Science.gov

Sample records for frequency sinusoidal voltage

  1. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  2. Self-mixing vibration measurement using emission frequency sinusoidal modulation

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Guo, Dongmei; Hao, Hui; Liu, Qiang

    2015-04-01

    In this paper, a simplified phase demodulation scheme is applied to recover vibration trail on a laser self-mixing interferometer for noncontact vibration measurement. The emission of semiconductor laser diode is modulated by injecting sinusoidal wave, and corresponding interference signal is a quasi-sinusoid wave. The vibration mathematical model for semiconductor laser diode is theoretically educed from basic self-mixing theory, the variation of target is converted into phase information. The simulation of demodulation algorithm and standard deviation are presented and the reconstructed waveform displays a desirable consistence with various moving trails. Following the principle, a minimum experimental system is established and position variation of the target mirror driven by voltage signal is translated into phase shifts, feedback is controlled at weak level during experiment, Fourier transform is implemented to analyze phase information. The comparisons of both amplitude and velocity with a Germany Doppler vibrometer are performed to testify vibration model, the error of proposed demodulation method is less than 30 nm and achieve a high accuracy in vibration frequency. The experimental results indicate the traditional phase technology can be applied on complex optical power signal after adaption providing a feasible application prospects in industrial and scientific situation with an inexpensive semiconductor laser.

  3. Applications of truncated QR methods to sinusoidal frequency estimation

    NASA Technical Reports Server (NTRS)

    Hsieh, S. F.; Liu, K. J. R.; Yao, K.

    1990-01-01

    Three truncated QR methods are proposed for sinusoidal frequency estimation: (1) truncated QR without column pivoting (TQR), (2) truncated QR with preordered columns, and (3) truncated QR with column pivoting. It is demonstrated that the benefit of truncated SVD for high frequency resolution is achievable under the truncated QR approach with much lower computational cost. Other attractive features of the proposed methods include the ease of updating, which is difficult for the SVD method, and numerical stability. TQR methods thus offer efficient ways to identify sinusoidals closely clustered in frequencies under stationary and nonstationary conditions.

  4. Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms

    SciTech Connect

    Lafleur, T.; Boswell, R. W.; Booth, J. P.

    2012-05-07

    Through the use of particle-in-cell simulations, we demonstrate that the power deposition in capacitively coupled discharges (in argon) can be increased by replacing sinusoidal waveforms with Gaussian-shaped voltage pulses (with a repetition frequency of 13.56 MHz). By changing the Gaussian pulse width, electron heating can be directly controlled, allowing for an increased plasma density and ion flux for the same gas pressure and geometrical operating conditions. Analysis of the power deposition profiles and electron distribution functions shows that enhanced electron-sheath heating is responsible for the increased power absorption.

  5. Frequency to Voltage Converter Analog Front-End Prototype

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  6. Masking of a brief probe by sinusoidal frequency modulation.

    PubMed

    Edwards, B W; Viemeister, N F

    1997-02-01

    Contrary to level detection models, the thresholds for a brief-duration probe masked by a sinusoidal frequency modulation (FM) masker increases as the modulation index (beta) of FM increases [Zwicker, Acustica 31, 243-256 (1974)]. In this paper the reason for this phenomenon is investigated. In experiment 1, a 10-ms, 1-kHz probe was detected in the presence of an FM masker centered at 1 kHz and sinusoidally modulated at 16 Hz. Thresholds increased by over 15 dB with increasing beta, consistent with Zwicker's findings. In experiment 2, the instantaneous frequency changes of the masker used in experiment 1 were clipped and the resulting thresholds indicated that detection was determined primarily by the masker's total frequency excursion rather than by its instantaneous sweep rate. In experiment 3, the FM maskers from the first two experiments were passed through a roex filter centered at 1 kHz and the resulting envelope was used to amplitude modulate a 1-kHz tone, producing approximately the same effective envelope at 1 kHz as the FM maskers. Threshold functions for the amplitude modulated (AM) maskers were similar to those for their corresponding FM maskers. Thresholds increased by over 15 dB while the total energy of the AM masker decreased by over 10 dB, again contrary to standard level-detection models. The results from these experiments can be explained, at least qualitatively, by a model based on envelope shape discrimination: similarities between the envelopes of the masker alone and masker-plus-probe at the output of an auditory filter centered on the frequency of the probe are primarily responsible for the observed masking, particularly at large beta's.

  7. Advanced Energy Conversion System Using Sinusoidal Voltage Tracking Buck-Boost Converter Cascaded Polarity Changing Inverter

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil A.

    2011-06-01

    This paper presents an advanced power converter employs a sinusoidal voltage absolute value tracking buck-boost DC-DC converter in the first power processing stage and a polarity changing full-bridge inverter in the second stage. The proposed power conversion system has the capability of delivering sinusoidal output and input current with unity power factor and good output voltage regulation. Consequently, the complete voltage regulator system, which is mainly suitable for new energy generation systems as well as energy storage systems, can be constructed compactly and inexpensively without DC link electrolytic capacitor. Also, the paper presents an auxiliary passive resonant circuit for soft switching operation. Simulation results using PSIM software are presented to verify the operation principles and feasibility of the proposed power conversion system.

  8. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  9. Frequency-controlled voltage regulator

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1980-01-01

    Converting input ac to higher frequency reduce size and weight and makes possible unique kind of regulation. Since conversion frequency is above range of human hearing, supply generated on audible noise. It also exploits highfrequency conversion features to regulate its output voltage in novel way. Circuit is inherently short-circuit proof.

  10. High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR).

    PubMed

    Leviatan, Eyal; Eyal, Avishay

    2015-12-28

    There are many advantages to using direct frequency modulation for OFDR based DAS. However, achieving sufficiently linear scan via direct frequency modulation is challenging and poses limits on the scan parameters. A novel method for analyzing sinusoidal frequency modulated light is presented and demonstrated for both static and dynamic sensing. SFS-OFDR projects the measured signal onto appropriate sinusoidal phase terms to obtain spatial information. Thus, by using SFS-OFDR on sinusoidal modulated light it is possible to make use of the many advantages offered by direct frequency modulation without the limitations posed by the linearity requirement.

  11. Characterization of DBD Plasma Actuators Performance without External Flow . Part I; Thrust-Voltage Quadratic Relationship in Logarithmic Space for Sinusoidal Excitation

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2016-01-01

    We present results of thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators. We have used a test setup, measurement, and data processing methodology that we developed in prior work. The tests were conducted with High Density Polyethylene (HDPE) actuators of three thicknesses. The applied voltage driving the actuators was a pure sinusoidal waveform. The test setup was suspended actuators with a partial liquid interface. The tests were conducted at low ambient humidity. The thrust was measured with an analytical balance and the results were corrected for anti-thrust to isolate the plasma generated thrust. Applying this approach resulted in smooth and repeatable data. It also enabled curve fitting that yielded quadratic relations between the plasma thrust and voltage in log-log space at constant frequencies. The results contrast power law relationships developed in literature that appear to be a rough approximation over a limited voltage range.

  12. Spindle error motion measurement using concentric circle grating and sinusoidal frequency-modulated semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higuchi, Masato; Vu, Thanh-Tung; Aketagawa, Masato

    2016-11-01

    The conventional method of measuring the radial, axial and angular spindle motion is complicated and needs large spaces. Smaller instrument is better in terms of accurate and practical measurement. A method of measuring spindle error motion using a sinusoidal phase modulation and a concentric circle grating was described in the past. In the method, the concentric circle grating with fine pitch is attached to the spindle. Three optical sensors are fixed under grating and observe appropriate position of grating. The each optical sensor consists of a sinusoidal frequency modulated semiconductor laser as the light source, and two interferometers. One interferometer measures an axial spindle motion by detecting the interference fringe between reflected beam from fixed mirror and 0th-order diffracted beam. Another interferometer measures a radial spindle motion by detecting the interference fringe between ±2nd-order diffracted beams. With these optical sensor, 3 axial and 3 radial displacement of grating can be measured. From these measured displacements, axial, radial and angular spindle motion is calculated concurrently. In the previous experiment, concurrent measurement of the one axial and one radial spindle displacement at 4rpm was described. In this paper, the sinusoidal frequency modulation realized by modulating injection current is used instead of the sinusoidal phase modulation, which contributes simplicity of the instrument. Furthermore, concurrent measurement of the 5 axis (1 axial, 2 radial and 2 angular displacements) spindle motion at 4000rpm may be described.

