Science.gov

Sample records for frequency selective mimo

  1. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  2. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  3. Distributed Relay Selection for MIMO-SDM Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Tran, Xuan Nam; Nguyen, Vinh Hanh; Bui, Thanh Tam; Dinh, The Cuong; Karasawa, Yoshio

    In this paper, we consider an amplify-and-forward cooperative wireless network in which network nodes use multiple input multiple output (MIMO) spatial division multiplexing (SDM) to communicate with one another. We examine the problem of distributed cooperative relay selection and signal combining at the destination. First, we propose three distributed relay selection algorithms based on the maximum channel gains, the maximum harmonic mean of the channel gains, and the minimum mean squared error (MSE) of the signal estimation. Second, we propose a minimum mean square error (MMSE) signal combining scheme which jointly serves as the optimal signal combiner and interference canceler. It is shown that the MSE selection together with the MMSE combining achieves the maximal diversity gain. We also show that in MIMO-SDM cooperative networks increasing the number of candidate nodes does not help to improve the BER performance as opposed to the cooperative networks where each node is equipped with only single antenna. A practical approach to implementation of the combiner based on the current wireless access network protocols will also be presented.

  4. Tolerance of the frequency deviation of LO sources at a MIMO system

    NASA Astrophysics Data System (ADS)

    Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun

    2015-11-01

    We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.

  5. Frequency selective infrared sensors

    SciTech Connect

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  6. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  7. Space-Frequency Block Code with Matched Rotation for MIMO-OFDM System with Limited Feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Abhayapala, Thushara D.; Jayalath, Dhammika; Smith, David; Athaudage, Chandra

    2009-12-01

    This paper presents a novel matched rotation precoding (MRP) scheme to design a rate one space-frequency block code (SFBC) and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.

  8. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    PubMed

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances.

  9. Low-complexity user selection for rate maximization in MIMO broadcast channels with downlink beamforming.

    PubMed

    Castañeda, Eduardo; Silva, Adão; Samano-Robles, Ramiro; Gameiro, Atílio

    2014-01-01

    We present in this work a low-complexity algorithm to solve the sum rate maximization problem in multiuser MIMO broadcast channels with downlink beamforming. Our approach decouples the user selection problem from the resource allocation problem and its main goal is to create a set of quasiorthogonal users. The proposed algorithm exploits physical metrics of the wireless channels that can be easily computed in such a way that a null space projection power can be approximated efficiently. Based on the derived metrics we present a mathematical model that describes the dynamics of the user selection process which renders the user selection problem into an integer linear program. Numerical results show that our approach is highly efficient to form groups of quasiorthogonal users when compared to previously proposed algorithms in the literature. Our user selection algorithm achieves a large portion of the optimum user selection sum rate (90%) for a moderate number of active users.

  10. Active frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Buchwald, Walter R.; Hendrickson, Joshua; Cleary, Justin W.; Guo, Junpeng

    2013-05-01

    Split ring resonator arrays are investigated for use as active elements for the realization of voltage controllable frequency selective surfaces. Finite difference time domain simulations suggest the absorptive and reflective properties of such surfaces can be externally controlled through modifications of the split ring resonator gap impedance. In this work, such voltage-controlled resonance tuning is obtained through the addition of an appropriately designed high electron mobility transistor positioned across the split ring resonator gap. It is shown that a 0.5μm gate length high electron mobility transistor allows voltage controllable switching between the two resonant conditions associated with a split ring resonator and that of a closed loop geometry when the surface is illuminated with THz radiation. Partial switching between these two resonant conditions is observed at larger gate lengths. Such active frequency selective surfaces are proposed, for example, for use as modulators in THz detection schemes and as RF filters in radar applications when scaled to operate at GHz frequencies.

  11. Relay-and-antenna selection and digital transceiver design for two-way AF-MIMO multiple-relay systems

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Su, Hao-Hsian; Tang, Kang-Tsao

    2014-09-01

    This paper considers a two-way multiple-input multiple-output (MIMO) relaying system with multiple relays between two terminals nodes. The relay antenna selection scheme based on channel singular valued decomposition (SVD) is used to reduce energy consumption. To enhance the system performance, we apply a SVD-based algorithm with MSE criterion which calculates optimal linear transceivers precoding jointly at the source nodes and relay nodes for amplify-and-forward (AF) protocols. In computer simulations, we use an iteration method to compute the non-convex function of joint source and relays power allocation. The simulation results show the SVD-based precoding design with SVD-based relay and antenna selection scheme can achieve a superior system bit error rate (BER) performance and reduce the power consume of relay antennas.

  12. Joint angle and Doppler frequency estimation of coherent targets in monostatic MIMO radar

    NASA Astrophysics Data System (ADS)

    Cao, Renzheng; Zhang, Xiaofei

    2015-05-01

    This paper discusses the problem of joint direction of arrival (DOA) and Doppler frequency estimation of coherent targets in a monostatic multiple-input multiple-output radar. In the proposed algorithm, we perform a reduced dimension (RD) transformation on the received signal first and then use forward spatial smoothing (FSS) technique to decorrelate the coherence and obtain joint estimation of DOA and Doppler frequency by exploiting the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. The joint estimated parameters of the proposed RD-FSS-ESPRIT are automatically paired. Compared with the conventional FSS-ESPRIT algorithm, our RD-FSS-ESPRIT algorithm has much lower complexity and better estimation performance of both DOA and frequency. The variance of the estimation error and the Cramer-Rao Bound of the DOA and frequency estimation are derived. Simulation results show the effectiveness and improvement of our algorithm.

  13. 47 CFR 74.503 - Frequency selection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Frequency selection. 74.503 Section 74.503... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station shall be specific with regard to frequency. In general, the lowest suitable frequency will be...

  14. 47 CFR 74.503 - Frequency selection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Frequency selection. 74.503 Section 74.503... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station shall be specific with regard to frequency. In general, the lowest suitable frequency will be...

  15. 47 CFR 74.503 - Frequency selection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Frequency selection. 74.503 Section 74.503... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station shall be specific with regard to frequency. In general, the lowest suitable frequency will be...

  16. 47 CFR 74.503 - Frequency selection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Frequency selection. 74.503 Section 74.503... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station shall be specific with regard to frequency. In general, the lowest suitable frequency will be...

  17. 47 CFR 74.503 - Frequency selection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Frequency selection. 74.503 Section 74.503... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station shall be specific with regard to frequency. In general, the lowest suitable frequency will be...

  18. Parallel Multistage Decision Feedback Equalizer for Single-Carrier Layered Space-Time Systems in Frequency-Selective Channels

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wang, Haifeng; Cheng, Shixin; Chen, Ming

    2004-12-01

    Space-time transmission techniques can greatly increase the spectral efficiency. In this paper, a parallel multistage decision feedback equalizer (PMDFE) is proposed for single-carrier layered space-time systems with a fixed cyclic prefix over frequency-selective channels. It is composed of a parallel interference canceller, a multiple-input single-output decision feedback equalizer (MISO-DFE), and a linear combiner. The soft output of the MISO-DFE is linearly combined with the previous tentative soft decision. In addition, an algorithm is proposed to obtain tentative soft and hard decisions for initializing the equalizer. The initializing complexity of the PMDFE is lower than that of MIMO-OFDM. Simulation results show that the PMDFE outperforms MIMO-OFDM and previously existing equalizers for single-carrier layered space-time systems.

  19. Frequency-dependent selection by predators.

    PubMed

    Allen, J A

    1988-07-01

    Sometimes predators tend to concentrate on common varieties of prey and overlook rare ones. Within prey species, this could result in the fitness of each variety being inversely related to its frequency in the population. Such frequency-dependent or 'apostatic' selection by predators hunting by sight could maintain polymorphism for colour pattern, and much of the supporting evidence for this idea has come from work on birds and artificial prey. These and other studies have shown that the strength of the observed selection is affected by prey density, palatability, coloration and conspicuousness. When the prey density is very high, selection becomes 'anti-apostatic': predators preferentially remove rare prey. There is still much to be learned about frequency-dependent selection by predators on artificial prey: work on natural polymorphic prey has hardly begun. PMID:2905488

  20. Waveform Selectivity at the Same Frequency

    PubMed Central

    Wakatsuchi, Hiroki; Anzai, Daisuke; Rushton, Jeremiah J.; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F.

    2015-01-01

    Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of circuit elements are then combined to absorb or transmit specific waveforms in between. This waveform selectivity gives us another degree of freedom to control electromagnetic waves in various fields including wireless communications, as our simulation reveals that the metasurfaces are capable of varying bit error rates in response to different waveforms. PMID:25866071

  1. Waveform Selectivity at the Same Frequency

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Anzai, Daisuke; Rushton, Jeremiah J.; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F.

    2015-04-01

    Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of circuit elements are then combined to absorb or transmit specific waveforms in between. This waveform selectivity gives us another degree of freedom to control electromagnetic waves in various fields including wireless communications, as our simulation reveals that the metasurfaces are capable of varying bit error rates in response to different waveforms.

  2. Making Curved Frequency-Selective Microwave Reflectors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Wu, Te-Kao

    1995-01-01

    Prototype curved lightweight dichroic microwave reflectors designed to be highly reflective in X and K(suba) frequency bands and highly transmissive in K(subu) and S bands. Conductive grid elements formed photolithographically on curved reflector surfaces. Intended for use as subreflectors of main paraboloidal antenna reflector to enable simultaneous operation in both prime-focus configuration in K(subu) and S bands and Cassegrain configuration in X and K(suba) bands. Basic concepts of reflectors described in "Frequency-Selective Microwave Reflectors" (NPO-18701). "Double Square-Loop Dichroic Microwave Reflector" (NPO-18676), "Triband Circular-Loop Dichroic Microwave Reflector" (NPO-18714), and "Improved Dichroic Microwave Reflector" (NPO-18664).

  3. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  4. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.

  5. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  6. Saliency computation via whitened frequency band selection.

    PubMed

    Lv, Qi; Wang, Bin; Zhang, Liming

    2016-06-01

    Many saliency computational models have been proposed to simulate bottom-up visual attention mechanism of human visual system. However, most of them only deal with certain kinds of images or aim at specific applications. In fact, human beings have the ability to correctly select attentive focuses of objects with arbitrary sizes within any scenes. This paper proposes a new bottom-up computational model from the perspective of frequency domain based on the biological discovery of non-Classical Receptive Field (nCRF) in the retina. A saliency map can be obtained according to the idea of Extended Classical Receptive Field. The model is composed of three major steps: firstly decompose the input image into several feature maps representing different frequency bands that cover the whole frequency domain by utilizing Gabor wavelet. Secondly, whiten the feature maps to highlight the embedded saliency information. Thirdly, select some optimal maps, simulating the response of receptive field especially nCRF, to generate the saliency map. Experimental results show that the proposed algorithm is able to work with stable effect and outstanding performance in a variety of situations as human beings do and is adaptive to both psychological patterns and natural images. Beyond that, biological plausibility of nCRF and Gabor wavelet transform make this approach reliable.

  7. Saliency computation via whitened frequency band selection.

    PubMed

    Lv, Qi; Wang, Bin; Zhang, Liming

    2016-06-01

    Many saliency computational models have been proposed to simulate bottom-up visual attention mechanism of human visual system. However, most of them only deal with certain kinds of images or aim at specific applications. In fact, human beings have the ability to correctly select attentive focuses of objects with arbitrary sizes within any scenes. This paper proposes a new bottom-up computational model from the perspective of frequency domain based on the biological discovery of non-Classical Receptive Field (nCRF) in the retina. A saliency map can be obtained according to the idea of Extended Classical Receptive Field. The model is composed of three major steps: firstly decompose the input image into several feature maps representing different frequency bands that cover the whole frequency domain by utilizing Gabor wavelet. Secondly, whiten the feature maps to highlight the embedded saliency information. Thirdly, select some optimal maps, simulating the response of receptive field especially nCRF, to generate the saliency map. Experimental results show that the proposed algorithm is able to work with stable effect and outstanding performance in a variety of situations as human beings do and is adaptive to both psychological patterns and natural images. Beyond that, biological plausibility of nCRF and Gabor wavelet transform make this approach reliable. PMID:27275381

  8. Continuous metal plasmonic frequency selective surfaces.

    PubMed

    Zhang, Jianfa; Ou, Jun-Yu; Papasimakis, Nikitas; Chen, Yifang; Macdonald, Kevin F; Zheludev, Nikolay I

    2011-11-01

    In the microwave part of the spectrum, where losses are minimal, metal films regularly patterned (perforated) on the sub-wavelength scale achieve spectral selectivity by balancing the transmission and reflection characteristics of the surface. Here we show for optical frequencies, where joule losses are important, that periodic structuring of a metal film without violation of continuity (i.e. without perforation) is sufficient to achieve substantial modification of reflectivity. By engineering the geometry of the structure imposed on a surface one can dramatically change the perceived color of the metal without employing any form of chemical modification, thin-film coating or diffraction effects. This novel frequency selective effect is underpinned by plasmonic Joule losses in the constituent elements of the patterns (dubbed 'intaglio' and 'bas relief' metamaterials to distinguish indented and raised structures respectively) and is specific to the optical part of the spectrum. It has the advantage of maintaining the integrity of metal surfaces and is well suited to high-throughput fabrication via techniques such as nano-imprint. PMID:22109206

  9. Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.

    PubMed

    Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.

  10. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1995-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  11. An adaptive selective frequency damping method

    NASA Astrophysics Data System (ADS)

    Jordi, Bastien; Cotter, Colin; Sherwin, Spencer

    2015-03-01

    The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.

  12. Performance analysis of low-complexity adaptive frequency-domain equalization and MIMO signal processing for compensation of differential mode group delay in mode-division multiplexing communication systems using few-mode fibers

    NASA Astrophysics Data System (ADS)

    Weng, Yi; He, Xuan; Pan, Zhongqi

    2016-02-01

    Mode-division multiplexing (MDM) transmission systems utilizing few-mode fibers (FMF) have been intensively explored to sustain continuous traffic growth. The key challenges of MDM systems are inter-modal crosstalk due to random mode coupling (RMC), and largely-accumulated differential mode group delay (DMGD), whilst hinders mode-demultiplexer implementation. The adaptive multi-input multi-output (MIMO) frequency-domain equalization (FDE) can dynamically compensate DMGD using digital signal processing (DSP) algorithms. The frequency-domain least-mean squares (FD-LMS) algorithm has been universally adopted for high-speed MDM communications, mainly for its relatively low computational complexity. However, longer training sequence is appended for FD-LMS to achieve faster convergence, which incurs prohibitively higher system overhead and reduces overall throughput. In this paper, we propose a fast-convergent single-stage adaptive frequency-domain recursive least-squares (FD-RLS) algorithm with reduced complexity for DMGD compensation at MDM coherent receivers. The performance and complexity comparison of FD-RLS, with signal-PSD-dependent FD-LMS method and conventional FD-LMS approach, are performed in a 3000 km six-mode transmission system with 65 ps/km DMGD. We explore the convergence speed of three adaptive algorithms, including the normalized mean-square-error (NMSE) per fast Fourier transform (FFT) block at 14-30 dB OSNR. The fast convergence of FD-RLS is exploited at the expense of slightly-increased necessary tap numbers for MIMO equalizers, and it can partially save the overhead of training sequence. Furthermore, we demonstrate adaptive FD-RLS can also be used for chromatic dispersion (CD) compensation without increasing the filter tap length, thus prominently reducing the DSP implementation complexity for MDM systems.

  13. Frequency selectivity in noise-damaged cochleas.

    PubMed

    Davis, R I; Hamernik, R P; Ahroon, W A

    1993-01-01

    Measures of auditory threshold and masked threshold were obtained at six audiometric test frequencies along with cochleograms on a total population of 363 noise-exposed chinchillas. Seventy animals were chosen from this sample and were separated into five relatively homogeneous groups based upon the amount of permanent threshold shift and sensory cell losses the animals incurred. Tuning curve (TC) metrics were compared to the mean preexposure TC metrics for each group and to the reference preexposure TC metrics obtained from the sample of 363 animals. These data show that in animals with relatively little hearing loss changes in TC metrics can provide evidence for noise-induced sensory cell losses and that the low frequency slope of the TC is a sensitive index of trauma. PMID:8476350

  14. Does word frequency affect lexical selection in speech production?

    PubMed

    Navarrete, Eduardo; Basagni, Benedetta; Alario, F-Xavier; Costa, Albert

    2006-10-01

    We evaluated whether lexical selection in speech production is affected by word frequency by means of two experiments. In Experiment 1 participants named pictures using utterances with the structure "pronoun + verb + adjective". In Experiment 2 participants had to perform a gender decision task on the same pictures. Access to the noun's grammatical gender is needed in both tasks, and therefore lexical selection (lemma retrieval) is required. However, retrieval of the phonological properties (lexeme retrieval) of the referent noun is not needed to perform the tasks. In both experiments we observed faster latencies for high-frequency pictures than for low-frequency pictures. This frequency effect was stable over four repetitions of the stimuli. Our results suggest that lexical selection (lemma retrieval) is sensitive to word frequency. This interpretation runs against the hypothesis that a word's frequency exerts its effects only at the level at which the phonological properties of words are retrieved.

  15. 47 CFR 74.803 - Frequency selection to avoid interference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... frequencies to be employed by each licensee. (b) The selection of frequencies in the bands allocated for TV.... In these bands, low power auxiliary station usage is secondary to TV broadcasting and land mobile stations operating in the UHF-TV spectrum and must not cause harmful interference. If such...

  16. 47 CFR 74.803 - Frequency selection to avoid interference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequencies to be employed by each licensee. (b) The selection of frequencies in the bands allocated for TV.... In these bands, low power auxiliary station usage is secondary to TV broadcasting and land mobile stations operating in the UHF-TV spectrum and must not cause harmful interference. If such...

  17. 47 CFR 74.803 - Frequency selection to avoid interference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... frequencies to be employed by each licensee. (b) The selection of frequencies in the bands allocated for TV.... In these bands, low power auxiliary station usage is secondary to TV broadcasting and land mobile stations operating in the UHF-TV spectrum and must not cause harmful interference. If such...

  18. 47 CFR 74.803 - Frequency selection to avoid interference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequencies to be employed by each licensee. (b) The selection of frequencies in the bands allocated for TV.... In these bands, low power auxiliary station usage is secondary to TV broadcasting and land mobile stations operating in the UHF-TV spectrum and must not cause harmful interference. If such...

  19. Frequency-Dependent Selection Predicts Patterns of Radiations and Biodiversity

    PubMed Central

    Melián, Carlos J.; Alonso, David; Vázquez, Diego P.; Regetz, James; Allesina, Stefano

    2010-01-01

    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches. PMID:20865126

  20. Remote sensing using MIMO systems

    DOEpatents

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  1. MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-gen; Zhang, Tianxian; Kong, Lingjiang

    2015-07-01

    In this paper, we propose MIMO OFDM radar with sufficient cyclic prefix (CP), where all OFDM pulses transmitted from different transmitters share the same frequency band and are orthogonal to each other for every subcarrier in the discrete frequency domain. The orthogonality is not affected by time delays from transmitters. Thus, our proposed MIMO OFDM radar has the same range resolution as single transmitter radar and achieves full spatial diversity. Orthogonal designs are used to achieve this orthogonality across the transmitters, with which it is only needed to design OFDM pulses for the first transmitter. We also propose a joint pulse compression and pulse coherent integration for range reconstruction. In order to achieve the optimal SNR for the range reconstruction, we apply the paraunitary filterbank theory to design the OFDM pulses. We then propose a modified iterative clipping and filtering (MICF) algorithm for the designs of OFDM pulses jointly, when other important factors, such as peak-to-average power ratio (PAPR) in time domain, are also considered. With our proposed MIMO OFDM radar, there is no interference for the range reconstruction not only across the transmitters but also across the range cells in a swath called inter-range-cell interference (IRCI) free that is similar to our previously proposed CP based OFDM radar for single transmitter. Simulations are presented to illustrate our proposed theory and show that the CP based MIMO OFDM radar outperforms the existing frequency-band shared MIMO radar with polyphase codes and also frequency division MIMO radar.

  2. Intermittency and transient chaos from simple frequency-dependent selection.

    PubMed

    Gavrilets, S; Hastings, A

    1995-08-22

    Frequency-dependent selection is an important determinant of the evolution of gametophytic self-incompatibility systems in plants, aposematic (warning) and cryptic coloration, systems of mimicry, competitive interactions among members of a population, mating preferences, predator-prey and host-parasite interactions, aggression and other behavioural traits. Past theoretical studies of frequency-dependent selection have shown it to be a plausible mechanism for the maintenance of genetic variability in natural populations. Here, through an analysis of a simple deterministic model for frequency-dependent selection, we demonstrate that complex dynamic behaviour is possible under a broad range of parameter values. In particular we show that the model exhibits not only cycles and chaos but also, for a more restricted set of parameters, transient chaos and intermittency: alterations between an apparently deterministic behaviour and apparently chaotic fluctuations. This behaviour, which has not been stressed within the population genetics literature, provides an explanation for erratic dynamics of gene frequencies.

  3. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    SciTech Connect

    Dewani, Aliya A. O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  4. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    NASA Astrophysics Data System (ADS)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  5. A geographic cline induced by negative frequency-dependent selection

    PubMed Central

    2011-01-01

    Background Establishment of geographic morph frequency clines is difficult to explain in organisms with limited gene flow. Balancing selection, such as negative frequency-dependent selection (NFDS), is instead suggested to establish a morph frequency cline on a geographic scale at least theoretically. Here we tested whether a large-scale smooth cline in morph frequency is established by NFDS in the female-dimorphic damselfly, Ischnura senegalensis, where andromorphs and gynomorphs are maintained by NFDS. Results We found a large-scale latitudinal cline in the morph frequency: andromorph frequency ranged from 0.05 (South) to 0.79 (North). Based on the empirical data on the numbers of eggs, the number of ovariole, abdomen length and latitude, the potential fitness of andromorphs was estimated to be lower than that of gynomorphs in the south, and higher in the north, suggesting the gene-by-environment interaction. From the morph-specific latitudinal cline in potential fitness, the frequency of andromorphs was expected to shift from 0 to 1 without NFDS, because a morph with higher potential fitness wins completely and the two morphs will switch at some point. In contrast, NFDS led to the coexistence of two morphs with different potential fitness in a certain geographic range along latitude due to rare morph advantage, and resulted in a smooth geographic cline of morph frequency. Conclusion Our results provide suggestive evidence that the combination of NFDS and gene-by-environment interaction, i.e., multi-selection pressure on color morphs, can explain the geographic cline in morph frequency in the current system. PMID:21917171

  6. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    NASA Astrophysics Data System (ADS)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  7. Final report for Frequency selective surfaces for rugged thermophotovoltaic emitters

    SciTech Connect

    Daly, James

    2001-04-05

    Ion Optics created an array of regularly spaced holes in a thin conductive surface film on a dielectric substrate. When heated, this pattern behaved as a selective emitter, with more than 50% of total radiation in a well-defined peak with a center frequency determined by geometrical spacing. Peak wavelength did not alter with change in temperature, and materials easily survived 10 hours at 1000 C in air. The selective emitter will increase efficiency of thermophotovoltaic power converters.

  8. Low-loss Ka-band frequency selective subreflector

    NASA Astrophysics Data System (ADS)

    Ueno, K.; Kumazawa, H.; Ohtomo, I.

    1991-06-01

    A frequency selective subreflector with two separate focal fed positions for a 30/20 GHz offset Gregorian reflector antenna is developed. For a bandwidth exceeding 3 GHz in the 20 and 30 GHz band, the measured losses are 0.7 and 1.5 dB, respectively.

  9. Integral criterion for selecting nonlinear crystals for frequency conversion

    SciTech Connect

    Grechin, Sergei G

    2009-02-28

    An integral criterion, which takes into account all parameters determining the conversion efficiency, is offered for selecting nonlinear crystals for frequency conversion. The angular phase-matching width is shown to be related to the beam walk-off angle. (nonlinear optical phenomena)

  10. Broadbeam for Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Qiao, Deli; Qian, Haifeng; Li, Geoffrey Ye

    2016-05-01

    Massive MIMO has been identified as one of the promising disruptive air interface techniques to address the huge capacity requirement demanded by 5G wireless communications. For practical deployment of such systems, the control message need to be broadcast to all users reliably in the cell using broadbeam. A broadbeam is expected to have the same radiated power in all directions to cover users in any place in a cell. In this paper, we will show that there is no perfect broadbeam. Therefore, we develop a method for generating broadbeam that can allow tiny fluctuations in radiated power. Overall, this can serve as an ingredient for practical deployment of the massive MIMO systems.

  11. Learning natural selection from the site frequency spectrum.

    PubMed

    Ronen, Roy; Udpa, Nitin; Halperin, Eran; Bafna, Vineet

    2013-09-01

    Genetic adaptation to external stimuli occurs through the combined action of mutation and selection. A central problem in genetics is to identify loci responsive to specific selective constraints. Many tests have been proposed to identify the genomic signatures of natural selection by quantifying the skew in the site frequency spectrum (SFS) under selection relative to neutrality. We build upon recent work that connects many of these tests under a common framework, by describing how selective sweeps affect the scaled SFS. We show that the specific skew depends on many attributes of the sweep, including the selection coefficient and the time under selection. Using supervised learning on extensive simulated data, we characterize the features of the scaled SFS that best separate different types of selective sweeps from neutrality. We develop a test, SFselect, that consistently outperforms many existing tests over a wide range of selective sweeps. We apply SFselect to polymorphism data from a laboratory evolution experiment of Drosophila melanogaster adapted to hypoxia and identify loci that strengthen the role of the Notch pathway in hypoxia tolerance, but were missed by previous approaches. We further apply our test to human data and identify regions that are in agreement with earlier studies, as well as many novel regions.

  12. Detecting and measuring selection from gene frequency data.

    PubMed

    Vitalis, Renaud; Gautier, Mathieu; Dawson, Kevin J; Beaumont, Mark A

    2014-03-01

    The recent advent of high-throughput sequencing and genotyping technologies makes it possible to produce, easily and cost effectively, large amounts of detailed data on the genotype composition of populations. Detecting locus-specific effects may help identify those genes that have been, or are currently, targeted by natural selection. How best to identify these selected regions, loci, or single nucleotides remains a challenging issue. Here, we introduce a new model-based method, called SelEstim, to distinguish putative selected polymorphisms from the background of neutral (or nearly neutral) ones and to estimate the intensity of selection at the former. The underlying population genetic model is a diffusion approximation for the distribution of allele frequency in a population subdivided into a number of demes that exchange migrants. We use a Markov chain Monte Carlo algorithm for sampling from the joint posterior distribution of the model parameters, in a hierarchical Bayesian framework. We present evidence from stochastic simulations, which demonstrates the good power of SelEstim to identify loci targeted by selection and to estimate the strength of selection acting on these loci, within each deme. We also reanalyze a subset of SNP data from the Stanford HGDP-CEPH Human Genome Diversity Cell Line Panel to illustrate the performance of SelEstim on real data. In agreement with previous studies, our analyses point to a very strong signal of positive selection upstream of the LCT gene, which encodes for the enzyme lactase-phlorizin hydrolase and is associated with adult-type hypolactasia. The geographical distribution of the strength of positive selection across the Old World matches the interpolated map of lactase persistence phenotype frequencies, with the strongest selection coefficients in Europe and in the Indus Valley. PMID:24361938

  13. Subjective dominance as a basis for selecting frequency weightings.

    PubMed

    Torija, Antonio J; Flindell, Ian H; Self, Rod H

    2016-08-01

    The objective of this paper is to propose and illustrate a simple approach for the selection of frequency weightings for the assessment of environmental and transportation noise. In recent years, the A-frequency weighting has become almost universal except where existing standards and regulations mandate the use of alternative weightings and/or frequency summation procedures, but even where this has been based on extensive research, no real consensus has been achieved. The proposed approach is based on the concept of subjective dominance, which does not always conform to the physically dominant frequencies identified by the A- or other frequency weightings and summation procedures used in measurements and/or predictions. The proposed approach is illustrated by the results of a limited series of five listening tests that clearly demonstrate that no single objective frequency weighting or summation procedure is capable of providing the best-fit to subjective responses across a range of different contexts. Subjective dominance varies across different listening contexts and situations, and should, therefore, be considered whenever noise management and control decisions are being made. The proposed approach will naturally require further research because of the wide range of different contexts and situations in which it might need to be applied. PMID:27586716

  14. IRCI free colocated mimo radar based on sufficient cyclic prefix OFDM waveforms

    NASA Astrophysics Data System (ADS)

    Cao, Yun-he; Xia, Xiang-gen; Wang, Sheng-hua

    2015-07-01

    In this paper, we propose a cyclic prefix (CP) based MIMO-OFDM range reconstruction method and its corresponding MIMO-OFDM waveform design for co-located MIMO radar systems. Our proposed MIMO-OFDM waveform design achieves the maximum signal-to-noise ratio (SNR) gain after the range reconstruction and its peak-to-average power ratio (PAPR) in the discrete time domain is also optimal, i.e., 0dB, when Zadoff-Chu sequences are used in the discrete frequency domain as the weighting coefficients for the subcarriers. We also investigate the performance when there are transmit and receive digital beamforming (DBF) pointing errors. It is shown that our proposed CP based MIMO-OFDM range reconstruction is inter-range-cell interference (IRCI) free no matter whether there are transmit and receive DBF pointing errors or not. Simulation results are presented to verify the theory and compare it with the conventional OFDM and LFM co-located MIMO radars.

  15. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.

    PubMed

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-01-01

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087

  16. Infrared transparent frequency selective surface based on metallic meshes

    SciTech Connect

    Yu, Miao; Xu, Nianxi; Liu, Hai; Gao, Jinsong

    2014-02-15

    This paper presents an infrared transparent frequency selective surface (ITFSS) based on metallic meshes. In this ITFSS structure, periodic cross-slot units are integrated on square metallic meshes empowered by coating and UV-lithography. A matching condition is proposed to avoid the distortion of units. Experimental results show that this ITFSS possesses a good transmittance of 80% in the infrared band of 3–5 μm, and also a stable band-pass behavior at the resonance frequency of 36.4 GHz with transmittance of −0.56 dB. Theoretical simulations about the ITFSS diffractive characteristics and frequency responses are also investigated. The novel ITFSS will attract renewed interest and be exploited for applications in various fields.

  17. Transmission properties of frequency selective structures with air gaps

    NASA Astrophysics Data System (ADS)

    Meng, Zhi-Jun; Wang, Li-Feng; Lü, Ming-Yun; Wu, Zhe

    2010-12-01

    The transmission properties of compound frequency selective structures with dielectric slab and air gaps were investigated by computation and experimentation. Mechanism analyses were also carried out. Results show that the air gaps have a distinct influence on the transmission properties. Resonant frequency of the structure would increase rapidly when the air gap appears. After the gap gets larger to a specific value, generally 1/5 wavelength corresponding to the resonant frequency, the transmission properties would change periodically with the gap thickness. The change of transmission properties in one period has a close relationship with the dielectric thickness. These results provide a new method for designing a bandpass radome of large incidence angle and low loss with the concept of stealth shield radome.

  18. Design of Nonuniform Filter Bank Transceivers for Frequency Selective Channels

    NASA Astrophysics Data System (ADS)

    Chiang, Han-Ting; Phoong, See-May; Lin, Yuan-Pei

    2006-12-01

    In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR) can be incorporated in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR can be obtained by the proposed design method.

  19. Frequency-Dependent Selection in a Periodic Environment

    PubMed Central

    Forster, Robert; Wilke, Claus O.

    2007-01-01

    We examine the action of natural selection in a periodically changing environment where two competing strains are specialists respectively for each environmental state. When the relative fitness of the strains is subject to a very general class of frequency-dependent selection, we show that coexistence rather than extinction is the likely outcome. This coexistence may be a stable periodic equilibrium, stable limit cycles of varying lengths, or be deterministically chaotic. Our model is applicable to the population dynamics commonly found in many types of viruses. PMID:17940581

  20. Frequency selection for magnetization switching in spin torque magnetic memory

    NASA Astrophysics Data System (ADS)

    Sbiaa, Rachid

    2015-03-01

    The change of magnetization states by spin transfer torque brought momentum to research on magnetic random access memory (MRAM), however, there is still a need for improvement of memory performances. The conventional multi-bit per cell (MBPC) scheme has the potential of increasing the storage capacity of MRAM but the overwritability issue remains the major drawback of this scheme. In fact, for systems with more than one free layer, the low anisotropy layer can have its magnetization reversed during the writing on the higher anisotropy one. To access each free layer independently, a spin torque oscillator with an optimal frequency is proposed to assist the magnetization switching. This study reveals that the free layer magnetization can be reversed through a selection of a frequency value which depends on its intrinsic magnetic properties. This resonance phenomenon based on frequency selection and spin transfer torque effect can be used for writing in the MBPC scheme without undesirable overwriting. A spin torque oscillator with an optimal frequency integrated with a conventional magnetic tunnel junction could be the platform of future magnetic memory.

  1. A frequency selective acoustic transducer for directional Lamb wave sensing.

    PubMed

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health. PMID:21973344

  2. Joint Doppler frequency, 2D-DOD and 2D-DOA estimation for bistatic MIMO radar in spatial coloured noise

    NASA Astrophysics Data System (ADS)

    Xu, Lingyun; Zhang, Xiaofei; Xu, Zongze; Zeng, Xianwei; Yao, Fuqiang

    2015-06-01

    In this paper, we address the problem of four-dimensional angle and Doppler frequency estimation for L-shaped bistatic multiple input multiple output radar in spatial coloured noise. A novel method of joint estimation of Doppler frequency, two-dimensional direction of departure and two-dimensional direction of arrival based on the propagator method is discussed. Utilising the cross-correlation matrix which is formed by the adjacent outputs of matched filter in the time domain, the special matrix is constructed to eliminate the influence of spatial coloured noise. The proposed algorithm provides lower computational complexity and has very close parameter estimation to the estimation of signal parameters via rotational invariance techniques algorithm and DOA-matrix algorithm in high signal-to-noise ratio and Cramér-Rao bound is given. Furthermore, multidimensional parameters can be automatically paired by this algorithm to avoid the performance degradation resulting from wrong pairing. Numerical simulation results demonstrate the effectiveness of the proposed method.

  3. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications

    NASA Astrophysics Data System (ADS)

    Xu, Wenhua; He, Yun; Kong, Peng; Li, Jialin; Xu, Haibing; Miao, Ling; Bie, Shaowei; Jiang, Jianjun

    2015-11-01

    At frequencies below 2 GHz, conventional microwave absorbers are limited in application by their thickness or narrow absorption bandwidth. In this paper, we propose and fabricate an ultra-thin broadband active frequency selective surface (AFSS) absorber with a stretching transformation (ST) pattern for use in the ultrahigh-frequency (UHF) band. This absorber is loaded with resistors and varactors to produce its tunability. To expand the tunable bandwidth, we applied the ST with various coefficients x and y to the unit cell pattern. With ST coefficients of x = y = 1, the tunability and strong absorption are concisely demonstrated, based on a discussion of impedance matching. On analyzing the patterns with various ST coefficients, we found that a small x/y effectively expands the tunable bandwidth. After this analysis, we fabricated an AFSS absorber with ST coefficients of x = 0.7 and y = 1. Its measured reflectivity covered a broad band of 0.7-1.9 GHz below -10 dB at bias voltages of 10-48 V. The total thickness of this absorber, 7.8 mm, was only ˜λ/54 of the lower limit frequency, ˜λ/29 of the center frequency, and ˜λ/20 of the higher limit frequency. Our measurements and simulated results indicate that this AFSS absorber can be thin and achieve a broad bandwidth simultaneously.

  4. Effects of machining accuracy on frequency response properties of thick-screen frequency selective surface

    NASA Astrophysics Data System (ADS)

    Fang, Chunyi; Gao, Jinsong; Xin, Chen

    2012-10-01

    Electromagnetic theory shows that a thick-screen frequency selective surface (FSS) has many advantages in its frequency response characteristics. In addition, it can be used to make a stealth radome. Therefore, we research in detail how machining accuracy affects the frequency response properties of the FSS in the gigahertz range. Specifically, by using the least squares method applied to machining data, the effects of different machining precision in the samples can be calculated thus obtaining frequency response curves which were verified by testing in the near-field in a microwave dark room. The results show that decreasing roughness and flatness variation leads to an increase in the bandwidth and that an increase in spacing error leads to the center frequency drifting lower. Finally, an increase in aperture error leads to an increase in bandwidth. Therefore, the conclusion is that machining accuracy should be controlled and that a spatial error less than 0.05 mm is required in order to avoid unwanted center frequency drift and a transmittance decrease.

  5. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  6. The frequency selectivity of double H-shaped metallic structures

    NASA Astrophysics Data System (ADS)

    Bu, Xiaoxia; Zhao, Guozhong

    2013-12-01

    This paper presents the design and numerical simulation of the double H-shaped metallic periodic structure based on finite difference time domain (FDTD) method in terahertz frequency range. The double H-shaped structure unit cell consists of two H structures overlapped in the same plane. Numerical simulation results show that the double H-shaped structure results in a distinct and strong transmission trap in 0.2~3.0THz range. The position and the full wave at half maximum (FWHM) of transmission trap are changed with different structure size. The surface current distribution of structure is numerical simulated, which clarifies the frequency selection mechanism of the transmission spectra.

  7. Optical frequency tripling with improved suppression and sideband selection.

    PubMed

    Thakur, Manoj P; Medeiros, Maria C R; Laurêncio, Paula; Mitchell, John E

    2011-12-12

    A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre. PMID:22274056

  8. Optical frequency tripling with improved suppression and sideband selection.

    PubMed

    Thakur, Manoj P; Medeiros, Maria C R; Laurêncio, Paula; Mitchell, John E

    2011-12-12

    A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre.

  9. Scientific requirements and frequency selection for SMILES-2 proposal

    NASA Astrophysics Data System (ADS)

    Manago, Naohiro; Suzuki, Makoto; Ozeki, Hiroyuki

    Superconducting Submillimeter-Wave Limb-emission Sounder (SMILES) was the first instrument to use 4K cooled SIS (Superconductor-Insulator-Superconductor) detection system for the observation of the atmosphere in the frequency regions 625 GHz (Bands A and B) and 650 GHz (Band C). It has demonstrated its high sensitivity (System Temperature, Tsys, 250 K) for measuring stratospheric and mesospheric species, O _{3}, HCl, ClO, HO _{2}, HOCl, BrO, and O _{3} isotopes from Oct. 12, 2009 to Apr. 21, 2010. Since SMILES operation has terminated after only 6 months operation due to failure of sub-mm local oscillator (and later 4K cooler system), there exist strong scientific demand to develop successor of SMILES, the SMILES-2, which has optimized and enhanced frequency coverage to observe: (a) BrO and HOCl without interferences of stronger emission lines, (b) N _{2}O, H _{2}O, NO _{2}, and CH _{3}Cl not covered by the SMILES frequency regions, and (c) O _{2} line to measure temperature. This paper discusses possible SMILES-2 band selection considering limited instrument resources (number of SIS mixers and sub-mm local oscillator) and scientific requirements. Temperature can be observed by using O _{2} emission lines. We selected 487.249 GHz, which is highest frequency below SMILES 600 GHz observation, O _{2} line to obtain highest vertical IFOV. There is H _{2}O line at 488.1 GHz. Two spectrometers (FFT spectrometer), one with 4 GHz bandwidth and 1 MHz resolution for retrieval of temperature and other species, and the other with high frequency resolution (<100 kHz) and 1 GHz bandwidth (487-488 GHz) for the retrieval of temperature at higher altitude (>60 km) and line of sight wind velocity (2 m/s precision). In the case of 4K cooling, temperature can be retrieved within 2% up to 100 km. In summary, current SMILES-2 scientific requirements can be achieved by having sub-mm frequency bands listed in Table 1, (1) 487±2 GHz (O _{2}, H _{2}O), (2) 527±2 GHz (BrO, NO _{2}, H _{2

  10. The Suppression of Selected Acoustic Noise Frequencies in MRI

    NASA Astrophysics Data System (ADS)

    Shou, Xingxian

    Problems due to Magnetic Resonance Imaging (MRI) acoustic noise have long been an important concern, both in research and clinical applications. A study is made of certain dominant frequencies in the acoustic noise spectrum of the MRI system. Motivated by both spring and string ideas, we investigate whether the contributions to the sound from certain frequencies can be cancelled by the appropriate the gradient pulse sequence design. Ideas for cancelling these frequencies are investigated by carrying out theoretical string calculations. The MRI gradient assembly is modeled as a string and the gradient pulse sequences as a driving force for that string. Analytical results are obtained with different input gradient pulses including boxcars, trapezoids, and multiple trapezoids, along with special "quadratic" pulses. Pulse trains composed of repetitions of these pulse structures are studied. For comparison and to test these ideas, both simulations and experiments are carried out to verify our analytical results for the cancellations of selected frequency peaks. The idea that vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled immediately upon the application of another impulsive force coming from the subsequent appropriately timed ramping down of that pulse is verified both by simulations and experiments. A general approach to suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is given for the cancellations between pairs of impulse forces. The various examples investigated with string analytics and simulations and the associated MRI experiments are a physical embodiments of general time-invariant linear response theory. The present study also provides a foundation to explain results in previous papers on this subject. The method suggests that a variety of pulse profiles and timing combinations can be used to attenuate important contributions to

  11. High efficiency in mode-selective frequency conversion.

    PubMed

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC.

  12. High efficiency in mode-selective frequency conversion.

    PubMed

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC. PMID:26766715

  13. Spatial tuning of a RF frequency selective surface through origami

    NASA Astrophysics Data System (ADS)

    Fuchi, Kazuko; Buskohl, Philip R.; Bazzan, Giorgio; Durstock, Michael F.; Joo, James J.; Reich, Gregory W.; Vaia, Richard A.

    2016-05-01

    Origami devices have the ability to spatially reconfigure between 2D and 3D states through folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas, sensors, reflectors, and frequency selective surfaces (FSSs). While conventional RF FSSs are designed based upon a planar distribution of conductive elements, this leaves the large design space of the out of plane dimension underutilized. We investigated this design regime through the computational study of four FSS origami tessellations with conductive dipoles. The dipole patterns showed increased resonance shift with decreased separation distances, with the separation in the direction orthogonal to the dipole orientations having a more significant effect. The coupling mechanisms between dipole neighbours were evaluated by comparing surface charge densities, which revealed the gain and loss of coupling as the dipoles moved in and out of alignment via folding. Collectively, these results provide a basis of origami FSS designs for experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response and directionality.

  14. Investigation of millimeter-wave scattering from frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Schimert, Thomas R.; Brouns, Austin J.; Chan, Chi H.; Mittra, Raj

    1991-02-01

    A comparative numerical and experimental analysis of scattering from dielectric-backed frequency-selective surfaces in W-band (75-110 GHz) was carried out. The examples studied include metal (aluminum), resistive (bismuth), and bismuth-loaded I-pole or linearized Jerusalem cross arrays on fused silica, all of which exhibit a band-stop resonance in W-band as a general feature. The arrays were fabricated using standard photolithographic techniques. The numerical analysis involves the solution of an electric field integral equation using subdomain rooftop basis and testing functions within the framework of the Galerkin testing procedure. The lossy nature of the materials was fully accounted for. A comparative analysis of doubly stacked aluminum I-pole arrays was also performed. The numerical analysis exploits a variant of the cascade method in that the immediately adjacent dielectric layers are included in the construction of the scattering matrix for the frequency selective surface. This allows the higher-order evanescent Floquet modes to decay sufficiently at the dielectric boundaries so they can be ignored in the scattering matrix.

  15. Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces

    DOEpatents

    Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-07

    A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.

  16. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization.

    PubMed

    Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Willner, Asher J; Cao, Yinwen; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Willner, Alan E

    2016-06-01

    We explore the mitigation of atmospheric turbulence effects for orbital angular momentum (OAM)-based free-space optical (FSO) communications with multiple-input multiple-output (MIMO) architecture. Such a system employs multiple spatially separated aperture elements at the transmitter/receiver, and each transmitter aperture contains multiplexed data-carrying OAM beams. We propose to use spatial diversity combined with MIMO equalization to mitigate both weak and strong turbulence distortions. In a 2×2 FSO link with each transmitter aperture containing two multiplexed OAM modes of ℓ=+1 and ℓ=+3, we experimentally show that at least two OAM data channels could be recovered under both weak and strong turbulence distortions using selection diversity assisted with MIMO equalization.

  17. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  18. Double-loop frequency selective surfaces for multi frequency division multiplexing in a dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1994-01-01

    A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.

  19. Distribution selection for hydrologic frequency analysis using subsampling method

    NASA Astrophysics Data System (ADS)

    Das, S.

    2016-08-01

    This paper investigates the potential utility of subsampling, a resampling technique with the aid of a goodness of fit test to select the best distribution for frequency analysis. Subsampling draws samples (of smaller size) from the original sample without replacement. The performance of the methodology is assessed by applying the methodology to an observed annual maximum (AM) hydrologic data series. Several AM discharge series of different record lengths are used as case studies to determine the performance. Overall, it is found that the methodology is suitable for a longer data series and a good performance can be obtained when the subsample size is around half of the underlying data sample. The methodology has also outperformed the standard AD test in terms of effectively discriminating between distributions. All results indicate that the subsampling technique can be a promising tool in discriminating between distributions.

