for dual-frequency asymmetric ICP and CCP discharges. The IED measurements were carried out in Ar and H2 plasmas in a wide range of conditions. The calculated IEDs were compared to those measured by the Retarded Field Energy Analyzer. To calibrate the ``Virtual IED sensor'', the ion flux was measured by the pulsed self-bias method and then compared to plasma density measurements by Langmuir and hairpin probes. It is shown that if there is a reliable calibration procedure, the ``Virtual IED sensor'' can be successfully realized on the basis of analytical and semianalytical plasma sheath models including measurable discharge parameters. This research is supported by Russian Science Foundation (RSF) Grant 14-12-01012.
New technology based on clamping for high gradient radio frequency photogun
NASA Astrophysics Data System (ADS)
Alesini, David; Battisti, Antonio; Ferrario, Massimo; Foggetta, Luca; Lollo, Valerio; Ficcadenti, Luca; Pettinacci, Valerio; Custodio, Sean; Pirez, Eylene; Musumeci, Pietro; Palumbo, Luigi
2015-09-01
High gradient rf photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. In the present paper we present the design of a new rf photogun recently developed in the framework of the SPARC_LAB photoinjector activities at the laboratories of the National Institute of Nuclear Physics in Frascati (LNF-INFN, Italy). This design implements several new features from the electromagnetic point of view and, more important, a novel technology for its realization that does not involve any brazing process. From the electromagnetic point of view the gun presents high mode separation, low peak surface electric field at the iris and minimized pulsed heating on the coupler. For the realization, we have implemented a novel fabrication design that, avoiding brazing, strongly reduces the cost, the realization time and the risk of failure. Details on the electromagnetic design, low power rf measurements and high power radiofrequency and beam tests performed at the University of California in Los Angeles (UCLA) are discussed in the paper.
NASA Astrophysics Data System (ADS)
Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro
The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.
Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ
NASA Astrophysics Data System (ADS)
Weissman, L.; Perry, A.; Bechtold, A.; Berkovits, D.; Kaizer, B.; Luner, Y.; Niewieczerzal, P.; Rodnizki, J.; Silverman, I.; Shor, A.; Nusbaum, D.
2018-05-01
The original SARAF 3.8 m long 4-rod Radio Frequency Quadrupole (RFQ) has been successful in acceleration of 4 mA Continuous Wave (CW) proton beam and pulsed deuteron beam to 1.5 MeV/u. However, conditions for running CW deuteron beam have not been achieved in the original design. A new 4-rod structure has been designed and implemented, with the goal of reducing the RF power required for CW deuteron operation while slightly compromising the RFQ exit energy to 1.27 MeV/u. The new 4-rod structure was manufactured, and installed in place of the old rod electrodes. Superior field homogeneity was achieved. The RFQ was successfully conditioned to the RF power 200 kW required for CW deuteron operation, with sufficient power margin. The commissioning with proton and deuteron beams showed that most of beam parameters are close to the designed specifications. The first operation with CW RF power of 5 mA deuteron beam was demonstrated. In addition, a 1.1 mA CW deuteron beam was transported through the superconducting module. The future scope of RFQ improvements is discussed.
Li, Hai-juan; Yang, Long-long; Tian, Wei; Liu, Jun-ju; Xie, Xue-jun; Guo, Guo-zhen
2012-03-01
To establish the inner blood-retinal barrier (BRB) model in vitro by co-culturing RF/6A cells and C6 cells and to investigate the effects of EMP (200 kV/m, 200 pulses) exposure on the permeability of the inner BRB model in vitro. RF/6A cells and C6 cells were co-cultured on transwell, and the characteristic of the inner BRB model was assessed by detecting transendothelial electrical resistance (TEER) and the permeability of horseradish peroxidase (HRP). The co-cultured model was exposed or sham exposed to the EMP (200 kV/m 200 pulses) for 0.5, 3, 6, 12, 24 h in vitro, then TEER and the permeability of HRP were measured for studying the effects of EMP on the permeability of inner BRB model in vitro. TEER value (145 Ωcm(2)) of the co-culturing inner BRB model significantly increased, as compared to that of RF/6A cells alone model (P < 0.05) on the 6th day after inoculation. There was significant difference of permeability of HRP between the co-culturing inner BRB model and RF/6A cells alone model (P < 0.05). The ability of inhibiting large molecular materials in the co-culturing inner BRB model enhanced. The TEER value decreased and the permeability of HRP increased as compared to the sham group at 0.5, 3, 6 h after the exposure. The inner BRB model by co-culturing RF/6A cells and C6 cells in vitro is efficient and suitable to study the alterations of the restricted permeability function of the inner BRB. EMP (200 kV/m for 200 pulses) could induce the enhanced permeability of the inner BRB model in vitro.
Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes
NASA Astrophysics Data System (ADS)
Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.
2006-05-01
Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Loaded delay lines for future RF pulse compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.M.; Wilson, P.B.; Kroll, N.M.
1995-05-01
The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less
Experimental Study of Convective Cells and RF Sheaths Excited by a Fast Wave Antenna in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy; van Eester, Dirk; Crombé, Kristel
2016-10-01
Ion cyclotron resonance heating (ICRH) will be essential for ITER where it is planned to couple 20 MW to the plasma. During ICRH, radio frequency (RF) sheaths may form on the antenna or farther away, and convective cells are suspected to form adjacent to ICRH antennas, negatively affecting both machine and plasma performance. The LAPD (ne 10 12 - 13cm-3 , Te 1-10 eV, B0 0.4 to 2 kG, diameter 60 cm, length 17m) is an ideal device for performing detailed experiments to fully diagnose these phenomena. A 200 kW RF system capable of pulsing at the 1 Hz. rep. rate of the LAPD and operating from 2 to 2.5 MHz has been constructed to perform such studies. B0 can be adjusted so that this encompasses the 1st to 7th harmonic of fci in H plasmas. Emissive, Mach, Langmuir, and B-field probes measured plasma potential, bulk plasma flows, wave patterns, ne, and Te in 2D planes at various axial locations from the antenna. Plasma potential enhancements of up to 90 V along magnetic field lines connected to the antenna and induced ExB flows consistent in structure with convective cells were observed. Details of these observations along with power scaling of RF sheath voltage and convective cell flows will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Akira; Iwashita, Yoshihisa; Souda, Hikaru
A phase rotation scheme of laser-produced ions from a solid target by the application of a synchronized RF electric voltage with a pulsed laser has been experimentally investigated with the use of a 100 TW laser, J-KAREN at JAEA, KPSI. Up to now, energy peaks of up to around 2.0 MeV have been created with a FWHM of 2.6% with good reproducibility using a two-gap resonator of a quarter wave length with the same frequency as the source laser (approx80 MHz). It is also found that the position of the peak can be well controlled by adjusting the relative phasemore » between the RF electric field and the laser, which is very promising for real applications of such laser-produced protons. In order to also apply such a phase rotation system for higher energy protons (<200 MeV), a scheme to use a small linear accelerator (LINAC) with multi-gaps is proposed as a phase rotator. With multi-gap structure, alternating focusing between longitudinal and transverse degrees of freedoms can be realized. From the point of compactness and realizing a small focused spot, however, a scheme combining separate quadrupole magnets just before and after the RF cavity excited with the Wideroee mode, might be more effective. The scheme presented here will realize laser-produced ions (protons) with good reproducibility by combining with RF technology.« less
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Different Solutions for the Generator-accelerator Module
NASA Astrophysics Data System (ADS)
Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.
The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.
Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations
NASA Astrophysics Data System (ADS)
Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul
2017-10-01
Hypervelocity micro particles, including meteoroids and space debris with masses <1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.
Secondary Electron Emission Measurements on Materials Under Stress
2004-10-01
2) low rf reflection, and (3) a vacuum-tight seal. Pillbox rf windows are used for the output of S - band (2856MHz) pulsed klystrons (3.5 us, 30MW peak...of Multipactoring Electrons in an S - band Pillbox RF Window", IEEE Trans. on Nucl. Sci., Vol.39, pp.278-282, 1992. [101 Research on Microwave Window...Simulation of Multipactoring Electrons in S - Band Pillbox RF Window", IEEE Transaction on Nuclear Science, Vol. 39, No. 2, 1992. [41 R. V. Latham: "High
Resonance properties of the biological objects in the RF field
NASA Astrophysics Data System (ADS)
Cocherova, E.; Kupec, P.; Stofanik, V.
2011-12-01
Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called "resonance frequency". The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.
Development of new S-band RF window for stable high-power operation in linear accelerator RF system
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan
2017-09-01
For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.
Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X
2012-08-01
The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.
Thermal Modeling for the Next Generation of Radiofrequency Exposure Limits: Commentary.