  13. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    SciTech Connect

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we propose a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.

  14. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  15. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.; Griffin, John C.

    2015-07-01

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. Using the closed-form solution, we propose a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.

  16. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation.

    PubMed

    Magnani, Christophe; Economo, Michael N; White, John A; Moore, Lee E

    2014-01-01

    The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains.

  17. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    NASA Astrophysics Data System (ADS)

    Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.

    2016-07-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n  =  -1 and n  =  -2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.

  18. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  19. The effect of applied voltage frequency on surface dielectric barrier discharge energy

    NASA Astrophysics Data System (ADS)

    Lazukin, A. V.; Gundareva, S. V.; Krivov, S. A.; Nikitin, A. M.; Kavyrshin, D. I.; Fedorovich, S. D.

    2016-11-01

    Results of the experimental investigation of surface dielectric barrier discharge's energy dependence on frequency of applied sinusoidal voltage varying from 0.6 to 40 kHz at atmospheric pressure are presented in the paper for disk electrodes of 20, 50 and 150 μm thick. It is shown that surface dielectric barrier discharge's energy dependence on applied voltage frequency represents an U-shaped curve with a distinct minimum. The value and position of energy minimum are related with thickness of the generating plasma electrode, the barrier material and supply voltage. Increase of plasma heat dissipation owing to selection of the dielectric barrier material changes significantly a trend of the U-shaped curve.

  20. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics

    NASA Astrophysics Data System (ADS)

    Feng, Di; Zhang, Hui; Xu, Siyi; Tian, Limei; Song, Ningfang

    2017-03-01

    Metal nanostructures integrated with soft, elastomeric substrates provide an unusual platform with capabilities in plasmonic frequency tuning of mechanical strain. In this paper, we have prepared a tunable optical device, dense arrays of plasmonic nanodisks on a low-modulus, and high-elongation elastomeric substrate with a three-dimensional (3D) sinusoidal wavy, and their optical characteristics have been measured and analyzed in detail. Since surface plasmon is located and propagates along metal surfaces with sub-wavelength structures, and those dispersive properties are determined by the coupling strength between the individual structures, in this study, a 3D sinusoidal curve elastomeric substrate is used to mechanically control the inter-nanodisk spacing by applying straining and creating a frequency tunable plasmonic device. Here we study the optical resonance peak shifting generated by stretching this type of flexible device, and the role that 3D sinusoidal curve surface configuration plays in determining the tunable properties. Since only the hybrid dipolar mode has been observed in experiments, the coupled dipole approximation (CDA) method is employed to simulate the optical response of these devices, and the experimental and simulation results show that these devices have high tunability to shift optical resonance peaks at near-infrared wavelengths, which will provide strong potential for new soft optical sensors and wearable plasmonic sensors.

  1. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics.

    PubMed

    Feng, Di; Zhang, Hui; Xu, Siyi; Tian, Limei; Song, Ningfang

    2017-03-17

    Metal nanostructures integrated with soft, elastomeric substrates provide an unusual platform with capabilities in plasmonic frequency tuning of mechanical strain. In this paper, we have prepared a tunable optical device, dense arrays of plasmonic nanodisks on a low-modulus, and high-elongation elastomeric substrate with a three-dimensional (3D) sinusoidal wavy, and their optical characteristics have been measured and analyzed in detail. Since surface plasmon is located and propagates along metal surfaces with sub-wavelength structures, and those dispersive properties are determined by the coupling strength between the individual structures, in this study, a 3D sinusoidal curve elastomeric substrate is used to mechanically control the inter-nanodisk spacing by applying straining and creating a frequency tunable plasmonic device. Here we study the optical resonance peak shifting generated by stretching this type of flexible device, and the role that 3D sinusoidal curve surface configuration plays in determining the tunable properties. Since only the hybrid dipolar mode has been observed in experiments, the coupled dipole approximation (CDA) method is employed to simulate the optical response of these devices, and the experimental and simulation results show that these devices have high tunability to shift optical resonance peaks at near-infrared wavelengths, which will provide strong potential for new soft optical sensors and wearable plasmonic sensors.

  2. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Voltage and frequency variations. 111.01-17 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated...

  3. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Voltage and frequency variations. 111.01-17 Section 111.01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations....

  4. Quartz crystal microbalance based on passive frequency to voltage converter

    NASA Astrophysics Data System (ADS)

    Burda, Ioan; Tunyagi, Arthur

    2012-02-01

    In dynamics of evaporation or drying of microdrops from a solid surface, a faster and precise quartz crystal microbalance (QCM) is needed. The fast QCM based on frequency to voltage converter is an attractive and powerful tool in the investigation of the dynamic regime of evaporation to translate the frequency shift in terms of a continuous voltage change. The frequency shift monitoring in fast QCM applications is a real challenge for electronic processing interface. Originally developed as a frequency shift processing interface, this novel passive frequency to voltage converter can produce faster, stable, and accurate results in regard to the QCM sensor behavior. In this article, the concept and circuit of passive frequency to voltage converter will be explained followed by static and dynamic characterization. Experimental results of microdrops evaporation will be given.

  5. Quartz crystal microbalance based on passive frequency to voltage converter.

    PubMed

    Burda, Ioan; Tunyagi, Arthur

    2012-02-01

    In dynamics of evaporation or drying of microdrops from a solid surface, a faster and precise quartz crystal microbalance (QCM) is needed. The fast QCM based on frequency to voltage converter is an attractive and powerful tool in the investigation of the dynamic regime of evaporation to translate the frequency shift in terms of a continuous voltage change. The frequency shift monitoring in fast QCM applications is a real challenge for electronic processing interface. Originally developed as a frequency shift processing interface, this novel passive frequency to voltage converter can produce faster, stable, and accurate results in regard to the QCM sensor behavior. In this article, the concept and circuit of passive frequency to voltage converter will be explained followed by static and dynamic characterization. Experimental results of microdrops evaporation will be given.

  6. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  7. The effect of tailored voltage waveforms on neutral gas heating in a radio-frequency driven electrothermal microthruster

    NASA Astrophysics Data System (ADS)

    Doyle, Scott; Gibson, Andrew; Boswell, Roderick; Charles, Christine; Dedrick, James

    2016-09-01

    Over the past few decades there has been a growing interest in the development compact sources of electric propulsion. In this study the effect of driving the `Pocket Rocket' radio-frequency electrothermal microthruster with non-sinusoidal voltage waveforms, consisting of multiple harmonics of 13.56 MHz, is investigated using the Hybrid Plasma Equipment Model (HPEM). The results are compared to previous experiments and simulation results using CFD-ACE+ to investigate the potential to generate an increased neutral gas temperature and density in the source. The authors gratefully acknowledge M. Kushner of the University of Michigan for the use of the Hybrid Plasma Equipment Model (HPEM).

  8. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated...

  9. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated...

  10. 46 CFR 111.01-17 - Voltage and frequency variations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated...

  11. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation

    NASA Astrophysics Data System (ADS)

    Vu, Thanh-Tung; Higuchi, Masato; Aketagawa, Masato

    2016-10-01

    We propose the use of the sinusoidal frequency modulation technique to improve both the frequency stability of an external cavity laser diode (ECLD) and the measurement accuracy and range of a displacement-measuring interferometer. The frequency of the ECLD was modulated at 300 kHz by modulating the injection current, and it was locked to the b21 hyperfine component of the transition 6-3, P(33), 127I2 (633 nm) by the null method. A relative frequency stability of 6.5  ×  10-11 was achieved at 100 s sampling time. The stabilized ECLD was then utilized as a light source for an unbalanced Michelson interferometer. In the interferometer, the displacement and direction of the target mirror can be determined using a Lissajous diagram based on two consecutive and quadrant-phase harmonics of the interference signal. Generally, the measurement range of the interferometer by the proposed method is limited by the modulation index and the signal-to-noise ratio of the harmonics. To overcome this drawback, suitable consecutive harmonic pairs were selected for the specific measurement ranges to measure the displacement. The displacements determined in the specific ranges by the proposed method were compared with those observed by a commercial capacitive sensor. From the comparison, the proposed method has high precision to determine the displacement. The measurement range was also extended up to 10 m by selecting a suitable modulation index and suitable consecutive pairs of harmonics.