  20. Mode Selection for a Single-Frequency Fiber Laser

    NASA Technical Reports Server (NTRS)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  1. Efficiency of model selection criteria in flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Calenda, G.; Volpi, E.

    2009-04-01

    The estimation of high flood quantiles requires the extrapolation of the probability distributions far beyond the usual sample length, involving high estimation uncertainties. The choice of the probability law, traditionally based on the hypothesis testing, is critical to this point. In this study the efficiency of different model selection criteria, seldom applied in flood frequency analysis, is investigated. The efficiency of each criterion in identifying the probability distribution of the hydrological extremes is evaluated by numerical simulations for different parent distributions, coefficients of variation and skewness, and sample sizes. The compared model selection procedures are the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Anderson Darling Criterion (ADC) recently discussed by Di Baldassarre et al. (2008) and Sample Quantile Criterion (SQC), recently proposed by the authors (Calenda et al., 2009). The SQC is based on the principle of maximising the probability density of the elements of the sample that are considered relevant to the problem, and takes into account both the accuracy and the uncertainty of the estimate. Since the stress is mainly on extreme events, the SQC involves upper-tail probabilities, where the effect of the model assumption is more critical. The proposed index is equal to the sum of logarithms of the inverse of the sample probability density of the observed quantiles. The definition of this index is based on the principle that the more centred is the sample value in respect to its density distribution (accuracy of the estimate) and the less spread is this distribution (uncertainty of the estimate), the greater is the probability density of the sample quantile. Thus, lower values of the index indicate a better performance of the distribution law. This criterion can operate the selection of the optimum distribution among competing probability models that are estimated using different samples. The

  2. Hierarchical Interference Mitigation for Massive MIMO Cellular Networks

    NASA Astrophysics Data System (ADS)

    Liu, An; Lau, Vincent

    2014-09-01

    We propose a hierarchical interference mitigation scheme for massive MIMO cellular networks. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and an outer precoder. The inner precoder controls the intra-cell interference and is adaptive to local channel state information (CSI) at each BS (CSIT). The outer precoder controls the inter-cell interference and is adaptive to channel statistics. Such hierarchical precoding structure reduces the number of pilot symbols required for CSI estimation in massive MIMO downlink and is robust to the backhaul latency. We study joint optimization of the outer precoders, the user selection, and the power allocation to maximize a general concave utility which has no closed-form expression. We first apply random matrix theory to obtain an approximated problem with closed-form objective. We show that the solution of the approximated problem is asymptotically optimal with respect to the original problem as the number of antennas per BS grows large. Then using the hidden convexity of the problem, we propose an iterative algorithm to find the optimal solution for the approximated problem. We also obtain a low complexity algorithm with provable convergence. Simulations show that the proposed design has significant gain over various state-of-the-art baselines.

  3. Design and analysis of frequency-selective surface enabled microbolometers

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Qu, Chuang; Almasri, Mahmoud; Kinzel, Edward

    2016-05-01

    Frequency Selective Surfaces (FSS) are periodic array of sub-wavelength antenna elements. They allow the absorptance and reflectance of a surface to be engineered with respect to wavelength, polarization and angle-of-incidence. This paper applies this technique to microbolometers for uncooled infrared sensing applications. Both narrowband and broadband near perfect absorbing surfaces are synthesized and applied engineer the response of microbolometers. The paper focuses on simple FSS geometries (hexagonal close packed disk arrays) that can be fabricated using conventional lithographic tools for use at thermal infrared wavelengths (feature sizes > 1 μm). The affects of geometry and material selection for this geometry is described in detail. In the microbolometer application, the FSS controls the absorption rather than a conventional Fabry-Perot cavity and this permits an improved thermal design. A coupled full wave electromagnetic/transient thermal model of the entire microbolometer is presented and analyzed using the finite element method. The absence of the cavity also permits more flexibility in the design of the support arms/contacts. This combined modeling permits prediction of the overall device sensitivity, time-constant and the specific detectivity.

  4. Frequency-dependent selection at rough expanding fronts

    NASA Astrophysics Data System (ADS)

    Kuhr, Jan-Timm; Stark, Holger

    2015-10-01

    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, the width of the front initially obeys Eden roughening and, at later times, passes over to selective roughening.

  5. RF Lens-Embedded Massive MIMO Systems: Fabrication Issues and Codebook Design

    NASA Astrophysics Data System (ADS)

    Kwon, Taehoon; Lim, Yeon-Geun; Min, Byung-Wook; Chae, Chan-Byoung

    2016-07-01

    In this paper, we investigate a radio frequency (RF) lens-embedded massive multiple-input multiple-output (MIMO) system and evaluate the system performance of limited feedback by utilizing a technique for generating a suitable codebook for the system. We fabricate an RF lens that operates on a 77 GHz (mmWave) band. Experimental results show a proper value of amplitude gain and an appropriate focusing property. In addition, using a simple numerical technique--beam propagation method (BPM)--we estimate the power profile of the RF lens and verify its accordance with experimental results. We also design a codebook--multi-variance codebook quantization (MVCQ)--for limited feedback by considering the characteristics of the RF lens antenna for massive MIMO systems. Numerical results confirm that the proposed system shows significant performance enhancement over a conventional massive MIMO system without an RF lens.

  6. MimoDB: a new repository for mimotope data derived from phage display technology.

    PubMed

    Ru, Beibei; Huang, Jian; Dai, Ping; Li, Shiyong; Xia, Zhongkui; Ding, Hui; Lin, Hao; Guo, Fengbiao; Wang, Xianlong

    2010-11-01

    Peptides selected from phage-displayed random peptide libraries are valuable in two aspects. On one hand, these peptides are candidates for new diagnostics, therapeutics and vaccines. On the other hand, they can be used to predict the networks or sites of protein-protein interactions. MimoDB, a new repository for these peptides, was developed, in which 10,716 peptides collected from 571 publications were grouped into 1,229 sets. Besides peptide sequences, other important information, such as the target, template, library and complex structure, was also included. MimoDB can be browsed and searched through a user-friendly web interface. For computational biologists, MimoDB can be used to derive customized data sets and benchmarks, which are useful for new algorithm development and tool evaluation. For experimental biologists, their results can be searched against the MimoDB database to exclude possible target-unrelated peptides. The MimoDB database is freely accessible at http://immunet.cn/mimodb/. PMID:21079566

  7. Breast Cancer Nodes Detection Using Ultrasonic Microscale Subarrayed MIMO RADAR

    PubMed Central

    Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos

    2014-01-01

    This paper proposes the use of ultrasonic microscale subarrayed MIMO RADARs to estimate the position of breast cancer nodes. The transmit and receive antenna arrays are divided into subarrays. In order to increase the signal diversity each subarray is assigned a different waveform from an orthogonal set. High-frequency ultrasonic transducers are used since a breast is considered to be a superficial structure. Closed form expressions for the optimal Neyman-Pearson detector are derived. The combination of the waveform diversity present in the subarrayed deployment and traditional phased-array RADAR techniques provides promising results. PMID:25309591

  8. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequencies for digital selective calling (DSC). 80.359 Section 80.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Radiotelegraphy § 80.359 Frequencies for digital selective calling (DSC)....

  9. Adaptive reconfigurable V-BLAST type equalizer for cognitive MIMO-OFDM radios

    NASA Astrophysics Data System (ADS)

    Ozden, Mehmet Tahir

    2015-12-01

    An adaptive channel shortening equalizer design for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) radio receivers is considered in this presentation. The proposed receiver has desirable features for cognitive and software defined radio implementations. It consists of two sections: MIMO decision feedback equalizer (MIMO-DFE) and adaptive multiple Viterbi detection. In MIMO-DFE section, a complete modified Gram-Schmidt orthogonalization of multichannel input data is accomplished using sequential processing multichannel Givens lattice stages, so that a Vertical Bell Laboratories Layered Space Time (V-BLAST) type MIMO-DFE is realized at the front-end section of the channel shortening equalizer. Matrix operations, a major bottleneck for receiver operations, are accordingly avoided, and only scalar operations are used. A highly modular and regular radio receiver architecture that has a suitable structure for digital signal processing (DSP) chip and field programable gate array (FPGA) implementations, which are important for software defined radio realizations, is achieved. The MIMO-DFE section of the proposed receiver can also be reconfigured for spectrum sensing and positioning functions, which are important tasks for cognitive radio applications. In connection with adaptive multiple Viterbi detection section, a systolic array implementation for each channel is performed so that a receiver architecture with high computational concurrency is attained. The total computational complexity is given in terms of equalizer and desired response filter lengths, alphabet size, and number of antennas. The performance of the proposed receiver is presented for two-channel case by means of mean squared error (MSE) and probability of error evaluations, which are conducted for time-invariant and time-variant channel conditions, orthogonal and nonorthogonal transmissions, and two different modulation schemes.

  10. Dielectric measurements of selected ceramics at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, J. N.; Templeton, C. K.

    1994-01-01

    Dielectric measurements of strontium titanate and lead titanate zirconate ceramics are conducted at microwave frequencies using a cylindrical resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shift and Q-changes of the cavity signal. Slater's perturbation equations are used to calculate e' and e" of the dielectric constant as a function of temperature and frequency.

  11. A Research on MIMO Radar Based on Simulation

    NASA Astrophysics Data System (ADS)

    Jiankui, Zeng; Zhiming, Dong

    MIMO radar (Multiple input multiple output radar) is a new radar developed recently. It outperforms the conventional phased radar in target detection. In this paper, the non-ideal factor of transmitting signal is considered. Firstly, the signal model of MIMO radar is investigated. And then the steps of the signal processing in MIMO radar are researched. At last, a simulation platform is established with the MATLAB to testify the advantage of MIMO radar over its conventional counterpart.

  12. Quasi-Optical Diplexer with a Frequency-Selective Surface for a Millimeter-Wave Receiver

    NASA Astrophysics Data System (ADS)

    Koz'min, A. V.

    2003-08-01

    We describe a quasi-optical diplexer for the two-channel receiver of an RT-7.5 radiotelescope of the N. É. Bauman Moscow State Technical University. The issues of design of frequency-selective surfaces and methods for measuring their frequency characteristics are discussed. Diagrams of the quasi-optical diplexer and the measuring bench are given along with the frequency characteristics of manufactured frequency-selective surfaces.

  13. Frequency content selection for dynamic analysis of marine systems

    SciTech Connect

    Garrett, D.L.; Gu, G.Z.; Watters, A.J.

    1995-12-31

    A recommended discretization of a wave spectrum for numerical analysis of the structural response of compliant marine systems is presented. Error estimates for the variance of structural response are presented as a function of system damping and spacing of frequencies in the discrete wave spectrum. Application of the recommended frequency spacing to calculation of the tendon tension response of a Tension Leg Platform, with particular attention to resonant pitch response, is presented. The applicability of the recommended discretization to time domain simulation is discussed and recommended frequency spacings and simulation lengths are presented.

  14. Selective Heating of Regolith Grains Using Dynamic Phase and Frequency

    NASA Astrophysics Data System (ADS)

    Cash, T. J.; Blair, B. R.

    2016-11-01

    This paper will present concepts for heating lunar granular media using a dynamic strategy that varies phase and frequency to maximize the coupling efficiency of inbound radiation to a hypothetical work zone.

  15. Selection of Ka-Band Transponder Turnaround Frequency Ratio

    NASA Technical Reports Server (NTRS)

    Koukos, J.

    1993-01-01

    The Consultative Committee for Space Data Systems has issued recommendations specifying Transponder Turn-around Frequency Ratios for S-band and X-band coherent earth-to-space and space-to earth links.

  16. Blood group gene frequency in a selected north Indian population.

    PubMed

    Nanu, A; Thapliyal, R M

    1997-09-01

    Gene frequencies have been calculated from 6334 blood donors who were tested at a referral hospital in north India, for ABO & Rh and from > 350 donors who were tested for other blood groups. The Hardy Weinberg equation for 2 allel systems and the Bernstein method for 3 or more allel systems have been employed for calculating gene frequencies. The predominance of blood group B (37.39%), Rh D negative frequency of 4.63 per cent, predominance of M gene (0.6383) and M s haplotype (0.4464) and S gene frequency below 0.3 (0.2069) agrees with earlier data. The new findings include the presence of the allels Fy (a-b-) (0.44%) in the Duffy group, S- s- (1.16%) in the Ss group and JK (a-b-) (0.54%) in the Kidd blood group system. These have not been reported in the Indian population. PMID:9378531

  17. Blood group gene frequency in a selected north Indian population.

    PubMed

    Nanu, A; Thapliyal, R M

    1997-09-01

    Gene frequencies have been calculated from 6334 blood donors who were tested at a referral hospital in north India, for ABO & Rh and from > 350 donors who were tested for other blood groups. The Hardy Weinberg equation for 2 allel systems and the Bernstein method for 3 or more allel systems have been employed for calculating gene frequencies. The predominance of blood group B (37.39%), Rh D negative frequency of 4.63 per cent, predominance of M gene (0.6383) and M s haplotype (0.4464) and S gene frequency below 0.3 (0.2069) agrees with earlier data. The new findings include the presence of the allels Fy (a-b-) (0.44%) in the Duffy group, S- s- (1.16%) in the Ss group and JK (a-b-) (0.54%) in the Kidd blood group system. These have not been reported in the Indian population.

  18. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  19. Frequency Selectivity Behaviour in the Auditory Midbrain: Implications of Model Study

    NASA Astrophysics Data System (ADS)

    Kuang, Shen-Bing; Wang, Jia-Fu; Zeng, Ting

    2006-12-01

    By numerical simulations on frequency dependence of the spiking threshold, i.e. on the critical amplitude of periodic stimulus, for a neuron to fire, we find that bushy cells in the cochlear nuclear exhibit frequency selectivity behaviour. However, the selective frequency band of a bushy cell is far away from that of the preferred spectral range in human and mammal auditory perception. The mechanism underlying this neural activity is also discussed. Further studies show that the ion channel densities have little impact on the selective frequency band of bushy cells. These findings suggest that the neuronal behaviour of frequency selectivity in bushy cells at both the single cell and population levels may be not functionally relevant to frequency discrimination. Our results may reveal a neural hint to the reconsideration on the bushy cell functional role in auditory information processing of sound frequency.

  20. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    PubMed

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware. PMID:24807453

  1. Development and experimental validation of downlink multiuser MIMO-OFDM in gigabit wireless LAN systems

    NASA Astrophysics Data System (ADS)

    Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato

    2013-12-01

    Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.

  2. MIMO Precoding for Networked Control Systems with Energy Harvesting Sensors

    NASA Astrophysics Data System (ADS)

    Cai, Songfu; Lau, Vincent K. N.

    2016-09-01

    In this paper, we consider a MIMO networked control system with an energy harvesting sensor, where an unstable MIMO dynamic system is connected to a controller via a MIMO fading channel. We focus on the energy harvesting and MIMO precoding design at the sensor so as to stabilize the unstable MIMO dynamic plant subject to the energy availability constraint at the sensor. Using the Lyapunov optimization approach, we propose a closed-form dynamic energy harvesting and dynamic MIMO precoding solution, which has an event-driven control structure. Furthermore, the MIMO precoding solution is shown to have an eigenvalue water-filling structure, where the water level depends on the state estimation covariance, energy queue and the channel state, and the sea bed level depends on the state estimation covariance. The proposed scheme is also compared with various baselines and we show that significant performance gains can be achieved.

  3. Frequency selectivity without resonance in a fluid waveguide

    PubMed Central

    van der Heijden, Marcel

    2014-01-01

    This study analyzes a waveguide consisting of two parallel fluid-filled chambers connected by a narrow slit that is spanned by two coupled elastic beams. A stiffness gradient exists in the longitudinal direction. This simple linear system, which contains no lumped mass, is shown to act as a spectral analyzer. Fluid waves traveling in the waveguide exhibit a distinct amplitude peak at a longitudinal location that varies systematically with frequency. The peaking is not based on resonance, but entirely on wave dispersion. When entering its peak region, the wave undergoes a sharp deceleration associated with a transition in which two propagation modes exchange roles. It is proposed that this mode shape swapping underlies the frequency analysis of the mammalian cochlea. PMID:25237137

  4. Wireless Communication of Intraoral Devices and Its Optimal Frequency Selection

    PubMed Central

    Park, Hangue; Ghovanloo, Maysam

    2015-01-01

    This paper explores communication methods and frequencies for wireless intraoral electronic devices, by using an intraoral tongue drive system (iTDS) as a practical example. Because intraoral devices do not meet the operating conditions of the body channel communication, we chose radio frequency communication. We evaluated and compared three frequencies in industrial, scientific, and medical bands (27 MHz, 433.9 MHz, and 2.48 GHz) in terms of their data link performance based on path loss and radiation patterns over horizontal and vertical planes. To do so, we dynamically minimize the impedance mismatch caused by the varying oral environment by applying the adaptive impedance matching technique to 433.9 MHz and 2.48 GHz bands. Experimental results showed that 27 MHz has the smallest path loss in the near-field up to 39 cm separation between transmitter and receiver antennas. However, 433.9 MHz shows the best performance beyond 39 cm and offers a maximum operating distance of 123 cm with 0 dBm transmitter output power. These distances were obtained by a bit error rate test and verified by a link budget analysis and full functionality test of the iTDS with computer access. PMID:26236039

  5. Selection by parasites may increase host recombination frequency.

    PubMed

    Fischer, O; Schmid-Hempel, P

    2005-06-22

    Meiotic recombination destroys successful genotypes and it is therefore thought to evolve only under a very limited set of conditions. Here, we experimentally show that recombination rates across two linkage groups of the host, the red flour beetle Tribolium castaneum, increase with exposure to the microsporidian parasite, Nosema whitei, particularly when parasites were allowed to coevolve with their hosts. Selection by randomly varied parasites resulted in smaller effects, while directional selection for insecticide resistance initially reduced recombination slightly. These results, at least tentatively, suggest that short-term benefits of recombination--and thus the evolution of sex--may be related to parasitism.

  6. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.

    PubMed

    Manley, Geoffrey A; van Dijk, Pim

    2016-06-01

    Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other sounds, indicate a modest frequency selectivity in humans. By contrast, estimates using the phase delays of stimulus-frequency otoacoustic emissions (SFOAE) predict a remarkably high selectivity, unique among mammals. An alternative measure of cochlear frequency selectivity are suppression tuning curves of spontaneous otoacoustic emissions (SOAE). Several animal studies show that these measures are in excellent agreement with neural frequency selectivity. Here we contribute a large data set from normal-hearing young humans on suppression tuning curves (STC) of spontaneous otoacoustic emissions (SOAE). The frequency selectivities of human STC measured near threshold levels agree with the earlier, much lower, psychophysical estimates. They differ, however, from the typical patterns seen in animal auditory nerve data in that the selectivity is remarkably independent of frequency. In addition, SOAE are suppressed by higher-level tones in narrow frequency bands clearly above the main suppression frequencies. These narrow suppression bands suggest interactions between the suppressor tone and a cochlear standing wave corresponding to the SOAE frequency being suppressed. The data show that the relationship between pre-neural mechanical processing in the cochlea and neural coding at the hair-cell/auditory nerve synapse needs to be reconsidered. PMID:27139323

  7. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.

    PubMed

    Manley, Geoffrey A; van Dijk, Pim

    2016-06-01

    Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other sounds, indicate a modest frequency selectivity in humans. By contrast, estimates using the phase delays of stimulus-frequency otoacoustic emissions (SFOAE) predict a remarkably high selectivity, unique among mammals. An alternative measure of cochlear frequency selectivity are suppression tuning curves of spontaneous otoacoustic emissions (SOAE). Several animal studies show that these measures are in excellent agreement with neural frequency selectivity. Here we contribute a large data set from normal-hearing young humans on suppression tuning curves (STC) of spontaneous otoacoustic emissions (SOAE). The frequency selectivities of human STC measured near threshold levels agree with the earlier, much lower, psychophysical estimates. They differ, however, from the typical patterns seen in animal auditory nerve data in that the selectivity is remarkably independent of frequency. In addition, SOAE are suppressed by higher-level tones in narrow frequency bands clearly above the main suppression frequencies. These narrow suppression bands suggest interactions between the suppressor tone and a cochlear standing wave corresponding to the SOAE frequency being suppressed. The data show that the relationship between pre-neural mechanical processing in the cochlea and neural coding at the hair-cell/auditory nerve synapse needs to be reconsidered.

  8. 60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication.

    PubMed

    Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu

    2015-05-01

    This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission.

  9. Frequency and Density-Dependent Selection on Life-History Strategies – A Field Experiment

    PubMed Central

    Mappes, Tapio; Koivula, Minna; Koskela, Esa; Oksanen, Tuula A.; Savolainen, Tiina; Sinervo, Barry

    2008-01-01

    Negative frequency-dependence, which favors rare genotypes, promotes the maintenance of genetic variability and is of interest as a potential explanation for genetic differentiation. Density-dependent selection may also promote cyclic changes in frequencies of genotypes. Here we show evidence for both density-dependent and negative frequency-dependent selection on opposite life-history tactics (low or high reproductive effort, RE) in the bank vole (Myodes glareolus). Density-dependent selection was evident among the females with low RE, which were especially favored in low densities. Instead, both negative frequency-dependent and density-dependent selection were shown in females with high RE, which were most successful when they were rare in high densities. Furthermore, selection at the individual level affected the frequencies of tactics at the population level, so that the frequency of the rare high RE tactic increased significantly at high densities. We hypothesize that these two selection mechanisms (density- and negative frequency-dependent selection) may promote genetic variability in cyclic mammal populations. Nevertheless, it remains to be determined whether the origin of genetic variance in life-history traits is causally related to density variation (e.g. population cycles). PMID:18301764

  10. Adaptive Channel Estimation for MIMO-Constant Envelope Modulation

    NASA Astrophysics Data System (ADS)

    Mahmoud Mohamed, Ehab; Muta, Osamu; Furukawa, Hiroshi

    The authors have proposed Multi-Input Multi-Output (MIMO)-Constant Envelope Modulation, (MIMO-CEM), as a power and complexity efficient alternative to MIMO-OFDM, suitable for wireless backhaul networks in which relay nodes are fixed in their positions. One of the major problems hindering the real application of MIMO-CEM is to estimate MIMO channel characteristics. MIMO-CEM is based upon two contrary schemes; one is nonlinear equalization such as maximum likelihood sequence estimator, which needs accurate channel information to replicate the received signal passing through it. The other is a low resolution analog-to-digital converter (ADC), e.g., 1-bit in the default operation that removes the received signal amplitude fluctuation. In this paper, as a solution to the channel estimation problem in MIMO-CEM with low resolution ADC receiver, we propose an adaptive MIMO-CEM channel estimation scheme where iterative adaptive channel estimation is carried out to minimize the error between the received preamble signal and the replicated one. We also prove that Code Division Multiplexing (CDM) preamble transmission is effective in estimating MIMO channel parameters in the presence of large quantization noise. Computer simulation results show that MIMO-CEM with the proposed channel estimator using CDM preambles achieves identical BER performance to that with the ideal channel estimation even in presence of severe quantization noise caused by a low resolution ADC.

  11. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    PubMed

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory. PMID:27343804

  12. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  13. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    PubMed

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory.

  14. Picture-word interference reveals inhibitory effects of syllable frequency on lexical selection.

    PubMed

    Farrell, Meagan T; Abrams, Lise

    2014-01-01

    While previous research has shown that high syllable frequency can facilitate speech production at the level of phonological/phonetic encoding, little is known about its influence on prephonological processes, specifically lexical selection. The current study used a picture-word interference (PWI) task to (a) shed light on the stages of lexical access where syllable frequency is relevant, and (b) inform as to whether lexical selection is accomplished via competition among activated word options. Participants named pictures whose names had high-frequency (HF) and low-frequency (LF) first syllables while ignoring phonologically related (same first syllable) or unrelated distractor words that were presented simultaneously. Word frequency was also manipulated, as half of the targets were HF words, and half were LF words. Results revealed inhibitory syllable frequency effects in all conditions, such that targets with HF first syllables were named more slowly than targets with LF first syllables. However, inhibitory syllable frequency effects were exacerbated in conditions thought to reflect heightened lexical competition, specifically in the presence of phonologically related distractors and for targets with low word frequency. These findings reveal novel evidence for first-syllable frequency effects on lexical selection and offer further support for models proposing delays at lexical selection due to activation of nontarget competitors. PMID:23931573

  15. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF

  16. Individual brain-frequency responses to self-selected music.

    PubMed

    Höller, Yvonne; Thomschewski, Aljoscha; Schmid, Elisabeth Verena; Höller, Peter; Crone, Julia Sophia; Trinka, Eugen

    2012-12-01

    Music is a stimulus which may give rise to a wide range of emotional and cognitive responses. Therefore, brain reactivity to music has become a focus of interest in cognitive neuroscience. It is possible that individual preference moderates the effectof music on the brain. In the present study we examined whether there are common effects of listening to music even if each subject in a sample chooses their own piece of music. We invited 18 subjects to bring along their favorite relaxing music, and their favourite stimulating music. Additionally, a condition with tactile stimulation on the foot and a baseline condition (rest) without stimulation were used. The tactile stimulation was chosen to provide a simple, non-auditory condition which would be identical for all subjects. The electroencephalogram was recorded for each of the 3 conditions and during rest. We found responses in the alpha range mainly on parietal and occipital sites that were significant compared to baseline in 13 subjects during relaxing music, 15 subjects during activating music, and 16 subjects during tactile stimulation. Most subjects showed an alpha desynchronization in a lower alpha range followed by a synchronization in an upper frequency range. However, some subjects showed an increase in this area, whereas others showed a decrease only. In addition, many subjects showed reactivity in the beta range. Beta activity was especially increased while listening to activating music and during tactile stimulation in most subjects. We found interindividual differences in the response patterns even though the stimuli provoked comparable subjective emotions (relaxation, activation), and even if the stimulus was the same for all subjects (somatosensory stimulation). We suggest that brain responsivity to music should be examined individually by considering individual characteristics.

  17. Selection of optimal artificial boundary condition (ABC) frequencies for structural damage identification

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Lu, Yong

    2016-07-01

    In this paper, the sensitivities of artificial boundary condition (ABC) frequencies to the damages are investigated, and the optimal sensors are selected to provide the reliable structural damage identification. The sensitivity expressions for one-pin and two-pin ABC frequencies, which are the natural frequencies from structures with one and two additional constraints to its original boundary condition, respectively, are proposed. Based on the expressions, the contributions of the underlying mode shapes in the ABC frequencies can be calculated and used to select more sensitive ABC frequencies. Selection criteria are then defined for different conditions, and their performance in structural damage identification is examined with numerical studies. From the findings, conclusions are given.

  18. Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus.

    PubMed

    Fuzessery, Z M

    1994-09-01

    1. While hunting, the pallid bat uses passive sound localization at low frequencies to find terrestrial prey, and echolocation for general orientation. It must therefore process two different types of acoustic input at the same time. The pallid bat's echolocation pulse is a downward frequency-modulated (FM) sweep from 60 to 30 kHz. This study examined the response selectivity of single neurons in the pallid bat's central nucleus of the inferior colliculus (ICC) for FM sweeps, comparing the response properties of the high-frequency population, tuned to the biosonar pulse, with the low-frequency population, tuned below the pulse. The working hypothesis was that the high-frequency population would exhibit a response selectivity for downward FM sweeps that was not present in the low-frequency population. 2. Neurons were tested for their selectivity for FM sweep direction, duration, frequency range and bandwidth, and rate of frequency change. The extent to which they responded exclusively to tones, noise, and FM sweeps was also examined. Significant differences in the response properties of neurons in the two populations were found. In the low-frequency population, all neurons responded to tones, but only 50% responded to FM sweeps. Only 23% were selective for sweep direction. In the high-frequency population, all neurons responded to FM sweeps, but 31% did not respond to tones. Over one-half of this population was selective for sweep direction, and of those that were selective, all preferred the downward sweep direction of the biosonar pulse. A large percentage (31%) responded exclusively to downward sweeps, and not to tones or upward sweeps. None of the cells in either population responded to noise, or did so only at very high relative thresholds. 3. Both populations contained neurons that were selective for short stimulus durations that approximated the duration of the biosonar pulse, although the percentage was greater in the high-frequency population (58% vs. 20

  19. Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.

    NASA Technical Reports Server (NTRS)

    Pi, C.; Dunn, W. R., Jr.

    1972-01-01

    A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.

  20. Surface plasmon optical antennae in the infrared region with high resonant efficiency and frequency selectivity.

    PubMed

    Ueno, Kosei; Sun, Quan; Mino, Masahiro; Itoh, Takumi; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-08-01

    Infrared light has received attention for sensor applications, including fingerprint spectroscopy, in the bioengineering and security fields. Surface plasmon physics enables the operation of a light harvesting optical antenna. Gold nanochains exhibit localized surface plasmon resonance (LSPR) in the infrared region with high frequency selectivity. However, a feasible design for optical antennae with a higher resonant efficiency and frequency selectivity as a function of structural design and periodicity is still unknown. In the present study, we investigated the relationship between the resonant efficiency and frequency selectivity as a function of the structural design of gold nanochains and explored structural periodicity for obtaining highly frequency-selective optical antennae. An optical antenna design with higher resonant efficiency is proposed on the basis of its efficient interaction with non-polarized light. PMID:27505741

  1. Development of a four-frequency selective surface prototype spacecraft antenna

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Wu, Te-Kao

    1992-01-01

    NASA-JPL's four-frequency telecommunication system design entails the creation and integration of a frequency-selective surface (FSS) subreflector into the high-gain antenna subsystem. The FSS design, which incorporates a periodic array of conducting elements on a kevlar/polymer composite structure, will be able to multiplex S, X, Ku, and Ka frequency-band wavelengths. Accounts are presented of the FSS's development, mechanical testing, and electrical testing.

  2. Scaling laws for the intrapulse frequency stability of an injection mode selected TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Willetts, D. V.; Harris, M. R.

    1983-05-01

    Heterodyne measurements of the intrapulse frequency behavior of an injection mode selected TEA CO2 laser are presented. The frequency rose as the square of time at a rate varying linearly with energy and strongly dependent on spot size. These results are in accordance with a laser induced medium perturbative (LIMP) model, which allows the chirp in any TEA laser system to be predicted.

  3. Prediction of spectral shifts proportional to source distances by time-varying frequency or wavelength selection

    NASA Astrophysics Data System (ADS)

    Guruprasad, V.

    2008-08-01

    Any frequency selective device with an ongoing drift will cause observed spectra to be variously and simultaneously scaled in proportion to their source distances. The reason is that detectors after the drifting selection will integrate instantaneous electric or magnetic field values from successive sinusoids, and these sinusoids would differ in both frequency and phase. Phase differences between frequencies are ordinarily irrelevant, and recalibration procedures at most correct for frequency differences. With drifting selection, however, each integrated field value comes from the sinusoid of the instantaneously selected frequency at its instantaneous received phase, hence the waveform constructed by the integration will follow the drifting selection with a phase acceleration given by the drift rate times the slope of the received phase spectrum. A phase acceleration is literally a frequency shift, and the phase spectrum slope of a received waveform is an asymptotic measure of the source distance, as the path delay presents phase offsets proportional to frequency times the distance, and eventually exceeding all initial phase differences. Tunable optics may soon be fast enough for realizing such shifts by Fourier switching, and could lead to pocket X-ray devices; sources continuously variable from RF to gamma rays; capacity multiplication with jamming and noise immunity in both fibre and radio channels, passive ranging from ground to deep space; etc.

  4. Selective Impairment in Frequency Discrimination in a Mouse Model of Tinnitus

    PubMed Central

    Mwilambwe-Tshilobo, Laetitia; Davis, Andrew J. O.; Aizenberg, Mark; Geffen, Maria N.

    2015-01-01

    Tinnitus is an auditory disorder, which affects millions of Americans, including active duty service members and veterans. It is manifested by a phantom sound that is commonly restricted to a specific frequency range. Because tinnitus is associated with hearing deficits, understanding how tinnitus affects hearing perception is important for guiding therapies to improve the quality of life in this vast group of patients. In a rodent model of tinnitus, prolonged exposure to a tone leads to a selective decrease in gap detection in specific frequency bands. However, whether and how hearing acuity is affected for sounds within and outside those frequency bands is not well understood. We induced tinnitus in mice by prolonged exposure to a loud mid-range tone, and behaviorally assayed whether mice exhibited a change in frequency discrimination acuity for tones embedded within the mid-frequency range and high-frequency range at 1, 4, and 8 weeks post-exposure. A subset of tone-exposed mice exhibited tinnitus-like symptoms, as demonstrated by selective deficits in gap detection, which were restricted to the high frequency range. These mice exhibited impaired frequency discrimination both for tones in the mid-frequency range and high-frequency range. The remaining tone exposed mice, which did not demonstrate behavioral evidence of tinnitus, showed temporary deficits in frequency discrimination for tones in the mid-frequency range, while control mice remained unimpaired. Our findings reveal that the high frequency-specific deficits in gap detection, indicative of tinnitus, are associated with impairments in frequency discrimination at the frequency of the presumed tinnitus. PMID:26352864

  5. Selective Impairment in Frequency Discrimination in a Mouse Model of Tinnitus.

    PubMed

    Mwilambwe-Tshilobo, Laetitia; Davis, Andrew J O; Aizenberg, Mark; Geffen, Maria N

    2015-01-01

    Tinnitus is an auditory disorder, which affects millions of Americans, including active duty service members and veterans. It is manifested by a phantom sound that is commonly restricted to a specific frequency range. Because tinnitus is associated with hearing deficits, understanding how tinnitus affects hearing perception is important for guiding therapies to improve the quality of life in this vast group of patients. In a rodent model of tinnitus, prolonged exposure to a tone leads to a selective decrease in gap detection in specific frequency bands. However, whether and how hearing acuity is affected for sounds within and outside those frequency bands is not well understood. We induced tinnitus in mice by prolonged exposure to a loud mid-range tone, and behaviorally assayed whether mice exhibited a change in frequency discrimination acuity for tones embedded within the mid-frequency range and high-frequency range at 1, 4, and 8 weeks post-exposure. A subset of tone-exposed mice exhibited tinnitus-like symptoms, as demonstrated by selective deficits in gap detection, which were restricted to the high frequency range. These mice exhibited impaired frequency discrimination both for tones in the mid-frequency range and high-frequency range. The remaining tone exposed mice, which did not demonstrate behavioral evidence of tinnitus, showed temporary deficits in frequency discrimination for tones in the mid-frequency range, while control mice remained unimpaired. Our findings reveal that the high frequency-specific deficits in gap detection, indicative of tinnitus, are associated with impairments in frequency discrimination at the frequency of the presumed tinnitus.

  6. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  7. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  8. Sensing using eigenchannels in radio-frequency multiple-input, multiple-output communication systems

    NASA Astrophysics Data System (ADS)

    Bikhazi, Nicolas; Young, William F.; Nguyen, Hung

    2011-06-01

    This paper describes the use of multiple-input, multiple-output (MIMO) communication technology as a radio frequency (RF) sensor. We suggest some possible measures for determining how the changes in MIMO channel are related to objects moving through the MIMO channel. Initially, we examine the singular values of the channel matrix. We further demonstrate the effects of the signal-to-noise ratio (SNR) in conjunction with the target physical properties in the creation of eigenchannels. These eigenchannels represent the key factor in the ability of a MIMO system to perform as an effective sensor. Another important feature of MIMO technology is that it allows us to capture spatial information about the target, beyond the typical time and frequency information. Preliminary experimental results at 750 MHz demonstrate that targets can be detected and distinguished based on these simple measures. For example, a vehicular target is distinguishable from a person or groups of people. Our concept is closely related to a MIMO radar approach. However, a key difference is that we make use of the natural process of establishing a MIMO communication link rather than interrogate a specific physical region via a pulsed RF waveform. MIMO communications requires sounding of the physical environment and the creation of a channel matrix in order to maximize data throughput. We leverage this information about the area of interest already captured by the communication system. This allows the use of a MIMO system for both sensing and communication.

  9. Frequency-Selective Response of the Tectorial Membrane in the Frog Basilar Papilla

    NASA Astrophysics Data System (ADS)

    Schoffelen, R. L. M.; Segenhout, J. M.; van Dijk, P.

    2009-02-01

    The frog's basilar papilla is a useful study object for cochlear mechanics, because of it's relatively simple anatomy and functionality. We investigated the displacement amplitudes of the basilar papilla's tectorial membrane in response to stimulation of the oval window at various frequencies within the auditory range of the Northern leopard frog. From our measurement data we find that the tectorial membrane exhibits a frequency selective response. The peak response was found to occur at 1500Hz in correspondence with known data for the response of auditory nerve fibers from the organ. From these data we conclude that mechanical tuning contributes significantly to the frequency selectivity of the frog's basilar papilla

  10. Fast and slow processes underlie the selection of both step frequency and walking speed.

    PubMed

    Pagliara, Renato; Snaterse, Mark; Donelan, J Maxwell

    2014-08-15

    People prefer gaits that minimize their energetic cost. Research focused on step frequency selection suggests that a fast predictive process and a slower optimization process underlie this energy optimization. Our purpose in this study was to test whether the mechanisms controlling step frequency selection are used more generally to select one of the most relevant characteristics of walking - preferred speed. To accomplish this, we contrasted the dynamic adjustments in speed following perturbations to step frequency against the dynamic adjustments in step frequency following perturbations to speed. Despite the use of different perturbations and contexts, we found that the responses were very similar. In both experiments, subjects responded to perturbations by first rapidly changing their speed or step frequency towards their preferred pattern, and then slowly adjusting their gait to converge onto their preferred pattern. We measured similar response times for both the fast processes (1.4±0.3 versus 2.7±0.6 s) and the slow processes (74.2±25.4 versus 79.7±20.2 s). We also found that the fast process, although quite variable in amplitude, dominated the adjustments in both speed and step frequency. These distinct but complementary experiments demonstrate that people appear to rely heavily on prediction to rapidly select the most relevant aspects of their preferred gait and then gradually fine-tune that selection, perhaps using direct optimization of energetic cost.

  11. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. PMID:25277626

  12. A New Subcarrier Allocation Strategy for MIMO-OFDMA Multicellular Networks Based on Cooperative Interference Mitigation

    PubMed Central

    Gkonis, Panagiotis K.; Seimeni, Maria A.; Asimakis, Nikolaos P.; Kaklamani, Dimitra I.; Venieris, Iakovos S.

    2014-01-01

    The goal of the study presented in this paper is to investigate the performance of a new subcarrier allocation strategy for Orthogonal Frequency Division Multiple Access (OFDMA) multicellular networks which employ Multiple Input Multiple Output (MIMO) architecture. For this reason, a hybrid system-link level simulator has been developed executing independent Monte Carlo (MC) simulations in parallel. Up to two tiers of cells around the central cell are taken into consideration and increased loading per cell. The derived results indicate that this strategy can provide up to 12% capacity gain for 16-QAM modulation and two tiers of cells around the central cell in a symmetric 2 × 2 MIMO configuration. This gain is derived when comparing the proposed strategy to the traditional approach of allocating subcarriers that maximize only the desired user's signal. PMID:24683351

  13. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.

  14. Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots

    NASA Astrophysics Data System (ADS)

    You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen

    2016-03-01

    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.

  15. Criteria for site selection and frequency allocation (keynote paper), part 5

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1985-01-01

    Technical aspects of mesosphere-stratosphere-troposphere (MST) Radar on site and frequency selection were discussed. Recommendations on site selections are presented. Tests of interference will be conducted before selecting a site. A small directional antenna may be suitable to simulate sidelobe sensitivity of radars however, sophisticated data-processing methods make system sensitivity extremely good. The use of the complete data system to look for interference is recommended. There is the difficulty of allocation of frequencies -- almost continuous use by these radars will be made when the band 40 to 60 MHz is allocated to other services.

  16. Link Correlation Based Transmit Sector Antenna Selection for Alamouti Coded OFDM

    NASA Astrophysics Data System (ADS)

    Ahn, Chang-Jun

    In MIMO systems, the deployment of a multiple antenna technique can enhance the system performance. However, since the cost of RF transmitters is much higher than that of antennas, there is growing interest in techniques that use a larger number of antennas than the number of RF transmitters. These methods rely on selecting the optimal transmitter antennas and connecting them to the respective. In this case, feedback information (FBI) is required to select the optimal transmitter antenna elements. Since FBI is control overhead, the rate of the feedback is limited. This motivates the study of limited feedback techniques where only partial or quantized information from the receiver is conveyed back to the transmitter. However, in MIMO/OFDM systems, it is difficult to develop an effective FBI quantization method for choosing the space-time, space-frequency, or space-time-frequency processing due to the numerous subchannels. Moreover, MIMO/OFDM systems require antenna separation of 5 ∼ 10 wavelengths to keep the correlation coefficient below 0.7 to achieve a diversity gain. In this case, the base station requires a large space to set up multiple antennas. To reduce these problems, in this paper, we propose the link correlation based transmit sector antenna selection for Alamouti coded OFDM without FBI.

  17. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure.

    PubMed

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Pan, Bai Cao; Cui, Tie Jun

    2015-01-01

    We propose an ultrathin metallic structure to produce frequency-selective spoof surface plasmon polaritons (SPPs) in the microwave and terahertz frequencies. Designed on a thin dielectric substrate, the ultrathin metallic structure is composed of two oppositely oriented single-side corrugated strips, which are coupled to two double-side corrugated strips. The structure is fed by a traditional coplanar waveguide (CPW). To make a smooth conversion between the spatial modes in CPW and SPP modes, two transition sections are also designed. We fabricate and measure the frequency-selective spoof SPP structure in microwave frequencies. The measurement results show that the reflection coefficient is less than -10 dB with the transmission loss around 1.5 dB in the selective frequency band from 7 to 10 GHz, which are in good agreements with numerical simulations. The proposed structure can be used as an SPP filter with good performance of low loss, high transmission, and wide bandwidth in the selective frequency band. PMID:25641730

  18. Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure

    NASA Astrophysics Data System (ADS)

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Pan, Bai Cao; Cui, Tie Jun

    2015-02-01

    We propose an ultrathin metallic structure to produce frequency-selective spoof surface plasmon polaritons (SPPs) in the microwave and terahertz frequencies. Designed on a thin dielectric substrate, the ultrathin metallic structure is composed of two oppositely oriented single-side corrugated strips, which are coupled to two double-side corrugated strips. The structure is fed by a traditional coplanar waveguide (CPW). To make a smooth conversion between the spatial modes in CPW and SPP modes, two transition sections are also designed. We fabricate and measure the frequency-selective spoof SPP structure in microwave frequencies. The measurement results show that the reflection coefficient is less than -10 dB with the transmission loss around 1.5 dB in the selective frequency band from 7 to 10 GHz, which are in good agreements with numerical simulations. The proposed structure can be used as an SPP filter with good performance of low loss, high transmission, and wide bandwidth in the selective frequency band.

  19. Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure

    PubMed Central

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Pan, Bai Cao; Cui, Tie Jun

    2015-01-01

    We propose an ultrathin metallic structure to produce frequency-selective spoof surface plasmon polaritons (SPPs) in the microwave and terahertz frequencies. Designed on a thin dielectric substrate, the ultrathin metallic structure is composed of two oppositely oriented single-side corrugated strips, which are coupled to two double-side corrugated strips. The structure is fed by a traditional coplanar waveguide (CPW). To make a smooth conversion between the spatial modes in CPW and SPP modes, two transition sections are also designed. We fabricate and measure the frequency-selective spoof SPP structure in microwave frequencies. The measurement results show that the reflection coefficient is less than -10 dB with the transmission loss around 1.5 dB in the selective frequency band from 7 to 10 GHz, which are in good agreements with numerical simulations. The proposed structure can be used as an SPP filter with good performance of low loss, high transmission, and wide bandwidth in the selective frequency band. PMID:25641730

  20. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  1. Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication

    PubMed Central

    Shin, Dongkwan; Cho, Kwang-Hyun

    2013-01-01

    The brain requires task-dependent interregional coherence of information flow in the anatomically connected neural network. However, it is still unclear how a neuronal group can flexibly select its communication target. In this study, we revealed a hidden routing mechanism on the basis of recurrent connections. Our simulation results based on the spike response model show that recurrent connections between excitatory and inhibitory neurons modulate the resonant frequency of a local neuronal group, and that this modulation enables a neuronal group to receive selective information by filtering a preferred frequency component. We also found that the recurrent connection facilitates the successful routing of any necessary information flow between neuronal groups through frequency-dependent resonance of synchronized oscillations. Taken together, these results suggest that recurrent connections act as a phase-locking neuronal tuner which determines the resonant frequency of a local group and thereby controls the preferential routing of incoming signals. PMID:23981983

  2. SIRE: a MIMO radar for landmine/IED detection

    NASA Astrophysics Data System (ADS)

    Ojowu, Ode; Wu, Yue; Li, Jian; Nguyen, Lam

    2013-05-01

    Multiple-input multiple-output (MIMO) radar systems have been shown to have significant performance improvements over their single-input multiple-output (SIMO) counterparts. For transmit and receive elements that are collocated, the waveform diversity afforded by this radar is exploited for performance improvements. These improvements include but are not limited to improved target detection, improved parameter identifiability and better resolvability. In this paper, we present the Synchronous Impulse Reconstruction Radar (SIRE) Ultra-wideband (UWB) radar designed by the Army Research Lab (ARL) for landmine and improvised explosive device (IED) detection as a 2 by 16 MIMO radar (with collocated antennas). Its improvement over its SIMO counterpart in terms of beampattern/cross range resolution are discussed and demonstrated using simulated data herein. The limitations of this radar for Radio Frequency Interference (RFI) suppression are also discussed in this paper. A relaxation method (RELAX) combined with averaging of multiple realizations of the measured data is presented for RFI suppression; results show no noticeable target signature distortion after suppression. In this paper, the back-projection (delay and sum) data independent method is used for generating SAR images. A side-lobe minimization technique called recursive side-lobe minimization (RSM) is also discussed for reducing side-lobes in this data independent approach. We introduce a data-dependent sparsity based spectral estimation technique called Sparse Learning via Iterative Minimization (SLIM) as well as a data-dependent CLEAN approach for generating SAR images for the SIRE radar. These data-adaptive techniques show improvement in side-lobe reduction and resolution for simulated data for the SIRE radar.