Foster, Kenneth R; Ziskin, Marvin C; Balzano, Quirino
2017-07-01
This commentary evaluates two sets of guidelines for human exposure to radiofrequency (RF) energy, focusing on the frequency range above the "transition" frequency at 3-10 GHz where the guidelines change their basic restrictions from specific absorption rate to incident power density, through the end of the RF band at 300 GHz. The analysis is based on a simple thermal model based on Pennes' bioheat equation (BHTE) (Pennes 1948) assuming purely surface heating; an Appendix provides more details about the model and its range of applicability. This analysis suggests that present limits are highly conservative relative to their stated goals of limiting temperature increase in tissue. As applied to transmitting devices used against the body, they are much more conservative than product safety standards for touch temperature for personal electronics equipment that are used in contact with the body. Provisions in the current guidelines for "averaging time" and "averaging area" are not consistent with scaling characteristics of the bioheat equation and should be refined. The authors suggest the need for additional limits on fluence for protection against brief, high intensity pulses at millimeter wave frequencies. This commentary considers only thermal hazards, which form the basis of the current guidelines, and excludes considerations of reported "non-thermal" effects of exposure that would have to be evaluated in the process of updating the guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straasø, Lasse A.; Shankar, Ravi; Nielsen, Niels Chr.
The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence tomore » mediate efficient {sup 13}CO to {sup 13}C{sub α} polarization transfer for uniformly {sup 13}C,{sup 15}N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly {sup 13}C,{sup 15}N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%–20% depending on the spectral regions of interest.« less
Quantum limited performance of optical receivers
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
While the fundamental performance limit for traditional radio frequency (RF) communications is often set by background noise on the channel, the fundamental limit for optical communications is set by the quantum nature of light. Both types of systems are based on electro-magnetic waves, differing only in carrier frequency. It is, in fact, the frequency that determines which of these limits dominates. We explore this in the first part of this paper. This leads to a difference in methods of analysis of the two different types of systems. While equations predicting the probability of bit error for RF systems are usually based on the signal to background noise ratio, similar equations for optical systems are often based on the physics of the quantum limit and are simply a function of the detected signal energy received per bit. These equations are derived in the second part of this paper for several frequently used modulation schemes: On-off keying (OOK), pulse position modulation (PPM), and binary differential phase shift keying (DPSK). While these equations ignore the effects of background noise and non-quantum internal noise sources in the detector and receiver electronics, they provide a useful bound for obtainable performance of optical communication systems. For example, these equations may be used in initial link budgets to assess the feasibility of system architectures, even before specific receiver designs are considered.
NASA Astrophysics Data System (ADS)
Suzuki, Yasuo
A uniform plasma-based ion implantation and DLC film formation technologies on the surface of complicated 3-dimensional substrates have been developed by applying pulse voltage coupled with RF voltage to the substrates such as plastics, rubber as well as metals with the similar deposition rate. These technologies are widely applicable to both ion implantation and DLC film formation onto the automobile parts, mechanical parts and metal molds. A problem to be solved is reducing cost. The deposition rate of DLC films is expected to increase to around 10μm/hr, which is ten times larger than that of the conventional method, by hybridizing the ICP (Induction Coupling Plasma) with a plus-minus voltage source. This epoch-making technology will be able to substitute for the electro-plating method in the near future. In this paper, the DLC film formation technology by applying both RF and pulse voltage, its applications and its prospect are presented.
Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk
2011-01-01
Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.
Design of a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.
2007-01-01
The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.
New ion trap for atomic frequency standard applications
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Dick, G. J.; Maleki, L.
1989-01-01
A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.
Frequency modulation television analysis: Distortion analysis
NASA Technical Reports Server (NTRS)
Hodge, W. H.; Wong, W. H.
1973-01-01
Computer simulation is used to calculate the time-domain waveform of standard T-pulse-and-bar test signal distorted in passing through an FM television system. The simulator includes flat or preemphasized systems and requires specification of the RF predetection filter characteristics. The predetection filters are modeled with frequency-symmetric Chebyshev (0.1-db ripple) and Butterworth filters. The computer was used to calculate distorted output signals for sixty-four different specified systems, and the output waveforms are plotted for all sixty-four. Comparison of the plotted graphs indicates that a Chebyshev predetection filter of four poles causes slightly more signal distortion than a corresponding Butterworth filter and the signal distortion increases as the number of poles increases. An increase in the peak deviation also increases signal distortion. Distortion also increases with the addition of preemphasis.
Dipolar recoupling in solid state NMR by phase alternating pulse sequences
Lin, J.; Bayro, M.; Griffin, R. G.; Khaneja, N.
2009-01-01
We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made γ encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical-shift dispersion and rf-inhomogeneity. PMID:19157931
Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger-By, G.; Decampy, J.; Goniche, M.
2014-02-12
On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequencymore » spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.« less
Radio frequency heating for in-situ remediation of DNAPL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.
1996-08-01
In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.