  12. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  13. Analytical and computational investigations of airfoils undergoing high-frequency sinusoidal pitch and plunge motions at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    McGowan, Gregory Z.

    Current interests in Micro Air Vehicle (MAV) technologies call for the development of aerodynamic-design tools that will aid in the design of more efficient platforms that will also have adequate stability and control for flight in gusty environments. Influenced largely by nature MAVs tend to be very small, have low flight speeds, and utilize flapping motions for propulsion. For these reasons the focus is, specifically, on high-frequency motions at low Reynolds numbers. Toward the goal of developing design tools, it is of interest to explore the use of elementary flow solutions for simple motions such as pitch and plunge oscillations to predict aerodynamic performance for more complex motions. In the early part of this research, a validation effort was undertaken. Computations from the current effort were compared with experiments conducted in a parallel, collaborative effort at the Air Force Research Laboratory (AFRL). A set of pure-pitch and pure-plunge sinusoidal oscillations of the SD7003 airfoil were examined. Phase-averaged measurements using particle image velocimetry in a water tunnel were compared with computations using two flow solvers: (i) an incompressible Navier-Stokes Immersed Boundary Method and (ii) an unsteady compressible Reynolds-Averaged Navier-Stokes (RANS) solver. The motions were at a reduced frequency of k = 3.93, and pitch-angle amplitudes were chosen such that a kinematic equivalence in amplitudes of effective angle of attack (from plunge) was obtained. Plunge cases showed good qualitative agreement between computation and experiment, but in the pitch cases, the wake vorticity in the experiment was substantially different from that predicted by both computations. Further, equivalence between the pure-pitch and pure-plunge motions was not attained through matching effective angle of attack. With the failure of pitch/plunge equivalence using equivalent amplitudes of effective angle of attack, the effort shifted to include pitch-rate and

  14. Influence of 50 Hz frequency sinusoidal magnetic field on the blood-brain barrier permeability of diabetic rats.

    PubMed

    Oztaş, Baria; Kalkan, Tunaya; Tuncel, Handan

    2004-07-01

    The combined effects of diabetes and a 50 Hz, 5 mT RMS flux density sinusoidal magnetic field for 8 h a day, for 21 consecutive days on the permeation of Evans-blue dye through the blood-brain barrier were studied in male Wistar albino rats. Our results suggest that magnetic field has no effect on the blood-brain barrier permeability in normoglycemic animals, but that diabetic rats are vulnerable to magnetic fields.

  15. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    NASA Astrophysics Data System (ADS)

    Boumaaraf, Abdelâali; Mohamadi, Tayeb; Gourmat, Laïd

    2016-07-01

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10hz to 60 hz with a small frequency and reduce the cost of the control system.

  16. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    PubMed Central

    Florence, A. Paulin; Shanthi, V.; Simon, C. B. Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551

  17. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    PubMed

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  18. Systems and methods for process and user driven dynamic voltage and frequency scaling

    DOEpatents

    Mallik, Arindam [Evanston, IL; Lin, Bin [Hillsboro, OR; Memik, Gokhan [Evanston, IL; Dinda, Peter [Evanston, IL; Dick, Robert [Evanston, IL

    2011-03-22

    Certain embodiments of the present invention provide a method for power management including determining at least one of an operating frequency and an operating voltage for a processor and configuring the processor based on the determined at least one of the operating frequency and the operating voltage. The operating frequency is determined based at least in part on direct user input. The operating voltage is determined based at least in part on an individual profile for processor.

  19. Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response.

    PubMed

    Wilson, Uzma S; Kaf, Wafaa A; Danesh, Ali A; Lichtenhan, Jeffery T

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp-evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study sample Thirty young adults aged 18-25 with normal hearing participated in this study. Results When 4000 equivalent response averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17-22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11-15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging. Conclusion Narrow-band chirp-evoked 40-Hz s-ASSR requires a ∼15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used.

  20. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    NASA Technical Reports Server (NTRS)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  1. Measurement of the optical path length difference in an interferometer using a sinusoidally frequency-modulated light source.

    PubMed

    Shimada, Shumpei; Shizuka, Makoto; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2016-04-10

    We develop a technique for measuring the optical path length difference (OPLD) in an interferometer using a frequency-modulated light source. Compared with conventional methods, this technique offers a high sampling rate, high precision, and cost efficiency, and is capable of determining which of the two optical paths is longer. In addition, we show that this technique works properly even when the OPLD is significantly longer than the coherence length of the light source.

  2. Determination of the natural frequency of a cantilevered ZnO nanowire resonantly excited by a sinusoidal electric field.

    PubMed

    Shi, Y; Chen, C Q; Zhang, Y S; Zhu, J; Yan, Y J

    2007-02-21

    The electric-field-induced mechanical resonance of an individual nanotube (NT) or nanowire (NW) has been utilized as a versatile technique for in situ measurement of the Young's modulus of the NT/NW in electron microscopes. The key step of this technique is to determine the fundamental natural frequency of the NT/NW. However, the emergence of super- and/or sub-harmonic resonances might make the determination uncertain. This paper investigates the resonance behaviour of ZnO NWs in a nanotip-nanowire system in order to clarify this obscurity. It is found that forced and parametric resonance are two basic modes of the observed multi-frequency resonances and that each mode exhibits a distinct characteristic. By controlling the driving force exerted on the NW to be either lateral or axial, the two otherwise entangled modes are clearly separated. Based on this resonance mode separation, a criterion for identifying the natural frequency of ZnO NWs is proposed.

  3. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    PubMed

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  4. Sinusoidal transform coding

    NASA Technical Reports Server (NTRS)

    Mcaulay, Robert J.; Quatieri, Thomas F.

    1988-01-01

    It has been shown that an analysis/synthesis system based on a sinusoidal representation of speech leads to synthetic speech that is essentially perceptually indistinguishable from the original. Strategies for coding the amplitudes, frequencies and phases of the sine waves have been developed that have led to a multirate coder operating at rates from 2400 to 9600 bps. The encoded speech is highly intelligible at all rates with a uniformly improving quality as the data rate is increased. A real-time fixed-point implementation has been developed using two ADSP2100 DSP chips. The methods used for coding and quantizing the sine-wave parameters for operation at the various frame rates are described.

  5. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    PubMed

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  6. Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design.

  7. Variable speed constant frequency constant voltage alternator. Annual report

    SciTech Connect

    Grannemann, W.W.; Yang, C.E.; Seo, P.H.

    1980-07-01

    A test alternator is operated with digital control of its output frequency for variable shaft speed. The machine is a two-pole alternator with power removed through slip rings. The output frequency of the alternator is controlled by rotating the field by stepping through sixteen coils around the rotor. Usually four coils are active at one time. The rotating field in the stationary coils of the stator is controlled by microcircuits. The control circuits are constructed with available low-cost, low-power integrated circuits (ICs). The test results from the first test alternator indicate the feasibility of using this type of alternator to convert available wind power directly to usable 60 hertz power.

  8. Improvement of neurofeedback therapy for improved attention through facilitation of brain activity using local sinusoidal extremely low frequency magnetic field exposure.

    PubMed

    Zandi Mehran, Yasaman; Firoozabadi, Mohammad; Rostami, Reza

    2015-04-01

    Traditional neurofeedback (NF) is a training approach aimed at altering brain activity using electroencephalography (EEG) rhythms as feedback. In NF training, external factors such as the subjects' intelligence can have an effect. In contrast, a low-energy NF system (LENS) does not require conscious effort from the subject, which results in fewer attendance sessions. However, eliminating the subject role seems to eliminate an important part of the NF system. This study investigated the facilitating effect on the theta-to-beta ratio from NF training, using a local sinusoidal extremely low frequency magnetic field (LSELF-MF) versus traditional NF. Twenty-four healthy, intelligent subjects underwent 10 training sessions to enhance beta (15-18 Hz), and simultaneously inhibit theta (4-7 Hz) and high beta (22-30 Hz) activity, at the Cz point in a 3-boat-race video game. Each session consisted of 3 statuses, PRE, DURING, and POST. In the DURING status, the NF training procedure lasted 10 minutes. Subjects were led to believe that they would be exposed to a magnetic field during NF training; however, 16 of the subjects who were assigned to the experimental group were really exposed to 45 Hz-360 µT LSELF-MF at Cz. For the 8 other subjects, only the coil was located at the Cz point with no exposure. The duty cycle of exposure was 40% (2-second exposure and 3-second pause). The results show that the theta-to-beta ratio in the DURING status of each group differs significantly from the PRE and POST statuses. Between-group analysis shows that the theta-to-beta ratio in the DURING status of the experimental group is significantly (P < .001) lower than in the sham group. The result shows the effect of LSELF-MF on NF training.