  3. Orientation and spatial frequency selectivity of adaptation to color and luminance gratings.

    PubMed

    Bradley, A; Switkes, E; De Valois, K

    1988-01-01

    Prolonged viewing of sinusoidal luminance gratings produces elevated contrast detection thresholds for test gratings that are similar in spatial frequency and orientation to the adaptation stimulus. We have used this technique to investigate orientation and spatial frequency selectivity in the processing of color contrast information. Adaptation to isoluminant red-green gratings produces elevated color contrast thresholds that are selective for grating orientation and spatial frequency. Only small elevations in color contrast thresholds occur after adaptation to luminance gratings, and vice versa. Although the color adaptation effects appear slightly less selective than those for luminance, our results suggest similar spatial processing of color and luminance contrast patterns by early stages of the human visual system.

  4. Development and RF Evaluation of a Four-Frequency Selective Surface Spacecraft Subreflector Antenna

    NASA Technical Reports Server (NTRS)

    Hickey, George S.; Wu, Te-Kao

    1996-01-01

    NASA Jet Propulsion Laboratory has baselined a four frequency telecommunication system for the Cassini spacecraft antenna subsystems. This design required the design and development of a Frequency Selective Surface Subreflector (FSS) that is integrated into the High Gain Antenna Subsystem. This paper will discuss the development, mechanical and RF electrical testing of two alternate designs as flat panel prototypes that were conducted to verify the multifrequency design approach.

  5. The yule approximation for the site frequency spectrum after a selective sweep.

    PubMed

    Bossert, Sebastian; Pfaffelhuber, Peter

    2013-01-01

    In the area of evolutionary theory, a key question is which portions of the genome of a species are targets of natural selection. Genetic hitchhiking is a theoretical concept that has helped to identify various such targets in natural populations. In the presence of recombination, a severe reduction in sequence diversity is expected around a strongly beneficial allele. The site frequency spectrum is an important tool in genome scans for selection and is composed of the numbers S(1),...,S(n-1), where S(k) is the number of single nucleotide polymorphisms (SNPs) present in k from n individuals. Previous work has shown that both the number of low- and high-frequency variants are elevated relative to neutral evolution when a strongly beneficial allele fixes. Here, we follow a recent investigation of genetic hitchhiking using a marked Yule process to obtain an analytical prediction of the site frequency spectrum in a panmictic population at the time of fixation of a highly beneficial mutation. We combine standard results from the neutral case with the effects of a selective sweep. As simulations show, the resulting formula produces predictions that are more accurate than previous approaches for the whole frequency spectrum. In particular, the formula correctly predicts the elevation of low- and high-frequency variants and is significantly more accurate than previously derived formulas for intermediate frequency variants.

  6. Top down and bottom up selection drives variations in frequency and form of a visual signal

    PubMed Central

    Yeh, Chien-Wei; Blamires, Sean J.; Liao, Chen-Pan; Tso, I.-Min

    2015-01-01

    The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey, selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments. PMID:25828030

  7. Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space.

    PubMed

    Gordon, Swanne P; Kokko, Hanna; Rojas, Bibiana; Nokelainen, Ossi; Mappes, Johanna

    2015-11-01

    Polymorphic warning signals in aposematic species are enigmatic because predator learning and discrimination should select for the most common coloration, resulting in positive frequency-dependent survival selection. Here, we investigated whether differential mating success could create sufficiently strong negative frequency-dependent selection for rare morphs to explain polymorphic (white and yellow) warning coloration in male wood tiger moths (Parasemia plantaginis). We conducted an experiment in semi-natural conditions where we estimated mating success for both white and yellow male moths under three different morph frequencies. Contrary to expectations, mating success was positively frequency-dependent: white morph males had high relative fitness when common, likewise yellow morph males had high relative fitness when instead they were common. We hence built a model parameterized with our data to examine whether polymorphism can be maintained despite two sources of positive frequency dependence. The model includes known spatial variation in the survival advantage enjoyed by the yellow morph and assumes that relative mating success follows our experimentally derived values. It predicts that polymorphism is possible under migration for up to approximately 20% exchange of individuals between subpopulations in each generation. Our results suggest that differential mating success combined with spatial variation in predator communities may operate as a selection mosaic that prevents complete fixation of either morph.

  8. Top down and bottom up selection drives variations in frequency and form of a visual signal.

    PubMed

    Yeh, Chien-Wei; Blamires, Sean J; Liao, Chen-Pan; Tso, I-Min

    2015-01-01

    The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments.

  9. Comparative Analysis of Selected High Frequency Words Found in Commercial Spelling Series and Misspelled in Students' Writing to a Standard Measure of Word Frequency.

    ERIC Educational Resources Information Center

    Hagerty, Patricia Jo

    A major purpose of this study was to determine whether a selected number of current, commercially prepared spelling series used high frequency words for their word lists. A second purpose was to determine whether students misspelled high frequency words in their writing. Eleven commercially prepared spelling series were selected according to the…

  10. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    PubMed Central

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  11. Design of an Invisible Radome by Frequency Selective Surfaces Loaded with Lumped Resistors

    NASA Astrophysics Data System (ADS)

    Liu, Li-Guo; Li, You-Quan; Meng, Qing-Zhi; Wu, Wei-Wei; Mo, Jin-Jun; Fu, Yun-Qi; Yuan, Nai-Chang

    2013-06-01

    A novel radome is presented, which is transparent at operating frequency and is invisible out of band. In order to prevent reflection of the incoming power, frequency selective surfaces loaded with the lumped resistors are employed. To obtain the pass-band properties in lower frequencies, the convoluted slots are utilized. By comparison with the results obtained both by full wave analysis and by the measurements, the performance of the radome is verified. It performs with high transmission characteristics in band, and broadband absorbing properties out of band simultaneously. The oblique incidences are also investigated for both transmission coefficients and reflection ones.

  12. An improved MIMO-SAR simulator strategy with ray tracing

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2016-05-01

    High resolution and wide-swath imaging can be obtained by Multiple-Input Multiple-Output (MIMO) synthetic aperture radar (SAR) with the state of the art technologies. The time division multiple access (TDMA) MIMO SAR mimics the motion of the antenna of SAR systems by switching the array channels to transmit the radar signals at different time slots. In this paper, we develop a simulation tool with ray tracing techniques to retrieve high resolution and accurate SAR images for development of MIMO SAR imaging methods. Without loss of generality, in the proposed simulator, we apply a TDMA MIMO SAR system with 13 transmitting antennas and 8 receiving antennas, where all transmitting antennas share a single transmitter and the receiving antennas share a single receiver. By comparing with the normal simulation MIMO SAR strategies, the simulation image using ray tracing results validate that the proposed method provides more accurate and higher resolution SAR images.

  13. Channel Estimation and ISI/ICI Cancellation for MIMO-OFDM Systems with Insufficient Cyclic Prefix

    NASA Astrophysics Data System (ADS)

    Chiu, Yi-Jen; Chen, Chien-Sheng; Chang, Ting-Wei

    In multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, the multipath components whose delays exceed cyclic prefix (CP) cause inter-symbol interference (ISI) and inter-carrier interference (ICI), which may degrade system performance severely. In this paper, we propose a joint channel estimation and ISI/ICI cancellation scheme in which a limited CP is used in a trade-off against high-rate performance in MIMO-OFDM systems. A channel estimation scheme based on the criterion of Expectation-Maximization (EM) algorithm can be proposed through the use of a training symbol. The EM algorithm uses an iterative procedure to estimate channel parameters and can estimate channel impulse response (CIR) accurately enough to mitigate ISI/ICI influences. Through the accurate CIR estimation, an efficient method has been developed to counteract ISI/ICI influences in signal detection in the case where the inserted CP length is less than the CIR length. Simulation results show that the proposed method can significantly enhance the overall MIMO-OFDM system performance after only a few iterations.

  14. Task frequency influences stimulus-driven effects on task selection during voluntary task switching.

    PubMed

    Arrington, Catherine M; Reiman, Kaitlin M

    2015-08-01

    Task selection during voluntary task switching involves both top-down (goal-directed) and bottom-up (stimulus-driven) mechanisms. The factors that shift the balance between these two mechanisms are not well characterized. In the present research, we studied the role that task frequency plays in determining the extent of stimulus-driven task selection. In two experiments, we used the basic paradigm adapted from Arrington (Memory & Cognition, 38, 991-997, 2008), in which the effect of stimulus availability serves as a marker of stimulus-driven task selection. A number and letter appeared on each trial with varying stimulus onset asynchronies, and participants performed either a consonant/vowel or an even/odd judgment. In Experiment 1, participants were instructed as to the relative frequency with which each task was to be performed (i.e., 50/50, 60/40, or 75/25) and were further instructed to make their transitions between tasks unpredictable. In Experiment 2, participants were given no instructions about how to select tasks, resulting in naturally occurring variation in task frequency. With both instructed (Exp. 1) and naturally occurring (Exp. 2) relative task frequencies, the less frequently performed task showed a greater effect of stimulus availability on task selection, suggestive of a larger influence of stimulus-driven mechanisms during task performance for the less frequent task. When goal-directed mechanisms of task choice are engaged less frequently, the relative influence of the stimulus environment increases. PMID:26106057

  15. New RoF-PON architecture using polarization multiplexed wireless MIMO signals for NG-PON

    NASA Astrophysics Data System (ADS)

    Elmagzoub, M. A.; Mohammad, Abu Bakar; Shaddad, Redhwan Q.; Al-Gailani, Samir A.

    2015-06-01

    Next-generation access networks require provision of wireless services and high data rate to meet the huge demands for mobility and multiple services. Moreover, reusing the currently deployed optical distribution networks (ODNs) is highly beneficial and cost effective for providing the new high data rate wireless demands. In this paper, bidirectional radio over fiber passive optical network (RoF-PON) capable of handling multiple-input-multiple-output (MIMO) streams at low cost, high spectral efficiency and backward compatibility with currently deployed PON, is proposed. To the best of our knowledge, all the existing RoF MIMO solutions have not considered compatibility with currently deployed ODNs. Eight laser diodes (LDs) at the central office (CO) are enough for the whole system, instead of having LD or optical transmitter at each remote antenna unit (RAU), which makes a colorless and cost-effective RAU. Twenty four wavelengths are generated using optical comb technique. Each two 16-QAM MIMO signals that have the same carrier frequency in the downstream (DS) transmission are optically combined using polarization-division-multiplexing (PDM), where each two upstream (US) MIMO signals are time division multiplexed. The PDM configuration doubles spectral efficiency with a power penalty of only 1.5 dB. The proposed architecture is a bidirectional asymmetric RoF-PON with total 40/10 Gb/s for DS/US transmission. Even after transmission over 20 km SMF and splitting ratio of 32, acceptable transmission performance and widely separated constellation diagrams for the 16-QAM signals are achieved, with bit error rate (BER) of 10-6 for DS signals and 10-3 for the US signals which can be reduced down to 10-6 by using forward error correction (FEC).

  16. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  17. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection.

    PubMed

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M

    2016-04-19

    Nondestructive Testing (NDT) assessment of materials' health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms.

  18. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    SciTech Connect

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  19. Numerical analysis of curved frequency selective surface by finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Chen, Xin-yi; Wang, Jian-bo; Chen, Gui-bo; Sun, Guan-cheng; Lu, Jun

    2011-08-01

    Frequency selective surface is a monolayer or multilayer 2D periodic structure which is composed of multiple resonance units scattering by a two-dimensional periodic array on dielectric layer. FSS can't absorb radio frequency energy, but can filter the frequency which is therefore applied in microwave technique or stealth technology. The relative research on curved FSS is relatively scarce since the curved FSS structure can be obtained only when FSS is attached on the materials surfaces of curved structures in engineering application. However, curved FSS is widely applied in practical engineering; therefore, the research on curved FSS structure has important significance. In this paper, a curved FSS structure model of Y-pore unit is established and numerical simulated by means of FDTD. The influence of curvature on FSS transmission characteristics is studied according to the analysis on the changing of radar cross section (RCS). The results show: the center frequency point of the plane band pass FSS structure drifts after the curve surface deformation of the structure; the center frequency point of the curved band pass FSS structure drifts with the changing of the curvature radius, i. e. with the decreasing of curvature radius, the frequency point drifts towards high points and the transmittance decreases. The design of FSS radome demands of accurate and stable center resonance frequency; therefore, the actual situation of curved surface should be considered in practical engineering application when band pass FSS is made into frequency selection filtering radome. The curvature radius should be long enough to avoid center frequency drifting and transmittance deceasing.

  20. Warning signals are under positive frequency-dependent selection in nature.

    PubMed

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-02-23

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  1. Warning signals are under positive frequency-dependent selection in nature

    PubMed Central

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-01-01

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  2. Warning signals are under positive frequency-dependent selection in nature.

    PubMed

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-02-23

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency.

  3. Songbird frequency selectivity and temporal resolution vary with sex and season

    PubMed Central

    Gall, Megan D.; Salameh, Therese S.; Lucas, Jeffrey R.

    2013-01-01

    Many species of songbirds exhibit dramatic seasonal variation in song output. Recent evidence suggests that seasonal changes in auditory processing are coincident with seasonal variation in vocal output. Here, we show, for the first time, that frequency selectivity and temporal resolution of the songbird auditory periphery change seasonally and in a sex-specific manner. Male and female house sparrows (Passer domesticus) did not differ in their frequency sensitivity during the non-breeding season, nor did they differ in their temporal resolution. By contrast, female house sparrows showed enhanced frequency selectivity during the breeding season, which was matched by a concomitant reduction of temporal resolution. However, males failed to show seasonal plasticity in either of these auditory properties. We discuss potential mechanisms generating these seasonal patterns and the implications of sex-specific seasonal changes in auditory processing for vocal communication. PMID:23193125

  4. Modeling and control of non-square MIMO system using relay feedback.

    PubMed

    Kalpana, D; Thyagarajan, T; Gokulraj, N

    2015-11-01

    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. PMID:26453020

  5. Frequency selective reflection and transmission at a layer composed of a periodic dielectric

    NASA Technical Reports Server (NTRS)

    Bertoni, Henry L.; Cheo, Li-Hsiang S.; Tamir, Theodor

    1987-01-01

    The feasibility of using a periodic dielectric layer, composed of alternating bars having dielectric constants epsilon sub 1 and epsilon sub 2, as a frequency selective subreflector in order to permit feed separation in large aperture reflecting antenna systems was examined. For oblique incidence, it is found that total transmission and total reflection can be obtained at different frequencies for proper choices of epsilon sub 1, epsilon 2, and the geometric parameters. The frequencies of total reflection and transmission can be estimated from wave phenomena occurring in a layer of uniform dielectric constant equal to the average for the periodic layers. About some of the frequencies of total transmission, the bandwidth for 90% transmission is found to be 40%. However, the bandwidth for 90% reflection is always found to be much narrower; the greatest value found being 2.5%.

  6. Detection of Allelic Frequency Differences between the Sexes in Humans: A Signature of Sexually Antagonistic Selection

    PubMed Central

    Lucotte, Elise A.; Laurent, Romain; Heyer, Evelyne; Ségurel, Laure; Toupance, Bruno

    2016-01-01

    Sexually antagonistic (SA) selection, a form of selection that can occur when both sexes have different fitness optima for a trait, is a major force shaping the evolution of organisms. A seminal model developed by Rice (Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742.) predicts that the X chromosome should be a hotspot for the accumulation of loci under SA selection as compared with the autosomes. Here, we propose a methodological framework designed to detect a specific signature of SA selection on viability, differences in allelic frequencies between the sexes. Applying this method on genome-wide single nucleotide polymorphism (SNP) data in human populations where no sex-specific population stratification could be detected, we show that there are overall significantly more SNPs exhibiting differences in allelic frequencies between the sexes on the X chromosome as compared with autosomes, supporting the predictions of Rice’s model. This pattern is consistent across populations and is robust to correction for potential biases such as differences in linkage disequilibrium, sample size, and genotyping errors between chromosomes. Although SA selection is not the only factor resulting in allelic frequency differences between the sexes, we further show that at least part of the identified X-linked loci is caused by such a sex-specific processes. PMID:27189992

  7. Negative frequency-dependent selection is intensified at higher population densities in protist populations

    PubMed Central

    Minter, Ewan J. A.; Watts, Phillip C.; Lowe, Chris D.; Brockhurst, Michael A.

    2015-01-01

    Natural populations of free-living protists often exhibit high-levels of intraspecific diversity, yet this is puzzling as classic evolutionary theory predicts dominance by genotypes with high fitness, particularly in large populations where selection is efficient. Here, we test whether negative frequency-dependent selection (NFDS) plays a role in the maintenance of diversity in the marine flagellate Oxyrrhis marina using competition experiments between multiple pairs of strains. We observed strain-specific responses to frequency and density, but an overall signature of NFDS that was intensified at higher population densities. Because our strains were not selected a priori on the basis of particular traits expected to exhibit NFDS, these data represent a relatively unbiased estimate of the role for NFDS in maintaining diversity in protist populations. These findings could help to explain how bloom-forming plankton, which periodically achieve exceptionally high population densities, maintain substantial intraspecific diversity. PMID:26063750

  8. Negative frequency-dependent selection is intensified at higher population densities in protist populations.

    PubMed

    Minter, Ewan J A; Watts, Phillip C; Lowe, Chris D; Brockhurst, Michael A

    2015-06-01

    Natural populations of free-living protists often exhibit high-levels of intraspecific diversity, yet this is puzzling as classic evolutionary theory predicts dominance by genotypes with high fitness, particularly in large populations where selection is efficient. Here, we test whether negative frequency-dependent selection (NFDS) plays a role in the maintenance of diversity in the marine flagellate Oxyrrhis marina using competition experiments between multiple pairs of strains. We observed strain-specific responses to frequency and density, but an overall signature of NFDS that was intensified at higher population densities. Because our strains were not selected a priori on the basis of particular traits expected to exhibit NFDS, these data represent a relatively unbiased estimate of the role for NFDS in maintaining diversity in protist populations. These findings could help to explain how bloom-forming plankton, which periodically achieve exceptionally high population densities, maintain substantial intraspecific diversity.

  9. MIMO transmit scheme based on morphological perceptron with competitive learning.

    PubMed

    Valente, Raul Ambrozio; Abrão, Taufik

    2016-08-01

    This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. PMID:27135805

  10. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection

    PubMed Central

    Litvak, Vladimir; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.

    2015-01-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. PMID:25878159

  11. Frequency-dependent selection with dominance: a window onto the behavior of the mean fitness.

    PubMed Central

    Asmussen, Marjorie A; Cartwright, Reed A; Spencer, Hamish G

    2004-01-01

    Selection in which fitnesses vary with the changing genetic composition of the population may facilitate the maintenance of genetic diversity in a wide range of organisms. Here, a detailed theoretical investigation is made of a frequency-dependent selection model, in which fitnesses are based on pairwise interactions between the two phenotypes at a diploid, diallelic, autosomal locus with complete dominance. The allele frequency dynamics are fully delimited analytically, along with all possible shapes of the mean fitness function in terms of where it increases or decreases as a function of the current allele frequency in the population. These results in turn allow possibly the first complete characterization of the dynamical behavior by the mean fitness through time under frequency-dependent selection. Here the mean fitness (i) monotonically increases, (ii) monotonically decreases, (iii) initially increases and then decreases, or (iv) initially decreases and then increases as equilibrium is approached. We analytically derive the exact initial and fitness conditions that produce each dynamic and how often each arises. Computer simulations with random initial conditions and fitnesses reveal that the potential decline in mean fitness is not negligible; on average a net decrease occurs 20% of the time and reduces the mean fitness by >17%. PMID:15166172

  12. Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula

    PubMed Central

    Yakusheva, Tatyana; Blazquez, Pablo M.; Angelaki, Dora E.

    2008-01-01

    Spatial orientation depends critically on the brain’s ability to segregate linear acceleration signals arising from otolith afferents into estimates of self-motion and orientation relative to gravity. In the absence of visual information, this ability is known to deteriorate at low frequencies. The cerebellar nodulus/uvula (NU) has been shown to participate in this computation, although its exact role remains unclear. Here we show that NU simple spike (SS) responses also exhibit a frequency dependent selectivity to self-motion (translation) and spatial orientation (tit). At 0.5 Hz, Purkinje cells encode three-dimensional (3D) translation and only weakly modulate during pitch and roll tilt (0.4 ± 0.05 spikes/s/°/s). But this ability to selectively signal translation over tilt is compromised at lower frequencies, such that at 0.05 Hz tilt response gains average 2.0 ± 0.3 spikes/s/°/s. We show that such frequency-dependent properties are due to an incomplete cancellation of otolith-driven SS responses during tilt by a canal-driven signal coding angular position with a sensitivity of 3.9 ± 0.3 spikes/s/°. This incomplete cancellation is brought about because otolith-driven SS responses are also partially integrated, thus encoding combinations of linear velocity and acceleration. These results are consistent with the notion that NU SS modulation represents an internal neural representation of similar frequency dependencies seen in behavior. PMID:18829957

  13. Transition Densities and Sample Frequency Spectra of Diffusion Processes with Selection and Variable Population Size

    PubMed Central

    Živković, Daniel; Steinrücken, Matthias; Song, Yun S.; Stephan, Wolfgang

    2015-01-01

    Advances in empirical population genetics have made apparent the need for models that simultaneously account for selection and demography. To address this need, we here study the Wright–Fisher diffusion under selection and variable effective population size. In the case of genic selection and piecewise-constant effective population sizes, we obtain the transition density by extending a recently developed method for computing an accurate spectral representation for a constant population size. Utilizing this extension, we show how to compute the sample frequency spectrum in the presence of genic selection and an arbitrary number of instantaneous changes in the effective population size. We also develop an alternate, efficient algorithm for computing the sample frequency spectrum using a moment-based approach. We apply these methods to answer the following questions: If neutrality is incorrectly assumed when there is selection, what effects does it have on demographic parameter estimation? Can the impact of negative selection be observed in populations that undergo strong exponential growth? PMID:25873633

  14. Responses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency

    PubMed Central

    Wakatsuchi, Hiroki; Gao, Fei; Yagitani, Satoshi; Sievenpiper, Daniel F.

    2016-01-01

    Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves even at the same frequency depending on how long the waves continued, namely, on their pulse widths. These materials were thus expected to give us an additional degree of freedom to control electromagnetic waves. However, all the past studies were demonstrated with waves at a normal angle only, although in reality electromagnetic waves scatter from various structures or boundaries and therefore illuminate the metasurfaces at oblique angles. Here we study angular dependences of waveform-selective metasurfaces both numerically and experimentally. We demonstrate that, if designed properly, capacitor-based waveform-selective metasurfaces more effectively absorb short pulses than continuous waves (CWs) for a wide range of the incident angle, while inductor-based metasurfaces absorb CWs more strongly. Our study is expected to be usefully exploited for applying the concept of waveform selectivity to a wide range of existing microwave devices to expand their functionalities or performances in response to pulse width as a new capability. PMID:27516346

  15. Reducing animal sequencing redundancy by preferentially selecting animals with low-frequency haplotypes.

    PubMed

    Bickhart, D M; Hutchison, J L; Null, D J; VanRaden, P M; Cole, J B

    2016-07-01

    Many studies leverage targeted whole-genome sequencing (WGS) experiments to identify rare and causal variants within populations. As a natural consequence of their experimental design, many of these surveys tend to sequence redundant haplotype segments due to their high frequency in the base population, and the variants discovered within sequencing data are difficult to phase. We propose a new algorithm, called inverse weight selection (IWS), that preferentially selects individuals based on the cumulative presence of rare frequency haplotypes to maximize the efficiency of WGS surveys. To test the efficacy of this method, we used genotype data from 112,113 registered Holstein bulls derived from the US national dairy database. We demonstrate that IWS is at least 6.8% more efficient than previously published methods in selecting the least number of individuals required to sequence all haplotype segments ≥4% frequency in the US Holstein population. We also suggest that future surveys focus on sequencing homozygous haplotype segments as a first pass to achieve a 50% reduction in cost with an added benefit of phasing variant calls efficiently. Together, this new selection algorithm and experimental design suggestion significantly reduce the overall cost of variant discovery through WGS experiments, making surveys for causal variants influencing disease and production even more efficient.

  16. Responses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Gao, Fei; Yagitani, Satoshi; Sievenpiper, Daniel F.

    2016-08-01

    Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves even at the same frequency depending on how long the waves continued, namely, on their pulse widths. These materials were thus expected to give us an additional degree of freedom to control electromagnetic waves. However, all the past studies were demonstrated with waves at a normal angle only, although in reality electromagnetic waves scatter from various structures or boundaries and therefore illuminate the metasurfaces at oblique angles. Here we study angular dependences of waveform-selective metasurfaces both numerically and experimentally. We demonstrate that, if designed properly, capacitor-based waveform-selective metasurfaces more effectively absorb short pulses than continuous waves (CWs) for a wide range of the incident angle, while inductor-based metasurfaces absorb CWs more strongly. Our study is expected to be usefully exploited for applying the concept of waveform selectivity to a wide range of existing microwave devices to expand their functionalities or performances in response to pulse width as a new capability.

  17. Responses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency.

    PubMed

    Wakatsuchi, Hiroki; Gao, Fei; Yagitani, Satoshi; Sievenpiper, Daniel F

    2016-01-01

    Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves even at the same frequency depending on how long the waves continued, namely, on their pulse widths. These materials were thus expected to give us an additional degree of freedom to control electromagnetic waves. However, all the past studies were demonstrated with waves at a normal angle only, although in reality electromagnetic waves scatter from various structures or boundaries and therefore illuminate the metasurfaces at oblique angles. Here we study angular dependences of waveform-selective metasurfaces both numerically and experimentally. We demonstrate that, if designed properly, capacitor-based waveform-selective metasurfaces more effectively absorb short pulses than continuous waves (CWs) for a wide range of the incident angle, while inductor-based metasurfaces absorb CWs more strongly. Our study is expected to be usefully exploited for applying the concept of waveform selectivity to a wide range of existing microwave devices to expand their functionalities or performances in response to pulse width as a new capability. PMID:27516346

  18. Responses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency.

    PubMed

    Wakatsuchi, Hiroki; Gao, Fei; Yagitani, Satoshi; Sievenpiper, Daniel F

    2016-08-12

    Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves even at the same frequency depending on how long the waves continued, namely, on their pulse widths. These materials were thus expected to give us an additional degree of freedom to control electromagnetic waves. However, all the past studies were demonstrated with waves at a normal angle only, although in reality electromagnetic waves scatter from various structures or boundaries and therefore illuminate the metasurfaces at oblique angles. Here we study angular dependences of waveform-selective metasurfaces both numerically and experimentally. We demonstrate that, if designed properly, capacitor-based waveform-selective metasurfaces more effectively absorb short pulses than continuous waves (CWs) for a wide range of the incident angle, while inductor-based metasurfaces absorb CWs more strongly. Our study is expected to be usefully exploited for applying the concept of waveform selectivity to a wide range of existing microwave devices to expand their functionalities or performances in response to pulse width as a new capability.

  19. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  20. Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique

    SciTech Connect

    Moon, H. S.; Kim, E. B.; Park, S. E.; Park, C. Y.

    2006-10-30

    The authors have demonstrated the selection and the amplification of the components of an optical frequency comb using a femtosecond laser injectionlocking technique. The author used a mode-locked femtosecond Ti:sapphire laser as the master laser and a single-mode diode laser as the slave laser. The femtosecond laser injection-locking technique was applied to a filter for mode selection of the optical frequency comb and an amplifier for amplification of the selected mode. The authors could obtain the laser source selected only the desired mode of the optical frequency comb and amplified the power of the selected modes several thousand times.

  1. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  2. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  3. Site selection for a radio astronomy observatory in Turkey: atmospherical, meteorological, and radio frequency analyses

    NASA Astrophysics Data System (ADS)

    Küçük, Ibrahim; Üler, Ipek; Öz, Şükriye; Onay, Sedat; Özdemir, Ali Rıza; Gülşen, Mehmet; Sarıkaya, Mikail; Dag˜Tekin, Nazlı Derya; Özeren, Ferhat Fikri

    2012-03-01

    Selecting the future site for a large Turkish radio telescope is a key issue. The National Radio Astronomy Observatory is now in the stage of construction at a site near Karaman City, in Turkey. A single-dish parabolic radio antenna of 30-40 m will be installed near a building that will contain offices, laboratories, and living accommodations. After a systematic survey of atmospheric, meteorological, and radio frequency interference (RFI) analyses, site selection studies were performed in a predetermined location in Turkey during 2007 and 2008. In this paper, we described the experimental procedure and the RFI measurements on our potential candidate's sites in Turkey, covering the frequency band from 1 to 40 GHz.

  4. Broadband Tunability of Polarization-Insensitive Absorber Based on Frequency Selective Surface

    PubMed Central

    Wang, Han; Kong, Peng; Cheng, Wentao; Bao, Wenzong; Yu, Xiaowei; Miao, Ling; Jiang, Jianjun

    2016-01-01

    An innovative tunable and polarization-insensitive 1.6–8 GHz frequency selective surface (FSS) absorber was investigated in this study. The proposed FSS, which is in 4-axial symmetrical form, includes a novel array of PIN diodes with biasing lines including inductors. A gradually reduced equivalent resistor of PIN diodes can be achieved with increasing DC voltage, which characterizes tunable, multi-resonance absorption peaks. Via this simplified design, small value resistor and equivalent capacitance of the gap between patterns can improve the absorber’s performance in low frequencies; an active tunable absorber can be realized in a broad frequency range by employing adjustable devices. Changing the working state of the PIN diode allows the user to obtain strong absorption within the desired frequency. We analyzed the performance of the proposed absorber and found that it indeed shows very favorable absorption performance in low frequency (−10 dB in 1.6−4.3 GHz) and wideband (−8 dB in 4.3−5.4 GHz and −10 dB in 5.4−8.0 GHz) conditions. Calculation and simulation results also illustrated that the absorber is entirely polarization-insensitive. PMID:26983804

  5. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  6. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  7. Broadband Tunability of Polarization-Insensitive Absorber Based on Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Wang, Han; Kong, Peng; Cheng, Wentao; Bao, Wenzong; Yu, Xiaowei; Miao, Ling; Jiang, Jianjun

    2016-03-01

    An innovative tunable and polarization-insensitive 1.6–8 GHz frequency selective surface (FSS) absorber was investigated in this study. The proposed FSS, which is in 4-axial symmetrical form, includes a novel array of PIN diodes with biasing lines including inductors. A gradually reduced equivalent resistor of PIN diodes can be achieved with increasing DC voltage, which characterizes tunable, multi-resonance absorption peaks. Via this simplified design, small value resistor and equivalent capacitance of the gap between patterns can improve the absorber’s performance in low frequencies; an active tunable absorber can be realized in a broad frequency range by employing adjustable devices. Changing the working state of the PIN diode allows the user to obtain strong absorption within the desired frequency. We analyzed the performance of the proposed absorber and found that it indeed shows very favorable absorption performance in low frequency (‑10 dB in 1.6‑4.3 GHz) and wideband (‑8 dB in 4.3‑5.4 GHz and ‑10 dB in 5.4‑8.0 GHz) conditions. Calculation and simulation results also illustrated that the absorber is entirely polarization-insensitive.

  8. Broadband Tunability of Polarization-Insensitive Absorber Based on Frequency Selective Surface.

    PubMed

    Wang, Han; Kong, Peng; Cheng, Wentao; Bao, Wenzong; Yu, Xiaowei; Miao, Ling; Jiang, Jianjun

    2016-01-01

    An innovative tunable and polarization-insensitive 1.6-8 GHz frequency selective surface (FSS) absorber was investigated in this study. The proposed FSS, which is in 4-axial symmetrical form, includes a novel array of PIN diodes with biasing lines including inductors. A gradually reduced equivalent resistor of PIN diodes can be achieved with increasing DC voltage, which characterizes tunable, multi-resonance absorption peaks. Via this simplified design, small value resistor and equivalent capacitance of the gap between patterns can improve the absorber's performance in low frequencies; an active tunable absorber can be realized in a broad frequency range by employing adjustable devices. Changing the working state of the PIN diode allows the user to obtain strong absorption within the desired frequency. We analyzed the performance of the proposed absorber and found that it indeed shows very favorable absorption performance in low frequency (-10 dB in 1.6-4.3 GHz) and wideband (-8 dB in 4.3-5.4 GHz and -10 dB in 5.4-8.0 GHz) conditions. Calculation and simulation results also illustrated that the absorber is entirely polarization-insensitive. PMID:26983804

  9. Signature of forty years of artificial selection in U.S. Holstein cattle identified by long-range frequency analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three groups of U.S. Holstein cattle were analyzed for selection signature of artificial selection since 1964 using long-range frequency measures. The three groups included Holsteins unselected since 1964, contemporary Holsteins, and an elite line of contemporary Holsteins. Long-range frequencies in...

  10. Design of Massive-MIMO-NOMA With Limited Feedback

    NASA Astrophysics Data System (ADS)

    Ding, Zhiguo; Poor, H. Vincent

    2016-05-01

    In this letter, a low-feedback non-orthogonal multiple access (NOMA) scheme using massive multiple-input multiple-output (MIMO) transmission is proposed. In particular, the proposed scheme can decompose a massive-MIMO-NOMA system into multiple separated single-input single-output NOMA channels, and analytical results are developed to evaluate the performance of the proposed scheme for two scenarios, with perfect user ordering and with one-bit feedback, respectively.

  11. A method for estimating the intensity of overdominant selection from the distribution of allele frequencies.

    PubMed Central

    Slatkin, M; Muirhead, C A

    2000-01-01

    A method is proposed for estimating the intensity of overdominant selection scaled by the effective population size, S = 2Ns, from allele frequencies. The method is based on the assumption that, with strong overdominant selection, allele frequencies are nearly at their deterministic equilibrium values and that, to a first approximation, deviations depend only on S. Simulations verify that reasonably accurate estimates of S can be obtained for realistic sample sizes. The method is applied to data from several loci in the major histocompatibility complex (Mhc) in numerous human populations. For alleles distinguished by both serological typing and the sequence of the peptide-binding region, our estimates of S are comparable to those obtained by analysis of DNA sequences in showing that selection is strongest on HLA-B and weaker on HLA-A, HLA-DRB1, and HLA-DQA1. The intensity of selection on HLA-B varied considerably among populations. Two populations, Native American and Inuit, showed an excess rather than a deficiency in homozygosity. Comparable estimates of S were obtained for alleles at Mhc class II loci distinguished by serological reactions (serotyping) and by differences in the amino acid sequences of the peptide-binding region (molecular typing). A comparison of two types of data for DQA1 and DRB1 showed that serotyping led to generally lower estimates of S. PMID:11102400

  12. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    NASA Astrophysics Data System (ADS)

    Heath, Robert W.; Gonzalez-Prelcic, Nuria; Rangan, Sundeep; Roh, Wonil; Sayeed, Akbar M.

    2016-04-01

    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

  13. Low-mobility channel tracking for MIMO-OFDM communication systems

    NASA Astrophysics Data System (ADS)

    Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.

    2013-12-01

    It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.

  14. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built

  15. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built

  16. Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation.

    PubMed

    Racimo, Fernando

    2016-02-01

    A powerful way to detect selection in a population is by modeling local allele frequency changes in a particular region of the genome under scenarios of selection and neutrality and finding which model is most compatible with the data. A previous method based on a cross-population composite likelihood ratio (XP-CLR) uses an outgroup population to detect departures from neutrality that could be compatible with hard or soft sweeps, at linked sites near a beneficial allele. However, this method is most sensitive to recent selection and may miss selective events that happened a long time ago. To overcome this, we developed an extension of XP-CLR that jointly models the behavior of a selected allele in a three-population tree. Our method - called "3-population composite likelihood ratio" (3P-CLR) - outperforms XP-CLR when testing for selection that occurred before two populations split from each other and can distinguish between those events and events that occurred specifically in each of the populations after the split. We applied our new test to population genomic data from the 1000 Genomes Project, to search for selective sweeps that occurred before the split of Yoruba and Eurasians, but after their split from Neanderthals, and that could have led to the spread of modern-human-specific phenotypes. We also searched for sweep events that occurred in East Asians, Europeans, and the ancestors of both populations, after their split from Yoruba. In both cases, we are able to confirm a number of regions identified by previous methods and find several new candidates for selection in recent and ancient times. For some of these, we also find suggestive functional mutations that may have driven the selective events. PMID:26596347

  17. Multi-static MIMO along track interferometry (ATI)

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  18. Frequency and Selectivity of Mitochondrial Fusion Are Key to Its Quality Maintenance Function

    PubMed Central

    Mouli, Pradeep K.; Twig, Gilad; Shirihai, Orian S.

    2009-01-01

    Turnover of mitochondria by autophagy constitutes an essential quality maintenance mechanism. Recent studies have demonstrated that efficient clearance of damaged mitochondrial components depends on mitochondrial dynamics, a process characterized by frequent fusion and fission events that enable the redistribution of mitochondrial components across a population of hundreds of individual mitochondria. The presented simulation identifies kinetic parameters of fusion and fission that may influence the maintenance of mitochondrial function. The program simulated repetitive cycles of fusion and fission events in which intact and damaged mitochondrial contents were redistributed between fusion mates. Redistribution impacted mitochondrial function, thereby influencing the fate of each mitochondrion, to be either destined for a subsequent fusion or eliminated by autophagy. Our findings indicate that, when paired with fission, fusion events may serve to accelerate the removal of damaged mitochondrial components by autophagy. The model predicts the existence of an optimal frequency of fusion and fission events that can maintain respiratory function at steady-state levels amid the existence of a continuous damaging process that inactivates mitochondrial components. A further elevation of the fusion frequency can increase the clearance efficiency of damaged content. However, this requires fusion to be a selective process in which depolarized mitochondria are excluded from the fusing population. The selectivity of fusion was found to be particularly beneficial in conditions of elevated rate of damage, because it permits the increase of fusion frequency without compromising the removal of damaged content by autophagy. PMID:19413957

  19. Sound Frequency and Aural Selectivity in Sound-Contingent Visual Motion Aftereffect

    PubMed Central

    Kobayashi, Maori; Teramoto, Wataru; Hidaka, Souta; Sugita, Yoichi

    2012-01-01

    Background One possible strategy to evaluate whether signals in different modalities originate from a common external event or object is to form associations between inputs from different senses. This strategy would be quite effective because signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies and between ears. Methodology/Principal Findings Two circles placed side by side were presented in alternation, producing apparent motion perception, and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. However, the aftereffect was observed only when the adapter and test tones were presented at the same frequency and to the same ear. Conclusions/Significance These findings suggest that the auditory processing underlying the establishment of novel audiovisual associations is selective, potentially but not necessarily indicating that this processing occurs at an early stage. PMID:22649500

  20. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    PubMed

    Villanea, Fernando A; Safi, Kristin N; Busch, Jeremiah W

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas. PMID:25946124

  1. Models of Frequency-Dependent Selection with Mutation from Parental Alleles

    PubMed Central

    Trotter, Meredith V.; Spencer, Hamish G.

    2013-01-01

    Frequency-dependent selection (FDS) remains a common heuristic explanation for the maintenance of genetic variation in natural populations. The pairwise-interaction model (PIM) is a well-studied general model of frequency-dependent selection, which assumes that a genotype’s fitness is a function of within-population intergenotypic interactions. Previous theoretical work indicated that this type of model is able to sustain large numbers of alleles at a single locus when it incorporates recurrent mutation. These studies, however, have ignored the impact of the distribution of fitness effects of new mutations on the dynamics and end results of polymorphism construction. We suggest that a natural way to model mutation would be to assume mutant fitness is related to the fitness of the parental allele, i.e., the existing allele from which the mutant arose. Here we examine the numbers and distributions of fitnesses and alleles produced by construction under the PIM with mutation from parental alleles and the impacts on such measures due to different methods of generating mutant fitnesses. We find that, in comparison with previous results, generating mutants from existing alleles lowers the average number of alleles likely to be observed in a system subject to FDS, but produces polymorphisms that are highly stable and have realistic allele-frequency distributions. PMID:23852384

  2. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    PubMed

    Villanea, Fernando A; Safi, Kristin N; Busch, Jeremiah W

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.

  3. A novel method for fabricating curved frequency selective surface via 3D printing technology

    NASA Astrophysics Data System (ADS)

    Liang, Fengchao; Gao, Jinsong

    2014-12-01

    A novel method for fabricating curved frequency selective surfaces with undevelopable curved shape using 3D printing technology was proposed in this paper. First, FSS composed of Y slotted elements that adapt to 0° ~ 70 ° incidences was designed. Then, the 3D model of the curved FSS was created in a 3D modeling software. Next, the 3D model was digitalized into stl format file and then the stl file was inputted into a stereo lithography 3D printer. Next, the prototype of the curved FSS was fabricated by the 3D printer layer by layer. Finally, a 10 μm thick aluminum film was coated on the outer surface of the prototype of the curved FSS by a vacuum coater. The transmission performance of the metallised curved FSS was tested using free space method. It was shown that frequency selection characteristic of the metallised curved FSS reached the requirements of simulation design. The pass-band was in the Ku-band and the transmission rate on center frequency was 63% for nose cone incident direction. This method provides a new way to apply the FSS to arbitrary curved electromagnetic window.

  4. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism

    PubMed Central

    Villanea, Fernando A.; Safi, Kristin N.; Busch, Jeremiah W.

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (Ne ≤ 50) and much smaller (Ne ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas. PMID:25946124

  5. Modafinil Effects on Middle-Frequency Oscillatory Power During Rule Selection in Schizophrenia

    PubMed Central

    Minzenberg, Michael J; Yoon, Jong H; Cheng, Yaoan; Carter, Cameron S

    2014-01-01

    Control-related cognitive processes such as rule selection are associated with cortical oscillations in the theta, alpha and, beta ranges, and modulated by catecholamine neurotransmission. Thus, a potential strategy for improving cognitive control deficits in schizophrenia would be to use pro-catecholamine pharmacological agents to augment these control-related oscillations. In a double-blind, placebo-controlled (within-subjects) study, we tested the effects of adjunctive single-dose modafinil 200 mg on rule-related 4–30 Hz oscillations in 23 stable schizophrenia patients, using EEG during cognitive control task performance. EEG data underwent time-frequency decomposition with Morlet wavelets to determine the power of 4–30 Hz oscillations. Modafinil (relative to placebo) enhanced oscillatory power associated with high-control rule selection in theta, alpha, and beta ranges, with modest effects during rule maintenance. Modafinil treatment in schizophrenia augments middle-frequency cortical oscillatory power associated with rule selection, and may subserve diverse subcomponent processes in proactive cognitive control. PMID:24964814

  6. Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber.

    PubMed

    Lee, Kwang-Hyun; Choi, Woo-Young

    2007-06-15

    Harmonic signal generation and frequency upconversion at millimeter-wave bands are experimentally demonstrated by using selective sideband Brillouin amplification induced by stimulated Brillouin scattering in a single-mode fiber. The harmonic signals and frequency upconverted signals are simultaneously generated by the beating of optical sidebands, one of which is Brillouin amplified. By using this method, we successfully demonstrate generation of third-harmonic millimeter waves at 32.55 GHz with f(LO) of 10.85 GHz and upconversion of 10 Mbps quadrature-shift keyed data at f(IF) of 1.55 GHz into a 30 GHz band with more than 17 dB RF power gain.

  7. Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics

    PubMed Central

    Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo

    2016-01-01

    Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications. PMID:27052098

  8. On the application of frequency selective common mode feedback for multifrequency EIT.

    PubMed

    Langlois, Peter J; Wu, Yu; Bayford, Richard H; Demosthenous, Andreas

    2015-06-01

    Common mode voltages are frequently a problem in electrical impedance tomography (EIT) and other bioimpedance applications. To reduce their amplitude common mode feedback is employed. Formalised analyses of both current and voltage feedback is presented in this paper for current drives. Common mode effects due to imbalances caused by the current drives, the electrode connections to the body load and the introduction of the body impedance to ground are considered. Frequency selective narrowband common mode feedback previously proposed to provide feedback stability is examined. As a step towards multifrequency applications the use of narrowband feedback is experimentally demonstrated for two simultaneous current drives. Measured results using standard available components show a reduction of 62 dB for current feedback and 31 dB for voltage feedback. Frequencies ranged from 50 kHz to 1 MHz.