Characterization of an Outdoor Ambient Radio Frequency Environment
2016-02-16
radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
Designing optimal universal pulses using second-order, large-scale, non-linear optimization
NASA Astrophysics Data System (ADS)
Anand, Christopher Kumar; Bain, Alex D.; Curtis, Andrew Thomas; Nie, Zhenghua
2012-06-01
Recently, RF pulse design using first-order and quasi-second-order pulses has been actively investigated. We present a full second-order design method capable of incorporating relaxation, inhomogeneity in B0 and B1. Our model is formulated as a generic optimization problem making it easy to incorporate diverse pulse sequence features. To tame the computational cost, we present a method of calculating second derivatives in at most a constant multiple of the first derivative calculation time, this is further accelerated by using symbolic solutions of the Bloch equations. We illustrate the relative merits and performance of quasi-Newton and full second-order optimization with a series of examples, showing that even a pulse already optimized using other methods can be visibly improved. To be useful in CPMG experiments, a universal refocusing pulse should be independent of the delay time and insensitive of the relaxation time and RF inhomogeneity. We design such a pulse and show that, using it, we can obtain reliable R2 measurements for offsets within ±γB1. Finally, we compare our optimal refocusing pulse with other published refocusing pulses by doing CPMG experiments.
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.; Krishnagopal, S.
2011-12-01
Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.
The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.
ERIC Educational Resources Information Center
King, Roy W.; Williams, Kathryn R.
1989-01-01
Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)
NASA Astrophysics Data System (ADS)
Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy
2015-01-01
Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H - w1C = ±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS.
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.
Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David
2010-09-27
We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.
Frequency-locked chaotic opto-RF oscillator.
Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc
2016-06-15
A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.
NASA Astrophysics Data System (ADS)
Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.
2018-01-01
This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.
Simple method for RF pulse measurement using gradient reversal.
Landes, Vanessa L; Nayak, Krishna S
2018-05-01
To develop and evaluate a simple method for measuring the envelope of small-tip radiofrequency (RF) excitation waveforms in MRI, without extra hardware or synchronization. Gradient reversal approach to evaluate RF (GRATER) involves RF excitation with a constant gradient and reversal of that gradient during signal reception to acquire the time-reversed version of an RF envelope. An outer-volume suppression prepulse is used optionally to preselect a uniform volume. GRATER was evaluated in phantom and in vivo experiments. It was compared with the programmed waveform and the traditional pick-up coil method. In uniform phantom experiments, pick-up coil, GRATER, and outer-volume suppression + GRATER matched the programmed waveforms to less than 2.1%, less than 6.1%, and less than 2.4% normalized root mean square error, respectively, for real RF pulses with flip angle less than or equal to 30°, time-bandwidth product 2 to 8, and two to five excitation bands. For flip angles greater than 30°, GRATER measurement error increased as predicted by Bloch simulation. Fat-water phantom and in vivo experiments with outer-volume suppression + GRATER demonstrated less than 6.4% normalized root mean square error. The GRATER sequence measures small-tip RF envelopes without extra hardware or synchronization in just over two times the RF duration. The sequence may be useful in prescan calibration and for measurement and precompensation of RF amplifier nonlinearity. Magn Reson Med 79:2642-2651, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Uğurbil, Kâmil; van de Moortele, Pierre-François
2014-05-01
Ultrahigh magnetic fields of 7 T or higher have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast-enhanced magnetic resonance angiography techniques. Compared with lower field strength, however, the required radiofrequency (RF) power is increased at 7 T and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous.In this work, we addressed the contrast heterogeneity in multislab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3-dimensional tailored RF pulses ("spokes") with a 16-channel parallel transmission system and a 16-channel transceiver head coil. We investigated in simulations and in vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2-, and 3-spoke parallel transmit RF pulses and compared the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices, and the RF pulse for each slab was designed on the basis of 3 calibration slices located at the bottom/middle/top of each slab, respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects, we quantified the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigated the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared with the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Although the total RF power is maintained at the same level than that in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitations, with the highest energy for 1 channel being a factor of 2.4 (1 spoke) and 2.2 (2 spokes) higher than that in CP mode. In vivo experiments demonstrated the necessity for including ΔB0 spatial variations during 2-spoke RF pulse design, particularly in areas with strong local susceptibility variations such as the lower frontal lobe. Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as that in CP mode. These results suggest that expanding parallel transmit methods, including the use of multidimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Even though the total RF power is maintained at the same level than in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitation, with the highest energy for one channel being a factor of 2.4 (1-spoke) and 2.2 (2-spoke) higher than in CP mode. In vivo experiments demonstrate the necessity of including ΔB0 spatial variations during 2-spoke RF pulse design, in particular in areas with strong local susceptibility variations such as the lower frontal lobe. Conclusion Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as in CP mode. These results suggest that expanding parallel transmit methods, including the use of multi-dimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging. PMID:24598439
Price, Anthony N.; Padormo, Francesco; Hajnal, Joseph V.; Malik, Shaihan J.
2017-01-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 +) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a ‘sequence‐level’ optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady‐state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight‐channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single‐channel operation, a mean‐squared‐error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. PMID:28195684
Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J
2017-06-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M
2014-01-31
Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.
Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.
Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming
2009-01-01
An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.
Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature
NASA Astrophysics Data System (ADS)
Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.
2018-06-01
Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.
NASA Astrophysics Data System (ADS)
Mahoney, Leonard Joseph
A planar radio-frequency (rf) inductively-coupled plasma (ICP) source is used to produce fluorocarbon discharges (CF_4/Ar) to fluorinate the surface of high-density polyethylene (HDPE). Using this system, concurrent studies of discharge characteristics, permeation properties of treated polymers and polymer surface characteristics are conducted to advance the use of plasma-fluorinated polymer surfaces as a barrier layer for automotive applications. Langmuir probes are used to determine spatial distribution of charged-particle and space-potential characteristics in Ar and CF_4/Ar discharges and to show the influence of the spatial distribution of the heating regions and the reactor boundaries on the discharge uniformity. Langmuir probes are also used to identify rf anisotropic drift motion of electrons in the heating regions of the source and transient high-energy electron features in pulsed discharges. These latter features allow pulsed ICP sources to be operated at low time-averaged powers that are necessary to treat thermally sensitive polymers. Fourier Transform Infrared (FITR) spectroscopy is used to measure the dissociation of fluorocarbon gases and to explore differences between pulsed- and continuous -power operation. Dissociation levels of CF_4 (50-85%) using pulsed-power operation are as high as that for continuous operation, even though the net time -averaged power is far less with pulsed operation. The result suggests that pulsed fluorocarbon discharges possess high concentrations of chemically-active species needed for rapid surface fluorination. A gravimetric permeation cup method is used to measure the permeation rate of test fuels through HDPE membranes, and electron spectroscopy for chemical analysis (ESCA) studies are performed to determine the stoichiometry and thickness of the barrier layer. From these studies we find that a 50-70 A thick, polar, fluoro-hydrocarbon over layer reduces the permeation of isooctane/toluene/methanol mixtures by a factor of 4. To increase the permeation resistance for automotive applications, this result points towards the deposition of a 1000 A thick fluoro-hydrocarbon barrier coating with stoichiometry and bond structures similar to the CF_4/Ar treated HDPE.
Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields
NASA Astrophysics Data System (ADS)
Gelfer, E. G.; Fedotov, A. M.; Weber, S.
2018-06-01
We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
NASA Technical Reports Server (NTRS)
Bhatnagar, N.; Peterson, A. M.
1979-01-01
In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.
NASA Astrophysics Data System (ADS)
Vitzthum, Veronika; Caporini, Marc A.; Ulzega, Simone; Bodenhausen, Geoffrey
2011-09-01
A train of short rotor-synchronized pulses in the manner of Delays Alternating with Nutations for Tailored Excitation (DANTE) applied to nitrogen-14 nuclei ( I = 1) in samples spinning at the magic angle at high frequencies (typically νrot = 62.5 kHz so that τrot = 16 μs) allows one to achieve uniform excitation of a great number of spinning sidebands that arise from large first-order quadrupole interactions, as occur for aromatic nitrogen-14 nuclei in histidine. With routine rf amplitudes ω1( 14N)/(2 π) = 60 kHz and very short pulses of a typical duration 0.5 < τp < 2 μs, efficient excitation can be achieved with 13 rotor-synchronized pulses in 13 τrot = 208 μs. Alternatively, with 'overtone' DANTE sequences using 2, 4, or 8 pulses per rotor period one can achieve efficient broadband excitation in fewer rotor periods, typically 2-4 τrot. These principles can be combined with the indirect detection of 14N nuclei via spy nuclei with S = ½ such as 1H or 13C in the manner of Dipolar Heteronuclear Multiple-Quantum Correlation (D-HMQC).
Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736
Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B
2015-01-01
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
Classical and low-light-level detection and pulse characterization using optical-frequency mixers
NASA Astrophysics Data System (ADS)
Langrock, Carsten
2007-12-01
Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation, frequency-resolved optical gating, and temporal imaging can be realized in single-polarization-guiding collinear waveguide structures at sub-60-aJ (400 photons/pulse) levels. Recently, guided-wave OF mixers have also become important for precision metrology applications based on frequency-comb generation (FCG) (i.e. optical ruler) using ultrashort pulses. The most compact and energy efficient FCG systems use fiber lasers. In collaboration with IMRA America, Inc., we demonstrate that RPE PPLN waveguides can be used to implement fully integrated fiber-laser-based FCG systems taking advantage of unprecedented octave-spanning spectral broadening of the input pulses in combination with simultaneous phase sensing inside the same waveguide.
ICRH antenna S-matrix measurements and plasma coupling characterisation at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET
2018-04-01
The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.