  9. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  10. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.

    PubMed

    Zou, Yong; Wang, Changzhen; Peng, Ruiyun; Wang, Lifeng; Hu, Xiangjun

    2015-04-01

    A change of the transmembrane voltage is considered to cause biophysical and biochemical responses in cells. The present study focuses on the cellular transmembrane voltage (Δφ) induced by external fields. We detail analytical equations for the transmembrane voltage induced by external high-frequency (above the relaxation frequency of the cell membrane) fields on cells of a spherical shape in suspensions and layers. At direct current (DC) and low frequencies, the cell membrane was assumed to be non-conductive under physiologic conditions. However, with increasing frequency, the permittivity of the cytoplasm/extracellular medium and conductivity of the membrane must be accounted for. Our main work is to extend application of the analytical solution of Δφ to the high-frequency range. We first introduce the transmembrane voltage generated by DC and low-frequency exposures on a single cell. Then, we focus on cell suspensions exposed to high-frequency fields. Using the effective medium theory and the reasonable assumption, the approximate analytical solution of Δφ on cells in suspensions and layers can be derived. Phenomenological effective medium theory equations cannot be used to calculate the local electric field of cell suspensions, so we raised a possible solution based on the Bergman theory.

  11. Spin-torque diode radio-frequency detector with voltage tuned resonance

    SciTech Connect

    Skowroński, Witold Frankowski, Marek; Stobiecki, Tomasz; Wrona, Jerzy; Ogrodnik, Piotr; Barnaś, Józef

    2014-08-18

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  12. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    PubMed

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  13. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms

    NASA Astrophysics Data System (ADS)

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  14. Improved frequency/voltage converters for fast quartz crystal microbalance applications

    SciTech Connect

    Torres, R.; Kim, L. To Thi; Garcia, J. V.; Arnau, A.

    2008-04-15

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mV/Hz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  15. Improved frequency/voltage converters for fast quartz crystal microbalance applications.

    PubMed

    Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  16. Study of the cortical representation of whisker frequency selectivity using voltage-sensitive dye optical imaging

    PubMed Central

    Tsytsarev, Vassiliy; Pumbo, Elena; Tang, Qinggong; Chen, Chao-Wei; Kalchenko, Vyacheslav; Chen, Yu

    2016-01-01

    ABSTRACT The facial whiskers of rodents act as a high-resolution tactile apparatus that allow the animal to detect the finest details of its environment. Previously it was shown that whisker-sensitive neurons in the somatosensory cortex show frequency selectivity to small amplitude stimuli, An intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation was used in order to visualize neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies. Using the intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation we visualized neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies. We found that whisker stimuli with different frequencies led to different optical signals in the barrel field. Our results provide evidence that different neurons of the barrel cortex have different frequency preferences. This supports prior research that whisker deflections cause responses in cortical neurons within the barrel field according to the frequency of the stimulation. Many studies of the whisker frequency selectivity were performed using unit recording but to map spatial organization, imaging methods are essential. In the work described in the present paper, we take a serious step toward detailed functional mapping of the somatosensory cortex using VSDi. To our knowledge, this is the first demonstration of whisker frequency sensitivity and selectivity of barrel cortex neurons with optical imaging methods. PMID:28243518

  17. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  18. Static current-voltage characteristics for radio-frequency induction discharge

    SciTech Connect

    Budyansky, A.; Zykov, A.

    1995-12-31

    The aim of this work was to obtain experimentally such characteristic of Radio-Frequency Induction Discharge (RFID) that can play the role of its current-voltage characteristic (CVC) and to explain the nature of current and voltage jumps arising in RF coils at exciting of discharge. Experiments were made in quartz 5.5, 11, 20 cm diam tubes with outer RF coil at pressures 10--100 mTorr, at frequency 13.56 MHz and discharge power to 500 W. In case of outer coil as analogue of discharge voltage it`s convenient to use the value of the RF voltage U{sub R}, induced around outer perimeter of discharge tube. It is evident that current and voltage jumps arising at exciting of discharge are due to low output resistance of standard generators and negative slope of initial part of CVC. Three sets of such dependencies for different pressures were obtained for each diameter of tubes. The influence of different metal electrodes placed into discharge volume on CVC`s shape has been studied also. Experimental results can explain the behavior of HFI discharge as a load of RF generator and give data for calculation of RF circuit.

  19. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  20. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  1. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  2. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  3. Investigation of the frequency response of constant voltage anemometers in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sadeghi Hassanlouei, Atabak

    A commercially available anemometer system considered as a prototype, the constant voltage anemometer (CVA), is presented and its working principle is studied and analyzed. We detail the different procedures and corrections that have to be applied to voltage signals to deduce corresponding velocity signals, including the effect of the thermal inertia of the sensor. Results are compared to another anemometer system widely used in research and industry, the constant temperature anemometer (CTA), for validation requirements. Measurements are performed in the turbulent region of a subsonic axisymmetric jet and include mean velocities, root-mean-square (rms) values of velocity fluctuations and power spectral densities. In the same range of operation, we show that the two instruments give similar results. The CVA anemometer slightly underestimates the rms velocity values given by the CTA anemometer which is attributed to a non-linear effect. We show that the cut-off frequency of the CVA system is higher than the more commonly used CTA system, and that the electronic noise level is lower. The constant voltage anemometer is thus an excellent alternative to the constant temperature anemometer for low turbulent flows with rich frequency content, such as supersonic and hypersonic flows.

  4. Sinusoidal nonlinearity in wavelength-sweeping interferometry

    SciTech Connect

    Perret, Luc; Pfeiffer, Pierre

    2007-11-20

    We report the influence of the nonlinearities in the wavelength-sweeping speed on the resulting interferometric signals in an absolute distance interferometer. The sweeping signal is launched in the reference and target interferometers from an external cavity laser source. The experimental results demonstrate a good resolution in spite of the presence of nonlinearities in the wavelength sweep. These nonlinearities can be modeled by a sum of sinusoids. A simulation is then implemented to analyze the influence of their parameters. It shows that a sinusoidal nonlinearity is robust enough to give a good final measurement uncertainty through a Fourier transform technique. It can be concluded that an optimal value of frequency and amplitude exists in the case of a sinusoidal nonlinearity.

  5. High voltage-power frequency electrical heating in-situ conversion technology of oil shale

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Yang, Yang; Lopatin, Vladimir; Guo, Wei; Liu, Baochang; Yu, Ping; Gao, Ke; Ma, Yinlong

    2014-05-01

    With the depletion of conventional energy sources,oil shale has got much attention as a new type of energy resource,which is rich and widespread in the world.The conventional utilization of oil shale is mainly focused on resorting to produce shale oil and fuel gas with low extraction efficiency about one in a million due to many shortcomings and limitations.And the in-situ conversion of oil shale,more environmentally friendly,is still in the experimental stage.High voltage-power frequency electrical heating in-situ conversion of oil shale is a new type of in-situ pyrolysis technology.The main equipment includes a high voltage-power frequency generator and interior reactor. The high voltage-power frequency generator can provide a voltage between 220-8000 V which can be adjusted in real time according to the actual situation.Firstly,high voltage is used to breakdown the oil shale to form a dendritic crack between two electrodes providing a conductive channel inside the oil shale rock.And then the power frequency(220V) is used to generate the electric current for heating the internal surface of conductive channel,so that the energy can be transmitted to the surrounding oil shale.When the temperature reaches 350 degree,the oil shale begins to pyrolysis.In addition,the temperature in the conductive channel can be extremely high with high voltage,which makes the internal surface of conductive channel graphitization and improves its heat conduction performance.This technology can successfully make the oil shale pyrolysis, based on a lot of lab experiments,and also produce the combustible shale oil and fuel gas.Compared to other in-situ conversion technology,this method has the following advantages: high speed of heating oil shale,the equipment underground is simple,and easy to operate;it can proceed without the limitation of shale thickness, and can be used especially in the thin oil shale reservoir;the heating channel is parallel to the oil shale layers,which has more

  6. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    NASA Astrophysics Data System (ADS)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  7. Radio-frequency sheath voltages and slow wave electric field spatial structure

    SciTech Connect

    Colas, Laurent Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  8. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  9. A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-06-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std . CMOS process, occupying 0.144 mm(2) of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages.