  9. Equivalent circuit for VO{sub 2} phase change material film in reconfigurable frequency selective surfaces

    SciTech Connect

    Sanphuang, Varittha; Ghalichechian, Nima; Nahar, Niru K.; Volakis, John L.

    2015-12-21

    We developed equivalent circuits of phase change materials based on vanadium dioxide (VO{sub 2}) thin films. These circuits are used to model VO{sub 2} thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO{sub 2} ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement.

  10. A frequency selective bolometer camera for measuring millimeter spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Logan, Daniel William

    2009-06-01

    Bolometers are the most sensitive detectors for measuring millimeter and submillimeter wavelength astrophysical signals. Cameras comprised of arrays of bolometers have already made significant contributions to the field of astronomy. A challenge for bolometer cameras is obtaining observations at multiple wavelengths. Traditionally, observing in multiple bands requires a partial disassembly of the instrument to replace bandpass filters, a task which prevents immediate spectral interrogation of a source. More complex cameras have been constructed to observe in several bands using beam splitters and dichroic filters, but the added complexity leads to physically larger instruments with reduced efficiencies. The SPEctral Energy Distribution camera (SPEED) is a new type of bolometer camera designed to efficiently observe in multiple wavebands without the need for excess bandpass filters and beam splitters. SPEED is a ground-based millimeter-wave bolometer camera designed to observe at 2.1, 1.3, 1.1, and 0.85 mm simultaneously. SPEED makes use of a new type of bolometer, the frequency selective bolometer (FSB), to observe all of the wavebands within each of the camera's four pixels. FSBs incorporate frequency selective dipole surfaces as absorbing elements allowing each detector to absorb a single, narrow band of radiation and pass all other radiation with low loss. Each FSB also contains a superconducting transition-edge sensor (TES) that acts as a sensitive thermistor for measuring the temperature of the FSB. This thesis describes the development of the SPEED camera and FSB detectors. The design of the detectors used in the instrument is described as well as the the general optical performance of frequency selective dipole surfaces. Laboratory results of both the optical and thermal properties of millimeter- wave FSBs are also presented. The SPEED instrument and its components are highlighted and the optical design of the optics which couple SPEED to the Heinrich Hertz

  11. Spatial mosaic formation through frequency-dependent selection in Müllerian mimicry complexes.

    PubMed

    Sherratt, Thomas N

    2006-05-21

    Although contemporary models of Müllerian mimicry have considered the movement of interfacial boundaries between two distinct mimetic forms, and even the possibility of polymorphisms in two patch systems, no model has considered how multiple forms of Müllerian mimics might evolve and be maintained over large geographical areas. A spatially explicit individual-based model for the evolution of Müllerian mimicry is presented, in which two unpalatable species are distributed over discrete cells within a regular lattice. Populations in each cell are capable of genetic drift and experience localized dispersal as well as frequency-dependent selection by predators. When each unpalatable prey species was introduced into a random cell and allowed to spread, then mimicry evolved throughout the system in the form of a spatial mosaic of phenotypes, separated by narrow "hybrid zones". The primary mechanism generating phenotypic diversity was the occasional establishment of new mutant forms in unoccupied cells and their subsequent maintenance (and spread) through frequency-dependent selection. The mean number of discrete clusters of the same morph that formed in the lattice was higher the higher the intensity of predation, and higher the lower the dispersal rate of unpalatable prey. Under certain conditions the hybrid zones moved, in a direction dependent on the curvature of their interfacial boundaries. However, the mimetic mosaics were highly stable when the intensity of predation was high and the rate of prey dispersal was low. Overall, this model highlights how a stable mosaic of different mimetic forms can evolve from a range of starting conditions through a combination of chance effects and localized frequency-dependent selection.

  12. Long period gratings based frequency selective interrogation of micro-resonators along the same fiber

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Chiavaioli, F.; Baldini, F.; Cosi, F.; Righini, G. C.; Soria, S.; Trono, C.; Nunzi Conti, G.

    2016-03-01

    A novel optical fiber coupler to whispering gallery mode (WGM) micro-resonators, which allows frequency selective addressing of different micro-resonators along the same fiber, is proposed. The coupling unit is based on a pair of identical long period fiber gratings (LPGs) and a thick adiabatic taper (>15 μm in waist) in between, where evanescent coupling from cladding modes to WGMs takes place. This robust unit can be replicated more times along the same fiber, simply cascading LPGs with different bands. Independent addressing of two different resonators along the same fiber is demonstrated.

  13. Selective polarization of dielectric materials under electromagnetic scattering at radio frequency

    NASA Astrophysics Data System (ADS)

    Sinha, Dhiraj; Huang, Shao Ying

    2016-08-01

    An analytical study of scattering between electromagnetic waves at radiofrequencies and the collective electromagnetic modes in dielectric solids which are generated as a result of transient polarization of the bound charges under non-equilibrium thermal interaction is presented. The fundamental observation is that the symmetry of frequency spectrum of electromagnetic modes is explicitly broken due to finite electrodynamic boundaries leading to dominance of selective modes. The near field radio scattering of the electromagnetic wave by the given dielectric material results in modulation of the existing electromagnetic modes, which lead to the generation of characteristic radio emission, having a specific radio signature of the given system.

  14. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect

    Ryan T. Kristensen; John F. Beausang; David M. DePoy

    2003-12-01

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  15. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect

    RF Kristensen; JF Beausang; DM DePoy

    2004-06-28

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  16. FPGA based Smart Wireless MIMO Control System

    NASA Astrophysics Data System (ADS)

    Usman Ali, Syed M.; Hussain, Sajid; Akber Siddiqui, Ali; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-12-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input & Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively.

  17. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-06-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable␣size and period of the FSS design. In addition, the FSS design has a stable␣frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  18. Ecological mechanisms of evolution by natural selection: causal processes generating density-and-frequency dependent fitness.

    PubMed

    Nakajima, T

    1998-02-21

    The current theory of natural selection explains that adaptive evolution occurs because genotypes with greater survival or reproductive tendencies, due to their particular biological properties, tend to increase in frequency over the lesser ones in a common environment; therefore, the former will eventually replace the latter. In nature, such a selection process most often occurs in a local population which is nested in a community involving local ecological dynamics which are not clearly articulated in the explanatory scheme of the theory. This paper seeks to explicate such an ecological process giving rise to the evolution of a local population with a particular focus on dynamic effects of an increase in the number of invasive, new types on the fate of old ones. Arguments using the ecological-mechanistic model, representing negative interactions among alternative types of organisms, suggest major ecological mechanisms by which the new replace the old; a selective increase in the number of one type leads to a decrease in the equilibrial abundance of a limiting resource, an increase in the density of conspecifics, and/or an increase in the density of predators, which would in turn lower the per capita reproductive rate, or raise the morality rate of another and make it extinct. Thus, replacement due to selection is associated with such dynamic shifts in equilibria occurring in a local community. The analysis of three (a resource, a prey and a predator) and four species (those plus a top predator) models suggests that evolutionary processes cannot be predicted without reference to the web structure of the community, that some fitness components causing a selective increase in a particular type can have, in some cases, nothing to do with factors causing selective decreases in alternatives, and that evolution of some traits can occur without resource competition.

  19. High-frequency stimulation selectively blocks different types of fibers in frog sciatic nerve.

    PubMed

    Joseph, Laveeta; Butera, Robert J

    2011-10-01

    Conduction block using high-frequency alternating current (HFAC) stimulation has been shown to reversibly block conduction through various nerves. However, unlike simulations and experiments on myelinated fibers, prior experimental work in our lab on the sea-slug, Aplysia, found a nonmonotonic relationship between frequency and blocking thresholds in the unmyelinated fibers. To resolve this discrepancy, we investigated the effect of HFAC waveforms on the compound action potential of the sciatic nerve of frogs. Maximal stimulation of the nerve produces a compound action potential consisting of the A-fiber and C-fiber components corresponding to the myelinated and unmyelinated fibers' response. In our study, HFAC waveforms were found to induce reversible block in the A-fibers and C-fibers for frequencies in the range of 5-50 kHz and for amplitudes from 0.1-1 mA. Although the A-fibers demonstrated the monotonically increasing threshold behavior observed in published literature, the C-fibers displayed a nonmonotonic relationship, analogous to that observed in the unmyelinated fibers of Aplysia. This differential blocking behavior observed in myelinated and unmyelinated fibers during application of HFAC waveforms has diverse implications for the fields of selective stimulation and pain management.

  20. Sexual selection on male vocal fundamental frequency in humans and other anthropoids.

    PubMed

    Puts, David A; Hill, Alexander K; Bailey, Drew H; Walker, Robert S; Rendall, Drew; Wheatley, John R; Welling, Lisa L M; Dawood, Khytam; Cárdenas, Rodrigo; Burriss, Robert P; Jablonski, Nina G; Shriver, Mark D; Weiss, Daniel; Lameira, Adriano R; Apicella, Coren L; Owren, Michael J; Barelli, Claudia; Glenn, Mary E; Ramos-Fernandez, Gabriel

    2016-04-27

    In many primates, including humans, the vocalizations of males and females differ dramatically, with male vocalizations and vocal anatomy often seeming to exaggerate apparent body size. These traits may be favoured by sexual selection because low-frequency male vocalizations intimidate rivals and/or attract females, but this hypothesis has not been systematically tested across primates, nor is it clear why competitors and potential mates should attend to vocalization frequencies. Here we show across anthropoids that sexual dimorphism in fundamental frequency (F0) increased during evolutionary transitions towards polygyny, and decreased during transitions towards monogamy. Surprisingly, humans exhibit greater F0 sexual dimorphism than any other ape. We also show that low-F0 vocalizations predict perceptions of men's dominance and attractiveness, and predict hormone profiles (low cortisol and high testosterone) related to immune function. These results suggest that low male F0 signals condition to competitors and mates, and evolved in male anthropoids in response to the intensity of mating competition. PMID:27122553

  1. Diversity technique for DAPSK signal over the frequency-selective fading channel

    NASA Astrophysics Data System (ADS)

    Lee, Jong Y.; Chung, Young M.; Lee, Sang U.

    2001-10-01

    In this paper, a maximal ratio combining (MRC) and weighted maximal ratio combining (WMRC) diversity receiver are proposed. The MRC receiver makes a decision at each branch based on the minimum distance criterion. The performance of the MRC receiver is analyzed on the frequency-selective Rayleigh and Rician fading channels, in terms of the union bound for bit error probability. In addition, the WMRC receiver, which assigns weighting factors to the decision variable at each branch, based on the optimum decision boundaries, is proposed. The performance of the WMRC is investigated through the computer simulation and compared with those of MRC and equal gain combining (EGC). From the results, it is found that the performances of the WMRC and MRC are better than those of EGC on both the frequency-selective Rayleigh and Rician fading channels and performance improvements over the EGC are noticeable when the number of diversity branches is large as long as the root mean square (rms) delay is smaller than or equal to 10% of the symbol period.

  2. The effect of frequency-dependent selection on resistance and tolerance to herbivory.

    PubMed

    Garrido, E; Llamas-Guzmán, L P; Fornoni, J

    2016-03-01

    Negative frequency-dependent selection (FDS), where rare genotypes are favoured by selection, is commonly invoked as a mechanism explaining the maintenance of genetic variation in plant defences. However, empirical tests of FDS in plant-herbivore interactions are lacking. We evaluated whether the oviposition preference of the specialist herbivore Lema daturaphila is a mechanism through which this herbivore can exert FDS on its host plant Datura stramonium. The frequency of contrasting resistance-tolerance strategies was manipulated within experimental plots, and the plants were exposed to a similar initial density of their natural herbivore. Herbivore oviposition preference and final density, as well as plant damage and seed production, were estimated. Overall, we found that the high-resistant-low-tolerant genotypes produced four times more seeds when common than when rare, whereas the high-tolerant-low-resistant genotypes achieved twice its fitness when rare than when common. This pattern was the result of differential oviposition preferences. In addition, when the high-resistant-low-tolerant genotypes were common, there was a three-fold decreased in herbivore final density which led to a decrease in damage level by 10%. Thus, in our experiment positive FDS seems to favour resistance over tolerance. We discuss how this result would change if the extent of herbivore local adaptation and damage modify the pattern of positive FDS acting on resistance and the optimal allocation to tolerance. PMID:26411698

  3. Selective ablation of sub- and supragingival calculus with a frequency-doubled Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1995-05-01

    In a preceding trial the absorption characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to contain chromophores absorbing in the ultraviolet spectral region up to 420 nm. The aim of the actual study was the ablation of sub- and supragingival calculus using a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz). Extracted human teeth presenting sub- and supragingival calculus were irradiated perpendicular to their axis with a laser fluence of 1 Jcm-2. Using a standard application protocol calculus was irradiated at the enamel surface, at the junction between enamel and root, and at the root surface (located on dentin or on cementum). During the irradiation procedure an effective water cooling-system was engaged. For light microscopical investigations undecalcified histological sections were prepared after treatment. The histological sections revealed that a selective and total removal of calculus is possible at all locations without ablation of healthy enamel, dentin or cementum. Even low fluences provide us with a high effectiveness for the ablation of calculus. Thus, based on different absorption characteristics and ablation thresholds, engaging a frequency doubled Alexandrite-laser a fast and, even more, a selective ablation of sub- and supragingival calculus is possible without adverse side effects to the surrounding tissues. Even more, microbial dental plaque can be perfectly removed.

  4. Frequency-selective absorbance detection: Refractive index and turbidity compensation with dual-wavelength measurement.

    PubMed

    Eom, In-Yong; Dasgupta, Purnendu K

    2006-06-15

    A frequency-selective absorbance detection approach and its applications are described. First, a digital signal processor-lock-in amplifier (DSP-LIA)-based absorbance detector was evaluated. Compared to a simple operational amplifier (TL082CP)-based detector, the DSP-LIA-based detector showed lower noise levels, but the relative advantage was reduced under very low photocurrent levels (down to few nA). A 7cm pathlength flow cell with this commercial LIA-based detector exhibited excellent Beer's law linearity (r(2)=0.9999) and a noise level of 7 micro absorbance units (muAU). The limit of detection (LOD, S/N=3) for methyl orange (MO) was 7nM with this detector. Finally, as a more affordable alternative to an LIA, a balanced demodulator integrated circuit chip was used to fabricate a dual wavelength-frequency-selective LED-based absorbance detector. This device successfully compensated refractive index (RI) effect and turbidity effect in test flow systems. The LOD for MO with this system was 8nM.

  5. MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Prabu, K.; Kumar, D. Sriram

    2015-05-01

    An optical wireless communication system is an alternative to radio frequency communication, but atmospheric turbulence induced fading and misalignment fading are the main impairments affecting an optical signal when propagating through the turbulence channel. The resultant of misalignment fading is the pointing errors, it degrades the bit error rate (BER) performance of the free space optics (FSO) system. In this paper, we study the BER performance of the multiple-input multiple-output (MIMO) FSO system employing coherent binary polarization shift keying (BPOLSK) in gamma-gamma (G-G) channel with pointing errors. The BER performance of the BPOLSK based MIMO FSO system is compared with the single-input single-output (SISO) system. Also, the average BER performance of the systems is analyzed and compared with and without pointing errors. A novel closed form expressions of BER are derived for MIMO FSO system with maximal ratio combining (MRC) and equal gain combining (EGC) diversity techniques. The analytical results show that the pointing errors can severely degrade the performance of the system.

  6. Effects of unsaturated fatty acids on torpor frequency and diet selection in Djungarian hamsters (Phodopus sungorus).

    PubMed

    Diedrich, Victoria; Steinlechner, Stephan; Scherbarth, Frank

    2014-12-15

    Essential polyunsaturated fatty acids (PUFA) have been shown to play a beneficial role in hibernating mammals. High amounts of dietary PUFA led to an earlier hibernation onset, deeper and longer hibernation bouts and a higher proportion of hibernating animals in several species. In contrast, the relevance of dietary PUFA for daily heterotherms exhibiting only brief and shallow torpor bouts is less well studied. Therefore, diets differing in PUFA composition were used to examine the effects on the frequency of spontaneous daily torpor in Djungarian hamsters (Phodopus sungorus). In contrast to earlier studies, we were interested in whether the ratio of n-6 to n-3 PUFA affects torpor expression, and in comparison with a diet rich in monounsaturated fatty acids (MUFA). Although we found a positive effect on torpor frequency in hamsters fed a diet rich in n-6 PUFA compared with the groups fed diets either rich in n-3 PUFA or MUFA, the latter two groups did not show unusually low torpor frequencies. The results of the additional diet choice experiment indicated that hamsters in short photoperiod select food with only a slight excess of n-6 PUFA compared with n-3 PUFA (ratio of 1 to 1.5). However, there was no significant difference in torpor frequency between the diet choice group and hamsters fed on standard chow with a sevenfold excess of n-6 PUFA. In summary, the present data strongly indicate that the dietary composition of unsaturated fatty acids plays a minor role in the occurrence of spontaneous daily torpor in Djungarian hamsters.

  7. Multi-band reflector antenna with double-ring element frequency selective subreflector

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Lee, S. W.

    1993-01-01

    Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.

  8. Retail Deli Slicer Cleaning Frequency--Six Selected Sites, United States, 2012.

    PubMed

    Brown, Laura G; Hoover, E Rickamer; Ripley, Danny; Matis, Bailey; Nicholas, David; Hedeen, Nicole; Faw, Brenda

    2016-01-01

    Listeria monocytogenes (Listeria) causes the third highest number of foodborne illness deaths (an estimated 255) in the United States annually, after nontyphoidal Salmonella species and Toxoplasma gondii (1). Deli meats are a major source of listeriosis illnesses, and meats sliced and packaged at retail delis are the major source of listeriosis illnesses attributed to deli meat (4). Mechanical slicers pose cross-contamination risks in delis and are an important source of Listeria cross-contamination. Reducing Listeria contamination of sliced meats in delis will likely reduce Listeria illnesses and outbreaks. Good slicer cleaning practices can reduce this foodborne illness risk. CDC's Environmental Health Specialists Network (EHS-Net) studied how often retail deli slicers were fully cleaned (disassembled, cleaned, and sanitized) at the Food and Drug Administration (FDA) Food Code-specified minimum frequency of every 4 hours and examined deli and staff characteristics related to slicer cleaning frequency. Interviews with staff members in 298 randomly-selected delis in six EHS-Net sites showed that approximately half of delis fully cleaned their slicers less often than FDA's specified minimum frequency. Chain-owned delis and delis with more customers, more slicers, required manager food safety training, food safety-knowledgeable workers, written slicer-cleaning policies, and food safety-certified managers fully cleaned their slicers more frequently than did other types of delis, according to deli managers or workers. States and localities should require deli manager training and certification, as specified in the FDA Food Code. They should also consider encouraging or requiring delis to have written slicer-cleaning policies. Retail food industry leaders can also implement these prevention efforts to reduce risk in their establishments. Because independent and smaller delis had lower frequencies of slicer cleaning, prevention efforts should focus on these types of

  9. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  10. Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory

    NASA Astrophysics Data System (ADS)

    Choi, Junil; Love, David J.; Bidigare, Patrick

    2014-10-01

    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.

  11. Multilevel Concatenated Block Modulation Codes for the Frequency Non-selective Rayleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun

    1996-01-01

    This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.

  12. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2011-01-01

    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  13. A novel tunable frequency selective surface absorber with dual-DOF for broadband applications.

    PubMed

    Kong, Peng; Yu, XiaoWei; Liu, ZhengYang; Zhou, Kai; He, Yun; Miao, Ling; Jiang, JianJun

    2014-12-01

    A novel tunable frequency selective surface (FSS) with dual-degrees of freedom (DOF) is presented, and firstly applied to broadband absorber. Based on a simple prototype unit cell resonator, an approach for achieving multi-resonances is studied. A unit cell pattern with gradient edges is discussed, and variable resistor and variable capacitor are introduced to fully utilize its characteristic of multi-resonances. Bias line is designed to provide bias voltage respectively for two variable devices and provide two operational DOF for FSS. Simulation and measurement results both show that the tunable FSS absorber with dual-DOF has wideband absorption with the reflectivity below -10 dB in 1-5 GHz and with a total thickness of about 10 mm. PMID:25606952

  14. Near- and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths

    SciTech Connect

    Tucker, Eric; Boreman, Glenn; D'Archangel, Jeffrey; Raschke, Markus B.

    2014-07-28

    Near- and far-field measurements of phase-ramped loop and patch structures are presented and compared to simulations. The far-field deflection measurements show that the phase-ramped structures can deflect a beam away from specular reflection, consistent with simulations. Scattering scanning near-field optical microscopy of the elements comprising the phase ramped structures reveals part of the underlying near-field phase contribution that dictates the far-field deflection, which correlates with the far-field phase behavior that was expected. These measurements provide insight into the resonances, coupling, and spatial phase variation among phase-ramped frequency selective surface (FSS) elements, which are important for the performance of FSS reflectarrays.

  15. Tipping the mutation-selection balance: Limited migration increases the frequency of deleterious mutants.

    PubMed

    Cooper, Jacob D; Neuhauser, Claudia; Dean, Antony M; Kerr, Benjamin

    2015-09-01

    Typical mutation-selection models assume well-mixed populations, but dispersal and migration within many natural populations is spatially limited. Such limitations can lead to enhanced variation among locations as different types become clustered in different places. Such clustering weakens competition between unlike types relative to competition between like types; thus, the rate by which a fitter type displaces an inferior competitor can be affected by the spatial scale of movement. In this paper, we use a birth-death model to show that limited migration can affect asexual populations by creating competitive refugia. We use a moment closure approach to show that as population structure is introduced by limiting migration, the equilibrial frequency of deleterious mutants increases. We support and extend the model through stochastic simulation, and we use a spatially explicit cellular automaton approach to corroborate the results. We discuss the implications of these results for standing variation in structured populations and adaptive valley crossing in Wright's "shifting balance" process.

  16. Infrared Frequency Selective Surfaces Fabricated using Optical Lithography and Phase-Shift Masks

    SciTech Connect

    S.J. Spector; D.K. Astolfi; S.P. Doran; T.M. Lyszczarz; J.E. Raynolds

    2001-06-15

    A frequency selective surface (FSS) structure has been fabricated for use in a thermophotovoltaic system. The FSS provides a means for reflecting the unusable light below the bandgap of the thermophotovoltaic cell while transmitting the usable light above the bandgap. This behavior is relatively independent of the light's incident angle. The fabrication of the FSS was done using optical lithography and a phase-shift mask. The FSS cell consisted of circular slits spaced by 1100 nm. The diameters and widths of the circular slits were 870 nm and 120 nm, respectively. The FSS was predicted to pass wavelengths near 7 {micro}m and reflect wavelengths outside of this pass-band. The FSSs fabricated performed as expected with a pass-band centered near 5 {micro}m.

  17. One Dimensional Capacitive Loading in a Frequency Selective Surface for Low Profile Antenna Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.; Herzig, Paul

    2011-01-01

    In this paper, the impact of adding discrete capacitive loading along one dimension of a frequency selective surface for low profile antenna applications is presented for the first time. The measured data demonstrates comparable performance between a non-loaded and a capacitively-loaded FSS with a significant reduction in the number of cells and/or cell geometry size. Additionally, the provision of discrete capacitive loads reduces the FSS susceptibility to fabrication tolerances based on placement of a fixed grid capacitance. The bandwidth increased from 1.8% to 7.3% for a total antenna thickness of approx. lambda/22, and from 1.5% to 9.2% for a thickness of approx. lambda/40. The total antenna area for each case was reduced by 55% and 12%, respectively.

  18. Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings

    NASA Astrophysics Data System (ADS)

    Tadza, N.; Laurenson, D.; Thompson, J. S.

    2014-11-01

    This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.

  19. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  20. Selected low-flow frequency statistics for continuous-record streamgage locations in Maryland, 2010

    USGS Publications Warehouse

    Doheny, Edward J.; Banks, William S.L.

    2010-01-01

    According to a 2008 report by the Governor's Advisory Committee on the Management and Protection of the State's Water Resources, Maryland's population grew by 35 percent between 1970 and 2000, and is expected to increase by an additional 27 percent between 2000 and 2030. Because domestic water demand generally increases in proportion to population growth, Maryland will be facing increased pressure on water resources over the next 20 years. Water-resources decisions should be based on sound, comprehensive, long-term data and low-flow frequency statistics from all available streamgage locations with unregulated streamflow and adequate record lengths. To provide the Maryland Department of the Environment with tools for making future water-resources decisions, the U.S. Geological Survey initiated a study in October 2009 to compute low-flow frequency statistics for selected streamgage locations in Maryland with 10 or more years of continuous streamflow records. This report presents low-flow frequency statistics for 114 continuous-record streamgage locations in Maryland. The computed statistics presented for each streamgage location include the mean 7-, 14-, and 30-consecutive day minimum daily low-flow dischages for recurrence intervals of 2, 10, and 20 years, and are based on approved streamflow records that include a minimum of 10 complete climatic years of record as of June 2010. Descriptive information for each of these streamgage locations, including the station number, station name, latitude, longitude, county, physiographic province, and drainage area, also is presented. The statistics are planned for incorporation into StreamStats, which is a U.S. Geological Survey Web application for obtaining stream information, and is being used by water-resource managers and decision makers in Maryland to address water-supply planning and management, water-use appropriation and permitting, wastewater and industrial discharge permitting, and setting minimum required

  1. Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies.

    PubMed

    Juliano, Pablo; Temmel, Sandra; Rout, Manoj; Swiergon, Piotr; Mawson, Raymond; Knoerzer, Kai

    2013-01-01

    Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general. PMID:22929928

  2. All-dielectric frequency selective surface design based on dielectric resonator

    NASA Astrophysics Data System (ADS)

    Zheng-Bin, Wang; Chao, Gao; Bo, Li; Zhi-Hang, Wu; Hua-Mei, Zhang; Ye-Rong, Zhang

    2016-06-01

    In this work, we propose an all-dielectric frequency selective surface (FSS) composed of periodically placed high-permittivity dielectric resonators and a three-dimensional (3D) printed supporter. Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles, quadrupoles, and higher order terms. The re-radiated electric and magnetic fields by these multipoles interact with the incident fields, which leads to total reflection or total transmission in some special frequency bands. The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth (FBW) of 22.2%, which is consistent with the simulated result. Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 61372045, 61472045, and 61401229), the Science and Technology Project of Jiangsu Province, China (Grant No. BE2015002), the Open Research Program of the State Key Laboratory of Millimeter Waves, China (Grant Nos. K201616 and K201622), and the Nanjing University of Posts and Telecommunications Scientific Foundation, China (Grant No. NY214148).

  3. A frequency-based hypothesis for mechanically targeting and selectively attacking cancer cells

    PubMed Central

    Fraldi, M.; Cugno, A.; Deseri, L.; Dayal, K.; Pugno, N. M.

    2015-01-01

    Experimental studies recently performed on single cancer and healthy cells have demonstrated that the former are about 70% softer than the latter, regardless of the cell lines and the measurement technique used for determining the mechanical properties. At least in principle, the difference in cell stiffness might thus be exploited to create mechanical-based targeting strategies for discriminating neoplastic transformations within human cell populations and for designing innovative complementary tools to cell-specific molecular tumour markers, leading to possible applications in the diagnosis and treatment of cancer diseases. With the aim of characterizing and gaining insight into the overall frequency response of single-cell systems to mechanical stimuli (typically low-intensity therapeutic ultrasound), a generalized viscoelastic paradigm, combining classical and spring-pot-based models, is introduced for modelling this problem by neglecting the cascade of mechanobiological events involving the cell nucleus, cytoskeleton, elastic membrane and cytosol. Theoretical results show that differences in stiffness, experimentally observed ex vivo and in vitro, allow healthy and cancer cells to be discriminated, by highlighting frequencies (from tens to hundreds of kilohertz) associated with resonance-like phenomena—prevailing on thermal fluctuations—that could be helpful in targeting and selectively attacking tumour cells. PMID:26378121

  4. Frequency-selective quantification of skin perfusion behavior during allergic testing using photoplethysmography imaging

    NASA Astrophysics Data System (ADS)

    Blanik, Nikolai; Blazek, Claudia; Pereira, Carina; Blazek, Vladimir; Leonhardt, Steffen

    2014-03-01

    Diagnosis of allergic immediate-type reactions is dependent on the visual assessment of the attending physician. With our novel non-obtrusive, camera-based photoplethysmography imaging (PPGI) setup, perfusion in the allergic testing area can be quantified and results displayed with spatial resolution in functional mappings. Thereby, each PPGI camera pixel can be assumed to be a classical (skin-based) reflective mode PPG sensor. An algorithm for post-processing of collected PPGI video sequences was developed to transfer black-and-white PPGI images into virtual 3D perfusion maps. For the first time, frequency selected perfusion quantification was assessed. For the presented evaluation, PPGI data from our clinical study were used [1]. For this purpose, different concentrations of histamine dilutions were administered to 27 healthy volunteers. Our results show clear trends in an increase in heartbeat synchronous perfusion rhythms and, simultaneously, a decrease of lower frequency vasomotor rhythms in these areas. These results, published for the first time, allow new insight into the distribution of skin perfusion dynamics and demonstrate the intuitive clinical usability of the proposed system.

  5. MIMO Sliding Mode Control for a Tailless Fighter Aircraft, An Alternative to Reconfigurable Architectures

    NASA Technical Reports Server (NTRS)

    Wells, S. R.; Hess, R. A.

    2002-01-01

    A frequency-domain procedure for the design of sliding mode controllers for multi-input, multi-output (MIMO) systems is presented. The methodology accommodates the effects of parasitic dynamics such as those introduced by unmodeled actuators through the introduction of multiple asymptotic observers and model reference hedging. The design procedure includes a frequency domain approach to specify the sliding manifold, the observer eigenvalues, and the hedge model. The procedure is applied to the development of a flight control system for a linear model of the Innovative Control Effector (ICE) fighter aircraft. The stability and performance robustness of the resulting design is demonstrated through the introduction of significant degradation in the control effector actuators and variation in vehicle dynamics.

  6. An Adaptive Cooperative Strategy for Underlay MIMO Cognitive Radio Networks: An Opportunistic and Low-Complexity Approach

    NASA Astrophysics Data System (ADS)

    Mazoochi, M.; Pourmina, M. A.; Bakhshi, H.

    2015-03-01

    The core aim of this work is the maximization of the achievable data rate of the secondary user pairs (SU pairs), while ensuring the QoS of primary users (PUs). All users are assumed to be equipped with multiple antennas. It is assumed that when PUs are present, the direct communications between SU pairs introduces intolerable interference to PUs and thereby SUs transmit signal using the cooperation of other SUs and avoid transmitting in the direct channel. In brief, an adaptive cooperative strategy for multiple-input/multiple-output (MIMO) cognitive radio networks is proposed. At the presence of PUs, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The optimal approach for determining the power allocation and the cooperating SU is proposed. Besides, the outage probability of the proposed communication protocol is further derived. Due to high complexity of the optimal approach, a low-complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low-complexity approach is only about 14%, while the complexity is greatly reduced.

  7. Design of PID Controller for Non Square MIMO System

    NASA Astrophysics Data System (ADS)

    Thirunavukkarasu, I.; George, V. I.; Priya, S. Shanmuga; Vardhan, Yash

    2011-12-01

    Most of the processes in real time industries are multi input multi output (MIMO) in nature. Normally RGA method is used to decouple the interference between the process loops. The decouplers can be easily designed for the stable processes with dead time. As a special case we will also obtain the mathematical model of certain systems as a non-square system with unstable/integrating process. Designing the controller for such processes is being a challenging one. As a case study, we have made an attempt to design the controller for the rotary inverted pendulum, whose mathematical model is resulted as a Non-Square MIMO integrating process.

  8. Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Arihood, Leslie D.

    2010-01-01

    This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the

  9. Optimum Co-Design for Spectrum Sharing between Matrix Completion Based MIMO Radars and a MIMO Communication System

    NASA Astrophysics Data System (ADS)

    Li, Bo; Petropulu, Athina P.; Trappe, Wade

    2016-09-01

    Recently proposed multiple input multiple output radars based on matrix completion (MIMO-MC) employ sparse sampling to reduce the amount of data that need to be forwarded to the radar fusion center, and as such enable savings in communication power and bandwidth. This paper proposes designs that optimize the sharing of spectrum between a MIMO-MC radar and a communication system, so that the latter interferes minimally with the former. First, the communication system transmit covariance matrix is designed to minimize the effective interference power (EIP) to the radar receiver, while maintaining certain average capacity and transmit power for the communication system. Two approaches are proposed, namely a noncooperative and a cooperative approach, with the latter being applicable when the radar sampling scheme is known at the communication system. Second, a joint design of the communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves even further EIP reduction.

  10. Accurate distortion estimation and optimal bandwidth allocation for scalable H.264 video transmission over MIMO systems.

    PubMed

    Jubran, Mohammad K; Bansal, Manu; Kondi, Lisimachos P; Grover, Rohan

    2009-01-01

    In this paper, we propose an optimal strategy for the transmission of scalable video over packet-based multiple-input multiple-output (MIMO) systems. The scalable extension of H.264/AVC that provides a combined temporal, quality and spatial scalability is used. For given channel conditions, we develop a method for the estimation of the distortion of the received video and propose different error concealment schemes. We show the accuracy of our distortion estimation algorithm in comparison with simulated wireless video transmission with packet errors. In the proposed MIMO system, we employ orthogonal space-time block codes (O-STBC) that guarantee independent transmission of different symbols within the block code. In the proposed constrained bandwidth allocation framework, we use the estimated end-to-end decoder distortion to optimally select the application layer parameters, i.e., quantization parameter (QP) and group of pictures (GOP) size, and physical layer parameters, i.e., rate-compatible turbo (RCPT) code rate and symbol constellation. Results show the substantial performance gain by using different symbol constellations across the scalable layers as compared to a fixed constellation.

  11. Main-channel slopes of selected streams in Iowa for estimation of flood-frequency discharges

    USGS Publications Warehouse

    Eash, David A.

    2003-01-01

    This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating floodfrequency discharges. Multivariable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantifications. The multivariable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantifications of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantifications. Median differences between manual measurements and GIS quantifications of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantifications indicate that use of GIS values of MCS for Region 3 substantially

  12. Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma.

    PubMed

    Hooijkaas, Anna; Gadiot, Jules; Morrow, Michelle; Stewart, Ross; Schumacher, Ton; Blank, Christian U

    2012-08-01

    The development of targeted therapies and immunotherapies has markedly advanced the treatment of metastasized melanoma. While treatment with selective BRAF(V600E) inhibitors (like vemurafenib or dabrafenib) leads to high response rates but short response duration, CTLA-4 blocking therapies induce sustained responses, but only in a limited number of patients. The combination of these diametric treatment approaches may further improve survival, but pre-clinical data concerning this approach is limited. We investigated, using Tyr::CreER(T2)PTEN(F-/-)BRAF(F-V600E/+) inducible melanoma mice, whether BRAF(V600E) inhibition can synergize with anti-CTLA-4 mAb treatment, focusing on the interaction between the BRAF(V600E) inhibitor PLX4720 and the immune system. While PLX4720 treatment strongly decreased tumor growth, it did not induce cell death in BRAF(V600E)/PTEN(-/-) melanomas. More strikingly, PLX4720 treatment led to a decreased frequency of tumor-resident T cells, NK-cells, MDSCs and macrophages, which could not be restored by the addition of anti-CTLA-4 mAb. As this effect was not observed upon treatment of BRAF wild-type B16F10 tumors, we conclude that the decreased frequency of immune cells correlates to BRAF(V600E) inhibition in tumor cells and is not due to an off-target effect of PLX4720 on immune cells. Furthermore, anti-CTLA-4 mAb treatment of inducible melanoma mice treated with PLX4720 did not result in enhanced tumor control, while anti-CTLA-4 mAb treatment did improve the effect of tumor-vaccination in B16F10-inoculated mice. Our data suggest that vemurafenib may negatively affect the immune activity within the tumor. Therefore, the potential effect of targeted therapy on the tumor-microenvironment should be taken into consideration in the design of clinical trials combining targeted and immunotherapy.

  13. Selection of strongly immunogenic "tum-" variants from tumors at high frequency using 5-azacytidine

    PubMed Central

    1984-01-01

    Highly immunogenic "tum-" (non-tumorigenic in normal syngeneic hosts) clonal variants can be selected from a variety of poorly immunogenic and highly tumorigenic mouse cell lines at very high frequencies (e.g., greater than 80%) after treatment in vitro with chemical mutagens such as ethyl methanesulfonate (EMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We herein demonstrate that the same result can be obtained with the poorly mutagenic cytidine analogue, 5-azacytidine, a strong DNA hypomethylating agent. 5-Azacytidine and EMS were equally and comparably effective, or ineffective, in inducing tum- variants from three different highly tumorigenic mouse cell lines. Like mutagen- induced tum- variants, those obtained after 5-azacytidine treatment generated usually strong cytolytic T lymphocyte (CTL) responses in vitro, and could grow in immunosuppressed (nude mouse) hosts. However, pretreatment of the tumor cell lines with 5-azacytidine did not cause significant increases in mutations at several independent drug- resistant gene loci, whereas EMS did. It is known that treatment of cells with 5-azacytidine can induce transcriptional activation of "silent" genes through a reduction of DNA 5-methylcytosine content, a process that can also be effected by mutagenic DNA alkylating agents such as EMS and MNNG. We therefore hypothesize that an "epigenetic" mechanism (DNA hypomethylation) leading to activation and expression of genes coding for potential tumor antigens is involved in the generation at high frequency of tum- variants after "mutagen" treatment. The implications of these findings to mechanisms of tumor progression and the generation of tumor heterogeneity are discussed. PMID:6201588

  14. Efficient hierarchical list decoder for massive optical MIMO transmission.

    PubMed

    Greenberg, Maxim; Nazarathy, Moshe; Orenstein, Meir

    2008-01-21

    We propose a novel MIMO scheme over multimode fiber, acting as a distributed random code generator fed by spatial codes, using silicon photonics in the transmitter and efficient list-based hierarchical submaximum-likelihood electronic detection in the receiver, providing an alternative to CWDM for implementation of ultra-high speed parallel transmission over short-range optical interconnects.

  15. The Quasar Fraction in Low-Frequency Selected Complete Samples and Implications for Unified Schemes

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    2000-01-01

    Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the 'quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log(base 10) (L(sub [OII])/W) approximately > 35 [or radio luminosity log(base 10) (L(sub 151)/ W/Hz.sr) approximately > 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta(sub trans) approximately equal 53 deg. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta(sub trans) and/or a gradual increase in the fraction of lightly-reddened (0 approximately < A(sub V) approximately < 5) lines-of-sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M8T, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.

  16. A study of trapped mode resonances in asymmetric X-shape resonator for frequency selective surface

    NASA Astrophysics Data System (ADS)

    Chen, Kejian; Liu, Hong; Wang, Yiqi; Zhu, Yiming

    2013-08-01

    FSS is a two-dimensional periodic array of resonating metallic-dielectric structures, When FSS device steps into Terahertz range from microwave range, it is studied as THz functional components (such as Terahertz filter, Terahertz biochemical sensor, etc.) to promote the functionality of the THz spectroscopy/imaging system. When the device requires a narrow band transmission window for frequency selecting or a high electric field concentration in certain area to improve its sensitivity for sensing, normally, a high quality (Q) resonant structure can give helps. Recently, high-Q resonance induced by trapped mode resonance i studied widely in FSS research areas. To induce trapped mode resonance, one can simply break the symmetric of the unit structure of FSS. In this paper, several asymmetric X-shaped resonators for FSS working in terahertz range have been studied numerically. To compare the behaviour of X-shape resonator under different conditions (with additional part: Heart lines, Shoulder lines, Wrap or Shoes squares), a common platform (θ=60, θis angle of X shape) which is suitable for most of cases was used to make the study more meaningful. As the field enhancement behaviour is related to the trapped mode introduced by the asymmetric structure, we propose such kind of device to be used as a high quality filter or as a sensing element for biochemical samples.

  17. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics

    NASA Astrophysics Data System (ADS)

    Spera, Stephanie A.; Cohn, Avery S.; VanWey, Leah K.; Mustard, Jack F.; Rudorff, Bernardo F.; Risso, Joel; Adami, Marcos

    2014-05-01

    This letter uses satellite remote sensing to examine patterns of cropland expansion, cropland abandonment, and changing cropping frequency in Mato Grosso, Brazil from 2001 to 2011. During this period, Mato Grosso emerged as a globally important center of agricultural production. In 2001, 3.3 million hectares of mechanized agriculture were cultivated in Mato Grosso, of which 500 000 hectares had two commercial crops per growing season (double cropping). By 2011, Mato Grosso had 5.8 million hectares of mechanized agriculture, of which 2.9 million hectares were double cropped. We found these agricultural changes to be selective with respect to land attributes—significant differences (p < 0.001) existed between the land attributes of agriculture versus non-agriculture, single cropping versus double cropping, and expansion versus abandonment. Many of the land attributes (elevation, slope, maximum temperature, minimum temperature, initial soy transport costs, and soil) that were associated with an increased likelihood of expansion were associated with a decreased likelihood of abandonment (p < 0.001). While land similar to agriculture and double cropping in 2001 was much more likely to be developed for agriculture than all other land, new cropland shifted to hotter, drier, lower locations that were more isolated from agricultural infrastructure (p < 0.001). The scarcity of high quality remaining agricultural land available for agricultural expansion in Mato Grosso could be contributing to the slowdown in agricultural expansion observed there over 2006 to 2011. Land use policy analyses should control for land scarcity constraints on agricultural expansion.

  18. Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb.

    PubMed

    Ryu, Han Young; Lee, Sung Hun; Lee, Won Kyu; Moon, Han Seb; Suh, Ho Suhng

    2008-03-01

    We performed an absolute frequency measurement of an acetylene stabilized laser utilizing a femtosecond injection locking technique that can select one component among the fiber laser comb modes. The injection locking scheme has all the fiber configurations. Femtosecond comb lines of 250 MHz spacing based on the fiber femtosecond laser were used for injection locking of a distributed feedback (DFB) laser operating at 1542 nm as a frequency reference. The comb injected DFB laser serves as a selection filter of optical comb modes and an amplifier for amplification of the selected mode. The DFB laser injection locked to the desired comb mode was used to evaluate the frequency stability and absolute frequency measurement of an acetylene stabilized laser. The frequency stability of the acetylene stabilized laser was measured to be 1.1 x 10(-12) for a 1 s averaging time, improving to 6.9 x 10(-14) after 512 s. The absolute frequency of the laser stabilized on the P(16) transition of (13)C(2)H(2) was measured to be 194 369 569 385.7 kHz.

  19. Frequency selective surfaces and metamaterials for high-power microwave applications

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Hao

    In recent years, metamaterials have received a significant amount of attention for providing engineered artificial properties which do not exist in nature such as high surface impedance, negative permittivity/permeability, and negative refractive index. However, under high-power illuminations, metamaterials tend to breakdown and alter their frequency responses. This dissertation includes two parts. First, I investigate the phenomenon of electromagnetic (EM) waves tunneling through epsilon- and mu-negative metamaterial slabs and its potential applications in designing high-power filters and frequency selective surfaces without breakdown. The second part is to investigate breakdown events in high-power microwave metamaterials. In this thesis, I examine EM waves tunneling through multi-layer structures composed of epsilon-negative (the relative permittivity is negative) materials sandwiched by double positive layers. Conventionally, EM waves can only propagate through epsilon-negative material under certain circumstance referred to as resonant tunneling. I demonstrate that this EM waves tunneling phenomenon is analogous to a well-known classic microwave filter theory. Based on this analogy, I proposed a synthesis procedure for designing this kind of structure from desired responses which are beneficial for developing high-power-capable spatial filters and microwave FSSs. To verify the proposed procedure, three prototypes of such a device are designed, fabricated and experimentally characterized and it is demonstrated that they can handle extremely high peak power levels. In the second half of my thesis, I study the impact of breakdown on the responses of metamaterials by examining several single-layer metasurfaces composed of miniaturized LC resonators. I demonstrate that the breakdown events, in atmospheric air, can be characterized with a reasonable degree of accuracy by modeling the streaming discharge as a low-impedance connection path. My recent study shows that

  20. Analysis of reflection, transmission and absorption of frequency selective surfaces in the infrared

    NASA Astrophysics Data System (ADS)

    Puscasu, Irina

    Frequency-selective surfaces (FSSs) are commonly used as dichroic filters in the microwave portion of the spectrum. These filters are typically configured as periodic arrays of metallic patches supported by a dielectric substrate, or as an array of apertures on a metallic sheet. To first order, the current-wave resonance of the individual patches or apertures determines the spectral behavior of the structure. The resonant dimension of the structures is on the order of a wavelength of the incident radiation. Using the high- resolution capabilities of direct-write electron-beam lithography (DEBL), the functionality of an FSS can be extended toward shorter wavelengths-into the infrared (IR), and even to visible wavelengths. Design of FSSs at these short wavelengths presents new problems-the usual assumption of perfect metal conductivity is not valid in the IR. In our method-of- moments model, we use a frequency-dependent complex conductivity to characterize the metallic structure, which allows prediction of the location, magnitude, and spectral width of the resonance. We compare the measured behavior of our IR FSSs to the theoretical predictions and find good agreement over a wide range of structure sizes and materials. Treating the loss mechanism in this way allows us to predict resonant effects not only for reflection and transmission, but for absorption as well. Kirchoff's Law, which states that absorption and emissivity are equal on a spectral basis, provides a means to develop IR FSSs for which the spectral emissivity can be enhanced over a desired range of wavelengths. This characteristic has potential application in development of new sources for IR spectroscopy, and in IR-signature management. Fabrication of IR FSSs by DEBL allows fine control over the dimensions of the metallic elements, but the direct write process is slow and hence too expensive for practical development of large-area IR FSSs. We investigated precision imprint embossing as a candidate

  1. Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm

    PubMed Central

    Jürgens, Tim

    2016-01-01

    Frequency selectivity can be quantified using masking paradigms, such as psychophysical tuning curves (PTCs). Normal-hearing (NH) listeners show sharp PTCs that are level- and frequency-dependent, whereas frequency selectivity is strongly reduced in cochlear implant (CI) users. This study aims at (a) assessing individual shapes of PTCs in CI users, (b) comparing these shapes to those of simulated CI listeners (NH listeners hearing through a CI simulation), and (c) increasing the sharpness of PTCs using a biologically inspired dynamic compression algorithm, BioAid, which has been shown to sharpen the PTC shape in hearing-impaired listeners. A three-alternative-forced-choice forward-masking technique was used to assess PTCs in 8 CI users (with their own speech processor) and 11 NH listeners (with and without listening through a vocoder to simulate electric hearing). CI users showed flat PTCs with large interindividual variability in shape, whereas simulated CI listeners had PTCs of the same average flatness, but more homogeneous shapes across listeners. The algorithm BioAid was used to process the stimuli before entering the CI users’ speech processor or the vocoder simulation. This algorithm was able to partially restore frequency selectivity in both groups, particularly in seven out of eight CI users, meaning significantly sharper PTCs than in the unprocessed condition. The results indicate that algorithms can improve the large-scale sharpness of frequency selectivity in some CI users. This finding may be useful for the design of sound coding strategies particularly for situations in which high frequency selectivity is desired, such as for music perception. PMID:27604785

  2. Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm.