Design of RF MEMS switches without pull-in instability
NASA Astrophysics Data System (ADS)
Proctor, W. Cyrus; Richards, Gregory P.; Shen, Chongyi; Skorczewski, Tyler; Wang, Min; Zhang, Jingyan; Zhong, Peng; Massad, Jordan E.; Smith, Ralph
2010-04-01
Micro-electro-mechanical systems (MEMS) switches for radio-frequency (RF) signals have certain advantages over solid-state switches, such as lower insertion loss, higher isolation, and lower static power dissipation. Mechanical dynamics can be a determining factor for the reliability of RF MEMS. The RF MEMS ohmic switch discussed in this paper consists of a plate suspended over an actuation pad by four double-cantilever springs. Closing the switch with a simple step actuation voltage typically causes the plate to rebound from its electrical contacts. The rebound interrupts the signal continuity and degrades the performance, reliability and durability of the switch. The switching dynamics are complicated by a nonlinear, electrostatic pull-in instability that causes high accelerations. Slow actuation and tailored voltage control signals can mitigate switch bouncing and effects of the pull-in instability; however, slow switching speed and overly-complex input signals can significantly penalize overall system-level performance. Examination of a balanced and optimized alternative switching solution is sought. A step toward one solution is to consider a pull-in-free switch design. In this paper, determine how simple RC-circuit drive signals and particular structural properties influence the mechanical dynamics of an RF MEMS switch designed without a pull-in instability. The approach is to develop a validated modeling capability and subsequently study switch behavior for variable drive signals and switch design parameters. In support of project development, specifiable design parameters and constraints will be provided. Moreover, transient data of RF MEMS switches from laser Doppler velocimetry will be provided for model validation tasks. Analysis showed that a RF MEMS switch could feasibly be designed with a single pulse waveform and no pull-in instability and achieve comparable results to previous waveform designs. The switch design could reliably close in a timely manner, with small contact velocity, usually with little to no rebound even when considering manufacturing variability.
Schmidtmann, Gunnar; Kingdom, Frederick A A
2017-05-01
Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging
Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.
2010-01-01
The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897
NASA Astrophysics Data System (ADS)
El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.
2016-05-01
High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.
Evaluation of Selected MR Pulse Sequences
NASA Astrophysics Data System (ADS)
Shin, Yong-Jin
1990-01-01
This research addressed four main areas of radiofrequency (rf) pulse programming: (1) correction of instrumentation errors in spin echo sequences by use of phase rolling of the rf pulses; (2) chemical shift imaging of water and lipid; (3) development of special pulse sequences for the measurement of phosphorus metabolites by ^ {31}P spectroscopy and lactate by ^1H spectroscopy; and (4) flow methods to measure and separate diffusion from perfusion. All experiments were performed on a horizontal 2.0T (superconducting magnet) 31-cm small-bore MR system. Computer programming and data analysis were performed on a PDP 11/84 computer system. 1. The effects of rf tips, dc and gain misadjustments in the rf spectrometer were evaluated for a series of MR images. Four different phase cycling schemes (FIXED, ALTERNATE, FORWARD, REVERSED) to suppress unwanted signal components such as mirror and ghost images were evaluated using two signal acquisitions. When the receiver phase factor is cycled counter-clockwise (REVERSED), these artifacts are completely removed. 2. A major problem common to all chemical shift imaging methods is static magnetic field non-uniformity. Four methods (Dixon's, CHESS, SECSI and modified CHESS-SECSI) were quantitatively evaluated for the measurement of water and fat content, which are separated by approximately 3.5 ppm, in in vivo biological tissues. It was demonstrated in phantoms that the modified CHESS+SECSI method gave superior results even without field shimming. 3. The development of new MR rf pulse sequences is essential in order to acquire specialized in vivo information concerning biologic metabolites. The time course of change in concentration of lactate and of phosphorus metabolites in human forearm muscle before and after exercise was determined. Lactate concentration returned to normal in 25 minutes after exercise. The Pi/PCr ratio was 0.25 before exercise, and increased to 0.5 at 4.5 minutes after exercise. 4. The fourth study involved the incorporation of a bipolar gradient pulse technique into a spin echo sequence; by varying the strength of the bipolar gradients, diffusion as well as perfusion can be quantitatively determined. The diffusion coefficient (D) for H_2O and acetone were 2.10 and 5.06 (times10 ^{-3} mm^2 /sec), respectively. The perfusion factor was linearly incremental for stepwise increases in flow velocities.
Measurements and modeling of radio frequency field structures in a helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. A.; Chen, Guangye; Arefiev, A. V.
2011-01-01
Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less
DFB laser - External modulator fiber optic delay line for radar applications
NASA Astrophysics Data System (ADS)
Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.