  10. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  11. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-03-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  12. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  13. Sinusoidal Forcing of Interfacial Films

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  14. Computationally Efficient Steady-State Solution of the Bloch Equations for Rapid Sinusoidal Scans Based on Fourier Expansion in Harmonics of the Scan Frequency.

    PubMed

    Tseitlin, Mark; Eaton, Gareth R; Eaton, Sandra S

    2013-12-01

    Rapid-scan EPR has been shown to improve the signal-to-noise ratio relative to conventional continuous wave spectroscopy. Equations are derived for the steady-state solution to the Bloch equations as a Fourier expansion in the harmonics of the scan frequency. This simulation method is about two orders of magnitude faster than time-domain numerical integration.

  15. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing

    PubMed Central

    Cotes-Ruiz, Iván Tomás; Prado, Rocío P.; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás

    2017-01-01

    Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique. PMID:28085932

  16. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing.

    PubMed

    Cotes-Ruiz, Iván Tomás; Prado, Rocío P; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás

    2017-01-01

    Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.

  17. Non-Sinusoidal Activity Can Produce Cross-Frequency Coupling in Cortical Signals in the Absence of Functional Interaction between Neural Sources

    PubMed Central

    Ward, Andrew; Knight, Robert T.; Deouell, Leon Y.

    2016-01-01

    The analysis of cross-frequency coupling (CFC) has become popular in studies involving intracranial and scalp EEG recordings in humans. It has been argued that some cases where CFC is mathematically present may not reflect an interaction of two distinct yet functionally coupled neural sources with different frequencies. Here we provide two empirical examples from intracranial recordings where CFC can be shown to be driven by the shape of a periodic waveform rather than by a functional interaction between distinct sources. Using simulations, we also present a generalized and realistic scenario where such coupling may arise. This scenario, which we term waveform-dependent CFC, arises when sharp waveforms (e.g., cortical potentials) occur throughout parts of the data, in particular if they occur rhythmically. Since the waveforms contain both low- and high-frequency components, these components can be inherently phase-aligned as long as the waveforms are spaced with appropriate intervals. We submit that such behavior of the data, which seems to be present in various cortical signals, cannot be interpreted as reflecting functional modulation between distinct neural sources without additional evidence. In addition, we show that even low amplitude periodic potentials that cannot be readily observed or controlled for, are sufficient for significant CFC to occur. PMID:27941990

  18. Application of bias voltage to tune the resonant frequency of membrane-based electroactive polymer energy harvesters

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Grissom, Michael; Fisher, Frank T.

    2016-05-01

    Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, for optimal performance it is necessary to ensure that resonant frequencies of the device match the ambient vibration frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed by applying a bias voltage to a pre-stretched electroactive polymer (EAP) membrane, such that the resulting changes in membrane tension can tune the device to match the environmental vibration source. First, a material model which accounts for the change in properties due to the pre-stretch of a VHB 4910 EAP membrane is presented. The effect of the bias voltage on the EAP membrane, which induces an electrostatic pressure and corresponding reduction in membrane thickness, are then determined. The FEM results from ANSYS agree well with an analytical hyperelastic model of the activation response of the EAP membrane. Lastly, through a mass-loaded circular membrane vibration model, the effective resonant frequency of the energy harvester can be determined as a function of changes in membrane tension due to the applied bias voltage. In the case of an EAP membrane, pre-stretch contributes to the pre-stretch stiffness of the system while the applied bias voltage contributes to a change in bias voltage stiffness of the membrane. Preliminary experiments verified the resonant frequencies corresponding to the bias voltages predicted from the appropriate models. The proposed bias voltage tuning approach for the EAP membrane may provide a novel tuning strategy to enable energy harvesting from various ambient vibration sources in various application environments.

  19. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    SciTech Connect

    Bora, B.

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  20. Optimization of energy harvesting efficiency of an oscillating hydrofoil: Sinusoidal and Non-sinusoidal trajectories

    NASA Astrophysics Data System (ADS)

    Miller, Michael; Strom, Ben; Breuer, Kenneth; Mandre, Shreyas

    2014-11-01

    We determine the feasibility of applying optimization algorithms to an oscillating hydrofoil's motion trajectory to determine maximum efficiency of energy capture. Optimization is performed using the Nelder-Meade downhill simplex method. The objective function is the energy captured measured experimentally in run-time with an oscillating hydrofoil capable of measuring mechanical energy capture in a laboratory flume. For sinusoidal trajectories, optimization is performed over pitch and heave amplitudes as well as frequency; this system is shown to be capable of optimization in run-time. The optimum efficiency of 30% is found for a pitch amplitude of 70°, a heave amplitude of 0.8* chord and a dimensionless frequency of 0.13. To treat non-sinusoidal trajectories, we expand them in a truncated Fourier series and consider the coefficients of this series as variables for optimization. The sinusoidal case is simply an extreme case of such a truncated Fourier series, with only one term in the series retained. We present a systematic method for optimization over general non-sinusoidal trajectories by including more and more terms in the Fourier series.

  1. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  2. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  3. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    PubMed

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.

  4. Cell property determination from the acoustic microscope generated voltage versus frequency curves.

    PubMed Central

    Kundu, T; Bereiter-Hahn, J; Karl, I

    2000-01-01

    Among the methods for the determination of mechanical properties of living cells acoustic microscopy provides some extraordinary advantages. It is relatively fast, of excellent spatial resolution and of minimal invasiveness. Sound velocity is a measure of the stiffness or Young's modulus of the cell. Attenuation of cytoplasm is a measure of supramolecular interactions. These parameters are of crucial interest for studies of cell motility, volume regulations and to establish the functional role of the various elements of the cytoskeleton. Using a phase and amplitude sensitive modulation of a scanning acoustic microscope (Hillman et al., 1994, J. Alloys Compounds. 211/212:625-627) longitudinal wave speed, attenuation and thickness profile of a biological cell are obtained from the voltage versus frequency or V(f) curves. A series of pictures, for instance in the frequency range 980-1100 MHz with an increment of 20 MHz, allows the experimental generation of V(f) curves for each pixel while keeping the lens-specimen distance unchanged. Both amplitude and phase values of the V(f) curves are used for obtaining the cell properties and the cell thickness profile. The theoretical analysis shows that the thin liquid layer, between the cell and the substrate, has a strong influence on the reflection coefficient and should not be ignored during the analysis. Cell properties, cell profile and the thickness of the thin liquid layer are obtained from the V(f) curves by the simplex inversion algorithm. The main advantages of this new method are that imaging can be done near the focal plane, therefore an optimal signal to noise ratio is achieved, no interference with Rayleigh waves occurs, and the method requires only an approximate estimate of the material properties of the solid substratum where the cells are growing on. PMID:10777725

  5. Dynamic voltage and frequency scaling for on-demand performance and availability of biomedical embedded systems.

    PubMed

    Raskovic, Dejan; Giessel, David

    2009-11-01

    The goal of the study presented in this paper is to develop an embedded biomedical system capable of delivering maximum performance on demand, while maintaining the optimal energy efficiency whenever possible. Several hardware and software solutions are presented allowing the system to intelligently change the power supply voltage and frequency in runtime. The resulting system allows use of more energy-efficient components, operates most of the time in its most battery-efficient mode, and provides means to quickly change the operation mode while maintaining reliable performance. While all of these techniques extend battery life, the main benefit is on-demand availability of computational performance using a system that is not excessive. Biomedical applications, perhaps more than any other application, require battery operation, favor infrequent battery replacements, and can benefit from increased performance under certain conditions (e.g., when anomaly is detected) that makes them ideal candidates for this approach. In addition, if the system is a part of a body area network, it needs to be light, inexpensive, and adaptable enough to satisfy changing requirements of the other nodes in the network.