    PubMed

    Langner, Florian; Jürgens, Tim

    2016-01-01

    Frequency selectivity can be quantified using masking paradigms, such as psychophysical tuning curves (PTCs). Normal-hearing (NH) listeners show sharp PTCs that are level- and frequency-dependent, whereas frequency selectivity is strongly reduced in cochlear implant (CI) users. This study aims at (a) assessing individual shapes of PTCs in CI users, (b) comparing these shapes to those of simulated CI listeners (NH listeners hearing through a CI simulation), and (c) increasing the sharpness of PTCs using a biologically inspired dynamic compression algorithm, BioAid, which has been shown to sharpen the PTC shape in hearing-impaired listeners. A three-alternative-forced-choice forward-masking technique was used to assess PTCs in 8 CI users (with their own speech processor) and 11 NH listeners (with and without listening through a vocoder to simulate electric hearing). CI users showed flat PTCs with large interindividual variability in shape, whereas simulated CI listeners had PTCs of the same average flatness, but more homogeneous shapes across listeners. The algorithm BioAid was used to process the stimuli before entering the CI users' speech processor or the vocoder simulation. This algorithm was able to partially restore frequency selectivity in both groups, particularly in seven out of eight CI users, meaning significantly sharper PTCs than in the unprocessed condition. The results indicate that algorithms can improve the large-scale sharpness of frequency selectivity in some CI users. This finding may be useful for the design of sound coding strategies particularly for situations in which high frequency selectivity is desired, such as for music perception. PMID:27604785

  3. Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm.

    PubMed

    Langner, Florian; Jürgens, Tim

    2016-09-07

    Frequency selectivity can be quantified using masking paradigms, such as psychophysical tuning curves (PTCs). Normal-hearing (NH) listeners show sharp PTCs that are level- and frequency-dependent, whereas frequency selectivity is strongly reduced in cochlear implant (CI) users. This study aims at (a) assessing individual shapes of PTCs in CI users, (b) comparing these shapes to those of simulated CI listeners (NH listeners hearing through a CI simulation), and (c) increasing the sharpness of PTCs using a biologically inspired dynamic compression algorithm, BioAid, which has been shown to sharpen the PTC shape in hearing-impaired listeners. A three-alternative-forced-choice forward-masking technique was used to assess PTCs in 8 CI users (with their own speech processor) and 11 NH listeners (with and without listening through a vocoder to simulate electric hearing). CI users showed flat PTCs with large interindividual variability in shape, whereas simulated CI listeners had PTCs of the same average flatness, but more homogeneous shapes across listeners. The algorithm BioAid was used to process the stimuli before entering the CI users' speech processor or the vocoder simulation. This algorithm was able to partially restore frequency selectivity in both groups, particularly in seven out of eight CI users, meaning significantly sharper PTCs than in the unprocessed condition. The results indicate that algorithms can improve the large-scale sharpness of frequency selectivity in some CI users. This finding may be useful for the design of sound coding strategies particularly for situations in which high frequency selectivity is desired, such as for music perception.

  4. An Approach to Near Field Data Selection in Radio Frequency Identification

    NASA Astrophysics Data System (ADS)

    Winkworth, Robert D.

    Personal identification is needed in many civil activities, and the common identification cards, such as a driver's license, have become the standard document de facto. Radio frequency identification has complicated this matter. Unlike their printed predecessors, contemporary RFID cards lack a practical way for users to control access to their individual fields of data. This leaves them more available to unauthorized parties, and more prone to abuse. Here, then was undertaken a means to test a novel RFID card technology that allows overlays to be used for reliable, reversible data access settings. Similar to other proposed switching mechanisms, it offers advantages that may greatly improve outcomes. RFID use is increasing in identity documents such as drivers' licenses and passports, and with it concern over the theft of personal information, which can enable unauthorized tracking or fraud. Effort put into designing a strong foundation technology now may allow for widespread development on them later. In this dissertation, such a technology was designed and constructed, to drive the central thesis that selective detuning could serve as a feasible, reliable mechanism. The concept had been illustrated effective in limiting access to all fields simultaneously before, and was here effective in limiting access to specific fields selectively. A novel card was produced in familiar dimensions, with an intuitive interface by which users may conceal the visible print of the card to conceal the wireless emissions it allows. A discussion was included of similar technologies, involving capacitive switching, that could further improve the outcomes if such a product were put to large-scale commercial fabrication. The card prototype was put to a battery of laboratory tests to measure the degree of independence between data fields and the reliability of the switching mechanism when used under realistically variable coverage, demonstrating statistically consistent performance in

  5. Design of thick frequency selective surfaces with complex apertures: Dichroics with cross-shaped and stepped rectangular apertures

    NASA Astrophysics Data System (ADS)

    Epp, L. W.; Chen, J. C.; Stanton, P. H.; Jorgenson, R. E.

    1992-06-01

    The unit cell shape of thick frequency selective surfaces, or dichroic plate, is dependent on its frequency requirements. One aperture shape may be chosen to give wider bandwidths, and another chosen for sharper frequency roll-off. This is analogous to circuits where the need for differing frequency response determines the circuit topology. Acting as spatial frequency filters, dichroics are a critical component in supporting the Deep Space Network (DSN) for spacecraft command and control up links as well as spacecraft down links. Currently these dichroic plates separate S-band at 2.0 - 232 GHz from X-band at 8.4 - 8.45 GHz. But new spacecraft communication requirements are also calling for an up link frequency at 7.165 GHz. In addition future spacecraft such as Craft/Cassini will require dichroics effectively separating K(sub a)-band frequencies in the 31 - 35 GHz range. The requirements for these surfaces are low transmission loss of less than 0.1 dB at high power levels. Also it is important to maintain a minimal relative phase shift between polarizations for circular polarization transmission. More current work has shown the successful demonstration of design techniques for straight, rectangular apertures at an incident angle of 30 deg. The plates are air-filled due to power dissipation and noise temperature considerations. Up-link frequency powers approach 100 kW making dielectrics undesirable. Here we address some of the cases in which the straight rectangular shape may have limited usefulness. For example, grating lobes become a consideration when the bandwidth required to include the new frequency of 7.165 GHz conflicts with the desired incident angle of 30 deg. For this case, the cross shape's increased packing density and bandwidth could make it desirable. When a sharp frequency response is required to separate two closely spaced K(sub a)-band frequencies, the stepped rectangular aperture might be advantageous.

  6. Design of thick frequency selective surfaces with complex apertures: Dichroics with cross-shaped and stepped rectangular apertures

    SciTech Connect

    Epp, L.W.; Chen, J.C.; Stanton, P.H.; Jorgenson, R.E.

    1992-07-01

    The unit cell shape of thick frequency selective surfaces, or dichroic plate, is dependent on its frequency requirements. One aperture shape may be chosen to give wider bandwidths, and another chosen for sharper frequency roll-off. This is analogous to circuits where the need for differing frequency response determines the circuit topology. Acting as spatial frequency filters, dichroics are a critical component in supporting the Deep Space Network (DSN) for spacecraft command a control up links as well as spacecraft down links. Currently these dichroic plates separate S-band at 2.0--232 GHz from X-band at 8.4--8.45 GHz. But new spacecraft communication requirements are also calling for an up link frequency at 7.165 GHz. In addition future spacecraft such as Craft/Casssini will require dichroics effectively separating K{sub a}-band frequencies in the 31--35 GHz range. The requirements for these surfaces are low transmission loss of < 0.1 dB at high power levels. Also is important to maintain a minimal relative phase shift between polarizations for circular polarization transmission. More current work has shown the successful demonstration of design techniques for straight, rectangular apertures at an incident angle of 30{degrees}. The plates are air-filled due to power dissipation and noise temperature considerations. Up-link frequency powers approach 100 kW making dielectrics undesirable. Here we address some of the cases in which the straight rectangular shape may have limited usefulness. For example, grating lobes become a consideration when the bandwidth required to include the new frequency of 7.165 GHz conflicts with the desired incident angle of 30{degrees}. For this case, the cross shape`s increased packing density and bandwidth could make it desirable. When a sharp frequency response is required to separate two closely space K{sub a}-band frequencies, the stepped rectangular aperture might be advantageous. 5 refs.

  7. Design of thick frequency selective surfaces with complex apertures: Dichroics with cross-shaped and stepped rectangular apertures

    SciTech Connect

    Epp, L.W.; Chen, J.C.; Stanton, P.H. ); Jorgenson, R.E. )

    1992-01-01

    The unit cell shape of thick frequency selective surfaces, or dichroic plate, is dependent on its frequency requirements. One aperture shape may be chosen to give wider bandwidths, and another chosen for sharper frequency roll-off. This is analogous to circuits where the need for differing frequency response determines the circuit topology. Acting as spatial frequency filters, dichroics are a critical component in supporting the Deep Space Network (DSN) for spacecraft command a control up links as well as spacecraft down links. Currently these dichroic plates separate S-band at 2.0--232 GHz from X-band at 8.4--8.45 GHz. But new spacecraft communication requirements are also calling for an up link frequency at 7.165 GHz. In addition future spacecraft such as Craft/Casssini will require dichroics effectively separating K{sub a}-band frequencies in the 31--35 GHz range. The requirements for these surfaces are low transmission loss of < 0.1 dB at high power levels. Also is important to maintain a minimal relative phase shift between polarizations for circular polarization transmission. More current work has shown the successful demonstration of design techniques for straight, rectangular apertures at an incident angle of 30{degrees}. The plates are air-filled due to power dissipation and noise temperature considerations. Up-link frequency powers approach 100 kW making dielectrics undesirable. Here we address some of the cases in which the straight rectangular shape may have limited usefulness. For example, grating lobes become a consideration when the bandwidth required to include the new frequency of 7.165 GHz conflicts with the desired incident angle of 30{degrees}. For this case, the cross shape's increased packing density and bandwidth could make it desirable. When a sharp frequency response is required to separate two closely space K{sub a}-band frequencies, the stepped rectangular aperture might be advantageous. 5 refs.

  8. Metal-dielectric frequency-selective surface for high performance solar window coatings

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Guneratne, Ananda C.; Temchenko, Marina

    2016-03-01

    We demonstrate a solar control window film consisting of metallic nanoantennas designed to reflect infrared (IR) light while allowing visible light to pass through. The film consists of a capacitive frequency-selective surface (CFSS) which acts as a band-stop filter, reflecting only light at target wavelengths. The designed CFSS when installed on windows will lower air conditioning costs by reflecting undesired wavelengths of light and thus reduce the amount of heat that enters a building. State-of-the-art commercial solar control films consist of a multilayer stack which is costly ( 13/m2 to 40/m2) to manufacture and absorbs IR radiation, causing delamination or glass breakage when attached to windows. Our solar control film consists of a nanostructured metallic layer on a polyethylene terephthalate (PET) substrate that reflects IR radiation instead of absorbing it, solving the delamination problem. The CFSS is also easy to manufacture with roll-to-roll nanoimprint lithography at a cost of <$12/m2. We design the CFSS using the COMSOL Wave Optics module to solve for electromagnetic wave propagation in optical media via the finite element method. The simulation domain is reduced to a single unit cell with periodic boundary conditions to account for the symmetries of the planar, periodic CFSS. The design is optimized using parametric sweeps around the various geometric components of the metallic nanoantenna. Our design achieves peak reflection of 80% at 1000 nm and has a broadband IR response that will allow for optimum solar control without significantly affecting the transmission of visible light.

  9. A note on the change in gene frequency of a selected allele in partial full-sib mating populations

    SciTech Connect

    Caballero, A.

    1996-02-01

    The change in gene frequency of a selected allele in partial full-sib mating populations was analyzed. The implications of these papers is important in terms of the fixation probability of genes because, for the same equilibrium inbreeding coefficient, fixation rates of mutant genes would be larger for partial full-sib mating than for partial selfing. 4 refs.

  10. Response properties and location of neurons selective for sinusoidal frequency modulations in the inferior colliculus of the big brown bat.

    PubMed

    Yue, Qi; Casseday, John H; Covey, Ellen

    2007-09-01

    Most animal vocalizations, including echolocation signals used by bats, contain frequency-modulated (FM) components. Previous studies have described a class of neurons in the inferior colliculus (IC) of the big brown bat that respond exclusively to sinusoidally frequency modulated (SFM) signals and fail to respond to pure tones, noise, amplitude-modulated tones, or single FM sweeps. The aims of this study were to further characterize these neurons' response properties and to determine whether they are localized within a specific area of the IC. We recorded extracellularly from 214 neurons throughout the IC. Of these, 47 (22%) responded exclusively to SFM. SFM-selective cells were tuned to relatively low carrier frequencies (9-50 kHz), low modulation rates (20-210 Hz), and shallow modulation depths (3-10 kHz). Most had extremely low thresholds, with an average of 16.5 +/- 7.6 dB SPL, and 89% had upper thresholds and closed response areas. For SFM-selective cells with spontaneous activity, the spontaneous activity was eliminated when sound amplitude exceeded their upper threshold and resumed after the stimulus was over. These findings suggest that SFM-selective cells receive low-threshold excitatory inputs and high-threshold inhibitory inputs. SFM-selective cells were clustered in the rostrodorsal part of the IC. Within this area, best modulation rate appeared to be correlated with best carrier frequency and depth within the IC.

  11. An Electroactive, Tunable, and Frequency Selective Surface Utilizing Highly Stretchable Dielectric Elastomer Actuators Based on Functionally Antagonistic Aperture Control.

    PubMed

    Choi, Jun-Ho; Ahn, Jaeho; Kim, Jin-Bong; Kim, Young-Cheol; Lee, Jung-Yong; Oh, Il-Kwon

    2016-04-13

    An active, frequency selective surface utilizing a silver-nanowire-coated dielectric elastomer with a butterfly-shaped aperture pattern is realized by properly exploiting the electroactive control of two antagonistic functions (stretching vs compression) on a patterned dielectric elastomer actuator. PMID:26864249

  12. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Qu, Shaobo

    2015-06-01

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68-26.08 GHz with reflection below -10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  -  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology.

  13. Comparative Study on the Selection Criteria for Fitting Flood Frequency Distribution Models with Emphasis on Upper-Tail Behavior

    NASA Astrophysics Data System (ADS)

    Xiaohong, C.

    2014-12-01

    Many probability distributions have been proposed for flood frequency analysis and several criteria have been used for selecting a best fitted distribution to an observed or generated data set by some random process. The upper tail of flood frequency distribution should be specifically concerned for flood control. However, different model selection criteria often result in different optimal distributions when focus on upper tail of flood frequency distribution. In this study, with emphasis on the upper-tail behavior, 5 distribution selection criteria including 2 hypothesis tests and 3 information-based criteria are evaluated in selecting the best fitted distribution from 8 widely used distributions (Pearson 3, Log-Pearson 3, two-parameter lognormal, three-parameter lognormal, Gumbel, Weibull, Generalized extreme value and Generalized logistic distributions) by using datasets from Thames River (UK), Wabash River (USA), Beijiang River and Huai River (China), which are all within latitude of 23.5-66.5 degrees north. The performance of the 5 selection criteria is verified by using a composite criterion focus on upper tail events defined in this study. This paper shows the approach for the optimal selection of suitable flood frequency distributions for different river basins. Results illustrate that (1) Different distributions are selected by using hypothesis tests and information-based criteria for each river. (2) The information-based criteria perform better than hypothesis tests in most cases when the focus is on the goodness of predictions of the extreme upper tail events. (3) In order to decide on a particular distribution to fit the high flow, it would be better to use the combination criteria, in which the information-based criteria can be used first to rank the models and the results are inspected by hypothesis testing methods. In addition, if the information-based criteria and hypothesis tests provide different results, the composite criterion will be taken for

  14. HIGH FREQUENCY GENETIC TRANSFORMATION OF CICHORIUM INTYBUS L. USING nptII GENE AS A SELECTIVE MARKER.

    PubMed

    Matvieieva, N; Shakhovsky, A; Kvasko, O; Kuchuk, N

    2015-01-01

    Cichorium intybus L. is an important vegetable crop used as salad (leaf form) and for the production of coffee substitutes (root form). At the same time these plants can also be used in biotechnologies for synthesis of pharmaceutical proteins. Here we report the possibility of high frequency Agrobacterium rhizogenes- or A. tumefaciens-mediated transformation of C. intybus L. for construction of transgenic "hairy" roots and plants. The used plasmids contained target human interferonifn-α2b gene, Mycobacterium tuberculosis ESAT6:Ag85B antigene esxA::fbpB(ΔTMD) fused gene and human telomerase reverse transcriptase h Tert gene. Using of nptII gene as a selective one was preferable to the bar gene for chicory. In this case the frequency of transgenic plants or "hairy" roots formation was significantly higher. Cultivation of explants on the medium with Basta in concentration 1-2 mg/l have led to plants death or to significant reduction of number of shoots formed. Frequency of "hairy" roots formation varied from 5.9 to 42.3% after A. rhizogenes-mediated transformation. Frequency of regeneration of transgenic plants varied from 10 to 86% after A. tumefaciens-mediated transformation. Both A. rhizogenes- and A. tumefaciens-mediated transformation frequency depended on the type of explants, roots or cotyledons, and vector used. Usage of A. tumefaciens carrying pCB064 plasmid (target esxA:fbpB(ΔTMD) fused gene and nptII selective gene) resulted in the most effective regeneration of transgenic plants with regeneration frequency up to 86%. In the case of chicory A. rhizogenes-mediated transformation the highest regeneration frequency up to 42.3% was demonstrated using p CB161 vector with ifn-α2b target gene and nptII selective gene. PMID:26419064

  15. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  16. Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket.

    PubMed

    Stumpner, A

    1998-05-01

    AN1, an auditory interneuron in the bushcricket Ancistrura nigrovittata, is narrowly tuned to the male song frequency ( approximately 15 kHz). It receives pronounced inhibitory input at frequencies below and, more prominently, above this fundamental frequency. It is also subject to side-dependent inhibition producing asymmetric response functions for left- and right-side stimulation. In addition, intensity-response functions of AN1 peak as stimulus intensities increase. Application of the GABAA channel-blocker picrotoxin eliminates all subthreshold inhibitory postsynaptic potentials, revealing underlying excitation that is particularly obvious in the high-frequency range. Excitatory thresholds close to the song frequency remain unchanged by picrotoxin. Thus a specifically tuned neuron is shown to become broadly tuned after elimination of frequency-dependent inhibition. Although average maximum response strength is increased by 150% after picrotoxin application, at male song frequencies a slight reduction of the responses is still present at high intensities. Side-dependent inhibition remains largely unaffected by picrotoxin, suggesting that side- and frequency-dependent inhibitions are caused by different transmitters from different neurons.

  17. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    SciTech Connect

    Nong, Hanond Markmann, Sergej; Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Mohandas, Reshma A.; Dean, Paul; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Wieck, Andreas D.

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.

  18. Comparing the effects of genetic drift and fluctuating selection on genotype frequency changes in the scarlet tiger moth.

    PubMed

    O'Hara, R B

    2005-01-22

    One of the recurring arguments in evolutionary biology is whether evolution occurs principally through natural selection or through neutral processes such as genetic drift. A 60-year-long time series of changes in the genotype frequency of a colour polymorphism of the scarlet tiger moth, Callimorpha dominula, was used to compare the relative effects of genetic drift and variable natural selection. The analysis showed that most of the variation in frequency was the result of genetic drift. In addition, although selection was acting, mean fitness barely increased. This supports the 'Red Queen's hypothesis' that long-term improvements in fitness may not occur, because populations have to keep pace with changes in the environment.

  19. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  20. Performance Evaluation of Analog Beamforming with Hardware Impairments for mmW Massive MIMO Communication in an Urban Scenario.

    PubMed

    Gimenez, Sonia; Roger, Sandra; Baracca, Paolo; Martín-Sacristán, David; Monserrat, Jose F; Braun, Volker; Halbauer, Hardy

    2016-09-22

    The use of massive multiple-input multiple-output (MIMO) techniques for communication at millimeter-Wave (mmW) frequency bands has become a key enabler to meet the data rate demands of the upcoming fifth generation (5G) cellular systems. In particular, analog and hybrid beamforming solutions are receiving increasing attention as less expensive and more power efficient alternatives to fully digital precoding schemes. Despite their proven good performance in simple setups, their suitability for realistic cellular systems with many interfering base stations and users is still unclear. Furthermore, the performance of massive MIMO beamforming and precoding methods are in practice also affected by practical limitations and hardware constraints. In this sense, this paper assesses the performance of digital precoding and analog beamforming in an urban cellular system with an accurate mmW channel model under both ideal and realistic assumptions. The results show that analog beamforming can reach the performance of fully digital maximum ratio transmission under line of sight conditions and with a sufficient number of parallel radio-frequency (RF) chains, especially when the practical limitations of outdated channel information and per antenna power constraints are considered. This work also shows the impact of the phase shifter errors and combiner losses introduced by real phase shifter and combiner implementations over analog beamforming, where the former ones have minor impact on the performance, while the latter ones determine the optimum number of RF chains to be used in practice.

  1. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  2. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  3. Performance Evaluation of Analog Beamforming with Hardware Impairments for mmW Massive MIMO Communication in an Urban Scenario.

    PubMed

    Gimenez, Sonia; Roger, Sandra; Baracca, Paolo; Martín-Sacristán, David; Monserrat, Jose F; Braun, Volker; Halbauer, Hardy

    2016-01-01

    The use of massive multiple-input multiple-output (MIMO) techniques for communication at millimeter-Wave (mmW) frequency bands has become a key enabler to meet the data rate demands of the upcoming fifth generation (5G) cellular systems. In particular, analog and hybrid beamforming solutions are receiving increasing attention as less expensive and more power efficient alternatives to fully digital precoding schemes. Despite their proven good performance in simple setups, their suitability for realistic cellular systems with many interfering base stations and users is still unclear. Furthermore, the performance of massive MIMO beamforming and precoding methods are in practice also affected by practical limitations and hardware constraints. In this sense, this paper assesses the performance of digital precoding and analog beamforming in an urban cellular system with an accurate mmW channel model under both ideal and realistic assumptions. The results show that analog beamforming can reach the performance of fully digital maximum ratio transmission under line of sight conditions and with a sufficient number of parallel radio-frequency (RF) chains, especially when the practical limitations of outdated channel information and per antenna power constraints are considered. This work also shows the impact of the phase shifter errors and combiner losses introduced by real phase shifter and combiner implementations over analog beamforming, where the former ones have minor impact on the performance, while the latter ones determine the optimum number of RF chains to be used in practice. PMID:27669241

  4. Compressed Sensing in On-Grid MIMO Radar.

    PubMed

    Minner, Michael F

    2015-01-01

    The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the ℓ 1-squared Nonnegative Regularization method. PMID:27280124

  5. Design and optimization of LTE 1800 MIMO antenna.

    PubMed

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  6. Compressed Sensing in On-Grid MIMO Radar.

    PubMed

    Minner, Michael F

    2015-01-01

    The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the ℓ 1-squared Nonnegative Regularization method.

  7. Compressed Sensing in On-Grid MIMO Radar

    PubMed Central

    Minner, Michael F.

    2015-01-01

    The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the ℓ1-squared Nonnegative Regularization method. PMID:27280124

  8. MIMO radar arrays with minimum redundancy: a design method

    NASA Astrophysics Data System (ADS)

    Kirschner, A. J.; Siart, U.; Guetlein, J.; Detlefsen, J.

    2013-10-01

    Coherent multiple-input multiple-output (MIMO) radar systems with co-located antennas, form monostatic vir- tual arrays by discrete convolution of a bistatic setup of transmitters and receivers. Thereby, a trade-off between maximum array dimension, element spacing and hardware efforts exists. In terms of estimating the direction of arrival, the covariance matrix of the array element signals plays an important role. Here, minimum redundancy arrays aim at a hardware reduction with signal reconstruction by exploiting the Toeplitz characteristics of the covariance matrix. However, the discrete spatial convolution complicates the finding of an optimal antenna setup with minimum redundancy. Combinatorial effort is the consequence. This paper presents a possible simplified algorithm in order to find MIMO array setups of maximum dimension with minimum redundancy.

  9. Design and optimization of LTE 1800 MIMO antenna.

    PubMed

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi. PMID:24967440

  10. Joint source and relay optimization for parallel MIMO relay networks

    NASA Astrophysics Data System (ADS)

    Toding, Apriana; Khandaker, Muhammad RA; Rong, Yue

    2012-12-01

    In this article, we study the optimal structure of the source precoding matrix and the relay amplifying matrices for multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes. Two types of receivers are considered at the destination node: (1) The linear minimal mean-squared error (MMSE) receiver; (2) The nonlinear decision feedback equalizer based on the minimal MSE criterion. We show that for both receiver schemes, the optimal source precoding matrix and the optimal relay amplifying matrices have a beamforming structure. Using such optimal structure, joint source and relay power loading algorithms are developed to minimize the MSE of the signal waveform estimation at the destination. Compared with existing algorithms for parallel MIMO relay networks, the proposed joint source and relay beamforming algorithms have significant improvement in the system bit-error-rate performance.

  11. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    PubMed

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  12. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    PubMed

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  13. A scheme for noise suppression and spectral enhancement of speech to alleviate speech reception problems from loss of frequency selectivity

    NASA Astrophysics Data System (ADS)

    Lyzenga, Johannes; Festen, Joost M.; Houtgast, Tammo

    2002-05-01

    Even after sufficient amplification, hearing-impaired listeners often experience problems in understanding speech under noisy conditions. This may be caused by suprathreshold deficits such as loss of compression and reduced frequency selectivity. In this project we investigate a scheme in which speech and noise are processed before presentation to try and alleviate intelligibility problems caused by reduced frequency selectivity. The scheme contains three strategies, one in which the peak-to-valley ratios of selected modulations in the speech spectrum are enlarged, a second in which the overall speech spectrum is modified, and a third in which noise is suppressed before the two enhancement steps. An overlap-and-add (OLA) algorithm is used in the implementation. The effect of the speech processing is evaluated by measuring speech-reception thresholds (SRT) for sentences in speech noise, estimating the signal-to-noise ratio at which listeners can correctly reproduce 50% of presented sentences. Hearing-impaired and normal-hearing listeners were used. To simulate the hearing impairment resulting from a loss of frequency selectivity, we spectrally smeared the stimuli presented to the normal-hearing listeners. We found that the preprocessing scheme achieved a modest improvement of nearly 2 dB in the SRT for normal-hearing listeners. Data for hearing-impaired listeners are presently being collected.

  14. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Yu, Wen; Chai, Tianyou; Liu, Zhuo; Zhou, Xiaojie

    2016-01-01

    It is difficult to model multi-frequency signal, such as mechanical vibration and acoustic signals of wet ball mill in the mineral grinding process. In this paper, these signals are decomposed into multi-scale intrinsic mode functions (IMFs) by the empirical mode decomposition (EMD) technique. A new adaptive multi-scale spectral features selection approach based on sphere criterion (SC) is applied to these IMFs frequency spectra. The candidate sub-models are constructed by the partial least squares (PLS) with the selected features. Finally, the branch and bound based selective ensemble (BBSEN) algorithm is applied to select and combine these ensemble sub-models. This method can be easily extended to regression and classification problems with multi-time scale signal. We successfully apply this approach to a laboratory-scale ball mill. The shell vibration and acoustic signals are used to model mill load parameters. The experimental results demonstrate that this novel approach is more effective than the other modeling methods based on multi-scale frequency spectral features.

  15. CR-Calculus and adaptive array theory applied to MIMO random vibration control tests

    NASA Astrophysics Data System (ADS)

    Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.

    2016-09-01

    Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.

  16. Channel Equalization for Single Carrier MIMO Underwater Acoustic Communications

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Zheng, Yahong Rosa; Xiao, Chengshan; Yang, T. C.; Yang, Wen-Bin

    2010-12-01

    Multiple-input multiple-output (MIMO) underwater acoustic (UWA) channels introduce both space-time interference (STI) and time-varying phase distortion for transmitted signals. In such cases, the equalized symbols produced by conventional equalizer aiming for STI cancelation suffer phase rotation and thus cannot be reliably detected. In this paper, we propose a new equalization scheme for high data rate single carrier MIMO UWA channels. Different from existing methods employing joint equalization and symbolwise phase tracking technology, the proposed scheme decouples the interference cancelation (IC) operation and the phase compensation operation, leading to a generalized equalizer structure combining an IC equalizer with a phase compensator. The decoupling of the two functionalities leads to robust signal detection, which is most desirable in practical UWA applications. MIMO linear equalizer (LE) is adopted to remove space-time interference, and a groupwise phase estimation and correction method is used to compensate the phase rotation. In addition, the layered space-time processing technology is adopted to enhance the equalization performance. The proposed equalization scheme is tested to be very robust with extensive experimental data collected at Kauai, Hawaii, in September 2005, and Saint Margaret's Bay, Nova Scotia, Canada, in May 2006.

  17. Spatial frequency selection and integration of global and local information in visual processing: A selective review and tribute to Shlomo Bentin.

    PubMed

    Flevaris, Anastasia V; Robertson, Lynn C

    2016-03-01

    Previous research has suggested a relationship between processing lower versus higher spatial frequencies (SFs) and global/local perception, respectively. Here we honor Shlomo Bentin by reviewing the work we conducted with him regarding this issue. This work was aimed at investigating the mechanisms by which selective attention to spatial frequency (SF) mediates global and local perception in general and how these perceptual levels are integrated with the shapes that define them. The experiments demonstrate that attention to global and local aspects of a hierarchical display biases the flexible selection of relatively lower and relatively higher SFs during image processing. Additionally, attentional selection of SF allows for the shapes in a hierarchical display to be integrated with the level (global/local) at which they occur. The studies reviewed here provide strong evidence that the flexible, top-down selection of low-level SF channels mediates the perception of global and local elements of visual displays. The studies also support a hemisphere asymmetry in this process, with right hemisphere functions biased toward global perception and left hemisphere functions biased toward local.

  18. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation.

    PubMed

    Magnani, Christophe; Economo, Michael N; White, John A; Moore, Lee E

    2014-01-01

    The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains. PMID:25191226

  19. Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness

    NASA Astrophysics Data System (ADS)

    Shintaku, Hirofumi; Kobayashi, Takayuki; Zusho, Kazuki; Kotera, Hidetoshi; Kawano, Satoyuki

    2013-11-01

    In this study, we have demonstrated the fabrication of a microbeam array (MBA) with various thicknesses and investigated the suitability it for an acoustic sensor with wide-range frequency selectivity. For this, an MBA composed of 64 beams, with thicknesses varying from 2.99-142 µm, was fabricated by using single gray-scale lithography and a thick negative photoresist. The vibration of the beams in air was measured using a laser Doppler vibrometer; the resonant frequencies of the beams were measured to be from 11.5 to 290 kHz. Lastly, the frequency range of the MBA with non-uniform thickness was 10.9 times that of the MBA with uniform thickness.

  20. Nanowire-based frequency-selective capacitive photodetector for resonant detection of infrared radiation at room temperature

    SciTech Connect

    Bandyopadhyay, Saumil

    2014-07-14

    Characteristics of a capacitive infrared photodetector that works at room temperature by registering a change in capacitance upon illumination are reported. If used in an ideal resonant inductor-resistor-capacitor circuit, it can exhibit zero dark current, zero standby power dissipation, infinite detectivity, and infinite light-to-dark contrast ratio. It is also made frequency-selective by employing semiconductor nanowires that selectively absorb photons of energies close to the nanowire's bandgap. Based on measured parameters, the normalized detectivity is estimated to be ∼3 × 10{sup 7} Jones for 1.6 μm IR wavelength at room temperature.

  1. Outband Sensing-Based Dynamic Frequency Selection (DFS) Algorithm without Full DFS Test in IEEE 802.11h Protocol

    NASA Astrophysics Data System (ADS)

    Jeung, Jaemin; Jeong, Seungmyeong; Lim, Jaesung

    We propose an outband sensing-based IEEE 802.11h protocol without a full dynamic frequency selection (DFS) test. This scheme has two features. Firstly, every station performs a cooperative outband sensing, instead of inband sensing during a quiet period. And secondly, as soon as a current channel becomes bad, every station immediately hops to a good channel using the result of outband sensing. Simulation shows the proposed scheme increases network throughput against the legacy IEEE 802.11h.

  2. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    PubMed

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype.

  3. Sensitivity of a frequency-selective electrode based on spatial spectral properties of the extracellular AP of myelinated nerve fibers.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Cathébras, Guy

    2011-01-01

    In the context of functional electrical stimulation, neural recording is one of the main issues. For instance, the control of the limbs in people with motor deficiencies needs information about the muscle lengths and speeds that can be extracted from electroneurograms (ENG) carried on afferent peripheral nerves. The aim of this study is to propose an non-invasive and spatial-selective electrode (because specific informations are carried into different fascicles). To do so, we investigate the spatial properties of an extracellular action potential (AP). This properties are described qualitatively and quantitatively using analytical study on an inhomogeneous an anisotropic nerve model. Then, a spectral analysis on this spatial signal discriminates the different frequency components. Low spatial frequencies represent the global shape of the signal, whereas high frequencies are related to the type of fibers. We show that the latter is rapidly attenuated with the distance and thus, being a local phenomenon, can be used as a selective measurement. Finally, we propose a spatial filtering based on electrode design and an electronic architecture to extract this high frequencies.

  4. Sensitivity of a frequency-selective electrode based on spatial spectral properties of the extracellular AP of myelinated nerve fibers.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Cathébras, Guy

    2011-01-01

    In the context of functional electrical stimulation, neural recording is one of the main issues. For instance, the control of the limbs in people with motor deficiencies needs information about the muscle lengths and speeds that can be extracted from electroneurograms (ENG) carried on afferent peripheral nerves. The aim of this study is to propose an non-invasive and spatial-selective electrode (because specific informations are carried into different fascicles). To do so, we investigate the spatial properties of an extracellular action potential (AP). This properties are described qualitatively and quantitatively using analytical study on an inhomogeneous an anisotropic nerve model. Then, a spectral analysis on this spatial signal discriminates the different frequency components. Low spatial frequencies represent the global shape of the signal, whereas high frequencies are related to the type of fibers. We show that the latter is rapidly attenuated with the distance and thus, being a local phenomenon, can be used as a selective measurement. Finally, we propose a spatial filtering based on electrode design and an electronic architecture to extract this high frequencies. PMID:22255668

  5. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.

    PubMed

    Nolen, T G; Hoy, R R

    1987-07-01

    The frequency selectivity of the identified auditory interneuron, Int-1, in the cricket Teleogryllus oceanicus was examined using intracellular recording and staining techniques. Previous behavioral assays showed that crickets discriminate the low frequencies of the species calling song (4-5 kHz) from the high frequencies contained in the vocalizations of insectivorous bats (Nolen and Hoy, 1986a). Int-1 was excited by frequencies between 3 and 40 kHz, being similar, therefore, to the tympal organ (ear) in its broad range sensitivity; however, it responded differentially to high and low frequencies in terms of the number of action potentials evoked per stimulus tone pulse, the average discharge rate, and the latency of response. It was especially responsive to ultrasound (greater than 20 kHz), discharging at rates up to 400 spikes/sec (average rate), with 10 msec latencies; its response to pulses of the calling song was less than 150 spikes/sec, with 30 msec latencies. Int-1's dynamic range for ultrasound was also quite large, about 50 dB, compared to 20 dB for the calling song frequency. In addition, it responded well to trains of short, batlike pulses of ultrasound. These results are consistent with previous behavioral experiments showing that during flight, Int-1 was both necessary and sufficient for the ultrasound avoidance steering behavior (Nolen and Hoy, 1984), as long as it discharged above a rate of 180 spikes/sec. Ultrasound readily produced such high rates, whereas calling song rarely did; ultrasound reliably evoked avoidance steering over a wide dynamic range, while tone pulses of the calling song rarely did so (Nolen and Hoy, 1986a). A unique source of ipsilaterally mediated inhibition, tuned to the calling song frequency, accounted for the poor response to calling song and hence the neuron's high-frequency selectivity, and the behavioral and physiological effects of 2-tone suppression of high frequencies by the calling song (Nolen and Hoy, 1986b

  6. A New Approach for Inversion of Large Random Matrices in Massive MIMO Systems

    PubMed Central

    Anjum, Muhammad Ali Raza; Ahmed, Muhammad Mansoor

    2014-01-01

    We report a novel approach for inversion of large random matrices in massive Multiple-Input Multiple Output (MIMO) systems. It is based on the concept of inverse vectors in which an inverse vector is defined for each column of the principal matrix. Such an inverse vector has to satisfy two constraints. Firstly, it has to be in the null-space of all the remaining columns. We call it the null-space problem. Secondly, it has to form a projection of value equal to one in the direction of selected column. We term it as the normalization problem. The process essentially decomposes the inversion problem and distributes it over columns. Each column can be thought of as a node in the network or a particle in a swarm seeking its own solution, the inverse vector, which lightens the computational load on it. Another benefit of this approach is its applicability to all three cases pertaining to a linear system: the fully-determined, the over-determined, and the under-determined case. It eliminates the need of forming the generalized inverse for the last two cases by providing a new way to solve the least squares problem and the Moore and Penrose's pseudoinverse problem. The approach makes no assumption regarding the size, structure or sparsity of the matrix. This makes it fully applicable to much in vogue large random matrices arising in massive MIMO systems. Also, the null-space problem opens the door for a plethora of methods available in literature for null-space computation to enter the realm of matrix inversion. There is even a flexibility of finding an exact or approximate inverse depending on the null-space method employed. We employ the Householder's null-space method for exact solution and present a complete exposition of the new approach. A detailed comparison with well-established matrix inversion methods in literature is also given. PMID:24733148

  7. A new approach for inversion of large random matrices in massive MIMO systems.

    PubMed

    Anjum, Muhammad Ali Raza; Ahmed, Muhammad Mansoor

    2014-01-01

    We report a novel approach for inversion of large random matrices in massive Multiple-Input Multiple Output (MIMO) systems. It is based on the concept of inverse vectors in which an inverse vector is defined for each column of the principal matrix. Such an inverse vector has to satisfy two constraints. Firstly, it has to be in the null-space of all the remaining columns. We call it the null-space problem. Secondly, it has to form a projection of value equal to one in the direction of selected column. We term it as the normalization problem. The process essentially decomposes the inversion problem and distributes it over columns. Each column can be thought of as a node in the network or a particle in a swarm seeking its own solution, the inverse vector, which lightens the computational load on it. Another benefit of this approach is its applicability to all three cases pertaining to a linear system: the fully-determined, the over-determined, and the under-determined case. It eliminates the need of forming the generalized inverse for the last two cases by providing a new way to solve the least squares problem and the Moore and Penrose's pseudoinverse problem. The approach makes no assumption regarding the size, structure or sparsity of the matrix. This makes it fully applicable to much in vogue large random matrices arising in massive MIMO systems. Also, the null-space problem opens the door for a plethora of methods available in literature for null-space computation to enter the realm of matrix inversion. There is even a flexibility of finding an exact or approximate inverse depending on the null-space method employed. We employ the Householder's null-space method for exact solution and present a complete exposition of the new approach. A detailed comparison with well-established matrix inversion methods in literature is also given.

  8. Reducing animal sequencing redundancy by preferentially selecting animals with low-frequency haplotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies leverage targeted whole genome sequencing (WGS) experiments in order to identify rare and causal variants within populations. As a natural consequence of experimental design, many of these surveys tend to sequence redundant haplotype segments due to high frequency in the base population...

  9. Organizational Climate and Frequency of Principal-Teacher Communications in Selected Ohio Elementary Schools.

    ERIC Educational Resources Information Center

    Helwig, Carl

    Organizational conflict theory asserts that when organizational homeostasis becomes unbalanced, the participants in the conflict should communicate more. To test this assertion, the average total frequency of principal-teacher oral and written communications over an identical 20-day period were correlated with two empirically-determined…

  10. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock

    PubMed Central

    Singh, Karan; Kochar, Ekta; Prasad, N. G.

    2015-01-01

    Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704

  11. Frequency of the Ht1 Gene in Populations of Sweet Corn Selected for Resistance to Exserohilum turcicum Race 1.

    PubMed

    Campaña, Andrea; Pataky, J K

    2005-01-01

    ABSTRACT The possibility that the Ht1 gene or genes tightly linked to Ht1 convey general resistance to races of Exserohilum turcicum that are virulent against Ht1 (i.e., residual resistance) could be useful in sweet corn where the Ht1 gene is present in many commercial hybrids and breeding populations. The objective of this study was to determine if the frequency of the Ht1 gene changed in populations of sweet corn selected for general resistance to E. turcicum race 1, thus conveying residual resistance. Four populations were developed with theoretical initial frequencies of the Ht1 gene of 0, 0.25, 0.25, and 0.5. The populations were advanced by recurrent mass selection with parental control through four or five cycles of selection following inoculation with an Ht-virulent race of E. turcicum (i.e., race 1). Plants from each cycle of each population were evaluated for severity of northern corn leaf blight (NCLB) and chlorotic lesion reactions following inoculation in field and greenhouse trials with either race 0 or 1 of E. turcicum. Recurrent mass selection for general resistance to E. turcicum race 1 reduced the severity of NCLB in all four populations of sweet corn, although the change in the most susceptible population was minimal. Percent gain per cycle was 14.5, 12.3, 14, and 3.7% for populations I, II, III, and IV, respectively. The Ht1 gene did not convey levels of general resistance to E. turcicum race 1 that were substantial enough to be selected for in this population improvement program. There was no apparent selection advantage for resistance to E. turcicum race 1 in the populations that contained the Ht1 gene. The frequency of the Ht1 gene did not differ among cycles of selection within any of the populations in response to improved levels of general resistance to NCLB. The lack of change in frequency of Ht1 in these populations and the similarity in gain per cycle among populations with and without Ht1 lead us to conclude that the Ht1 gene itself

  12. A novel four-legged loaded element thick-screen frequency selective surface with a stable performance

    NASA Astrophysics Data System (ADS)

    Tang, Guang-Ming; Miao, Jun-Gang; Dong, Jin-Ming

    2012-12-01

    A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE & TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.

  13. Size-selective sliding of sessile drops on a slightly inclined plane using low-frequency AC electrowetting.

    PubMed

    Hong, Jiwoo; Lee, Seung Jun; Koo, Bonchull C; Suh, Yong Kweon; Kang, Kwan Hyoung

    2012-04-17

    When placed on an inclined solid plane, drops often stick to the solid surface due to pinning forces caused by contact angle hysteresis. When the drop size or the plane's incline angle is small, the drop is difficult to slide due to a decrease in gravitational force. Here we demonstrate that small drops (0.4-9 μL) on a slightly inclined plane (~12°, Teflon and parylene-C surface) can be mobilized through patterned electrodes by applying low-frequency ac electrowetting under 400 Hz (110-180 V(rms)), which has a mechanism different from that of the high-frequency ac method that induces sliding by reducing contact angle hysteresis. We attribute the sliding motion of our method to a combination of contact angle hysteresis and interfacial oscillation driven by ac electrowetting instead of the minimization of contact angle hysteresis at a high frequency. We investigated the effects of ac frequency on the sliding motion and terminal sliding of drops; the terminal sliding velocity is greatest at resonance frequency. Varying the electrowetting number (0.21-0.56) at a fixed frequency (40 Hz) for 5 μL drops, we found an empirical relationship between the electrowetting number and the terminal sliding velocity. Using the relationship between the drop size and ac frequency, we can selectively slide drops of a specific size or merge two drops along an inclined plane. This simple method will help with constructing microfluidic platforms with sorting, merging, transporting, and mixing of drops without a programmable control of electrical signals. Also, this method has a potential in heat transfer applications because heat removal capacity can be enhanced significantly through drop oscillation.