1989-09-01
A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.
Microwave Interferometric Density Measurements of a Pulsed Helicon Source
NASA Astrophysics Data System (ADS)
Scime, Ethan; Scime, Earl; Thompson, Derek
2017-10-01
The intense rf environment of a helicon plasma source is problematic for electrostatic probe measurements of plasma density, particularly at low neutral pressures. Here we present measurements of the line-integrated plasma density in a helicon plasma source using a multi-frequency (20-40 GHz) microwave interferometer. The design of the diagnostic and the data acquisition system are presented, as well as a comparison to density profiles obtained with a moveable electrostatic probe. A parametric fit to the probe profile measurements is used to determine the peak density from the microwave density measurements. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
NASA Technical Reports Server (NTRS)
Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.
1977-01-01
This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.
Light Detection and Ranging (LIDAR) From Space - Laser Altimeters
NASA Technical Reports Server (NTRS)
Sun, Xiaoli
2016-01-01
Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.
"Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.
d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef
2005-09-01
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.
Acousto-optic modulation in diode pumped solid state lasers
NASA Astrophysics Data System (ADS)
Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek
2007-02-01
The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.
Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells
NASA Astrophysics Data System (ADS)
Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.
1988-02-01
Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazinette, R.; SIAME, Université de Pau et des Pays de l'Adour, Pau; Paillol, J.
The aim of this paper is to better understand the transition from Townsend to radio-frequency homogeneous dielectric barrier discharge (DBD) at atmospheric pressure. The study is done in an Ar/NH{sub 3} Penning mixture for an electrode configuration adapted to roll-to-roll plasma surface treatment. The study was led in a frequency range running from 50 kHz up to 8.3 MHz leading to different DBD modes with a 1 mm gas gap: Glow (GDBD), Townsend (TDBD), and Radio-frequency (RF-DBD). In the frequency range between TDBD and RF-DBD, from 250 kHz to 2.3 MHz, additional discharges are observed outside the inter-electrode gas gap. Because each high voltagemore » electrode are inside a dielectric barrel, these additional discharges occur on the side of the barrel where the gap is larger. They disappear when the RF-DBD mode is attained in the 1 mm inter-electrode gas gap, i.e., for frequencies equal or higher than 3 MHz. Fast imaging and optical emission spectroscopy show that the additional discharges are radio-frequency DBDs while the inter-electrode discharge is a TDBD. The RF-DBD discharge mode is attained when electrons drift becomes low enough compared to the voltage oscillation frequency to limit electron loss at the anode. To check that the additional discharges are due to a larger gas gap and a lower voltage amplitude, the TDBD/RF-DBD transition is investigated as a function of the gas gap and the applied voltage frequency and amplitude. Results show that the increase in the frequency at constant gas gap or in the gas gap at constant frequency allows to obtain RF-DBD instead of TDBD. At low frequency and large gap, the increase in the applied voltage allows RF-DBD/TDBD transition. As a consequence, an electrode configuration allowing different gap values is a solution to successively have different discharge modes with the same applied voltage.« less
Wireless Passive Stimulation of Engineered Cardiac Tissues.
Liu, Shiyi; Navaei, Ali; Meng, Xueling; Nikkhah, Mehdi; Chae, Junseok
2017-07-28
We present a battery-free radio frequency (RF) microwave activated wireless stimulator, 25 × 42 × 1.6 mm 3 on a flexible substrate, featuring high current delivery, up to 60 mA, to stimulate engineered cardiac tissues. An external antenna shines 2.4 GHz microwave, which is modulated by an inverted pulse to directly control the stimulating waveform, to the wireless passive stimulator. The stimulator is equipped with an on-board antenna, multistage diode multipliers, and a control transistor. Rat cardiomyocytes, seeded on electrically conductive gelatin-based hydrogels, demonstrate synchronous contractions and Ca 2+ transients immediately upon stimulation. Notably, the stimulator output voltage and current profiles match the tissue contraction frequency within 0.5-2 Hz. Overall, our results indicate the promising potential of the proposed wireless passive stimulator for cardiac stimulation and therapy by induction of precisely controlled and synchronous contractions.
Abe, Takayuki
2013-03-01
To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an eddy current effect. The dedicated prescan has been developed to measure the phase accumulation due to eddy currents induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate eddy current effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.
High-quality beam generation using an RF gun and a 150 MeV microtron
NASA Astrophysics Data System (ADS)
Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.
2000-11-01
Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.
Pulsed source ion implantation apparatus and method
Leung, Ka-Ngo
1996-01-01
A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.
Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham
2018-03-01
Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, M. H.; Gonin, I.; Passarelli, D.
2016-01-22
Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics andmore » Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.« less
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
Simultaneous multislice refocusing via time optimal control.
Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf
2018-02-09
Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.
Differentiation of tumor from viable myocardium using cardiac tagging with MR imaging.
Bouton, S; Yang, A; McCrindle, B W; Kidd, L; McVeigh, E R; Zerhouni, E A
1991-01-01
We report the application of myocardial tagging by MR to define tissue planes and differentiate contractile from noncontractile tissue in a neonate with congenital cardiac rhabdomyoma. Using custom-written pulse programming software, six 2 mm thick radiofrequency (RF) slice-selective presaturation pulses (tags) were used to label the chest wall and myocardium in a star pattern in diastole, approximately 60 ms before the R-wave gating trigger. This method successfully delineated the myocardium from noncontractile tumor, providing information that influenced clinical management. This RF tagging technique allowed us to confirm the exact intramyocardial location of a congenital cardiac tumor.
Automatic Pulse Shaping with the AN/FPN-42 and AN/FPN-44A Loran-C transmitters
1992-12-01
with antenna simulator, pair 30. (a) TDW and (b) RF pulse. 39 CLOSEUP: POWER SPECTRUM OF TOW & RF (PAIR 30), 47 XMTR 190 17025 " 3 0 4 0 5 6 Sapl numbr... iec X 1e-6 (a) Phase Vf Selected Parameter 0.057 0.5 ... .. . . . ......... .... .. . ............... ,.. ...-.. . , .... celurro, 3 0.0517...PAIR 7 1), "SA XMTR ISO IS 25 30 35 40 4 0 55 60 Sample number, k Figure 3.15c: Closeup of power spectrum, 144A, pair 71i. 77 POLE/ZERO PLOT (PAIR 71
NASA Astrophysics Data System (ADS)
Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.
2009-11-01
Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.
Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI
NASA Astrophysics Data System (ADS)
Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.
2011-04-01
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.
History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators
NASA Astrophysics Data System (ADS)
Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.
2016-04-01
This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.
Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi
2017-10-01
The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.
Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.
2016-01-01
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833
Development of Phase Change Materials for RF Switch Applications
NASA Astrophysics Data System (ADS)
King, Matthew Russell
For decades chalcogenide-based phase change materials (PCMs) have been reliably implemented in optical storage and digital memory platforms. Owing to the substantial differences in optical and electronic properties between crystalline and amorphous states, device architectures requiring a "1" and "0" or "ON" and "OFF" states are attainable with PCMs if a method for amorphizing and crystallizing the PCM is demonstrated. Taking advantage of more than just the binary nature of PCM electronic properties, recent reports have shown that the near-metallic resistivity of some PCMs allow one to manufacture high performance RF switches and related circuit technologies. One of the more promising RF switch technologies is the Inline Phase Change Switch (IPCS) which utilizes GeTe as the active material. Initial reports show that an electrically isolated, thermally coupled thin film heater can successfully convert GeTe between crystalline and amorphous states, and with proper design an RF figure of merit cutoff frequency (FCO) of 12.5 THz can be achieved. In order to realize such world class performance a significant development effort was undertaken to understand the relationship between fundamental GeTe properties, thin film deposition method and resultant device properties. Deposition pressure was found to be the most important deposition process parameter, as it was found to control Ge:Te ratio, oxygen content, Ar content, film density and surface roughness. Ultimately a first generation deposition process produced GeTe films with a crystalline resistivity of 3 ohm-mum. Upon implementing these films into IPCS devices, post-cycling morphological analysis was undertaken using STEM and related analyses. It was revealed that massive structural changes occur in the GeTe during switching, most notably the formation of an assembly of voids along the device centerline and large GeTe grains on either side of the so-called active region. Restructuring of this variety was tied to changes in ON-state resistance with increasing pulse number, where initially porous and granular GeTe was converted to large crystalline domains comprising the majority of the RF gap. A phenomenological model for this morphology was presented in which the OFF pulse melts a given width of GeTe and upon cooling the crystalline template outside the melt region acts as a template for an inward-propagating crystalline growth front. This model was further extended to explain observed morphology for ON pulses. The voids observed along the device centerline were connected to increasing OFF state resistance and a relatively stable ON state with increasing pulse number via a series resistance model. As a result of this analysis, OFF state resistance was suggested as an early indicator of device reliability. Finally, microstructural and electrical property observations were used as a basis for implementing improvements to the GeTe deposition process in the form of a heated substrate platform. It was shown that this provides a viable method for attaining stable as-deposited GeTe morphology and a substantially improved crystalline resistivity (2 ohm-mum). This body of work ultimately provides a blueprint which connects fundamental GeTe properties with deposition processes and device performance.
Ultra High-Speed Radio Frequency Switch Based on Photonics.
Ge, Jia; Fok, Mable P
2015-11-26
Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.