  6. Force Sensor Characterization Under Sinusoidal Excitations

    PubMed Central

    Medina, Nieves; de Vicente, Jesús

    2014-01-01

    The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time. PMID:25290287

  7. High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC

    NASA Technical Reports Server (NTRS)

    Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.

    1990-01-01

    Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.

  8. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  9. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  10. Systematic Review of the Exposure Assessment and Epidemiology of High-Frequency Voltage Transients

    PubMed Central

    de Vocht, Frank; Olsen, Robert G.

    2016-01-01

    Conclusions of epidemiological studies describing adverse health effects as a result of exposure to electromagnetic fields are not unanimous and often contradictory. It has been proposed that an explanation could be that high-frequency voltage transients [dirty electricity (DE)] which are superimposed on 50/60-Hz fields, but are generally not measured, are the real causal agent. DE has been linked to many different health and wellbeing effects, and on the basis of this, an industry selling measurement and filtering equipment is growing. We reviewed the available peer-reviewed evidence for DE as a causal agent for adverse human health effects. A literature search was performed in the Cochrane Library, PubMed, Web of Science, Google Scholar, and additional publications were obtained from reference lists and from the gray literature. This search resulted in 25 publications; 16 included primary epidemiological and/or exposure data. All studies were reviewed by both authors independently, and including a re-review of studies included in a review of data available up to July 31, 2009 by one of the authors. DE has been measured differently in different studies and comparison data are not available. There is no evidence for 50 Graham/Stetzer (GS) units as a safety threshold being anything more than arbitrary. The epidemiological evidence on human health effects of DE is primarily based on, often re-used, case descriptions. Quantitative evidence relies on self-reporting in non-blinded interventions, ecological associations, and one cross-sectional cohort study of cancer risk, which does not point to DE as the causal agent. The available evidence for DE as an exposure affecting human health at present does not stand up to scientific scrutiny. PMID:27066469

  11. Systematic Review of the Exposure Assessment and Epidemiology of High-Frequency Voltage Transients.

    PubMed

    de Vocht, Frank; Olsen, Robert G

    2016-01-01

    Conclusions of epidemiological studies describing adverse health effects as a result of exposure to electromagnetic fields are not unanimous and often contradictory. It has been proposed that an explanation could be that high-frequency voltage transients [dirty electricity (DE)] which are superimposed on 50/60-Hz fields, but are generally not measured, are the real causal agent. DE has been linked to many different health and wellbeing effects, and on the basis of this, an industry selling measurement and filtering equipment is growing. We reviewed the available peer-reviewed evidence for DE as a causal agent for adverse human health effects. A literature search was performed in the Cochrane Library, PubMed, Web of Science, Google Scholar, and additional publications were obtained from reference lists and from the gray literature. This search resulted in 25 publications; 16 included primary epidemiological and/or exposure data. All studies were reviewed by both authors independently, and including a re-review of studies included in a review of data available up to July 31, 2009 by one of the authors. DE has been measured differently in different studies and comparison data are not available. There is no evidence for 50 Graham/Stetzer (GS) units as a safety threshold being anything more than arbitrary. The epidemiological evidence on human health effects of DE is primarily based on, often re-used, case descriptions. Quantitative evidence relies on self-reporting in non-blinded interventions, ecological associations, and one cross-sectional cohort study of cancer risk, which does not point to DE as the causal agent. The available evidence for DE as an exposure affecting human health at present does not stand up to scientific scrutiny.

  12. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations

    PubMed Central

    2012-01-01

    This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV) in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24–57 and the controls were 110 persons the age ranged 24–50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI). Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615). Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415) ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min) was significantly higher than for controls (28.89 ± 20.18 min) (P-value=0.002). Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours). Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed. PMID:23369281

  13. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    PubMed

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  14. Sinusoidal phase modulating interferometry system for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fu-kai, Zhang; Fan, Feng

    2014-07-01

    We describe a fiber-optic sinusoidal phase modulating (SPM) interferometer for three-dimensional (3D) profilometry, which is insensitive to external disturbances such as mechanical vibration and temperature fluctuation. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer (PZT) with a sinusoidal wave. The external disturbances that cause phase drift in the interference signal and decrease measuring accuracy are effectively eliminated by building a closed-loop feedback system. The phase stability can be measured with a precision of 2.75 mrad, and the external disturbances can be reduced to 53.43 mrad for the phase of fringe patterns. By measuring the dynamic deformation of the rubber membrane, the RMSE is about 0.018 mm, and a single measurement takes less than 250 ms. The feasibility for real-time application has been verified.

  15. Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Xiao, Song; Han, Yefei; Cressault, Yann

    2016-02-01

    To verify the feasibility of replacing SF6 by CF3I/N2, we compared their power frequency breakdown performance with the influence of gas pressure, mixing ratio, and electric field utilization coefficient. Under different electric fields and mixing ratios, the power frequency breakdown voltage of CF3I/N2 increases linearly along with gas pressure. Besides, with the rise of the electric field utilization coefficient, the linear growth rate of breakdown voltage along with gas pressure gradually rises. The sensitivity of pure CF3I to electric field is particularly high and can be improved by the addition of N2. The mixture 30% CF3I/70% N2 at 0.3 MPa could replace pure SF6 in equipment requiring a low insulation, but the gas pressure or the content of CF3I need to be increased for higher insulation requirements.

  16. Improved Transient and Steady-State Performances of Series Resonant ZCS High-Frequency Inverter-Coupled Voltage Multiplier Converter with Dual Mode PFM Control Scheme

    NASA Astrophysics Data System (ADS)

    Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo

    The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for

  17. High frequency capacitor-diode voltage multiplier dc-dc converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  18. Design of a constant-voltage and constant-current controller with dual-loop and adaptive switching frequency control

    NASA Astrophysics Data System (ADS)

    Yingping, Chen; Zhiqian, Li

    2015-05-01

    A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35-μm 40-V BCD process, and the active chip area is 1.5 × 1.0 mm2. The total error of the output voltage due to line and load variations is less than ±1.7%.

  19. Stimulated neutrino transformation with sinusoidal density profiles

    DOE PAGES

    Kneller, J. P.; McLaughlin, G. C.; Patton, K. M.

    2013-03-28

    Large amplitude oscillations between the states of a quantum system can be stimulated by sinusoidal external potentials with frequencies that are similar to the energy level splitting of the states or a fraction thereof. Situations where the applied frequency is equal to an integer fraction of the energy level splittings are known as parametric resonances. We investigate this effect for neutrinos both analytically and numerically for the case of arbitrary numbers of neutrino flavors. We look for environments where the effect may be observed and find that supernovae are the one realistic possibility due to the necessity of both largemore » densities and large amplitude fluctuations. In conclusion, the comparison of numerical and analytical results of neutrino propagation through a model supernova reveals that it is possible to predict the locations and strengths of the stimulated transitions that occur.« less

  20. Stimulated neutrino transformation with sinusoidal density profiles

    SciTech Connect

    Kneller, J. P.; McLaughlin, G. C.; Patton, K. M.

    2013-03-28

    Large amplitude oscillations between the states of a quantum system can be stimulated by sinusoidal external potentials with frequencies that are similar to the energy level splitting of the states or a fraction thereof. Situations where the applied frequency is equal to an integer fraction of the energy level splittings are known as parametric resonances. We investigate this effect for neutrinos both analytically and numerically for the case of arbitrary numbers of neutrino flavors. We look for environments where the effect may be observed and find that supernovae are the one realistic possibility due to the necessity of both large densities and large amplitude fluctuations. In conclusion, the comparison of numerical and analytical results of neutrino propagation through a model supernova reveals that it is possible to predict the locations and strengths of the stimulated transitions that occur.

  1. Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components

    SciTech Connect

    Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.

    2013-11-21

    There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

  2. Theoretical evidence of maximum intracellular currents versus frequency in an Escherichia coli cell submitted to AC voltage.