  14. A wide-bandwidth power amplifier for frequency-selective insulator-based dielectrophoresis.

    PubMed

    Farmehini, Vahid; Rohani, Ali; Su, Yi-Hsuan; Swami, Nathan S

    2014-11-01

    Insulator-based dielectrophoresis enables contact-less separation and analysis of biosystems, but it is unable to operate effectively in the MHz frequency range, which is necessary for the manipulation of biological cells based on the characteristic electrophysiology of their cytoplasm or biomolecular preconcentration based on their unique conformation. To address the steep drop in output power and the rise of signal distortions within conventional amplifiers at MHz frequencies due to slew rate limitations, we present the design principles for a wideband amplifier. This is validated by demonstrating the absence of harmonic distortions and parasitic DC within the amplifier output up to 15 MHz, thereby enabling analysis of cytoplasmic alterations on oocysts of Cryptosporidium parvum, due to constant force dispersion in the MHz range.

  15. Analyses of flood-flow frequency for selected gaging stations in South Dakota through September 1985

    USGS Publications Warehouse

    Hoffman, E.B.; Freese, M.E.; Winter, D.R.

    1986-01-01

    Analyses of flood-flow frequency were made for 80 active continuous-record gaging stations and 105 discontinued crest-stage partial-record stations in South Dakota with 10 or more years of record. The analyses were developed using the log-Pearson Type III procedure recommended by the U.S. Water Resources Council (Interagency Advisory Committee on Water Data, 1981.) (USGS)

  16. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces.

    PubMed

    Wei, Qingguo; Wei, Zhonghai

    2015-01-01

    A brain-computer interface (BCI) enables people suffering from affective neurological diseases to communicate with the external world. Common spatial pattern (CSP) is an effective algorithm for feature extraction in motor imagery based BCI systems. However, many studies have proved that the performance of CSP depends heavily on the frequency band of EEG signals used for the construction of covariance matrices. The use of different frequency bands to extract signal features may lead to different classification performances, which are determined by the discriminative and complementary information they contain. In this study, the broad frequency band (8-30 Hz) is divided into 10 sub-bands of band width 4 Hz and overlapping 2 Hz. Binary particle swarm optimization (BPSO) is used to find the best sub-band set to improve the performance of CSP and subsequent classification. Experimental results demonstrate that the proposed method achieved an average improvement of 6.91% in cross-validation accuracy when compared to broad band CSP.

  17. Signal Recovery for Multiuser MIMO-OFDM Systems Using a Combination of Blind Source Separation and Semi-blind Technique

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Yamashita, Katsumi

    This paper proposes a novel signal recovery technique for multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems using a combination of blind source separation(BSS) and semi-blind method from the frequency bin(FB) viewpoint. A pre-filter is applied on each user signal before OFDM signal. The pre-filter converts user signals into transmitted signals which possess a correlation structure. At the receiver, we firstly recover signals using existing BSS algorithm at the first FB and second FB in OFDM systems, and resolve the indeterminacies nature of BSS algorithm employing a few pilot symbols at the first FB. Then separated signals at the second FB can be utilized as reference signals for the recovery of signals at next adjacent FB due to the correlation structure of transmitted signals. Also the validity of the proposed method is demonstrated by computer simulations.

  18. Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas

    PubMed Central

    Koenig-Robert, Roger; VanRullen, Rufin; Tsuchiya, Naotsugu

    2015-01-01

    Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI. PMID:26691722

  19. Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.

    PubMed

    Koenig-Robert, Roger; VanRullen, Rufin; Tsuchiya, Naotsugu

    2015-01-01

    Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI. PMID:26691722

  20. Enhancing and broadening absorption properties of frequency selective surfaces absorbers using FeCoB-based thin film

    NASA Astrophysics Data System (ADS)

    Ren, Wenyi; Nie, Yan; Xiong, Xuan; Zhang, Cui; Zhou, Yan; Gong, Rongzhou

    2012-04-01

    In this paper, the influence of FeCoB-based magnetic film on the absorption properties of traditional frequency selective surface (FSS) was investigated experimentally. A single-layer Minkowski fractal planar frequency selective surface was chosen, and the laser etching technique was proposed to fabricate aluminum-based FSS (AFSS) samples. Magnetic films were prepared by radio frequency magnetron sputtering, with the targets of Fe40Co40B20 and SiO2. It is found that after the magnetic film is incorporated, the bandwidth under -10 dB increases by 33.3% from 5.08 to 6.78 GHz and the peak value of reflectivity decreases from -12.46 to -38.41 dB. The 3.1-mm-thick radar absorber is relatively light and could obtain the reflectivity of -38.41 with -20 dB bandwidth of 1.85 GHz. As a consequence, under the circumstance that the total thickness of the sample maintains relatively constant, the magnetic thin film can effectively improve the absorption properties of the sample.

  1. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  2. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  3. Size-frequency analysis of petroleum accumulations in selected United States plays: potential analogues for frontier areas

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2004-01-01

    This report presents the petroleum accumulation size-frequency relationships of selected mature plays assessed in the U.S. Geological Survey?s 1995 National Assessment of Oil and Gas Resources. The plays provide assessors with potential analogue models from which to estimate the numbers of undiscovered accumulations in medium and smaller size categories. Each play selected was required to have at least 50 discovered accumulations. Discovered accumulations plus the mean number of undiscovered accumulations equals the total accumulations assessed at the play level. There were 36 plays that met the criteria for oil accumulations and 25 plays that met the criteria for gas accumulations. Other properties of the plays such as primary trap type, lithology, depth, and hydrocarbon characteristics are also provided to assist the geologist in choosing an appropriate analogue. The text explains how the analogue size-frequency relationships can be used to estimate the number of small and medium size accumulations for frontier-area plays or partially explored plays in high cost areas. Although this document has been written in support of the Alaska North Slope Assessment, the basic size?frequency relationships provided are applicable elsewhere.

  4. Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR

    PubMed Central

    Traaseth, Nathaniel J.; Veglia, Gianluigi

    2011-01-01

    We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and high redundancy in the primary sequence. We implemented this approach in both heteronuclear 15N-13Cα and homonuclear 13C-13C dipolar assisted rotational resonance (DARR) correlation experiments. We demonstrate its efficacy for the membrane protein phospholamban reconstituted in fluid PC/PE/PA lipid bilayers. The main advantage of this method is to discriminate overlapped 13Cα resonances by strategically labeling the preceding residue. This method is highly complementary to 13C′i-1-15Ni-13Cαi and 13Cαi-1-15Ni-1-13C′i experiments to discriminate inter-residue spin systems at a minimal cost to signal-to-noise. PMID:21482162

  5. Effects of Location, Frequency Region, and Time Course of Selective Attention on Auditory Scene Analysis

    ERIC Educational Resources Information Center

    Cusack, Rhodri; Decks, John; Aikman, Genevieve; Carlyon, Robert P.

    2004-01-01

    Often, the sound arriving at the ears is a mixture from many different sources, but only 1 is of interest. To assist with selection, the auditory system structures the incoming input into streams, each of which ideally corresponds to a single source. Some authors have argued that this process of streaming is automatic and invariant, but recent…

  6. An Array of Frequency Selective Bolometers (FSB) for the Spectral Energy Distribution (SPEED) Camera

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Ali, S.; O'Dell, C.; Timbie, P. T.; Bier, A.; Campano, B.; Chen, T. C.; Cottingham, D. A.; Sharp, E.; Cheng, E. S.

    2003-01-01

    The SPEED camera is being developed to study the spectral energy distributions of high redshift galaxies using the Heinrich Hertz Telescope (HHT) in Arizona. SPEED requires a small cryogenic detector array of 2x2 pixels with each pixel having four frequency bands in the 150-350 GHz range. Here we describe the development of the detector array of these high efficiency FSBs. The FSB design provides the multi-pixel multi-spectral band capability required for SPEED in a compact stackable array. The SPEED bolometers will use proximity effect superconducting transition edge sensors as their temperature-sensing element allowing for higher levels of multiplexing in future applications.

  7. Selective observation of starch in a water plant using optical sum-frequency microscopy.

    PubMed

    Miyauchi, Yoshihiro; Sano, Haruyuki; Mirzutani, Goro

    2006-07-01

    The photosynthesis, transfer, and storage of starch are the most important biogenic processes occurring in plants. In order to observe the colorless and transparent starch granules in a plant, a chemical pretreatment such as staining of the starch is currently required, which seriously damages the tissue cells in the plant. We demonstrate that nondestructive chemical analysis of starch granules in a plant can be performed by using optical second-harmonic and sum-frequency microscopy. These techniques for in vivo analysis will provide extremely useful information about saccharides in a plant and can be extended to the analysis of many other materials, from living tissue to semiconductors.

  8. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    NASA Technical Reports Server (NTRS)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  9. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves.

    PubMed

    Tuerke, F; Sciamarella, D; Pastur, L R; Lusseyran, F; Artana, G

    2015-01-01

    We present an alternative perspective on nonharmonic mode coexistence, commonly found in the shear layer spectrum of open-cavity flows. Modes obtained by a local linear stability analysis of perturbations to a two-dimensional, incompressible, and inviscid sheared flow over a cavity of finite length and depth were conditioned by a so-called coincidence condition first proposed by Kulikowskii [J. Appl. Math. Mech. 30, 180 (1966)] which takes into account instability wave reflection within the cavity. The analysis yields a set of discrete, nonharmonic frequencies, which compare well with experimental results [Phys. Fluids 20, 114101 (2008); Exp. Fluids 50, 905 (2010)].

  10. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes.

    PubMed

    Martin, Christopher H

    2016-06-01

    The adaptive landscape provides the foundational bridge between micro- and macroevolution. One well-known caveat to this perspective is that fitness surfaces depend on ecological context, including competitor frequency, traits measured, and resource abundance. However, this view is based largely on intraspecific studies. It is still unknown how context-dependence affects the larger features of peaks and valleys on the landscape which ultimately drive speciation and adaptive radiation. Here, I explore this question using one of the most complex fitness landscapes measured in the wild in a sympatric pupfish radiation endemic to San Salvador Island, Bahamas by tracking survival and growth of laboratory-reared F2 hybrids. I present new analyses of the effects of competitor frequency, dietary isotopes, and trait subsets on this fitness landscape. Contrary to expectations, decreasing competitor frequency increased survival only among very common phenotypes, whereas less common phenotypes rarely survived despite few competitors, suggesting that performance, not competitor frequency, shapes large-scale features of the fitness landscape. Dietary isotopes were weakly correlated with phenotype and growth, but did not explain additional survival variation. Nonlinear fitness surfaces varied substantially among trait subsets, revealing one-, two-, and three-peak landscapes, demonstrating the complexity of selection in the wild, even among similar functional traits. PMID:27130447

  11. Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films

    NASA Astrophysics Data System (ADS)

    Mesfin, Henok Mebratie; Baudouin, A. C.; Hermans, Sophie; Delcorte, Arnaud; Huynen, Isabelle; Bailly, Christian

    2014-09-01

    Highly ordered polycarbonate films containing parallel graphite nanoplatelets have been produced by squeezing the corresponding random nanocomposites in the melt. Orientation of the conductive fillers is observed in the plane of the film, i.e., perpendicular to the squeezing direction. It only appears above a critical concentration of 15 wt. % and results from a confinement effect. Oriented samples show a resonance-like sharp increase of the conductivity at a given frequency in the microwave region, with the possibility to control the value of this frequency and the resulting absorption by changing the nanoplatelets concentration. Above this frequency, the oriented polymer nanocomposites show a high level of electromagnetic absorption, which opens the possibility to tailor materials with effective electromagnetic interference shielding by absorption in selected frequency ranges. The in-plane stacking of conductive nanoplatelets separated by insulating polymer induces their strong capacitive coupling to the signal propagating in the plane of the polymer film. As a result, the equivalent circuit of this propagation becomes a resonant system composed of capacitors, inductors, and resistors, which agrees well with the experimental results.

  12. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    NASA Astrophysics Data System (ADS)

    Sharma, Saumya

    could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at +/-200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd). The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or +/-1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz. Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter. Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.

  13. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle

    PubMed Central

    2011-01-01

    Background 'Selection signatures' delimit regions of the genome that are, or have been, functionally important and have therefore been under either natural or artificial selection. In this study, two different and complementary methods--integrated Haplotype Homozygosity Score (|iHS|) and population differentiation index (FST)--were applied to identify traces of decades of intensive artificial selection for traits of economic importance in modern cattle. Results We scanned the genome of a diverse set of dairy and beef breeds from Germany, Canada and Australia genotyped with a 50 K SNP panel. Across breeds, a total of 109 extreme |iHS| values exceeded the empirical threshold level of 5% with 19, 27, 9, 10 and 17 outliers in Holstein, Brown Swiss, Australian Angus, Hereford and Simmental, respectively. Annotating the regions harboring clustered |iHS| signals revealed a panel of interesting candidate genes like SPATA17, MGAT1, PGRMC2 and ACTC1, COL23A1, MATN2, respectively, in the context of reproduction and muscle formation. In a further step, a new Bayesian FST-based approach was applied with a set of geographically separated populations including Holstein, Brown Swiss, Simmental, North American Angus and Piedmontese for detecting differentiated loci. In total, 127 regions exceeding the 2.5 per cent threshold of the empirical posterior distribution were identified as extremely differentiated. In a substantial number (56 out of 127 cases) the extreme FST values were found to be positioned in poor gene content regions which deviated significantly (p < 0.05) from the expectation assuming a random distribution. However, significant FST values were found in regions of some relevant genes such as SMCP and FGF1. Conclusions Overall, 236 regions putatively subject to recent positive selection in the cattle genome were detected. Both |iHS| and FST suggested selection in the vicinity of the Sialic acid binding Ig-like lectin 5 gene on BTA18. This region was recently reported

  14. The miniaturised Moessbauer spectrometer MIMOS II: future developments.

    NASA Astrophysics Data System (ADS)

    Rodionov, D.; Blumers, M.; Klingelhöfer, G.; Bernhardt, B.; Fleischer, I.; Schröder, C.; Morris, R.; Girones Lopez, J.

    2007-08-01

    In January 2004, the first in situ extraterrestrial Mössbauer spectrum was received from the Martian surface. At the present time (May 2007) two Miniaturized Mössbauer Spectrometers (MIMOS II) on board of the two Mars Exploration Rovers "Spirit" and "Opportunity" continue to collect valuable scientific data. Both spectrometers are operational after more than 3 years of work. Originally, the mission was expected to last for 90 days. To date more than 600 spectra were obtained with a total integration time for both rovers exceeding 260 days. The MER mission has proven that Mössbauer spectroscopy is a valuable technique for the in situ exploration of extraterrestrial bodies and the study of Fe-bearing samples. The Mössbauer team at the University of Mainz has accumulated a lot of experience and learned many lessons during last three years. All that makes MIMOS II a feasible choice for the future missions to Mars and other targets. Currently MIMOS II is on the scientific payload of two missions: Phobos Grunt (Russian Space Agency) and ExoMars (European Space Agency). Phobos Grunt is scheduled to launch in 2009. The main goals of the mission are: a) Phobos regolith sample return, b) Phobos in situ study, c) Mars and Phobos remote sensing. MIMOS II will be installed on the arm of a landing module. Currently, we are manufacturing an engineering model for testing purposes. The ESA "ExoMars" mission involves the development of a MER-like rover with more complex scientific payload (Pasteur exobiology instruments, including a drilling system). Its aim is to further characterise the biological environment in preparation for robotic missions and eventually human exploration. Data from the mission will provide invaluable input to the field of exobiology - the study of the origin, the evolution and distribution of life in the universe. The launch date is scheduled for 2013. Like on MER, the MIMOS II instrument will be mounted on a robotic arm. Advanced and improved version of

  15. The miniaturised Mössbauer spectrometer MIMOS IIA: Increased sensitivity and new capability for elemental analysis

    NASA Astrophysics Data System (ADS)

    Blumers, M.; Bernhardt, B.; Lechner, P.; Klingelhöfer, G.; d'Uston, C.; Soltau, H.; Strüder, L.; Eckhardt, R.; Brückner, J.; Henkel, H.; Lopez, J. G.; Maul, J.

    2010-12-01

    The Miniaturised Mössbauer Spectrometers MIMOS II on board the two Mars Exploration Rovers (MER) have now been collecting valuable scientific data for more than five years. Mössbauer Spectrometers are part of two future missions: Phobos Grunt (Russian Space Agency) and a joint ESA—NASA Rover in 2018. The new advanced MIMOS IIA instrument described in this paper uses Silicon Drift Detectors (SDD) allowing also X-ray fluorescence chemical analysis (XRF) simultaneously to Mössbauer acquisitions. This paper highlights the features and technological improvements of the new spectrometer MIMOS IIA.

  16. Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films

    NASA Astrophysics Data System (ADS)

    Cheng, Yong-Zhi; Nie, Yan; Gong, Rong-Zhou

    2013-10-01

    We present the design of a wide-band metamaterial absorber, based on fractal frequency selective surface and resistive films. The total thickness is only 0.8 mm and shows a polarization-insensitive and wide-angle strong absorption. Due to the multiband resonance properties of the Minkowski fractal loop structure and Ohmic loss properties of resistive films, a strongly absorptive bandwidth of about 19 GHz is demonstrated numerically in the range 6.51-25.42 GHz. This design provides an effective and feasible way to construct a broad-band absorber in stealth technology.

  17. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  18. Adaptive Zero-Padding OFDM over Frequency-Selective Multipath Channels

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Blostein, Steven D.

    2004-12-01

    We present a novel bandwidth (BW) efficient orthogonal frequency division multiplexing (OFDM) scheme with adaptive zero-padding (AZP-OFDM) for wireless transmission. Redundancy issues in OFDM based on cyclic prefix (CP), zero-padding (ZP), as well as no guard interval (NGI) systems are analyzed. A novel system design criterion based on the channel matrix condition is studied and applied to the design of an AZP-OFDM system. Simulation results have shown that the proposed AZP-OFDM offers performance similar to that of CP-OFDM, complexity similar to that of ZP-OFDM, with BW efficiency higher than that of both CP- and ZP-OFDM in channels with small to moderate delay spread. In channels with large delay spread, AZP scheme adaptively maintains high performance at the expense of BW efficiency. Essentially, AZP-OFDM offers a more flexible tradeoff between symbol recovery, BW efficiency, and complexity.

  19. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  20. Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.

    1983-01-01

    An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.

  1. Analyses of flood-flow frequency for selected gaging stations in South Dakota

    USGS Publications Warehouse

    Benson, R.D.; Hoffman, E.B.; Wipf, V.J.

    1985-01-01

    Analyses of flood flow frequency were made for 111 continuous-record gaging stations in South Dakota with 10 or more years of record. The analyses were developed using the log-Pearson Type III procedure recommended by the U.S. Water Resources Council. The procedure characterizes flood occurrence at a single site as a sequence of annual peak flows. The magnitudes of the annual peak flows are assumed to be independent random variables following a log-Pearson Type III probability distribution, which defines the probability that any single annual peak flow will exceed a specified discharge. By considering only annual peak flows, the flood-frequency analysis becomes the estimation of the log-Pearson annual-probability curve using the record of annual peak flows at the site. The recorded data are divided into two classes: systematic and historic. The systematic record includes all annual peak flows determined in the process of conducting a systematic gaging program at a site. In this program, the annual peak flow is determined for each and every year of the program. The systematic record is intended to constitute an unbiased and representative sample of the population of all possible annual peak flows at the site. In contrast to the systematic record, the historic record consists of annual peak flows that would not have been determined except for evidence indicating their unusual magnitude. Flood information acquired from historical sources almost invariably refers to floods of noteworthy, and hence extraordinary, size. Although historic records form a biased and unrepresentative sample, they can be used to supplement the systematic record. (Author 's abstract)

  2. A general method for diagonal peak suppression in homonuclear correlated NMR spectra by spatially and frequency selective pulses☆

    PubMed Central

    Glanzer, Simon; Schrank, Evelyne; Zangger, Klaus

    2013-01-01

    Homonuclear two- and multidimensional NMR spectra are standard experiments for the structure determination of small to medium-sized molecules. In the large majority of homonuclear correlated spectra the diagonal contains the most intense peaks. Cross-peaks near the diagonal could overlap with huge tails of diagonal peaks and can therefore be easily overlooked. Here we present a general method for the suppression of peaks along the diagonal in homonuclear correlated spectra. It is based on a spatially selective excitation followed by the suppression of magnetization which has not changed the frequency during the mixing process. In addition to the auto correlation removal, these experiments are also less affected by magnetic field inhomogeneities due to the slice selective excitation, which on the other side leads to a reduced intensity compared to regular homonuclear correlated spectra. PMID:23665403

  3. Magnetic state selection in atomic frequency and time standards. [hydrogen masers

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1982-01-01

    Atomic standards such as those based upon cesium and hydrogen rely upon magnetic state selection to obtain population inversion in the hyperfine transition levels. Use of new design approaches and improved magnetic materials has made it possible to fabricate improved state selectors of small size, and thus the efficiency of utilization of beam flux is greatly improved and the size and weight of the standard is reduced. The sensitivity to magnetic perturbations is also decreased, so that the accuracy and stability of the standard is improved. Several new state selector designs are illustrated and the application to standards utilizing different atomic species is analyzed.

  4. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

    PubMed

    Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang

    2014-03-01

    We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study. PMID:24379132

  5. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  6. Frequency-selective control of cortical and subcortical networks by central thalamus

    PubMed Central

    Liu, Jia; Lee, Hyun Joo; Weitz, Andrew J; Fang, Zhongnan; Lin, Peter; Choy, ManKin; Fisher, Robert; Pinskiy, Vadim; Tolpygo, Alexander; Mitra, Partha; Schiff, Nicholas; Lee, Jin Hyung

    2015-01-01

    Central thalamus plays a critical role in forebrain arousal and organized behavior. However, network-level mechanisms that link its activity to brain state remain enigmatic. Here, we combined optogenetics, fMRI, electrophysiology, and video-EEG monitoring to characterize the central thalamus-driven global brain networks responsible for switching brain state. 40 and 100 Hz stimulations of central thalamus caused widespread activation of forebrain, including frontal cortex, sensorimotor cortex, and striatum, and transitioned the brain to a state of arousal in asleep rats. In contrast, 10 Hz stimulation evoked significantly less activation of forebrain, inhibition of sensory cortex, and behavioral arrest. To investigate possible mechanisms underlying the frequency-dependent cortical inhibition, we performed recordings in zona incerta, where 10, but not 40, Hz stimulation evoked spindle-like oscillations. Importantly, suppressing incertal activity during 10 Hz central thalamus stimulation reduced the evoked cortical inhibition. These findings identify key brain-wide dynamics underlying central thalamus arousal regulation. DOI: http://dx.doi.org/10.7554/eLife.09215.001 PMID:26652162

  7. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  8. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses.

    PubMed

    Miura, K; Qiu, J; Mitsuyu, T; Hirao, K

    2000-03-15

    We report on space-selective growth of a second-harmonic-generation beta-BaB(2)O(4) (BBO) crystal inside a BaO-Al(2)O(3)-B(2)O(3) glass sample at the focal point of an 800-nm femtosecond laser beam. A spherical heated region was formed during the focused laser irradiation through observation with an optical microscope. We moved the heated region by changing the position of the focal point of the laser beam relative to the glass sample. We grew BBO crystal continuously in the glass sample by adjusting the moving speed of the heated zone. Our results demonstrate that functional crystals can be formed three dimensionally in glasses by use of a nonresonant ultrashort pulsed laser.

  9. Cumulative frequency-dependent selective episodes allow for rapid morph cycles and rock-paper-scissors dynamics in species with overlapping generations

    PubMed Central

    San-Jose, Luis M.; Peñalver-Alcázar, Miguel; Milá, Borja; Gonzalez-Jimena, Virginia; Fitze, Patrick S.

    2014-01-01

    Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species. PMID:24943372

  10. The influence of genetic drift on the formation and stability of polymorphisms arising from negative frequency-dependent selection.

    PubMed

    Zhao, Lei; Waxman, David

    2016-02-21

    We consider the simplest form of negative frequency-dependent selection in a biallelic haploid population, where the selection coefficient of a mutant allele is a linear function of the allele's frequency, and changes from positive to negative as the frequency is increased. In an effectively infinite population this behaviour leads to a stable polymorphism. We present a theoretical investigation of what occurs in a finite population, where a long-lived polymorphism may be formed, but which fluctuates and ultimately disappears due to random genetic drift. We model the dynamics as a branching process and explicitly take into account differences between the census population size and the effective population size, which play different roles in the dynamics. We characterise the behaviour of the population in terms of three distinct timescales associated with: (i) early loss of mutant alleles, (ii) achievement of the long-lived polymorphism, (iii) disappearance of the polymorphism. Timescales (i) and (iii) depend on the effective population size and are, as a consequence, affected by random genetic drift, while timescale (ii) depends primarily on the census size and is relatively insensitive to genetic drift. Analysis and simulations of the branching process clarify the different influences of the census and effective population sizes. One substantial quantitative difference, between populations where the effective and census population sizes coincide and where they differ, lies in the number of mutant alleles in the long-lived polymorphism. This number is approximately proportional to the census size. Thus assuming the census size equals a much smaller effective population size predicts a much smaller number of mutants in the long-lived polymorphism.

  11. Experimental approach for selecting the excitation frequency for maximum compositional contrast in viscous environments for piezo-driven bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Eslami, Babak; Solares, Santiago D.

    2016-02-01

    We propose a method for guiding the selection of the microcantilever excitation frequencies in low-quality-factor (liquid) bimodal amplitude-modulation atomic force microscopy (AFM). Within the proposed method, the compositional contrast frequency is selected based on maximizing the derivative of the phase shift with respect to the drive frequency, observed during a tuning curve. This leads to different frequency choices and significant differences in the observables with respect to the customary practice of selecting the drive frequencies based on the amplitude peaks in the tuning curve. We illustrate the advantages and disadvantages of our approach by imaging an atomically flat calcite surface with single-eigenmode tapping-mode AFM in water, but driving a higher eigenmode instead of the fundamental eigenmode, and by imaging a polytetrafluoroethylene thin film with bimodal AFM, also in water.

  12. Efficient Coordinated Recovery of Sparse Channels in Massive MIMO

    NASA Astrophysics Data System (ADS)

    Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.

    2015-01-01

    This paper addresses the problem of estimating sparse channels in massive MIMO-OFDM systems. Most wireless channels are sparse in nature with large delay spread. In addition, these channels as observed by multiple antennas in a neighborhood have approximately common support. The sparsity and common support properties are attractive when it comes to the efficient estimation of large number of channels in massive MIMO systems. Moreover, to avoid pilot contamination and to achieve better spectral efficiency, it is important to use a small number of pilots. We present a novel channel estimation approach which utilizes the sparsity and common support properties to estimate sparse channels and require a small number of pilots. Two algorithms based on this approach have been developed which perform Bayesian estimates of sparse channels even when the prior is non-Gaussian or unknown. Neighboring antennas share among each other their beliefs about the locations of active channel taps to perform estimation. The coordinated approach improves channel estimates and also reduces the required number of pilots. Further improvement is achieved by the data-aided version of the algorithm. Extensive simulation results are provided to demonstrate the performance of the proposed algorithms.

  13. Frequency and site selection criteria for MST radars, part 5.1A

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.

    1984-01-01

    The majority of mesosphere-stratosphere-troposphere (MST) and ST radars are located in or near mountainous terrain. When measuring horizontal velocities, the terrain is a small factor, but when measuring vertical velocities, the meteorological noise induced by rough terrain can severely limit the usefulness of the observations. When the variance of the vertical velocity is too large, it is not possible to suitably filter the data to detect the small synoptic-scale signal with reasonable statistical confidence. The variance of vertical velocity at all tropospheric levels is directly related to the low level wind speed during flow over rough terrain. It is suggested that the synoptic-scale vertical velocity can be measured by ST radars where the terrain is smooth. The large-scale vertical velocity cannot always be reliably determined from MST radar data when the underlying terrain is rough. The vertical velocity is potentially on of future radar site selections, taking into account the desired meteorological applications of the data and engineering design factors. If the synoptic-scale vertical velocity is a desired variable, the radar should not be located near mountains.

  14. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  15. Exploring efficiencies of SISO, multi-SISO, and MIMO AVC schemes for floor vibration control

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald S.; Reynolds, Paul; Hudson, Malcolm J.

    2012-04-01

    Continued advancements in steel and concrete materials as well as improved computer-optimized designs are resulting in more efficient floor structures, which have longer spans and are more lightweight. In addition, there is a tendency for offices to be more open-plan with fewer internal partitions. These structures possess low and closely spaced natural frequencies, sometimes falling within the range of frequencies produced by human activities, as well as low damping levels. Vibration serviceability problems are thus arising more frequently than before. The tendency for developers to require floor structures suitable for a variety of types of occupation so as to increase their economic viability also has clear ramifications for their vibration serviceability. Active vibration control (AVC) is emerging as a viable technology for mitigation of human-induced vibrations in problem floors. Past AVC research work, as demonstrated in analytical studies and successfully implemented in field trials, have focused predominantly on collocated sensor and actuator pairs in SISO or multi-SISO direct-output feedback schemes, for example, direct velocity feedback (DVF). This paper demonstrates the potential benefits that may be derived from using model-based control approaches, for example, in isolating and controlling specific problematic frequencies only. The approaches investigated here comprise of independent modal space control (IMSC) and pole-placement controllers that are implemented in SISO, SIMO, and MIMO control structures. Both the analytical and experimental studies presented are based on a laboratory structure. Attenuations in target modes of vibration ranged between 15.0-27.0 dB in the analytical studies and experimental implementation for all the controllers studied. Further, both analytical studies and experimental implementation yielded a 70-89 % reduction in acceleration responses from two different walking frequencies.

  16. A Study of MIMO Wireless LAN System with Extending Antenna Distance Using RoF Technique

    NASA Astrophysics Data System (ADS)

    Yamashita, Ikuo; Kanaoka, Yasuhiro; Kashimura, Satoru; Shimizu, Satoru

    MIMO is a mighty method to increase data rate of wireless LAN systems. It is necessary to keep a suitable distance between each antenna to work MIMO function effectively, especially in the poor multipath environment. Then the radio over fiber technique is proposed to extend antenna distances outdoors. In this paper, we explain the influence of the delay and propagation loss cased by using of radio over fiber to the throughput performance experimentally.

  17. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    NASA Astrophysics Data System (ADS)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy < S 31 < 4 mJy, N(>S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  18. A WiMAX-Based Implementation of Network MIMO for Indoor Wireless Systems

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sivarama; Huang, Howard; Lozano, Angel; Valenzuela, Reinaldo

    2009-12-01

    It is well known that multiple-input multiple-output (MIMO) techniques can bring numerous benefits, such as higher spectral efficiency, to point-to-point wireless links. More recently, there has been interest in extending MIMO concepts to multiuser wireless systems. Our focus in this paper is on network MIMO, a family of techniques whereby each end user in a wireless access network is served through several access points within its range of influence. By tightly coordinating the transmission and reception of signals at multiple access points, network MIMO can transcend the limits on spectral efficiency imposed by cochannel interference. Taking prior information-theoretic analyses of network MIMO to the next level, we quantify the spectral efficiency gains obtainable under realistic propagation and operational conditions in a typical indoor deployment. Our study relies on detailed simulations and, for specificity, is conducted largely within the physical-layer framework of the IEEE 802.16e Mobile WiMAX system. Furthermore, to facilitate the coordination between access points, we assume that a high-capacity local area network, such as Gigabit Ethernet, connects all the access points. Our results confirm that network MIMO stands to provide a multiple-fold increase in spectral efficiency under these conditions.

  19. Color-Space-Based Visual-MIMO for V2X Communication †

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  20. Color-Space-Based Visual-MIMO for V2X Communication.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  1. Color-Space-Based Visual-MIMO for V2X Communication.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  2. Selected low-flow frequency statistics for continuous-record streamgages in Georgia, 2013

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2016-04-13

    and southern Georgia is outside the scope of this study. Further study is needed to determine some of the causes, including both climatological and human impacts, of the significant negative trends in annual minimum 1-day and 7-day average flows in central and southern Georgia.To assess the changes in the annual 1Q10 and 7Q10 statistics over time for long-term continuous streamgages with significant trends in record, the annual 1Q10 and 7Q10 statistics were computed on a decadal accumulated basis for 39 streamgages having 40 or more years of record that indicated a significant trend. Records from most of the streamgages showed a decline in 7Q10 statistics for the decades of 1980–89, 1990–99, and 2000–09 because of the recent droughts in Georgia. Twenty four of the 39 streamgages had complete records from 1980 to 2010, and records from 23 of these gages exhibited a decline in the 7Q10 statistics during this period, ranging from –6.3 to –76.2 percent with a mean of –27.3 percent. No attempts were made during this study to adjust streamflow records or statistical analyses on the basis of trends.The monthly and annual 1Q10 and 7Q10 flow statistics for the entire period of record analyzed in the study are incorporated into the USGS StreamStatsDB, which is a database accessible to users through the recently released USGS StreamStats application for Georgia. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools that are useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected streamgages.

  3. A PARAFAC-based algorithm for multidimensional parameter estimation in polarimetric bistatic MIMO radar

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Zhang, Yu; Li, Jia; Cui, Haijing

    2013-12-01

    In this article, we investigate the problem of applying the parallel factor quadrilinear decomposition technique to multidimensional target parameter estimation in a polarimetric bistatic multiple-input multiple-output (MIMO) radar system with a uniform rectangular array at the transmitter and a cross-dipole-based uniform rectangular array at the receiver. The signal model is developed, and a novel algorithm is proposed exploiting the quadrilinear alternating least squares to jointly estimate the two-dimensional direction of departure (2D-DOD), two-dimensional direction of arrival (2D-DOA), polarization parameters and Doppler frequency. Multidimensional parameters can be automatically paired by this algorithm to avoid the performance degradation resulting from wrong pairing. The developed algorithm requires neither multidimensional spectral peak searching nor covariance matrix estimation and several eigen-value decompositions that may bring error accumulation. Furthermore, multiple targets having close 2D-DODs and close 2D-DOAs or even the same 2D-DOD or 2D-DOA are distinguishable by means of polarization diversity. The algorithm improves the performance of multi-target identification and three-dimensional localization. Numerical simulations demonstrate the effectiveness of the proposed algorithm.

  4. Uplink Downlink Rate Balancing and Throughput Scaling in FDD Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Bergel, Itsik; Perets, Yona; Shamai, Shlomo

    2016-05-01

    In this work we extend the concept of uplink-downlink rate balancing to frequency division duplex (FDD) massive MIMO systems. We consider a base station with large number antennas serving many single antenna users. We first show that any unused capacity in the uplink can be traded off for higher throughput in the downlink in a system that uses either dirty paper (DP) coding or linear zero-forcing (ZF) precoding. We then also study the scaling of the system throughput with the number of antennas in cases of linear Beamforming (BF) Precoding, ZF Precoding, and DP coding. We show that the downlink throughput is proportional to the logarithm of the number of antennas. While, this logarithmic scaling is lower than the linear scaling of the rate in the uplink, it can still bring significant throughput gains. For example, we demonstrate through analysis and simulation that increasing the number of antennas from 4 to 128 will increase the throughput by more than a factor of 5. We also show that a logarithmic scaling of downlink throughput as a function of the number of receive antennas can be achieved even when the number of transmit antennas only increases logarithmically with the number of receive antennas.

  5. MIMO adaptive control of thruster-firing-induced vibration of satellites using multifunctional platforms

    NASA Astrophysics Data System (ADS)

    Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2005-05-01

    This paper presents the concept, control strategy, and simulations of suppressing the thruster-firing-induced vibration of satellites. First, a satellite vibration reduction concept of utilizing the UHM multifunctional platform is discussed, and the structural configurations of the platform as well as the combination of the platform and a satellite are described. A satellite-like frame with the platform is analyzed, and the predominant modes of the frame are determined. A MIMO adaptive control scheme is then developed to suppress the frame vibration, and a convergence factor vector concept is introduced to ease the multi-channel convergence rate control. This controller is adjusted based on the vibration information of the frame and drives the platform to isolate the vibration transmission from the firing thruster to the satellite structure. The entire system has ten actuators: four piezoelectric stack actuators and six piezoelectric patch actuators. Eleven vibration components of the frame and platform are controlled. Nine components are in the frame for the satellite vibration suppression, and two are in the top-device plate of the platform for the thruster vibration suppression. Finally, simulations are performed to suppress the vibration of the frame for three platform positions to simulate the misalignment correction of the satellite thrust vector. The results demonstrate that the entire frame vibration at its dominant frequency decreases to 7-10% of its uncontrolled value in the three platform positions, and the thruster vibration decreases to 7.5% of its uncontrolled value.

  6. Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.

    2012-01-01

    A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic

  7. Performance of the IEEE 802.11a Wireless Lan Standard Over Frequency-Selective, Slow, Ricean Fading Channels

    NASA Astrophysics Data System (ADS)

    Kao, Chi-han

    2002-09-01

    With the rapidly growing demand for more reliable and higher data rate wireless communications, the Institute of the Electrical and Electronics Engineers (IEEE) 802.11 working group approved a standard for 5-GHz band, Wireless Local Area Networks (WLAN) in 1999. This standard, IEEE 802.lla, supports data rates from 6 up to 54 Mbps and uses Orthogonal Frequency Division Multiplexing (OFDM) for transmission in indoor wireless environments. This thesis examines the performance of the IEEE 802.lla standard for different combinations of sub-carrier modulation type and code rate and determines the signal-to-noise ratio required to obtain a probability of bit error P(b) of 10-5. The channel is modeled as frequency-selective, slow, Ricean fading channel with Additive White Gaussian Noise (AWGN). Contrary to expectations, for the combinations of sub-carrier modulation type and code rate utilized by the IEEE 802.11a standard, some of the higher data rate combinations outperform some of the lower data rate combinations. On the other hand, the results also show significant coding gain when applying convolutional coding with Viterbi decoding, and hence highlight the importance of Forward Error Correction (FEC) coding to the performance of wireless communications systems.

  8. Evaluation of the Relative Validity of the Short Diet Questionnaire for Assessing Usual Consumption Frequencies of Selected Nutrients and Foods.

    PubMed

    Shatenstein, Bryna; Payette, Hélène

    2015-08-01

    A 36-item Short Diet Questionnaire (SDQ) was developed to assess usual consumption frequencies of foods providing fats, fibre, calcium, vitamin D, in addition to fruits and vegetables. It was pretested among 30 community-dwelling participants from the Québec Longitudinal Study on Nutrition and Successful Aging, "NuAge" (n = 1793, 52.4% women), recruited in three age groups (70 ± 2 years; 75 ± 2 years; 80 ± 2 years). Following revision, the SDQ was administered to 527 NuAge participants (55% female), distributed among the three age groups, both sexes and languages (French, English) prior to the second of three non-consecutive 24 h diet recalls (24HR) and validated relative to the mean of three 24HR. Full data were available for 396 participants. Most SDQ nutrients and fruit and vegetable servings were lower than 24HR estimates (p < 0.05) except calcium, vitamin D, and saturated and trans fats. Spearman correlations between the SDQ and 24HR were modest and significant (p < 0.01), ranging from 0.19 (cholesterol) to 0.45 (fruits and vegetables). Cross-classification into quartiles showed 33% of items were jointly classified into identical quartiles of the distribution, 73% into identical and contiguous quartiles, and only 7% were frankly misclassified. The SDQ is a reasonably accurate, rapid approach for ranking usual frequencies of selected nutrients and foods. Further testing is needed in a broader age range.

  9. Evaluation of the Relative Validity of the Short Diet Questionnaire for Assessing Usual Consumption Frequencies of Selected Nutrients and Foods

    PubMed Central

    Shatenstein, Bryna; Payette, Hélène

    2015-01-01

    A 36-item Short Diet Questionnaire (SDQ) was developed to assess usual consumption frequencies of foods providing fats, fibre, calcium, vitamin D, in addition to fruits and vegetables. It was pretested among 30 community-dwelling participants from the Québec Longitudinal Study on Nutrition and Successful Aging, “NuAge” (n = 1793, 52.4% women), recruited in three age groups (70 ± 2 years; 75 ± 2 years; 80 ± 2 years). Following revision, the SDQ was administered to 527 NuAge participants (55% female), distributed among the three age groups, both sexes and languages (French, English) prior to the second of three non-consecutive 24 h diet recalls (24HR) and validated relative to the mean of three 24HR. Full data were available for 396 participants. Most SDQ nutrients and fruit and vegetable servings were lower than 24HR estimates (p < 0.05) except calcium, vitamin D, and saturated and trans fats. Spearman correlations between the SDQ and 24HR were modest and significant (p < 0.01), ranging from 0.19 (cholesterol) to 0.45 (fruits and vegetables). Cross-classification into quartiles showed 33% of items were jointly classified into identical quartiles of the distribution, 73% into identical and contiguous quartiles, and only 7% were frankly misclassified. The SDQ is a reasonably accurate, rapid approach for ranking usual frequencies of selected nutrients and foods. Further testing is needed in a broader age range. PMID:26247965

  10. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  11. Frequency-Weighting Filter Selection, for H2 Control of Microgravity Isolation Systems: A Consideration of the "Implicit Frequency Weighting" Problem

    NASA Technical Reports Server (NTRS)

    Hampton, Roy David; Whorton, Mark S.

    1999-01-01

    Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station (ISS) have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, since there is a kinematic relationship among the various states, any frequency weighting applied to one state will implicitly weight other states. These implicit frequency-weighting effects must be considered, for intelligent frequency-weighting filter assignment. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.

  12. The 2010 ILSO-ISRU Field Test at Mauna Kea, Hawaii: Results from the Miniaturised Mossbauer Spectrometers Mimos II and Mimos IIA

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Morris, R. V.; Blumers, M.; Bernhardt, B.; Graff, T.

    2011-01-01

    For the advanced Moessbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform X-ray fluorescence analysis simultaneously to Moessbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The ISRU 2010 field campaign demonstrated that in-situ Moessbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.

  13. Relay Selection Based Double-Differential Transmission for Cooperative Networks with Multiple Carrier Frequency Offsets: Model, Analysis, and Optimization

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Zhang, Bangning; Pan, Kegang; Liu, Aijun; Guo, Daoxing

    2014-07-01

    Due to the distributed nature, cooperative networks are generally subject to multiple carrier frequency offsets (MCFOs), which make the channels time-varying and drastically degrade the system performance. In this paper, to address the MCFOs problem in detect-andforward (DetF) multi-relay cooperative networks, a robust relay selection (RS) based double-differential (DD) transmission scheme, termed RSDDT, is proposed, where the best relay is selected to forward the source's double-differentially modulated signals to the destination with the DetF protocol. The proposed RSDDT scheme can achieve excellent performance over fading channels in the presence of unknown MCFOs. Considering double-differential multiple phase-shift keying (DDMPSK) is applied, we first derive exact expressions for the outage probability and average bit error rate (BER) of the RSDDT scheme. Then, we look into the high signal-to-noise ratio (SNR) regime and present simple and informative asymptotic outage probability and average BER expressions, which reveal that the proposed scheme can achieve full diversity. Moreover, to further improve the BER performance of the RSDDT scheme, we investigate the optimum power allocation strategy among the source and the relay nodes, and simple analytical solutions are obtained. Numerical results are provided to corroborate the derived analytical expressions and it is demonstrated that the proposed optimum power allocation strategy offers substantial BER performance improvement over the equal power allocation strategy.

  14. Selective Methane Oxidation Catalyzed by Platinum Salts in Oleum at Turnover Frequencies of Large-Scale Industrial Processes.

    PubMed

    Zimmermann, Tobias; Soorholtz, Mario; Bilke, Marius; Schüth, Ferdi

    2016-09-28

    Direct catalytic methane functionalization, a "dream reaction", is typically characterized by relatively low catalyst activities. This also holds for the η(2)-(2,2'-bipyrimidyl)dichloroplatinum(II) [(bpym)PtCl2, 1] catalyst which oxidizes methane to methyl bisulfate in sulfuric acid. Nevertheless, it is arguably still one of the best systems for the partial oxidation of methane reported so far. Detailed studies of the dependence of activity on the SO3 concentration and the interplay with the solubility of different platinum compounds revealed potassium tetrachloroplatinate (K2PtCl4) as an extremely active, selective, and stable catalyst, reaching turnover frequencies (TOFs) of more than 25,000 h(-1) in 20% oleum with selectivities above 98%. The TOFs are more than 3 orders of magnitude higher compared to the original report on (bpym)PtCl2 and easily reach or exceed those realized in commercial industrial processes, such as the Cativa process for the carbonylation of methanol. Also space-time-yields are on the order of large-scale commercialized processes. PMID:27592637

  15. Selective Methane Oxidation Catalyzed by Platinum Salts in Oleum at Turnover Frequencies of Large-Scale Industrial Processes.