    PubMed

    Xavier, Pascal; Rauly, Dominique; Chamberod, Eric; Martins, Jean M F

    2017-04-01

    In this work, the problem of intracellular currents in longilinear bacteria, such as Escherichia coli, suspended in a physiological medium and submitted to a harmonic voltage (AC), is analyzed using the Finite-Element-based software COMSOL Multiphysics. Bacterium was modeled as a cylindrical capsule, ended by semi-spheres and surrounded by a dielectric cell wall. An equivalent single-layer cell wall was defined, starting from the well-recognized three-shell modeling approach. The bacterium was considered immersed in a physiological medium, which was also taken into account in the modeling. A new complex transconductance was thus introduced, relating the complex ratio between current inside the bacterium and voltage applied between two parallel equipotential planes, separated by a realistic distance. When voltage was applied longitudinally relative to the bacterium main axis, numerical results in terms of frequency response in the 1-20 MHz range for E. coli cells revealed that transconductance magnitude exhibited a maximum at a frequency depending on the cell wall capacitance. This occurred in spite of the purely passive character of the model and could be explained by an equivalent electrical network giving very similar results and showing special conditions for lateral paths of the currents through the cell wall. It is shown that the main contribution to this behavior is due to the conductive part of the current. Bioelectromagnetics. 38:213-219, 2017. © 2016 Wiley Periodicals, Inc.

  3. Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components

    NASA Astrophysics Data System (ADS)

    Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.

    2013-11-01

    There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

  4. Update on the frequency of Ile1016 mutation in voltage-gated sodium channel gene of Aedes aegypti in Mexico.

    PubMed

    Siller, Quetzaly; Ponce, Gustavo; Lozano, Saul; Flores, Adriana E

    2011-12-01

    We analyzed 790 Aedes aegypti from 14 localities of Mexico in 2009 to update information on the frequency of the Ile1016 allele in the voltage-gated sodium channel gene that confers resistance to pyrethroids and DDT. The Ile1016 mutation was present in all 17 collections, and was close to fixation in Acapulco (frequency = 0.97), Iguala (0.93), and San Nicolas (0.90). Genotypes at the 1016 locus were not in Hardy-Weinberg proportions in collections from Panuco, Veracruz, Cosoleacaque, Coatzacoalcos, Tantoyuca, and Monterrey due in every case to an excess of homozygotes. The high frequencies of this mutation in Ae. aegypti are probably due to selection pressure from pyrethroid insecticides, particularly permethrin, which has been used in mosquito control programs for >10 years in Mexico.

  5. Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Berger, B.; Schüngel, E.; Korolov, I.; Derzsi, A.; Bruneau, B.; Johnson, E.; Lafleur, T.; O'Connell, D.; Koepke, M.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.

    2016-08-01

    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results.

  6. Control of plasma process by use of harmonic frequency components of voltage and current

    DOEpatents

    Miller, Paul A.; Kamon, Mattan

    1994-01-01

    The present invention provides for a technique for taking advantage of the intrinsic electrical non-linearity of processing plasmas to add additional control variables that affect process performance. The technique provides for the adjustment of the electrical coupling circuitry, as well as the electrical excitation level, in response to measurements of the reactor voltage and current and to use that capability to modify the plasma characteristics to obtain the desired performance.

  7. Flexible low-voltage organic integrated circuits with megahertz switching frequencies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zschieschang, Ute; Takimiya, Kazuo; Zaki, Tarek; Letzkus, Florian; Richter, Harald; Burghartz, Joachim N.; Klauk, Hagen

    2015-09-01

    A process for the fabrication of integrated circuits based on bottom-gate, top-contact organic thin-film transistors (TFTs) with channel lengths as short as 1 µm on flexible plastic substrates has been developed. In this process, all TFT layers (gate electrodes, organic semiconductors, source/drain contacts) are patterned with the help of high-resolution silicon stencil masks, thus eliminating the need for subtractive patterning and avoiding the exposure of the organic semiconductors to potentially harmful organic solvents or resists. The TFTs employ a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs and circuits to operate with voltages of about 3 V. Using the vacuum-deposited small-molecule organic semiconductor 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 DNTT), TFTs with an effective field-effect mobility of 1.2 cm2/Vs, an on/off current ratio of 107, a width-normalized transconductance of 1.2 S/m (with a standard deviation of 6%), and a signal propagation delay (measured in 11-stage ring oscillators) of 420 nsec per stage at a supply voltage of 3 V have been obtained. To our knowledge, this is the first time that megahertz operation has been achieved in flexible organic transistors at supply voltages of less than 10 V. In addition to flexible ring oscillators, we have also demonstrated a 6-bit digital-to-analog converter (DAC) in a binary-weighted current-steering architecture, based on TFTs with a channel length of 4 µm and fabricated on a glass substrate. This DAC has a supply voltage of 3.3 V, a circuit area of 2.6 × 4.6 mm2, and a maximum sampling rate of 100 kS/s.

  8. Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    SciTech Connect

    Hur, Jin-Suk; Roh, Myung- Sub

    2014-02-12

    One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

  9. Inverse ac Josephson effect at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Golightly, W. J.; Sutton, E. C.

    1989-04-01

    Using the Werthamer (1966) theory of superconducting tunnel junctions, it is shown that zero-crossing ac Josephson steps can occur at frequencies much higher than those expected previously, as long as the voltage waveform is nearly sinusoidal. Limits on the amount of permitted rounding of the Riedel (1964) peak were derived from analytical calculations, and numerical frequency-domain and time-domain computations for realistic junctions were carried out, yielding support for these limits. It is shown that previous arguments that zero-crossing steps could never be observed above the value of half the gap voltage are incorrect, due to the neglect of the Riedel peak.

  10. Voltage dependence of subthreshold resonance frequency in layer II of medial entorhinal cortex.

    PubMed

    Shay, Christopher F; Boardman, Ian S; James, Nicholas M; Hasselmo, Michael E

    2012-08-01

    The resonance properties of individual neurons in entorhinal cortex (EC) may contribute to their functional properties in awake, behaving rats. Models propose that entorhinal grid cells could arise from shifts in the intrinsic frequency of neurons caused by changes in membrane potential owing to depolarizing input from neurons coding velocity. To test for potential changes in intrinsic frequency, we measured the resonance properties of neurons at different membrane potentials in neurons in medial and lateral EC. In medial entorhinal neurons, the resonant frequency of individual neurons decreased in a linear manner as the membrane potential was depolarized between -70 and -55 mV. At more hyperpolarized membrane potentials, cells asymptotically approached a maximum resonance frequency. Consistent with the previous studies, near resting potential, the cells of the medial EC possessed a decreasing gradient of resonance frequency along the dorsal to ventral axis, and cells of the lateral EC lacked resonant properties, regardless of membrane potential or position along the medial to lateral axis within lateral EC. Application of 10 μM ZD7288, the H-channel blocker, abolished all resonant properties in MEC cells, and resulted in physiological properties very similar to lateral EC cells. These results on resonant properties show a clear change in frequency response with depolarization that could contribute to the generation of grid cell firing properties in the medial EC.

  11. Electrolyte-Gated Graphene Ambipolar Frequency Multipliers for Biochemical Sensing.

    PubMed

    Fu, Wangyang; Feng, Lingyan; Mayer, Dirk; Panaitov, Gregory; Kireev, Dmitry; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-04-13

    In this Letter, the ambipolar properties of an electrolyte-gated graphene field-effect transistor (GFET) have been explored to fabricate frequency-doubling biochemical sensor devices. By biasing the ambipolar GFETs in a common-source configuration, an input sinusoidal voltage at frequency f applied to the electrolyte gate can be rectified to a sinusoidal wave at frequency 2f at the drain electrode. The extraordinary high carrier mobility of graphene and the strong electrolyte gate coupling provide the graphene ambipolar frequency doubler an unprecedented unity gain, as well as a detection limit of ∼4 pM for 11-mer single strand DNA molecules in 1 mM PBS buffer solution. Combined with an improved drift characteristics and an enhanced low-frequency 1/f noise performance by sampling at doubled frequency, this good detection limit suggests the graphene ambipolar frequency doubler a highly promising biochemical sensing platform.

  12. Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints

    SciTech Connect

    Chang, Chin-Yao; Zhang, Wei

    2016-01-19

    This paper presents a new distributed control framework to coordinate inverter-interfaced distributed energy resources (DERs) in island microgrids. We show that under bounded load uncertainties, the proposed control method can steer the microgrid to a desired steady state with synchronized inverter frequency across the network and proportional sharing of both active and reactive powers among the inverters. We also show that such convergence can be achieved while respecting constraints on voltage magnitude and branch angle differences. The controller is robust under various contingency scenarios, including loss of communication links and failures of DERs. The proposed controller is applicable to lossy mesh microgrids with heterogeneous R/X distribution lines and reasonable parameter variations. Simulations based on various microgrid operation scenarios are also provided to show the effectiveness of the proposed control method.