    PubMed

    Zimmermann, Tobias; Soorholtz, Mario; Bilke, Marius; Schüth, Ferdi

    2016-09-28

    Direct catalytic methane functionalization, a "dream reaction", is typically characterized by relatively low catalyst activities. This also holds for the η(2)-(2,2'-bipyrimidyl)dichloroplatinum(II) [(bpym)PtCl2, 1] catalyst which oxidizes methane to methyl bisulfate in sulfuric acid. Nevertheless, it is arguably still one of the best systems for the partial oxidation of methane reported so far. Detailed studies of the dependence of activity on the SO3 concentration and the interplay with the solubility of different platinum compounds revealed potassium tetrachloroplatinate (K2PtCl4) as an extremely active, selective, and stable catalyst, reaching turnover frequencies (TOFs) of more than 25,000 h(-1) in 20% oleum with selectivities above 98%. The TOFs are more than 3 orders of magnitude higher compared to the original report on (bpym)PtCl2 and easily reach or exceed those realized in commercial industrial processes, such as the Cativa process for the carbonylation of methanol. Also space-time-yields are on the order of large-scale commercialized processes.

  16. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it?

    PubMed

    Eisen, D P; Osthoff, M

    2014-05-01

    Either immune selection or stochastic processes may have influenced the frequency of highly polymorphic genes such as mannose-binding lectin 2 (MBL2). This pattern recognition receptor of the innate immune system recognizes and binds to pathogenic microorganisms and apoptotic cells leading to lectin pathway complement killing or clearance. In almost all of a large number of studies in different ethnic groups worldwide there is 20-25% carriage of low MBL2 haplotypes, with 8-10% of each population having no MBL detectable in the blood. The source of this high variability of MBL2 remains cryptic. It arises from six main snps in the prompter and exon regions of the gene that assort into seven common haplotypes under linkage disequilibrium. While global studies of MBL2 show that it is not under immune selection pressure, these results are not the same when the same population genetic tools are used on large national studies. Other analyses point to the silenced MBL1 pseudogene and development of promoter polymorphisms in humans as evidence of selection pressure favouring low-producing haplotypes. While these analyses cannot be reconciled readily, there are two processes by which MBL heterozygosity could have been advantageous in an evolutionary sense; protection against adverse effects of various infectious diseases and lethal manifestations of atherosclerosis - a disease that now seems to have a more ancient history than assumed previously. Ultimately, consideration of the context for possible future therapeutic manipulation of MBL means that this can proceed independently of resolution of the evolutionary forces that have shaped MBL2 polymorphism.

  17. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it?

    PubMed Central

    Eisen, D P; Osthoff, M

    2014-01-01

    Either immune selection or stochastic processes may have influenced the frequency of highly polymorphic genes such as mannose-binding lectin 2 (MBL2). This pattern recognition receptor of the innate immune system recognizes and binds to pathogenic microorganisms and apoptotic cells leading to lectin pathway complement killing or clearance. In almost all of a large number of studies in different ethnic groups worldwide there is 20–25% carriage of low MBL2 haplotypes, with 8–10% of each population having no MBL detectable in the blood. The source of this high variability of MBL2 remains cryptic. It arises from six main snps in the prompter and exon regions of the gene that assort into seven common haplotypes under linkage disequilibrium. While global studies of MBL2 show that it is not under immune selection pressure, these results are not the same when the same population genetic tools are used on large national studies. Other analyses point to the silenced MBL1 pseudogene and development of promoter polymorphisms in humans as evidence of selection pressure favouring low-producing haplotypes. While these analyses cannot be reconciled readily, there are two processes by which MBL heterozygosity could have been advantageous in an evolutionary sense; protection against adverse effects of various infectious diseases and lethal manifestations of atherosclerosis – a disease that now seems to have a more ancient history than assumed previously. Ultimately, consideration of the context for possible future therapeutic manipulation of MBL means that this can proceed independently of resolution of the evolutionary forces that have shaped MBL2 polymorphism. PMID:24255984

  18. Iterative Reconfigurable Tree Search Detection of MIMO Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Wu; Song, Wentao; Luo, Hanwen; Liu, Xingzhao

    2006-12-01

    This paper is concerned with reduced-complexity detection, referred to as iterative reconfigurable tree search (IRTS) detection, with application in iterative receivers for multiple-input multiple-output (MIMO) systems. Instead of the optimum maximum a posteriori probability detector, which performs brute force search over all possible transmitted symbol vectors, the new scheme evaluates only the symbol vectors that contribute significantly to the soft output of the detector. The IRTS algorithm is facilitated by carrying out the search on a reconfigurable tree, constructed by computing the reliabilities of symbols based on minimum mean-square error (MMSE) criterion and reordering the symbols according to their reliabilities. Results from computer simulations are presented, which proves the good performance of IRTS algorithm over a quasistatic Rayleigh channel even for relatively small list sizes.

  19. Frequency range selection method of trans-impedance amplifier for high sensitivity lock-in amplifier used in the optical sensors

    NASA Astrophysics Data System (ADS)

    Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan

    2016-03-01

    Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.

  20. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of

  1. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-01-01

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of

  2. Changes in low-flow frequency from 1976-2006 at selected streamgages in New York, excluding Long Island

    USGS Publications Warehouse

    Suro, Thomas P.; Gazoorian, Christopher L.

    2011-01-01

    At-site low-flow statistics were updated for eight streamgages in New York by using continuous daily streamflow data through 2006 for the future development of a statewide research study. Selection of the eight streamgages used in this study identified a major deficiency in the number of available unregulated long-term U.S. Geological Survey streamgages needed for the development of regional low-flow equations in New York. A limited analysis of the changes in land use for the contributing drainage areas for each streamgage, changes in precipitation, and trends in the annual 7-day minimum flow also are presented. The 7-day, 2-year low flow showed increases of 14 to 35 percent and the 7-day 10-year low flow showed zero to 19 percent increases at rural streamgages with unregulated streamflows when statistics were computed by using data from 1976 through 2006 and compared with published data in Bulletin 74. When the entire period of record was used to compute low flow frequencies, the 7-day, 2-year low flows increased from about 6 to 15 percent whereas the 7-day 10-year low flows showed zero to 5 percent increases. Streamgages affected by urbanization and regulation for water supply showed the most significant changes in the 7-day, 2-year and 10-year low-flow frequencies. These streamgages are included to help identify the effects of urbanization and regulation on streamflow at these locations. The 7-day 10-year low flow increased by 65 percent at the U.S. Geological Survey streamgage Hackensack River at West Nyack, N.Y., and increased 120 percent at the U.S. Geological Survey streamgage Neversink River at Godeffroy, N.Y., when statistics were computed by using data from 1976 through 2006 and compared with the statistics for the regulated period computed in Bulletin 74.

  3. Large allele frequency differences between human continental groups are more likely to have occurred by drift during range expansions than by selection.

    PubMed

    Hofer, T; Ray, N; Wegmann, D; Excoffier, L

    2009-01-01

    Several studies have found strikingly different allele frequencies between continents. This has been mainly interpreted as being due to local adaptation. However, demographic factors can generate similar patterns. Namely, allelic surfing during a population range expansion may increase the frequency of alleles in newly colonised areas. In this study, we examined 772 STRs, 210 diallelic indels, and 2834 SNPs typed in 53 human populations worldwide under the HGDP-CEPH Diversity Panel to determine to which extent allele frequency differs among four regions (Africa, Eurasia, East Asia, and America). We find that large allele frequency differences between continents are surprisingly common, and that Africa and America show the largest number of loci with extreme frequency differences. Moreover, more STR alleles have increased rather than decreased in frequency outside Africa, as expected under allelic surfing. Finally, there is no relationship between the extent of allele frequency differences and proximity to genes, as would be expected under selection. We therefore conclude that most of the observed large allele frequency differences between continents result from demography rather than from positive selection.

  4. The Use of a Shelter Software (a) to Track Frequency and Selected Risk Factors for Feline Upper Respiratory Infection.

    PubMed

    Kommedal, Ann Therese; Wagner, Denae; Hurley, Kate

    2015-01-01

    Objective-Feline upper respiratory infection (URI) is a common, multi-factorial infectious disease syndrome endemic to many animal shelters. Although a significant cause of morbidity and mortality in shelter cats, URI is seldom formally monitored in shelter cat populations. Without monitoring, effective control and prevention of this often endemic disease is difficult. We looked at an integrated case management software system (a) for animal care organizations, widely used in shelters across the United States. Shelter staff routinely enter information regarding individual animals and disease status, but do not commonly use the software system to track frequency of disease. The purpose of this study was to determine if the software system (a) can be used to track URI frequency and selected risk factors in a population, and to evaluate the quality and completeness of the data as currently collected in a shelter. Design (type of study)-Descriptive Survey. Animals (or Sample)-317 cats in an animal shelter. Procedures-Reports from the software system (a) containing data regarding daily inventory, daily intake, animal identification, location, age, vaccination status, URI diagnosis and URI duration were evaluated. The reports were compared to data collected manually by an observer (Ann Therese Kommedal) to assess discrepancies, completeness, timeliness, availability and accuracy. Data were collected 6 days a week over a 4 week period. Results-Comparisons between the software system (a) reports and manually collected reports showed that 93% of inventory reports were complete and of these 99% were accurate. Fifty-two percent of the vaccination reports were complete, of which 97% were accurate. The accuracy of the software system's age reports was 76%. Two-hundred and twenty-three cats were assigned a positive or negative URI diagnosis by the observer. The predictive value of the URI status in the software system (a) was below 60% both for positive and negative URI

  5. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands.

    PubMed

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-01-01

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity. PMID:27399715

  6. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands

    PubMed Central

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-01-01

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity. PMID:27399715

  7. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands.

    PubMed

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-01-01

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.

  8. Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey.

    PubMed

    Skelhorn, John; Rowe, Candy

    2005-12-22

    Chemically defended insects advertise their unpalatability to avian predators using conspicuous aposematic coloration that predators learn to avoid. Insects utilize a wide variety of different compounds in their defences, and intraspecific variation in defence chemistry is common. We propose that polymorphisms in insect defence chemicals may be beneficial to insects by increasing survival from avian predators. Birds learn to avoid a colour signal faster when individual prey possesses one of two unpalatable chemicals rather than all prey having the same defence chemical. However, for chemical polymorphisms to evolve within a species, there must be benefits that allow rare chemical morphs to increase in frequency. Using domestic chicks as predators and coloured crumbs for prey, we provide evidence that birds taste and reject proportionally more of the individuals with rare defence chemicals than those with common defence chemicals. This indicates that the way in which birds attack and reject prey could enhance the survival of rare chemical morphs and select for chemical polymorphism in aposematic species. This is the first experiment to demonstrate that predators can directly influence the form taken by prey's chemical defences.

  9. Theoretical and experimental analysis of transmission and enhanced absorption of frequency-selective surfaces in the infrared

    NASA Astrophysics Data System (ADS)

    Puscasu, Irina; Schaich, William L.; Boreman, Glenn D.

    2001-05-01

    A comparative study between theory and experiment is presented for transmission through lossy frequency selective surfaces (FSSs) on silicon in the 2 - 15 micrometer range. Important parameters controlling the resonance shape and location are identified: dipole length, spacing, impedance, and dielectric surroundings. Their separate influence is exhibited. The primary resonance mechanism of FSSs is the resonance of the individual metallic patches. There is no discernable resonance arising from a feed-coupled configuration. The real part of the element's impedance controls the minimum value of transmission, while scarcely affecting its location. Varying the imaginary part shifts the location of resonance, while only slightly changing the minimum value of transmission. With such fine-tuning, it is possible to make a good fit between theory and experiment near the dipole resonance on any sample. A fixed choice of impedance can provide a reasonable fit to all samples fabricated under the same conditions. The dielectric surroundings change the resonance wavelength of the FSS compared to its value in air. The presence of FSS on the substrate increases the absorptivity/emissivity of the surface in a resonant way. Such enhancement is shown for dipole and cross arrays at several wavelengths.

  10. Female reciprocal calling in the Iberian midwife toad ( Alytes cisternasii) varies with male call rate and dominant frequency: implications for sexual selection

    NASA Astrophysics Data System (ADS)

    Bosch, Jaime

    2001-10-01

    Male midwife toads ( Alytes cisternasii) responded differently depending on the call frequency and call rate of other males. I tested female Iberian midwife toads with the same set of stimuli used earlier with males. Females responded faster to high call rates, and female vocal activity was greater in response to low-frequency male calls. Thus, in both sexes, the vocal response differs in the same direction according to signal frequency variation, but the magnitude of the response is greater in males than in females. In the light of these results, I discuss the implications for sexual selection of this reciprocal calling.

  11. Studies of selective attention in dogs using the energy characteristics of neocortical potentials in the frequency range 1-220 Hz.

    PubMed

    Dumenko, V N; Kozlov, M L; Kulikov, M A

    2002-01-01

    Experiments were performed in dogs to study the state of selective attention formed during operant food-related training and apparent during interstimulus intervals as a state of tense expectation of the conditioned signal. Electrical activity in various parts of the neocortex, in both hemispheres, was analyzed in the frequency range 1-220 Hz (epidural electrodes) using Fourier transforms. The electrical activity of the motor area of the right hemisphere showed a predominance of high-frequency (40-200 Hz) components, as did the visual and parietal areas of the left hemisphere. The state of selective attention was associated with a different functional mosaic in the organization of neocortical electrical activity.

  12. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects

    PubMed Central

    Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang

    2016-01-01

    This paper reports a flexible and stretchable metamaterial-based “skin” or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression. PMID:26902969

  13. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects

    NASA Astrophysics Data System (ADS)

    Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang

    2016-02-01

    This paper reports a flexible and stretchable metamaterial-based “skin” or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression.

  14. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects.

    PubMed

    Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang

    2016-01-01

    This paper reports a flexible and stretchable metamaterial-based "skin" or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible "cloaking" surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression.

  15. Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs.

    PubMed

    Wu, C H; Jen, P H-S

    2008-10-28

    During hunting, insectivorous bats such as Eptesicus fuscus progressively vary the repetition rate, duration, frequency and amplitude of emitted pulses such that analysis of an echo parameter by bats would be inevitably affected by other co-varying echo parameters. The present study is to determine the variation of echo frequency selectivity of duration-tuned inferior collicular neurons during different phases of hunting using pulse-echo (P-E) pairs as stimuli. All collicular neurons discharge maximally to a tone at a particular frequency which is defined as the best frequency (BF). Most collicular neurons also discharge maximally to a BF pulse at a particular duration which is defined as the best duration (BD). A family of echo iso-level frequency tuning curves (iso-level FTC) of these duration-tuned collicular neurons is measured with the number of impulses in response to the echo pulse at selected frequencies when the P-E pairs are presented at varied P-E duration and gap. Our data show that these duration-tuned collicular neurons have narrower echo iso-level FTC when measured with BD than with non-BD echo pulses. Also, IC neurons with low BF and short BD have narrower echo iso-level FTC than IC neurons with high BF and long BD have. The bandwidth of echo iso-level FTC significantly decreases with shortening of P-E duration and P-E gap. These data suggest that duration-tuned collicular neurons not only can facilitate bat's echo recognition but also can enhance echo frequency selectivity for prey feature analysis throughout a target approaching sequence during hunting. These data also support previous behavior studies showing that bats prepare their auditory system to analyze expected returning echoes within a time window to extract target features after pulse emission.

  16. Adaptive Multi-Node Multiple Input and Multiple Output (MIMO) Transmission for Mobile Wireless Multimedia Sensor Networks

    PubMed Central

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-01-01

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920

  17. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    PubMed

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-10-02

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.

  18. Optimal waveforms for MIMO radar systems employing the generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2010-04-01

    We consider the problem of waveform design for multiple-input multiple-output (MIMO) radar systems employing the generalized detector that is constructed based on the generalized approach to signal processing in noise. We investigate the case of an extended target and without limiting ourselves to orthogonal waveforms. Instead, we develop a procedure to design the optimal waveform that maximizes the signal-to-interference plus-noise ratio (SINR) at the generalized detector output. The optimal waveform requires a knowledge of both target and clutter statistics. We also develop several suboptimal waveforms requiring knowledge of target statistics only, clutter statistics only, or both. Thus, the transmit waveforms are adjusted based on target and clutter statistics. A model for the radar returns that incorporates the transmit waveforms is developed. The target detection problem is formulated for that model. Optimal and suboptimal algorithms are derived for designing the transmit waveforms under different assumptions regarding the statistical information available to the generalized detector. The performance of these algorithms is illustrated by computer simulation.

  19. Nonconcave Utility Maximisation in the MIMO Broadcast Channel

    NASA Astrophysics Data System (ADS)

    Brehmer, Johannes; Utschick, Wolfgang

    2008-12-01

    The problem of determining an optimal parameter setup at the physical layer in a multiuser, multiantenna downlink is considered. An aggregate utility, which is assumed to depend on the users' rates, is used as performance metric. It is not assumed that the utility function is concave, allowing for more realistic utility models of applications with limited scalability. Due to the structure of the underlying capacity region, a two step approach is necessary. First, an optimal rate vector is determined. Second, the optimal parameter setup is derived from the optimal rate vector. Two methods for computing an optimal rate vector are proposed. First, based on the differential manifold structure offered by the boundary of the MIMO BC capacity region, a gradient projection method on the boundary is developed. Being a local algorithm, the method converges to a rate vector which is not guaranteed to be a globally optimal solution. Second, the monotonic structure of the rate space problem is exploited to compute a globally optimal rate vector with an outer approximation algorithm. While the second method yields the global optimum, the first method is shown to provide an attractive tradeoff between utility performance and computational complexity.

  20. Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System

    PubMed Central

    Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés

    2016-01-01

    This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338

  1. Inter-aperture correlation in MIMO free space optical systems

    NASA Astrophysics Data System (ADS)

    Özbilgin, Tuğba; Koca, Mutlu

    2015-10-01

    We present a unified framework for determining the inter-aperture separations in multiple-input-multiple-output (MIMO) free space optical (FSO) systems such that the transmitter-receiver paths are resolvable. The analysis framework is also useful in determining the amount of spatial correlation for a given set of system configuration parameters and aperture separations. It is applicable to both point apertures and also apertures with larger diameters and can be used at both transmit and receive arrays. We show that the results obtained via theoretical derivations are in good agreement with those in the literature obtained via measurements or simulations. The theoretical calculations reveal that even under strong turbulence conditions and very long link distances, aperture separations at the order of a few tens of centimeters are sufficient to have resolvable paths with independent fading gains. Furthermore, the channel correlations increase relatively slowly with decreasing inter-aperture separations which are below these values. We also provide design guidelines to obtain resolvable paths for several commonly used system configurations.

  2. Low complexity MIMO method based on matrix transformation for few-mode multi-core optical transmission system

    NASA Astrophysics Data System (ADS)

    Pan, Xiaolong; Liu, Bo; Li, Li; Tian, Qinghua

    2016-07-01

    This paper proposes and demonstrates a low complexity multiple-input multiple-output (MIMO) equalization digital signal processing (DSP) method for the few mode multi-core (FMMC) fiber optical transmission system. The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing (SDM) transmission system. Compared with traditional MIMO method, the proposed scheme has increased the convergence rate by 4 times and reduced the number of finite impulse response (FIR) filters by 55% when the numbers of mode and core are three.

  3. Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?

    PubMed Central

    2010-01-01

    Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that

  4. Pupil Dilation and EEG Alpha Frequency Band Power Reveal Load on Executive Functions for Link-Selection Processes during Text Reading

    PubMed Central

    Scharinger, Christian; Kammerer, Yvonne; Gerjets, Peter

    2015-01-01

    Executive working memory functions play a central role in reading comprehension. In the present research we were interested in additional load imposed on executive functions by link-selection processes during computer-based reading. For obtaining process measures, we used a methodology of concurrent electroencephalographic (EEG) and eye-tracking data recording that allowed us to compare epochs of pure text reading with epochs of hyperlink-like selection processes in an online reading situation. Furthermore, this methodology allowed us to directly compare the two physiological load-measures EEG alpha frequency band power and pupil dilation. We observed increased load on executive functions during hyperlink-like selection processes on both measures in terms of decreased alpha frequency band power and increased pupil dilation. Surprisingly however, the two measures did not correlate. Two additional experiments were conducted that excluded potential perceptual, motor, or structural confounds. In sum, EEG alpha frequency band power and pupil dilation both turned out to be sensitive measures for increased load during hyperlink-like selection processes in online text reading. PMID:26076026

  5. Pupil Dilation and EEG Alpha Frequency Band Power Reveal Load on Executive Functions for Link-Selection Processes during Text Reading.

    PubMed

    Scharinger, Christian; Kammerer, Yvonne; Gerjets, Peter

    2015-01-01

    Executive working memory functions play a central role in reading comprehension. In the present research we were interested in additional load imposed on executive functions by link-selection processes during computer-based reading. For obtaining process measures, we used a methodology of concurrent electroencephalographic (EEG) and eye-tracking data recording that allowed us to compare epochs of pure text reading with epochs of hyperlink-like selection processes in an online reading situation. Furthermore, this methodology allowed us to directly compare the two physiological load-measures EEG alpha frequency band power and pupil dilation. We observed increased load on executive functions during hyperlink-like selection processes on both measures in terms of decreased alpha frequency band power and increased pupil dilation. Surprisingly however, the two measures did not correlate. Two additional experiments were conducted that excluded potential perceptual, motor, or structural confounds. In sum, EEG alpha frequency band power and pupil dilation both turned out to be sensitive measures for increased load during hyperlink-like selection processes in online text reading.

  6. A Unitary ESPRIT Scheme of Joint Angle Estimation for MOTS MIMO Radar

    PubMed Central

    Wen, Chao; Shi, Guangming

    2014-01-01

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme. PMID:25106023

  7. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    PubMed

    Wen, Chao; Shi, Guangming

    2014-08-07

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.

  8. Robust Linear MIMO in the Downlink: A Worst-Case Optimization with Ellipsoidal Uncertainty Regions

    NASA Astrophysics Data System (ADS)

    Zheng, Gan; Wong, Kai-Kit; Ng, Tung-Sang

    2008-12-01

    This paper addresses the joint robust power control and beamforming design of a linear multiuser multiple-input multiple-output (MIMO) antenna system in the downlink where users are subjected to individual signal-to-interference-plus-noise ratio (SINR) requirements, and the channel state information at the transmitter (CSIT) with its uncertainty characterized by an ellipsoidal region. The objective is to minimize the overall transmit power while guaranteeing the users' SINR constraints for every channel instantiation by designing the joint transmitreceive beamforming vectors robust to the channel uncertainty. This paper first investigates a multiuser MISO system (i.e., MIMO with single-antenna receivers) and by imposing the constraints on an SINR lower bound, a robust solution is obtained in a way similar to that with perfect CSI. We then present a reformulation of the robust optimization problem using S-Procedure which enables us to obtain the globally optimal robust power control with fixed transmit beamforming. Further, we propose to find the optimal robust MISO beamforming via convex optimization and rank relaxation. A convergent iterative algorithm is presented to extend the robust solution for multiuser MIMO systems with both perfect and imperfect channel state information at the receiver (CSIR) to guarantee the worst-case SINR. Simulation results illustrate that the proposed joint robust power and beamforming optimization significantly outperforms the optimal robust power allocation with zeroforcing (ZF) beamformers, and more importantly enlarges the feasibility regions of a multiuser MIMO system.

  9. MIMO based optical phased array technology with electronic beam steering for laser radar applications

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Zmuda, Henry

    2010-04-01

    This paper will address the analysis and design of an electronically scanned phased array laser radar (ladar) system utilizing the techniques of multi-input multi-output (MIMO) array design. MIMO radar is has attracted much attention recently from both researchers and practitioners alike due to its significant potential for advancing the state-of-the-art RF radar technology. The laser radar architecture presented stands to gain significant inroads on the ability to apply RF array processing methods to laser radar systems in several ways. Specifically, using MIMO array design concepts, it is shown that the resolution of the ladar array can substantially exceed the diffraction limited resolution of a conventional array. Additionally, the use of array methods provides the capability to electronically steer the aperture, thus avoiding the mechanical beam scanning methods generally encountered in laser radar systems. Finally, by using an array of radiators, an increase in total radiated power is achieved, relieving the power burden on a single laser. The problems traditionally encountered in applying conventional array techniques to laser/detector arrays, for example, the inability to achieve half-wavelength spacing or the surfacing of source coherence issues, actually work to one's advantage when viewed in the MIMO paradigm. It is anticipated that the successful implementation of this system will significantly advance the state-of-the-art of laser radar capabilities for high speed imaging, target detection, tracking, and signature analysis.

  10. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    PubMed

    Wen, Chao; Shi, Guangming

    2014-01-01

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme. PMID:25106023

  11. Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Lau, Vincent K. N.

    2014-06-01

    To fully utilize the spatial multiplexing gains or array gains of massive MIMO, the channel state information must be obtained at the transmitter side (CSIT). However, conventional CSIT estimation approaches are not suitable for FDD massive MIMO systems because of the overwhelming training and feedback overhead. In this paper, we consider multi-user massive MIMO systems and deploy the compressive sensing (CS) technique to reduce the training as well as the feedback overhead in the CSIT estimation. The multi-user massive MIMO systems exhibits a hidden joint sparsity structure in the user channel matrices due to the shared local scatterers in the physical propagation environment. As such, instead of naively applying the conventional CS to the CSIT estimation, we propose a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly. A joint orthogonal matching pursuit recovery algorithm is proposed to perform the CSIT recovery, with the capability of exploiting the hidden joint sparsity in the user channel matrices. We analyze the obtained CSIT quality in terms of the normalized mean absolute error, and through the closed-form expressions, we obtain simple insights into how the joint channel sparsity can be exploited to improve the CSIT recovery performance.

  12. Studies of selective attention in dogs using the coherence-phase characteristics of cortical potentials over a wide range of frequencies, 1-220 Hz.

    PubMed

    Dumenko, V N; Kozlov, M K

    2003-07-01

    The state of selective attention formed during operant food-related behavior was studied using the coherence-phase characteristics between potentials in several areas of the neocortex at frequencies of 1-220 Hz. Functional groups were identified among the areas compared, which appear to have priority for this state. The temporal relationships between potentials in these groups were established from values for coherence functions at a particular optimum level (0.7) mainly in the band 1-15 Hz and the high-frequency range 40-200 Hz. The phenomenon of synchronicity appeared at phase shifts close to zero, while at significant phase shifts the phenomenon of non-synchronous time relationships with defined spatial directions was seen in the high-frequency range.

  13. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    PubMed

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system. PMID:27410359

  14. Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues

    NASA Astrophysics Data System (ADS)

    Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.

    Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.

  15. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing.

    PubMed

    Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Cao, Yinwen; Liu, Cong; Liao, Peicheng; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Willner, Asher; Ashrafi, Nima; Ashrafi, Solyman; Linquist, Roger D; Bock, Robert; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2015-09-15

    We explore the potential of combining the advantages of multiple-input multiple-output (MIMO)-based spatial multiplexing with those of orbital angular momentum (OAM) multiplexing to increase the capacity of free-space optical (FSO) communications. We experimentally demonstrate an 80 Gbit/s FSO system with a 2×2 aperture architecture, in which each transmitter aperture contains two multiplexed data-carrying OAM modes. Inter-channel crosstalk effects are minimized by the OAM beams' inherent orthogonality and by the use of 4×4 MIMO signal processing. Our experimental results show that the bit-error rates can reach below the forward error correction limit of 3.8×10(-3) and the power penalties are less than 3.6 dB for all channels after MIMO processing. This indicates that OAM and MIMO-based spatial multiplexing could be simultaneously utilized, thereby providing the potential to enhance system performance.

  16. SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi

    2015-12-01

    The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.

  17. Relationship between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distribution.

    PubMed

    Hartl, G B; Lang, G; Klein, F; Willing, R

    1991-06-01

    Morphological characters in red deer (Cervus elaphus), which serve as criteria for selective hunting, were examined in relation to electrophoretic variation in three populations from the Vosges in eastern France. From the polymorphic loci examined, certain alleles at Idh-2, Me-1 and Acp-1 showed significant associations with a special development of body and antler characters selected for by hunters. Idh-2(125) was associated with larger hind foot length in females and a higher number of antler points in males. Me-1(90) and Acp-1(100) were associated with small spikes. The populations studied differed from one another in the duration and intensity of selective hunting and the increase or decrease in the respective allele frequencies could be explained by selection for large body size, a high number of antler points and against small spikes in yearlings, rather than by genetic drift. Among other morphological characters examined, the length of the main beam was significantly associated with the allele Acp-2(100). In contrast, no associations could be detected between overall heterozygosity and the development or the degree of asymmetry (in paired structures) of any of the morphological traits in question. Although no obvious differences in the overall values of polymorphism or heterozygosity were found between the populations, selective hunting leads towards a change in allele frequencies and eventually to the loss of one or the other rare allele. PMID:1880046

  18. The XXL Survey. XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.

    2016-06-01

    Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the

  19. The Selection of Basis Functions Systems for Determination of Cutoff Frequency of Waveguides and Resonators of Complex Shape with the Help of R-functions Method

    NASA Astrophysics Data System (ADS)

    Kravchenko, Victor F.; Yurin, Aleksey V.

    2009-03-01

    The work focuses on the problem of determination of cutoff frequency of waveguides and resonators of a complex shape. The problem is sold by method of R-functions. This approach has a lot of advantages, it possesses geometric flexibility, broad capabilities of numerical realization as for the production of the variation problem and for the selection of basis functions system as well. As basis functions the polynomials (trigonometrical, power, Tchebyshev of I and II types, Legendre, Gegenbauer) or local functions (atomic functions, splines) are used. The contrastive analysis of approximate boundary value problem solving is carried out in accordance to the basis functions system selected.

  20. Epistatic selection of a sequence 5{prime} of the gene responsible for cystic fibrosis may account for the high frequency of this disease in the Caucasian population

    SciTech Connect

    Macek, M. Jr. |; Nash, E.; Cutting, G.R.

    1994-09-01

    Cystic fibrosis (CF) is one of the more common lethal autosomal recessive disorders in Caucasian populations. Numerous hypotheses including genetic drift, founder effect, sex ratio, segregation distortions and various forms of heterozygote advantage have been proposed to explain the relatively high frequency of CF alleles. The observation of high linkage disequilibrium between markers at the 5{prime} end of CFTR and mutations that cause CF raised the possibility of epistatic selection. CF-linked marker allele frequencies were determined in 417 elderly individuals from a stable Czech population that survived high levels of infant and childhood mortality in the pre-antibiotic era. These data were compared with allele frequencies of 646 contemporary newborns and 345 young adults drawn from the same population who had significantly lower mortality rates in the antibiotic era. Allele frequencies of markers CS7/Hhal and KM19/Pstl from the D7S23 locus are significantly different (p<0.05) between elderly female and male subjects in this population. Furthermore, there is a significant difference in the allele frequencies of marker CS7/Hhal when newborn females and elderly women are compared (p<0.05). Taken together, these data suggest that the allele status at the CS7 region influenced female survival in the period of high infant and childhood mortality in the pre-antibiotic era. Under this selective pressure, CFTR mutations that occurred on the {open_quotes}favorable{close_quotes} background would marginally increase in frequency in each successive generation and more ancient mutations residing on this background would become the most frequent in the general population.

  1. Numerical and experimental study of curved and planar frequency selective surfaces with arbitrary illumination. M.S. Thesis - Maryland Univ., 1989

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen

    1991-01-01

    A frequency selective surface (FSS) composed of apertures in a metallic sheet is known as the inductive FSS. The infinite inductive FSS theory is derived and the aperture fields are solved by a spectral domain formulation with method of moments solution. Both full domain and subsectional basis functions are studied. A locally planar technique (LPT) is used to determine the forward scattered field from a generally shaped inductive FSS with arbitrary illumination.

  2. The Miniaturized Mossbauer Spectrometer MIMOS II for the Asteroid Redirect Mission (ARM): Quantitative Iron Mineralogy and Oxidation States

    NASA Technical Reports Server (NTRS)

    Schroder, Christian; Klingelhofer, Gostar; Morris, Richard V.; Yen, Albert S.; Renz, Franz; Graff, Trevor G.

    2016-01-01

    The miniaturized Mossbauer spectrometer MIMOS II is an off-the-shelf instrument, which has been successfully deployed during NASA's Mars Exploration Rover (MER) mission and was on-board the ESA/UK Beagle 2 Mars lander and the Russian Phobos-Grunt sample return mission. We propose to use a fully-qualified flight-spare MIMOS II instrument available from these missions for in situ asteroid characterization with the Asteroid Redirect Robotic Mission (ARRM).

  3. Methodology for Selection of Optimum Light Stringers in Functionally Graded Panels Designed for Prescribed Fundamental Frequency or Buckling Load

    NASA Astrophysics Data System (ADS)

    Birman, Victor; Byrd, Larry W.

    2008-02-01

    The interest to functionally graded materials (FGM) and structures has been generated by their potential advantages, including enhanced thermal properties, reduced or eliminated delamination concerns, a potential for an improved stress distribution, etc. Various aspects of the processing, design, micromechanics and analysis of FGM have been outlined in a number of reviews, mentioned here are [1-3]. In particular, functionally graded panels may be advantageous compared to their conventional counterparts in numerous applications. However, a typical FGM panel is asymmetric about its middle plane resulting in lower buckling loads and fundamental frequencies as well as higher stresses and deformations than the counterpart with a symmetric distribution of the same constituents. The reduced stiffness of FGM panels can be compensated by reinforcing them with stringers. For example, metallic stringers at the metal-rich surface of a FGM ceramic-metal panel may provide an efficient solution enabling a designer to increase both buckling loads as well as natural frequencies. The list of studies on optimization of FGM is extensive as could be anticipated for such tailored structural elements. For example, recent papers by Batra and his collaborators present optimization of the natural frequencies of a FGM plate through material grading [4] and through the graded fiber orientation [5]. The present paper is concerned with an optimum design of the system of stringers for a specified FGM panel. The task is to design the lightest system of stringers enabling the panel to achieve prescribed buckling loads or fundamental frequency.

  4. Performance Study of Hybrid DS/FFH Spread-Spectrum Systems in the Presence of Frequency-Selective Fading and Multiple-Access Interference

    SciTech Connect

    Olama, Mohammed M; Smith, Stephen Fulton; Kuruganti, Phani Teja; Ma, Xiao

    2012-01-01

    Hybrid spread-spectrum (HSS) systems have recently received considerable interest in commercial, Smart Grid, and military communication systems because they accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this modulation scheme is the specific code-related combination of standard direct-sequence spread spectrum (DSSS) with fast frequency-hopping (FFH) spread spectrum, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper we perform a simulation-based study of the DS/FFH performance as compared to the existing standard DSSS and FHSS wireless networks. The performance metrics are bit-error probability and multiple-access capability. The parameter space of DS/FFH, including the DS spreading rate, frequency hopping rate, carrier frequencies, and numbers of users, is explored to show its performance under frequency-selective Rayleigh fading environments and multiuser interference. Direct digital synthesizers to achieve fast hopping speeds are also considered in our study.

  5. Selection-driven accumulation of suppressor mutants in bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB(+) suppressors are due to growth under selection.

    PubMed

    Gunka, Katrin; Stannek, Lorena; Care, Rachel A; Commichau, Fabian M

    2013-01-01

    Soil bacteria like Bacillus subtilis can cope with many growth conditions by adjusting gene expression and metabolic pathways. Alternatively, bacteria can spontaneously accumulate beneficial mutations or shape their genomes in response to stress. Recently, it has been observed that a B. subtilis mutant lacking the catabolically active glutamate dehydrogenase (GDH), RocG, mutates the cryptic gudB(CR) gene at a high frequency. The suppressor mutants express the active GDH GudB, which can fully replace the function of RocG. Interestingly, the cryptic gudB(CR) allele is stably inherited as long as the bacteria synthesize the functional GDH RocG. Competition experiments revealed that the presence of the cryptic gudB(CR) allele provides the bacteria with a selective growth advantage when glutamate is scarce. Moreover, the lack of exogenous glutamate is the driving force for the selection of mutants that have inactivated the active gudB gene. In contrast, two functional GDHs are beneficial for the cells when glutamate was available. Thus, the amount of GDH activity strongly affects fitness of the bacteria depending on the availability of exogenous glutamate. At a first glance the high mutation frequency of the cryptic gudB(CR) allele might be attributed to stress-induced adaptive mutagenesis. However, other loci on the chromosome that could be potentially mutated during growth under the selective pressure that is exerted on a GDH-deficient mutant remained unaffected. Moreover, we show that a GDH-proficient B. subtilis strain has a strong selective growth advantage in a glutamate-dependent manner. Thus, the emergence and rapid clonal expansion of the active gudB allele can be in fact explained by spontaneous mutation and growth under selection without an increase of the mutation rate. Moreover, this study shows that the selective pressure that is exerted on a maladapted bacterium strongly affects the apparent mutation frequency of mutational hot spots.

  6. Concerning criteria for evaluation of amplitude-frequency characteristic of two-signal selectivity of radio reception channel

    NASA Astrophysics Data System (ADS)

    Telezhnyy, B. G.

    1984-05-01

    The results of a qualitative evaluation of the nonlinear effects in an ultrahigh frequency receiver of the shortwave band based on an electron tube, field effect and bipolar transistors, performed experimentally, are shown in a table. The table presents the permissible values of the amplitude of the AM noise acting at the AM receiver, the evaluation of which is conducted according to a list of various criteria.

  7. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    PubMed

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  8. Magic angle Lee-Goldburg frequency offset irradiation improves the efficiency and selectivity of SPECIFIC-CP in triple-resonance MAS solid-state NMR.

    PubMed

    Wu, Chin H; De Angelis, Anna A; Opella, Stanley J

    2014-09-01

    The efficiency and selectivity of SPECIFIC-CP, a widely used method for selective double cross-polarization in triple-resonance magic angle spinning solid-state NMR, is improved by performing the tangential-shaped (13)C irradiation at an offset frequency that meets the Lee-Goldburg condition (LG-SPECIFIC-CP). This is demonstrated on polycrystalline samples of uniformly (13)C, (15)N labeled N-acetyl-leucine and N-formyl-Met-Leu-Phe-OH (MLF) at 700MHz and 900MHz (1)H resonance frequencies, respectively. For the single (13)Cα of N-acetyl-leucine, relative to conventional broad band cross-polarization, the SPECIFIC-CP signal has 47% of the intensity. Notably, the LG-SPECIFIC-CP signal has 72% of the intensity, essentially the theoretical maximum. There were no other changes in the experimental parameters. The three (13)Cα signals in MLF show some variation in intensities, reflecting the relatively narrow bandwidth of a frequency-offset procedure, and pointing to future developments for this class of experiment.

  9. Scan for allele frequency differences from pooled samples in lines of pigs selected for components of litter size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct single trait selection within two seasonal replicates for 11 generations resulted in a 1.6 pig advantage for uterine capacity (UC) and a 3.0 advantage for ovulation rate (OR) compared to an unselected control (CO) population. Our objective was to gain insight and identify genetic loci impacte...

  10. Metamaterial composition comprising frequency-selective-surface resonant element disposed on/in a dielectric flake, methods, and applications

    SciTech Connect

    Shelton, David; Boreman, Glenn; D'Archangel, Jeffrey

    2015-11-10

    Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.

  11. A 220-1100 MHz low phase-noise frequency synthesizer with wide-band VCO and selectable I/Q divider

    NASA Astrophysics Data System (ADS)

    Hua, Chen; Renjie, Gong; Xu, Cheng; Yulin, Zhang; Zhong, Gao; Guiliang, Guo; Yuepeng, Yan

    2014-12-01

    This paper presents a low phase-noise fractional-N frequency synthesizer which provides an in-phase/quadrature-phase (I/Q) signal over a frequency range of 220-1100 MHz for wireless networks of industrial automation (WIA) applications. Two techniques are proposed to achieve the wide range. First, a 1.4-2.2 GHz ultralow gain voltage-controlled oscillator (VCO) is adopted by using 128 tuning curves. Second, a selectable I/Q divider is employed to divide the VCO frequency by 2 or 3 or 4 or 6. Besides, a phase-switching prescaler is proposed to lower PLL phase noise, a self-calibrated charge pump is used to suppress spur, and a detect-boosting phase frequency detector is adopted to shorten settling time. With a 200 kHz loop bandwidth, lowest measured phase noise is -106 dBc/Hz at a 10 kHz offset and -131 dBc/Hz at a 1 MHz offset. Fabricated in the TSMC 0.18 μm CMOS process, the synthesizer occupies a chip area of 1.2 mm2, consumes only 15 mW from the 1.8 V power supply, and settles within 13.2 μs. The synthesizer is optimized for the WIA applications, but can also be used for other short-range wireless communications, such as 433, 868, 916 MHz ISM band applications.

  12. Modelling the short- and long-term impacts of drenching frequency and targeted selective treatment on the performance of grazing lambs and the emergence of anthelmintic resistance.

    PubMed

    Laurenson, Yan C S M; Bishop, Stephen C; Forbes, Andrew B; Kyriazakis, Ilias

    2013-05-01

    Refugia-based treatment strategies aim to prolong anthelmintic efficacy by maintaining a parasite population unexposed to anthelmintics. Targeted selective treatment (TST) achieves this by treating only animals that will benefit most from treatment, using a determinant criterion (DC). We developed a mathematical model to compare various traits proposed as DC, and investigate impacts of TST and drenching frequency on sheep performance and anthelmintic resistance. Short term, decreasing the proportion of animals drenched reduced benefits of anthelmintic treatment, assessed by empty body weight (EBW), but decreased the rate of anthelmintic resistance development; each consecutive drenching had a reduced impact on average EBW and an increased impact on the rate of anthelmintic resistance emergences. The optimal DC was fecal egg count, maintaining the highest average EBW when reducing the proportion of animals drenched. Long-term, reducing the proportion of animals drenched had little impact on total weight gain benefits, across animals and years, whilst reducing drenching frequency increased it. Decreasing the frequency and proportion of animals drenched were both predicted to increase the duration of anthelmintic efficacy but reduce the total number of drenches administered before resistance was observed. TST and frequency of drenching may lead to different benefits in the short versus long term.

  13. Comparison of hemispheric asymmetry in global and local information processing and interference in divided and selective attention using spatial frequency filters.

    PubMed

    Yoshida, Takeshi; Yoshino, Aihide; Takahashi, Yoshitomo; Nomura, Soichiro

    2007-08-01

    To elucidate hemispheric asymmetry in the neurophysiologic mechanisms of global and local information processing, we investigate high-density event-related potentials (ERPs) during divided and selective attention tasks based on detection of hierarchical letters whose spatial frequency is controlled. Twelve healthy male subjects performed divided and selective attention tasks based on the detection of hierarchical letters. Spatial frequencies of hierarchical letters were controlled by high- and low-pass spatial filters. ERP modulations corresponding to the target level (global versus local) effect and the interference effect caused by similarity (similar versus dissimilar letters) were explored. In both tasks, the global and local target effects were associated with late negative modulation (300 ms) over the right and left hemispheres, respectively. The interference effect was associated with negative modulation over the contralateral hemisphere. The latency of the interference effect was greater than that of the target level effect. Early modulations (150 ms) of the target level effect showed hemispheric asymmetry during selective but not divided attention tasks. Global and local information is processed within different hemispheres while interference between global and local information arises in the contralateral hemisphere asymmetrically.

  14. Multi-input multi-output underwater communications over sparse and frequency modulated acoustic channels.

    PubMed

    Ling, Jun; Zhao, Kexin; Li, Jian; Nordenvaad, Magnus Lundberg

    2011-07-01

    This paper addresses multi-input multi-output (MIMO) communications over sparse acoustic channels suffering from frequency modulations. An extension of the recently introduced SLIM algorithm, which stands for sparse learning via iterative minimization, is presented to estimate the sparse and frequency modulated acoustic channels. The extended algorithm is referred to as generalization of SLIM (GoSLIM). The sparseness is exploited through a hierarchical Bayesian model, and because GoSLIM is user parameter free, it is easy to use in practical applications. Moreover this paper considers channel equalization and symbol detection for various MIMO transmission schemes, including both space-time block coding and spatial multiplexing, under the challenging channel conditions. The effectiveness of the proposed approaches is demonstrated using in-water experimental measurements recently acquired during WHOI09 and ACOMM10 experiments.

  15. ELF (Extremely Low Frequency) communications system ecological monitoring program: Measurements of ELF electromagnetic fields for site selection and Characterization-1984

    NASA Astrophysics Data System (ADS)

    Gauger, J. R.; Brosh, R. M.; Zapotosky, J. E.

    1985-06-01

    A long-term program for studying possible effects from the operation of the Navy's ELF Communications System is being conducted on biota and ecosystems components in north-western Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in the ELF system area are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy. Monitoring studies were conducted through a peer-reviewed, competitive bidding process in mid-1982, and studies were initiated in late summer of the same year. Beginning in 1983 and continuing during 1984 major activities of the program consisted of characterization of critical aspects of each study, collection of data to validate assumptions made in proposals, and selection of study sites. Measurements of electromagnetic fields at the investigator-selected sites are documented, and the acceptability and status of the sites in light of the electromagnetic exposure criteria are discussed.

  16. ELF (Extremely Low Frequency) communications system ecological monitoring program: Measurements of ELF electromagnetic fields for site selection and characterization, 1983

    NASA Astrophysics Data System (ADS)

    Enk, J. O.; Gauger, J. R.

    1985-01-01

    A long-term program for studying possible effects from the operation of the Navy's ELF Communications System is being conducted on biota and ecosystems components in northwestern Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in ELF system areas are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy. Monitoring studies were conducted through a peer-reviewed, competitive bidding process in mid-1982, and studies were initiated in late summer. Major activities of the program during 1983 consisted of characterization of critical aspects of each study, collection of data to validate assumption made in proposals, and selection of study sites. Measurements of electromagnetic fields at the investigator-selected sites are documented, and the acceptability and status of the sites in light of the electromagnetic exposure criteria are discussed.

  17. Flow Durations, Low-Flow Frequencies, and Monthly Median Flows for Selected Streams in Connecticut through 2005

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2008-01-01

    Flow durations, low-flow frequencies, and monthly median streamflows were computed for 91 continuous-record, streamflow-gaging stations in Connecticut with 10 or more years of record. Flow durations include the 99-, 98-, 97-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, and 1-percent exceedances. Low-flow frequencies include the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low flow. Streamflow estimates were computed for each station using data for the period of record through water year 2005. Estimates of low-flow statistics for 7 short-term (operated between 3 and 10 years) streamflow-gaging stations and 31 partial-record sites were computed. Low-flow estimates were made on the basis of the relation between base flows at a short-term station or partial-record site and concurrent daily mean streamflows at a nearby index station. The relation is defined by the Maintenance of Variance Extension, type 3 (MOVE.3) method. Several short-term stations and partial-record sites had poorly defined relations with nearby index stations; therefore, no low-flow statistics were derived for these sites. The estimated low-flow statistics for the short-term stations and partial-record sites include the 99-, 98-, 97-, 95-, 90-, and 85-percent flow durations; the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low-flow frequencies; and the August median flow. Descriptive information on location and record length, measured basin characteristics, index stations correlated to the short-term station and partial-record sites, and estimated flow statistics are provided in this report for each station. Streamflow estimates from this study are stored on USGS's World Wide Web application 'StreamStats' (http://water.usgs.gov/osw/streamstats/connecticut.html).

  18. In vivo measurement of human knee and hip dynamics using MIMO system identification.

    PubMed

    Koopman, B; van Asseldonk, E F; van der Kooij, H

    2010-01-01

    This study presents a new method for the estimation of the dynamic impedance of multi-joint leg movements. The method is based on Multi Input Multi Output (MIMO) system identification techniques and is designed for continuous torque perturbations at the hip and knee joint. Preliminary results from this study indicate that MIMO system identification can successfully be used to estimate the hip and knee impedance and the interaction dynamics between both joints. It is also concluded that, in order to create a good model representation of the leg impedance, the effect of biarticular muscles needs to be taken into account. The obtained measures for joint impedance might be used for clinical assessment and follow up of patients, as well as for the development of supportive devices.

  19. DOA estimation for monostatic MIMO radar based on unitary root-MUSIC

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Xianpeng; Li, Xin; Song, Hongru

    2013-11-01

    Direction of arrival (DOA) estimation is an important issue for monostatic MIMO radar. A DOA estimation method for monostatic MIMO radar based on unitary root-MUSIC is presented in this article. In the presented method, a reduced-dimension matrix is first utilised to transform the high dimension of received signal data into low dimension one. Then, a low-dimension real-value covariance matrix is obtained by forward-backward (FB) averaging and unitary transformation. The DOA of targets can be achieved by unitary root-MUSIC. Due to the FB averaging of received signal data and the eigendecomposition of the real-valued matrix covariance, the proposed method owns better angle estimation performance and lower computational complexity. The simulation results of the proposed method are presented and the performances are investigated and discussed.

  20. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-11-10

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.

  1. Joint Robust Transmit/Receive Adaptive Beamforming for MIMO Radar Using Probability-Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Vorobyov, Sergiy A.

    2016-01-01

    A joint robust transmit/receive adaptive beamforming for multiple-input multipleoutput (MIMO) radar based on probability-constrained optimization approach is developed in the case of Gaussian and arbitrary distributed mismatch present in both the transmit and receive signal steering vectors. A tight lower bound of the probability constraint is also derived by using duality theory. The formulated probability-constrained robust beamforming problem is nonconvex and NP-hard. However, we reformulate its cost function into a bi-quadratic function while the probability constraint splits into transmit and receive parts. Then, a block coordinate descent method based on second-order cone programming is developed to address the biconvex problem. Simulation results show an improved robustness of the proposed beamforming method as compared to the worst-case and other existing state-of-the-art joint transmit/receive robust adaptive beamforming methods for MIMO radar.

  2. A Polarization Reconfigurable Aperture-Coupled Microstrip Antenna and Its Binary Array for MIMO

    NASA Astrophysics Data System (ADS)

    Zhong, Lei; Hong, Jin-Song; Zhou, Hong-Cheng

    2016-03-01

    In the paper, a singly fed circular patch antenna with polarization diversity is proposed, and its binary array for MIMO application is explored as well. The air substrate and aperture-coupled feed structure are adopted to increase bandwidth and simplify the bias circuit of PIN diodes. By controlling the states of four PIN diodes on the patch, the proposed antenna can produce linear polarization (LP), left- or right-hand circular polarization (LHCP or RHCP). For each polarization sense, the antenna exhibits wide impedance bandwidth, high gain and low cross-polarization. Two antennas are orthogonally placed to form a binary array for MIMO application, which has high isolation and low envelope correlation. The antenna and its array have advantages of simple biasing network, easy fabrication and adjustment, which can be widely applied in wireless communication systems.

  3. A Low-Complexity Transceiver Design in Sparse Multipath Massive MIMO Channels

    NASA Astrophysics Data System (ADS)

    Yu, Yuehua; Wang, Peng; Chen, He; Li, Yonghui; Vucetic, Branka

    2016-10-01

    In this letter, we develop a low-complexity transceiver design, referred to as semi-random beam pairing (SRBP), for sparse multipath massive MIMO channels. By exploring a sparse representation of the MIMO channel in the virtual angular domain, we generate a set of transmit-receive beam pairs in a semi-random way to support the simultaneous transmission of multiple data streams. These data streams can be easily separated at the receiver via a successive interference cancelation (SIC) technique, and the power allocation among them are optimized based on the classical waterfilling principle. The achieved degree of freedom (DoF) and capacity of the proposed approach are analyzed. Simulation results show that, compared to the conventional singular value decomposition (SVD)-based method, the proposed transceiver design can achieve near-optimal DoF and capacity with a significantly lower computational complexity.

  4. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-01-01

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241

  5. Characteristics of bistable localized emission states in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback

    SciTech Connect

    Tanguy, Y.; Ackemann, T.; Jaeger, R.

    2006-11-15

    Small-area bistable lasing spots (about 10 {mu}m full width at half maximum) can be created at different positions within the aperture of a broad-area vertical-cavity surface-emitting laser (aperture diameter 80 {mu}m) with frequency-selective feedback from a grating in Littrow configuration, and an additional pinhole localizing feedback to a part of the laser. Their characteristics are analyzed depending on the grating tuning, injection current, and feedback strength. These spots are considered to be good candidates for self-localized cavity solitons, if the perturbation by boundaries can be reduced using devices with larger diameter.

  6. 2WHSP: A multi-frequency selected catalog of VHE gamma-ray blazars and blazar candidates

    NASA Astrophysics Data System (ADS)

    Chang, Yu Lin; Arsioli, Bruno; Giommi, Paolo; Padovani, Paolo

    2016-08-01

    High Synchrotron Peaked Blazars (HSPs) are extremely important for VHE astronomy. We built the largest existing catalog of High Synchrotron Blazars (2WHSP) based on multi-frequency data. The catalog is an extension of the 1WHSP list. We compared several general properties of HSPs such as the synchrotron peak, the redshift and IR the color-color diagram. We also built the logN-logS for the sources, trying to see the evolution and the deficiency of the catalog. The catalog will provide a unique sample of targets for VHE observations in future since the HSPs are the dominant extra-Galactic sources in VHE sky. This might help find more VHE sources later. In the future, we will use this catalog to estimate other VHE properties of HSPs.

  7. Estimating the magnitude of peak discharges for selected flood frequencies on small streams in South Carolina (1975)

    USGS Publications Warehouse

    Whetstone, B.H.

    1982-01-01

    A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)

  8. High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo-Aguirre, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-07-01

    This work studies the sonochemical degradation of a penicillinic antibiotic (oxacillin) in simulated pharmaceutical wastewater. High frequency ultrasound was applied to water containing the antibiotic combined with mannitol or calcium carbonate. In the presence of additives, oxacillin was efficiently removed through sonochemical action. For comparative purposes, the photo-Fenton, TiO2 photocatalysis and electrochemical oxidation processes were also tested. Therefore, the evolution of the antibiotic and its associated antimicrobial activity (AA) were monitored. A high inhibition was found for the other three oxidation processes in the elimination of the antimicrobial activity caused by the additives; while for the ultrasonic treatment, a negligible effect was observed. The sonochemical process was able to completely degrade the antibiotic, generating solutions without AA. In fact, the elimination of antimicrobial activity showed an excellent performance adjusted to exponential kinetic-type decay. The main sonogenerated organic by-products were determined by means of HPLC-MS. Four intermediaries were identified and they have modified the penicillinic structure, which is the moiety responsible for the antimicrobial activity. Additionally, the possible oxacillin sonodegradation mechanism was proposed based on the evolution of the by-products and their chemical structure. Furthermore, the high-frequency ultrasound action over 120 min readily removed oxacillin and eliminated its antimicrobial activity. However, the pollutant was not mineralized even after a long period of ultrasonic irradiation (360 min). Interestingly, the previously sonicated water containing oxacillin and both additives was completely mineralized using non-adapted microorganisms from a municipal wastewater treatment plant. These results show that the sonochemical treatment transformed the initial pollutant into substances that are biotreatable with a typical aerobic biological system.

  9. Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2016-02-22

    A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results. PMID:26907009

  10. Improved Delay-Dependent Stability Conditions for MIMO Networked Control Systems with Nonlinear Perturbations

    PubMed Central

    2014-01-01

    This paper provides improved time delay-dependent stability criteria for multi-input and multi-output (MIMO) network control systems (NCSs) with nonlinear perturbations. Without the stability assumption on the neutral operator after the descriptor approach, the new proposed stability theory is less conservative than the existing stability condition. Theoretical proof is given in this paper to demonstrate the effectiveness of the proposed stability condition. PMID:24744679

  11. Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2016-02-22

    A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results.

  12. Improved delay-dependent stability conditions for MIMO networked control systems with nonlinear perturbations.

    PubMed

    Cao, Jiuwen

    2014-01-01

    This paper provides improved time delay-dependent stability criteria for multi-input and multi-output (MIMO) network control systems (NCSs) with nonlinear perturbations. Without the stability assumption on the neutral operator after the descriptor approach, the new proposed stability theory is less conservative than the existing stability condition. Theoretical proof is given in this paper to demonstrate the effectiveness of the proposed stability condition.

  13. [Study of selective attention in dogs by coherent-phase characteristics of cortical potentials in the broad frequency band 1-220 Hz].

    PubMed

    Dumenko, V N; Kozlov, M K

    2002-01-01

    Coherent-phase characteristics of cortical potentials (1-220 Hz) derived from different cortical point of both brain hemispheres of dogs were analyzed in the state of selective attention developed in the course of instrumental food conditioning. Among the compared cortical points, functional groups were found that were probably of priority for the state of selective attention. Values of coherence function between these derivations (an assessment of temporal relations) were at a certain optimal level (about 0.7), predominantly, in the frequency ranges of 1-15 and 40-200 Hz. Under such conditions, if the average phase shifts between the potentials were near zero, phenomenon of potential synchronism was formed. In case of significant phase shifts, phenomenon of asynchronous temporal relations with a certain spatial direction developed.

  14. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System.

    PubMed

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system. PMID:26421311

  15. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System

    PubMed Central

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system. PMID:26421311

  16. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System.

    PubMed

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system.

  17. Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter

    PubMed Central

    Bolisetti, Siva Karteek; Patwary, Mohammad; Ahmed, Khawza; Soliman, Abdel-Hamid; Abdel-Maguid, Mohamed

    2015-01-01

    The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered. The increased false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection reliability. While Subspace Compressive GLRT (SSC-GLRT) detector is known to give optimised radar target detection performance with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT detector for MIMO radar in the presence of clutter are provided in this paper. PMID:26495422

  18. Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter.

    PubMed

    Bolisetti, Siva Karteek; Patwary, Mohammad; Ahmed, Khawza; Soliman, Abdel-Hamid; Abdel-Maguid, Mohamed

    2015-01-01

    The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered. The increased false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection reliability. While Subspace Compressive GLRT (SSC-GLRT) detector is known to give optimised radar target detection performance with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT detector for MIMO radar in the presence of clutter are provided in this paper. PMID:26495422

  19. Hardware Impairments Aware Transceiver for Full-Duplex Massive MIMO Relaying

    NASA Astrophysics Data System (ADS)

    Xia, Xiaochen; Zhang, Dongmei; Xu, Kui; Ma, Wenfeng; Xu, Youyun

    2015-12-01

    This paper studies the massive MIMO full-duplex relaying (MM-FDR), where multiple source-destination pairs communicate simultaneously with the help of a common full-duplex relay equipped with very large antenna arrays. Different from the traditional MM-FDR protocol, a general model where sources/destinations are allowed to equip with multiple antennas is considered. In contrast to the conventional MIMO system, massive MIMO must be built with low-cost components which are prone to hardware impairments. In this paper, the effect of hardware impairments is taken into consideration, and is modeled using transmit/receive distortion noises. We propose a low complexity hardware impairments aware transceiver scheme (named as HIA scheme) to mitigate the distortion noises by exploiting the statistical knowledge of channels and antenna arrays at sources and destinations. A joint degree of freedom and power optimization algorithm is presented to further optimize the spectral efficiency of HIA based MM-FDR. The results show that the HIA scheme can mitigate the "ceiling effect" appears in traditional MM-FDR protocol, if the numbers of antennas at sources and destinations can scale with that at the relay.

  20. Flexible metamaterial narrow-band-pass filter based on magnetic resonance coupling between ultra-thin bilayer frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyuan; Zhang, Qing; Ju, Yongfeng; Tao, Guiju; Jiang, Xiongwei; Kang, Ning; Liu, Chengpu; Zhang, Long

    2016-02-01

    A novel flexible metamaterial narrow-band-pass filter is designed and proved to be reliable by both numerical simulations and experimental measurements. The unit cell of the designed structure consists of circle ring resonators on top of a thin dielectric layer backed by a metallic mesh. The investigations on the distribution of the surface current and magnetic field as well as the analysis of the equivalent circuit model reveal that the magnetic resonance response between layers induced by the reverse surface current contributes to the high quality factor band-pass property. Importantly, it is a flexible design with a tunable resonance frequency by just changing the radius of the circle rings and can also be easily extended to have the multi-band-pass property. Moreover, this simplified structure with low duty cycle and ultra-thin thickness is also a symmetric design which is insensitive to the polarization and incident angles. Therefore, such a metamaterial narrow-band-pass filter is of great importance in the practical applications such as filtering and radar stealth, and especially for the conformal structure applications in the infrared and optical window area.

  1. Habitat assessment ability of bumble-bees implies frequency-dependent selection on floral rewards and display size

    PubMed Central

    Biernaskie, Jay M; Gegear, Robert J

    2007-01-01

    Foraging pollinators could visit hundreds of flowers in succession on mass-flowering plants, yet they often visit only a small number—potentially saving the plant from much self-pollination among its own flowers (geitonogamy). This study tests the hypothesis that bumble-bee (Bombus impatiens) residence on a particular plant depends on an assessment of that plant's reward value relative to the overall quality experienced in the habitat. In a controlled environment, naive bees were given experience in a particular habitat (all plants having equal nectar quality or number of rewarding flowers), and we tested whether they learn about and adaptively exploit a new habitat type. Bees' residence on a plant (number of flowers probed per visit) was eventually invariant to a doubling of absolute nectar quality and increased only slightly with a doubling of absolute flower number in the habitat. These results help to explain why pollinators are quick to leave highly rewarding plants and suggest that the fitness of rewarding plant traits will often be frequency dependent. One implication is that geitonogamy may be a less significant constraint on the evolution of rewarding traits than generally supposed. PMID:17711839

  2. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.

    PubMed

    Bronsert, Michael; Bingol, Hilary; Atkins, Gordon; Stout, John

    2003-03-01

    L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate. PMID:12589693

  3. Beyond orchids and dandelions: Testing the 5HTT “risky” allele for evidence of phenotypic capacitance and frequency dependent selection

    PubMed Central

    Conley, Dalton; Rauscher, Emily; Siegal, Mark L.

    2013-01-01

    The persistence of behaviorally deleterious genes in the human population poses an interesting question for population genetics: If certain alleles at these loci are deleterious, why have they survived in the population? We consider evidence for phenotypic capacitance and/or frequency dependent selection for an allele that has been putatively shown to have negative associations with human behaviors (the “short” 5-HTT promoter region allele) yet which has persisted in human and non-human primate populations. Using National Longitudinal Study of Adolescent Health data, we compare sibling and twin variation in depression by 5-HTT genotype (specified in several ways) and investigate sibship-level cross-person gene-gene interactions. In support of the “orchid / dandelion” hypothesis, we find evidence that the short allele increases variation in phenotypes in response to environmental (or genetic) differences (i.e. acts as a perturbation of a phenotypic capacitor). Further, we also find some evidence that the effects of allelic variation at this locus are moderated by the genetic environment of the sibship unit (i.e. may be susceptible to frequency dependent selection). We discuss implications of these findings for genetic models in general, specifically with respect to stable unit treatment value assumption violations (i.e. non-independence of units of analysis). PMID:23701535

  4. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.

    PubMed

    Bronsert, Michael; Bingol, Hilary; Atkins, Gordon; Stout, John

    2003-03-01

    L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate.

  5. Frequency of Arteriovenous Shunts in Hepatic Cavernous Hemangiomas in Adults as Seen on Selective Arteriography and Postembolization Radiography

    SciTech Connect

    Ouyang Yong; Ouyang Xuehui; Yu Ming; Gu Shubin

    2001-05-15

    Purpose: To study the frequency and angiographic findings of arteriovenous shunts (AVS) associated with adult cavernous hemangiomas of the liver (CHL) on hepatic artery digital subtraction angiography (DSA) and optimize the imaging technique of DSA to improve its diagnostic efficacy.Methods: We retrospectively analyzed 43 intraarterial DSA procedures performed on 30 adults with CHL. Of the 30 patients 22 were found to have an AVS. Transcatheter arterial embolization with Lipiodol (L-TAE) was performed on 21 of these and radiographs were taken immediately after embolization to observe the distribution of the injected iodized oil. The results were compared with those of the AVS found on DSA images.Results: AVS were identified by DSA in 22 (73.3%) of 30 patients. All AVS were located in the peritumoral liver tissue and had a parallel track appearance, or early filling of small draining veins during the arterial phase of DSA. Radiographs taken immediately after L-TAE in 21 of the 22 cases with AVS showed iodized oil filling a few portal branches or draining veins as a result of incompletely occluded shunts in 11 patients. In 10 patients there was complete occlusion and no filling of any vein, or only the originating end of draining veins filled with iodized oil. No evidence of AVS was found in the other eight patients in this series, and in six of these the DSA was not considered diagnostic.Conclusion: The present study indicates that AVS are frequently seen in adults with CHL. DSA with high-quality images is helpful in identifying small AVS of CHL. The formation of an AVS in CHL may be closely related to the pathological changes in the peritumoral liver tissue.

  6. Effect of Embedded RF Pulsing for Selective Etching of SiO2 in the Dual-Frequency Capacitive Coupled Plasmas.

    PubMed

    Kim, Nam Hun; Jeon, Min Hwan; Kim, Tae Hyung; Yeom, Geun Young

    2015-11-01

    The characteristics of embedded pulse plasma using 60 MHz radio frequency as the source power and 2 MHz radio frequency as the bias power were investigated for the etching of SiO2 masked with an amorphous carbon layer (ACL) using an Ar/C4F8/O2 gas mixture. Especially, the effects of the different pulse duty ratio of the embedded dual-frequency pulsing between source power and bias power on the characteristics on the plasma and SiO2 etching were investigated. The experiment was conducted by varying the source duty percentage from 90 to 30% while bias duty percentage was fixed at 50%. Among the different duty ratios, the source duty percentage of 60% with the bias duty percentage of 50% exhibited the best results in terms of etch profile and etch selectivity. The change of the etch characteristics by varying the duty ratios between the source power and bias power was believed to be related to the different characteristics of gas dissociation, fluorocarbon passivation, and ion bombardment observed during the different source/bias pulse on/off combinations. In addition, the instantaneous high electron temperature peak observed during each initiation of the source pulse-on period appeared to affect the etch characteristics by significant gas dissociation. The optimum point for the SiO2 etching with the source/bias pulsed dual-frequency capacitively coupled plasma system was obtained by avoiding this instant high electron temperature peak while both the source power and bias power were pulsed almost together, therefore, by an embedded RF pulsing. PMID:26726572

  7. Huvariome: a web server resource of whole genome next-generation sequencing allelic frequencies to aid in pathological candidate gene selection

    PubMed Central

    2012-01-01

    Background Next generation sequencing provides clinical research scientists with direct read out of innumerable variants, including personal, pathological and common benign variants. The aim of resequencing studies is to determine the candidate pathogenic variants from individual genomes, or from family-based or tumor/normal genome comparisons. Whilst the use of appropriate controls within the experimental design will minimize the number of false positive variations selected, this number can be reduced further with the use of high quality whole genome reference data to minimize false positives variants prior to candidate gene selection. In addition the use of platform related sequencing error models can help in the recovery of ambiguous genotypes from lower coverage data. Description We have developed a whole genome database of human genetic variations, Huvariome, determined by whole genome deep sequencing data with high coverage and low error rates. The database was designed to be sequencing technology independent but is currently populated with 165 individual whole genomes consisting of small pedigrees and matched tumor/normal samples sequenced with the Complete Genomics sequencing platform. Common variants have been determined for a Benelux population cohort and represented as genotypes alongside the results of two sets of control data (73 of the 165 genomes), Huvariome Core which comprises 31 healthy individuals from the Benelux region, and Diversity Panel consisting of 46 healthy individuals representing 10 different populations and 21 samples in three Pedigrees. Users can query the database by gene or position via a web interface and the results are displayed as the frequency of the variations as detected in the datasets. We demonstrate that Huvariome can provide accurate reference allele frequencies to disambiguate sequencing inconsistencies produced in resequencing experiments. Huvariome has been used to support the selection of candidate cardiomyopathy

  8. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-06-27

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west

  9. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-06-27

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west

  10. µ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype ... frequencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic marker effects and interactions are estimated with poor precision when minor marker allele frequencies are low. An Angus population was subjected to marker assisted selection for multiple years to increase divergent haplotype and minor marker allele frequencies to 1) estimate effect size an...

  11. When holding your horses meets the deer in the headlights: time-frequency characteristics of global and selective stopping under conditions of proactive and reactive control

    PubMed Central

    Lavallee, Christina F.; Meemken, Marie T.; Herrmann, Christoph S.; Huster, Rene J.

    2014-01-01

    The ability to inhibit unwanted thoughts or actions is crucial for successful functioning in daily life; however, this ability is often impaired in a number of psychiatric disorders. Despite the relevance of inhibition in everyday situations, current models of inhibition are rather simplistic and provide little generalizability especially in the face of clinical disorders. Thus, given the importance of inhibition for proper cognitive functioning, the need for a paradigm, which incorporates factors that will subsequently improve the current model for understanding inhibition, is of high demand. A popular paradigm used to assess motor inhibition, the stop-signal paradigm, can be modified to further advance the current conceptual model of inhibitory control and thus provide a basis for better understanding different facets of inhibition. Namely, in this study, we have developed a novel version of the stop-signal task to assess how preparation (that is, whether reactive or proactive) and selectivity of the stopping behavior effect well-known time-frequency characteristics associated with successful inhibition and concomitant behavioral measures. With this innovative paradigm, we demonstrate that the selective nature of the stopping task modulates theta and motoric beta activity and we further provide the first account of delta activity as an electrophysiological feature sensitive to both manipulations of selectivity and preparatory control. PMID:25540615

  12. Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO With Low-Precision ADCs

    NASA Astrophysics Data System (ADS)

    Wen, Chao-Kai; Wang, Chang-Jen; Jin, Shi; Wong, Kai-Kit; Ting, Pangan

    2016-05-01

    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.

  13. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the

  14. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the

  15. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    USGS Publications Warehouse

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

  16. Spatial-frequency selection of complex degree of coherence of laser images of blood plasma in diagnostics and differentiation of pathological states of human organism of various nosology.

    PubMed

    Ushenko, A G; Angelsky, P O; Sidor, M; Marchuk, Yu F; Andreychuk, D R; Pashkovskaya, N V

    2014-04-01

    The theoretical background of correlation and phase analysis of laser images of human blood plasma with the spatial-frequency selection of the manifestations of mechanisms of linear and circular birefringence of albumin and globulin is presented. The comparative results of measuring the coordinate distributions of the module of complex degree of coherence (CDC) of laser images of blood plasma taken from the patients of three groups--healthy patients (donors), the patients suffering from the rheumatoid arthritis, and those with stomach cancer (adenocarcinoma)--are shown. The values and ranges of change of the statistical (moments of the first-fourth orders), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of the extremes of logarithmic dependencies of power spectra) parameters of CDC coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of the inflammation and oncological state are determined.

  17. Complex polarization-phase and spatial-frequency selections of laser images of blood-plasma films in diagnostics of changes in their polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Angelskii, P. O.; Dubolazov, A. V.; Karachevtsev, A. O.; Sidor, M. I.; Mintser, O. P.; Oleinichenko, B. P.; Bizer, L. I.

    2013-10-01

    We present a theoretical formalism of correlation phase analysis of laser images of human blood plasma with spatial-frequency selection of manifestations of mechanisms of linear and circular birefringence of albumin and globulin polycrystalline networks. Comparative results of the measurement of coordinate distributions of the correlation parameter—the modulus of the degree of local correlation of amplitudes—of laser images of blood plasma taken from patients of three groups—healthy patients (donors), rheumatoid-arthritis patients, and breast-cancer patients—are presented. We investigate values and ranges of change of statistical (the first to fourth statistical moments), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of coordinate distributions of the degree of local correlation of amplitudes. Objective criteria for diagnostics of occurrence and differentiation of inflammatory and oncological states are determined.

  18. Physical-layer energy-efficient receiving method based on selective sampling in orthogonal frequency division multiplexing access passive optical network

    NASA Astrophysics Data System (ADS)

    Li, Jun; He, Hao; Bi, Meihua; Hu, Weisheng

    2014-05-01

    We propose a physical-layer energy-efficient receiving method based on selective sampling in an orthogonal frequency division multiplexing access passive optical network (OFDMA-PON). By using the special designed frame head, the receiver within an optical network unit (ONU) can identify the destination of the incoming frame. The receiver only samples at the time when the destination is in agreement with the ONU, while it stays in standby during the rest of the time. We clarify its feasibility through an experiment and analyze the downstream traffic delay by simulation. The results indicate that under limited delay conditions, ˜60% energy can be saved compared with the traditional receiving method in the OFDMA-PON system with 512 ONUs.

  19. Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoprotein encoded by a mycoplasma ABC transporter operon.

    PubMed Central

    Theiss, P; Wise, K S

    1997-01-01

    The wall-less mycoplasmas have revealed unusual microbial strategies for adaptive variation of antigenic membrane proteins exposed during their surface colonization of host cells. In particular, high-frequency mutations affecting the expression of selected surface lipoproteins have been increasingly documented for this group of organisms. A novel manifestation of mutational phase variation is shown here to occur in Mycoplasma fermentans, a chronic human infectious agent and possible AIDS-associated pathogen. A putative ABC type transport operon encoding four gene products is identified. The 3' distal gene encoding P78, a known surface-exposed antigen and the proposed substrate-binding lipoprotein of the transporter, is subject to localized hypermutation in a short homopolymeric tract of adenine residues located in the N-terminal coding region of the mature product. High-frequency, reversible insertion/deletion frameshift mutations lead to selective phase variation in P78 expression, whereas the putative nucleotide-binding protein, P63, encoded by the most 5' gene of the operon, is continually expressed. Mutation-based phase variation in specific surface-exposed microbial transporter components may provide an adaptive advantage for immune evasion, while continued expression of other elements of the same transporter may preserve essential metabolic functions and confer alternative substrate specificity. These features could be critical in mycoplasmas, where limitations in both transcriptional regulators and transport systems may prevail. This study also documents that P63 contains an uncharacteristic hydrophobic sequence between predicted nucleotide binding motifs and displays an amphiphilic character in detergent fractionation. Both features are consistent with an evolutionary adaptation favoring integral association of this putative energy-transducing component with the single mycoplasma membrane. PMID:9190819

  20. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback

    NASA Astrophysics Data System (ADS)

    Jimenez, J.; Oppo, G.-L.; Ackemann, T.

    2016-03-01

    A systematic experimental and numerical investigation of the conditions for the spontaneous formation of laser cavity solitons in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback by a volume Bragg grating is reported. It is shown that the switching thresholds are controlled by a combination of frequency shifts induced by ambient temperature and Joule heating. The gain level has only a minor influence on the threshold but controls mainly the power of the solitons. At large initial detuning and high threshold gain, the first observed structure can be a high order soliton. In real devices spatial disorder in the cavity length causes a pinning of solitons and a dispersion of thresholds. The experimental observations are in good agreement with numerical simulations taking into account disorder and the coupling of gain and cavity resonance due to Joule heating. In particular, we demonstrate that the existence of the traps explain the spontaneous switch on of the solitons, but do not modify the soliton shape significantly, i.e. the observed solitons are a good approximation of the ones expected in a homogeneous system.

  1. Capon-based single-snapshot DOA estimation in monostatic MIMO radar

    NASA Astrophysics Data System (ADS)

    Hassanien, Aboulnasr; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia

    2015-05-01

    We consider the problem of single snapshot direction-of-arrival (DOA) estimation of multiple targets in monostatic multiple-input multiple-output (MIMO) radar. When only a single snapshot is used, the sample covariance matrix of the data becomes non-invertible and, therefore, does not permit application of Capon-based DOA estimation techniques. On the other hand, low-resolution techniques, such as the conventional beamformer, suffer from biased estimation and fail to resolve closely spaced sources. In this paper, we propose a new Capon-based method for DOA estimation in MIMO radar using a single radar pulse. Assuming that the angular locations of the sources are known a priori to be located within a certain spatial sector, we employ multiple transmit beams to focus the transmit energy of multiple orthogonal waveforms within the desired sector. The transmit weight vectors are carefully designed such that they have the same transmit power distribution pattern. As compared to the standard MIMO radar, the proposed approach enables transmitting an arbitrary number of orthogonal waveforms. By using matched-filtering at the receiver, the data associated with each beam is extracted yielding a virtual data snapshot. The total number of virtual snapshots is equal to the number of transmit beams. By choosing the number of transmit beams to be larger than the number of receive elements, it becomes possible to form a full-rank sample covariance matrix. The Capon beamformer is then applied to estimate the DOAs of the targets of interest. The proposed method is shown to have improved DOA estimation performance as compared to conventional single-snapshot DOA estimation methods.

  2. The Miniaturized Moessbauer Spectrometers MIMOS II on MER: Four Years of Operation - A Summary

    NASA Technical Reports Server (NTRS)

    Fleischer, I.; Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Blumers, M.; Bernhardt, B.; Schroeder, C.; Ming, D. W.; Yen, A. S.; Cohen, B. A.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M. E.; Girones Lopez, J.; Studlek, G.; Brueckner, J.; Gellert, R.; d'Uston, C.

    2008-01-01

    The two Miniaturized Moessbauer Spectrometers (MIMOS II) on board the two Mars Exploration Rovers Spirit and Opportunity have now been collecting important scientific data for more than four years. The spectrometers provide information about Fe-bearing mineral phases and determine Fe oxidation states. The total amount of targets analized exceeds 600, the total integration time exceeds 260 days for both rovers. Since landing, more than five half-lives of the Co-57 MB sources have past (intensity at the time of landing approx. 150 mCi). Current integration times are about 50 hours in order to achieve reasonable statistics as opposed to 8 hours at the beginning of the mission. In total, 13 different mineral phases were detected: Olivine, pyroxene, hematite, magnetite and nanophase ferric oxide were detected at both landing sites. At Gusev, ilmenite, goethite, a ferric sulfate phase and a yet unassigned phase (in the rock Fuzzy Smith) were detected. At Meridiani, jarosite, metallic iron in meteoritic samples (kamacite), troilite, and an unassigned ferric phase were detected. Jarosite and goethite are of special interest, as these minerals are indicators for water activity. In this abstract, an overview of Moessbauer results will be given, with a focus on data obtained since the last martian winter. The MER mission has proven that Moessbauer spectroscopy is a valuable tool for the in situ exploration of extraterrestrial bodies and for the study of Febearing samples. The experience gained through the MER mission makes MIMOS II a obvious choice for future missions to Mars and other targets. Currently, MIMOS II is on the scientific payload of two approved future missions: Phobos Grunt (Russian Space Agency; 2009) and ExoMars (European Space Agency; 2013).

  3. The ISRU Field Tests 2010 and 2012 at Mauna Kea, Hawaii: Results from the Miniaturised Mossbauer Spectrometers Mimos II and Mimos IIA

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Morris, R. V.; Blumers, M; Bernhardt, B.; Graff, T.

    2014-01-01

    The 2010 and 2012 In-Situ Resource Utilization Analogue Test (ISRU) [1] on the Mauna Kea volcano in Hawai'i was coordinated by the Northern Centre for Advanced Technology (NORCAT) in collaboration with the Canadian Space Agency (CSA), the German Aerospace Center (DLR), and the National Aeronautics and Space Administration (NASA), through the PISCES program. Several instruments were tested as reference candidates for future analogue testing at the new field test site at the Mauna Kea volcano in Hawai'i. The fine-grained, volcanic nature of the material is a suitable lunar and martian analogue, and can be used to test excavation, site preparation, and resource utilization techniques. The 2010 location Pu'u Hiwahine, a cinder cone located below the summit of Mauna Kea (19deg45'39.29" N, 155deg28'14.56" W) at an elevation of 2800 m, provides a large number of slopes, rock avalanches, etc. to perform mobility tests, site preparation or resource prospecting. Besides hardware testing of technologies and systems related to resource identification, also in situ science measurements played a significant role in integration of ISRU and science instruments. For the advanced Mössbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform Xray fluorescence analysis simultaneously to Mössbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The 2010 and 2012 field campaigns demonstrated that in-situ Mössbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.

  4. Two-dimensional SLIM with application to pulse Doppler MIMO radars

    NASA Astrophysics Data System (ADS)

    Jabbarian-Jahromi, Mohammad; Kahaei, Mohammad Hossein

    2015-12-01

    A two-dimensional (2D) sparse signal model is developed for pulse Doppler MIMO radars. Using this model, we develop the 2D sparse learning via iterative minimization (2D SLIM) algorithm. Simulation results show that the 2D SLIM compared to the 1D SLIM drastically reduces the computational burden while both of them have the same performance. Also, for estimation of range-angle-Doppler parameters, the 2D SLIM outperforms the matched filter (MF), smoothed L0-norm (SL0), iterative adaptive approach (IAA), and spectral projected gradient for l 1-norm minimization (SPGL1) algorithms.

  5. Novel wideband MIMO antennas that can cover the whole LTE spectrum in handsets and portable computers.

    PubMed

    Sanad, Mohamed; Hassan, Noha

    2014-01-01

    A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.

  6. Laguerre-Volterra model and architecture for MIMO system identification and output prediction.

    PubMed

    Li, Will X Y; Xin, Yao; Chan, Rosa H M; Song, Dong; Berger, Theodore W; Cheung, Ray C C

    2014-01-01

    A generalized mathematical model is proposed for behaviors prediction of biological causal systems with multiple inputs and multiple outputs (MIMO). The system properties are represented by a set of model parameters, which can be derived with random input stimuli probing it. The system calculates predicted outputs based on the estimated parameters and its novel inputs. An efficient hardware architecture is established for this mathematical model and its circuitry has been implemented using the field-programmable gate arrays (FPGAs). This architecture is scalable and its functionality has been validated by using experimental data gathered from real-world measurement. PMID:25571001

  7. Follower Control of MIMO Temperature Controller for the Same Settling Loci

    NASA Astrophysics Data System (ADS)

    Hamane, Hiroto; Hyodo, Yoshikazu; Hayashi, Yoichi; Miyazaki, Kazuyoshi

    This paper presents a system starting strategy for a multi channel temperature control system. Generally, each channel of MIMO temperature system is almost independent and the settling times and loci are different. In this case, energy loss, quality deterioration and product decrease are caused due to the different heat conduction of each channel. This paper developed a novel system starting method “FOLLOWER control", which can be automatic stating to solve the above product problems. Experiments showed that the proposed control system strategy could be successfully and also be easily applied in practice.

  8. Multi-input multi-output frequency-modulated continuous wave synthetic aperture radar system using beat-frequency division waveforms

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Chen, Long-yong; Liang, Xing-dong; Ding, Chi-biao; Hong, Wen; Zhou, Liang-jiang; Dong, Yong-wei; Li, Kun

    2013-07-01

    Attention has been paid to lightweight, cost-effective frequency-modulated continuous wave (FMCW) synthetic aperture radar (SAR) in recent years. Though FMCW SAR can operate at high altitude, it is still impracticable for wide swath or high Doppler bandwidth remote sensing because of the dramatic losses of range resolution and processing gain. Moreover, the system sampling rate is too high for real-time processing. All these restrictions caused by the bandwidth loss of the dechirp operation can be relieved by expanding the system sweep cycle. However, the broadening of the sweep cycle decreases the system pulse repetition frequency with azimuth ambiguity, which can be suppressed by exploiting the spatial diversity of multi-input multi-output (MIMO) systems. This paper reports a MIMO-FMCW SAR system using beat-frequency division waveforms. There is a small frequency interval and a large overlap (in frequency) between the orthogonal waveforms. As the frequency interval is much smaller than the signal bandwidth, the echoes that come from different transmitters can be separated by bandpass filtering with little intrapulse interference. Consequently, the applications of FMCW SAR systems can be extended for wider swath or higher Doppler bandwidth remote sensing. Theoretical analysis and simulation results illustrate the feasibility of this system.

  9. Regional skew for California, and flood frequency for selected sites in the Sacramento-San Joaquin River Basin, based on data through water year 2006

    USGS Publications Warehouse

    Parrett, Charles; Veilleux, Andrea; Stedinger, J.R.; Barth, N.A.; Knifong, Donna L.; Ferris, J.C.

    2011-01-01

    of 11,000 feet. This relation between skew and elevation reflects the interaction of snow with rain, which increases with increased elevation. The equivalent record length for the new regional skew ranges from 52 to 65 years of record, depending upon mean basin elevation. The old regional skew map in Bulletin 17B, published by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data (1982), reported an equivalent record length of only 17 years. The newly developed regional skew relation for California was used to update flood frequency for the 158 sites used in the regional skew analysis as well as 206 selected sites in the Sacramento-San Joaquin River Basin. For these sites, annual-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years were determined on the basis of data through water year 2006. The expected moments algorithm was used for determining the magnitude and frequency of floods at gaged sites by using regional skew values and using the basic approach outlined in Bulletin

  10. Jellyfish as Prey: Frequency of Predation and Selective Foraging of Boops boops (Vertebrata, Actinopterygii) on the Mauve Stinger Pelagia noctiluca (Cnidaria, Scyphozoa)

    PubMed Central

    Fuentes, Veronica L.; Boero, Ferdinando; Guglielmo, Letterio; Purcell, Jennifer E.; Piraino, Stefano

    2014-01-01

    In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops. PMID:24727977

  11. Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector

    SciTech Connect

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob; Schleck, Bryan

    2010-01-01

    While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstrating a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.

  12. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  13. MIMO radar for through-wall target identification in single and two wall scenarios

    NASA Astrophysics Data System (ADS)

    Gebhardt, Evan T.; Narayanan, Ram M.; Broderick, Sean P.

    2016-05-01

    MIMO radar provides improvement over traditional phased array radars for through wall imaging. By transmitting independent waveforms from a transmit array to a receive array an effective virtual array is created. This array has improved degrees of freedom over phased arrays and mono-static MIMO systems. This virtual array allows us to achieve the same effective aperture length as a phased array with less elements because the virtual array can be described as the convolution of transmit and receive array positions. In addition, data from multiple walls of the same room can be used to collect target information. If two walls are perpendicular to each other and the geometry of transmit and receive arrays is known, then data can be processed independently of each other. Since the geometry of the arrays is known, a target scene can be created where the two data sets overlap. The overlapped scene can then be processed so that image artifacts that do not correlate between the data sets can be excised. The result gives improved target detection, reduction in false alarms, robustness to noise, and robustness against errors such as improperly aligned antennas.

  14. Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.

    PubMed

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-10-27

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.

  15. LEA Detection and Tracking Method for Color-Independent Visual-MIMO.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo

    2016-01-01

    Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563

  16. Diversity-optimal power loading for intensity modulated MIMO optical wireless communications.

    PubMed

    Zhang, Yan-Yu; Yu, Hong-Yi; Zhang, Jian-Kang; Zhu, Yi-Jun

    2016-04-18

    In this paper, we consider the design of space code for an intensity modulated direct detection multi-input-multi-output optical wireless communication (IM/DD MIMO-OWC) system, in which channel coefficients are independent and non-identically log-normal distributed, with variances and means known at the transmitter and channel state information available at the receiver. Utilizing the existing space code design criterion for IM/DD MIMO-OWC with a maximum likelihood (ML) detector, we design a diversity-optimal space code (DOSC) that maximizes both large-scale diversity and small-scale diversity gains and prove that the spatial repetition code (RC) with a diversity-optimized power allocation is diversity-optimal among all the high dimensional nonnegative space code schemes under a commonly used optical power constraint. In addition, we show that one of significant advantages of the DOSC is to allow low-complexity ML detection. Simulation results indicate that in high signal-to-noise ratio (SNR) regimes, our proposed DOSC significantly outperforms RC, which is the best space code currently available for such system.

  17. LEA Detection and Tracking Method for Color-Independent Visual-MIMO

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo

    2016-01-01

    Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563

  18. Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Jin, Shi; Wong, Kai-Kit; Zhu, Hongbo; Matthaiou, Michail

    2014-10-01

    This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean $K$-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, $M$, grows large, while the transmit power of each user can be scaled down proportionally to $1/M$. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean $K$-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to $1/\\sqrt M$. In addition, we show that with an increasing Ricean $K$-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.

  19. Performance of Reverse-Link Synchronous DS-CDMA System on a Frequency-Selective Multipath Fading Channel with Imperfect Power Control

    NASA Astrophysics Data System (ADS)

    Hwang, Seung-Hoon; Kim, Duk Kyung

    2002-12-01

    We analyze the performance for reverse-link synchronous DS-CDMA system in a frequency-selective Rayleigh fading channel with an imperfect power control scheme. The performance degradation due to power control error (PCE), which is approximated by a log-normally distributed random variable, is estimated as a function of the standard deviation of the PCE. In addition, we investigate the impacts of the multipath intensity profile (MIP) shape and the number of resolvable paths on the performance. Finally, the coded bit error performance is evaluated in order to estimate the system capacity. Comparing with the conventional CDMA system, we show an achievable gain of from 59% to 23% for reverse-link synchronous transmission technique (RLSTT) in the presence of imperfect power control over asynchronous transmission for[InlineEquation not available: see fulltext.]. As well, the effect of tradeoff between orthogonality and diversity can be seen according to the number of multipaths, and the tendency is kept even in the presence of PCE. We conclude that the capacity can be further improved via the RLSTT, because the DS-CDMA system is very sensitive to power control imperfections.

  20. Adjusted peak-flow frequency estimates for selected streamflow-gaging stations in or near Montana based on data through water year 2011: Chapter D in Montana StreamStats

    USGS Publications Warehouse

    Sando, Steven K.; Sando, Roy; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The climatic conditions of the specific time period during which peak-flow data were collected at a given streamflow-gaging station (hereinafter referred to as gaging station) can substantially affect how well the peak-flow frequency (hereinafter referred to as frequency) results represent long-term hydrologic conditions. Differences in the timing of the periods of record can result in substantial inconsistencies in frequency estimates for hydrologically similar gaging stations. Potential for inconsistency increases with decreasing peak-flow record length. The representativeness of the frequency estimates for a short-term gaging station can be adjusted by various methods including weighting the at-site results in association with frequency estimates from regional regression equations (RREs) by using the Weighted Independent Estimates (WIE) program. Also, for gaging stations that cannot be adjusted by using the WIE program because of regulation or drainage areas too large for application of RREs, frequency estimates might be improved by using record extension procedures, including a mixed-station analysis using the maintenance of variance type I (MOVE.1) procedure. The U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources and Conservation, completed a study to provide adjusted frequency estimates for selected gaging stations through water year 2011.The purpose of Chapter D of this Scientific Investigations Report is to present adjusted frequency estimates for 504 selected streamflow-gaging stations in or near Montana based on data through water year 2011. Estimates of peak-flow magnitudes for the 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to the 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.The at-site frequency estimates were