  13. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    SciTech Connect

    Schaefer, R. T.; Mojarradi, M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-15

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  14. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    SciTech Connect

    Garrison, Sean

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  15. Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation

    PubMed Central

    Freeman, Daniel K.; Eddington, Donald K.; Rizzo, Joseph F.

    2010-01-01

    Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation. PMID:20810683

  16. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    NASA Astrophysics Data System (ADS)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  17. Frequency and Voltage Dependence of the Dielectrophoretic Trapping of Short Lengths of DNA and dCTP in a Nanopipette

    PubMed Central

    Ying, Liming; White, Samuel S.; Bruckbauer, Andreas; Meadows, Lisa; Korchev, Yuri E.; Klenerman, David

    2004-01-01

    The study of the properties of DNA under high electric fields is of both fundamental and practical interest. We have exploited the high electric fields produced locally in the tip of a nanopipette to probe the motion of double- and single-stranded 40-mer DNA, a 1-kb single-stranded DNA, and a single-nucleotide triphosphate (dCTP) just inside and outside the pipette tip at different frequencies and amplitudes of applied voltages. We used dual laser excitation and dual color detection to simultaneously follow two fluorophore-labeled DNA sequences with millisecond time resolution, significantly faster than studies to date. A strong trapping effect was observed during the negative half cycle for all DNA samples and also the dCTP. This effect was maximum below 1 Hz and decreased with higher frequency. We assign this trapping to strong dielectrophoresis due to the high electric field and electric field gradient in the pipette tip. Dielectrophoresis in electrodeless tapered nanostructures has potential applications for controlled mixing and manipulation of short lengths of DNA and other biomolecules, opening new possibilities in miniaturized biological analysis. PMID:14747337

  18. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    PubMed

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  19. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  20. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  1. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  2. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  3. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  4. Radio frequency glow discharge source with integrated voltage and current probes used for sputtering rate and emission yield measurements at insulating samples.

    PubMed

    Wilken, L; Hoffmann, V; Wetzig, K

    2005-10-01

    Radio frequency glow discharge optical emission spectroscopy (RF-GD-OES) is routinely used for the chemical analysis of solid samples. Two independent electrical signals from the discharge are required for quantification. When sputtering insulating samples, the voltage over the discharge is not directly measurable. The coupling capacity of the sample is required in order to calculate the discharge voltage. A procedure is outlined where the coupling capacity is determined using an electrical measurement without discharge. The calculated time-dependent discharge voltage and current are evaluated using a plasma equivalent circuit. An insulating sample is sputtered at constant cathode voltage and current. The emission yield for an aluminium line is comparable to that of conducting reference material.

  5. Frequency tuning in the electroreceptive periphery.

    PubMed Central

    Olson, E S; Smullin, L D

    1989-01-01

    Our studies are concerned with the frequency tuning that is provided by the electrical resonance of tuberous electroreceptors. Frequency selectivity had previously been measured in the electroreceptor's afferent fibers, and resonant conductances in the electroreceptor cell membrane had been implicated in producing the selectivity. With transdermal application of sinusoidal current, we measured the frequency dependence of the impedance of small areas of the electroreceptor/skin structure of the weakly electric fish Sternopygus and Eigenmannia, and used our data to make a quantitative linear model of the structure. The qualitative form of the model was proposed by Bennett (1). The quantitative model allows us to estimate the frequency selectivity of the voltage across the innervated membrane of the electroreceptor cells. The frequency selectivity of electroreceptor cell voltage derived from our data are as sharp as the neural selectivity at frequencies close to the most sensitive frequency. Many of our measurements supported the linear system model. However, spontaneous electroreceptor voltage oscillations were detected in some of our specimens, suggesting that the electroreceptors can operate in a regime of active nonlinearity. A simple explanation for the observed oscillations is that they arise when damping in the electroreceptor cell's resonant membrane is negative for a limited span of membrane voltage surrounding the resting voltage. The response of oscillating units to sinusoidal current was compatible with this explanation. We report experimental observations bearing on the consequences of active nonlinearity for the frequency tuning of a resonant system. Images FIGURE 11 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 11 FIGURE 12 PMID:2765655

  6. Drop-on-demand hybrid printing using a piezoelectric MEMS printhead at various waveforms, high voltages and jetting frequencies

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jae; Kim, Sangjin; Hwang, Jungho; Kim, Yong-Jun

    2013-06-01

    In this paper, electrohydrodynamic jetting is investigated in order to print ultra-fine dots and lines in drop-on-demand (DOD) mode, using micro-electromechanical system-based printhead with a piezoelectric actuator. In such hybrid system, jetting ultra-fine droplets in DOD mode, without applying an extremely high-voltage pulse, is possible as the meniscus is first disturbed by a piezoelectric actuator and the droplet is ejected by the applied electric field. As the amplitude of the drive waveform of the piezoelectric actuator is varied, droplets with volumes of 3.4 to 46.8 pL are realized. As the amplitude of the electric field is increased, the ejected droplets lengthen and at 8 kV, thin elliptical dots are printed. Although changing the jetting frequency from 0.1 to 2.0 kHz resulted in volume reduction from 9.4 pL down to 2.9 pL, the DOD characteristic is well maintained throughout. Such hybrid jetting characteristics enable the generation of diverse patterns in the printed electronics area.

  7. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    SciTech Connect

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  8. Sinusoidal and Delta Function Responses of Visual Cells of the Limulus Eye

    PubMed Central

    Pinter, R. B.

    1966-01-01

    Dynamic responses of visual cells of the Limulus eye to stimuli of sinusoids and narrow pulses of light superimposed on a nonzero mean level have been obtained. Amplitudes and phase angles of averaged sinusoidal generator potential are plotted with respect to frequency of intensity modulation for different mean levels of light adaptation. At frequencies above 10 CPS, generator potential amplitudes decrease sharply and phase lag angle increases. At frequencies below 1 CPS, amplitude decreases. A maximum of amplitude in the region of 1 to 2 CPS is apparent with increased mean intensity. The generator potential responses are compared with those of differential equation models. Variation of gain with mean intensity for incremental stimuli is consistent with logarithmic sensitivity of the photoreceptor. Frequency response of the photoreceptor derived from narrow pulses of light predicts the frequency response obtained with sinusoidal stimuli, and the photoreceptor is linear for small signals in the light-adapted state. PMID:5938828

  9. Sensorless Sinusoidal Wave Drive for Control of Power Factor of PM Motor by Detection of Inverter Bus Current

    NASA Astrophysics Data System (ADS)

    Matsushita, Motoshi; Kameyama, Hiroyuki; Ikeboh, Yasuhiro; Morimoto, Shigeo

    Permanent-magnet synchronous motors (PMSMs) with a sinusoidal back EMF are widely used in domestic appliances for reduction of acoustic noises and energy consumption. PMSMs are generally controlled with a sinusoidal waveform current. Typically, PMSMs are controlled by vector-controlled sinusoidal drives, which require powerful computational resources. Hence, simpler sinusoidal wave drives such as V/f drives, which control the phase difference between the voltage and the current (power factor of PM Motor) have been proposed for controlling PMSMs. This paper presents a new method that does not require current sensors but can be used to estimate the phase difference by sampling the voltage of the shunt register, which is used to detect the over current supplied to the inverter. This method enables detection of current and accurate estimation and appropriate control of the phase difference. Using this method, we could control the phase difference and achieve high efficiency, cost reduction, and high reliability.

  10. Deconvolution of sinusoidal rapid EPR scans.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-02-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans.

  11. I Found Sinusoids in My Gas Bill.

    ERIC Educational Resources Information Center

    Schloemer, Cathy G.

    2000-01-01

    Uses the average-monthly-temperature function as an application of the sine wave. Argues that the attractive aspect of gas bill graphs is that they clearly illustrate that sinusoidal curves are useful and meaningful in an everyday context. (ASK)

  12. Readily implemented enhanced sinusoid detection in noise

    SciTech Connect

    Lindsay, K.V.

    1992-03-05

    Significant efforts have been devoted, spanning many years, to the problem of sinusoid detection in noise. Many of these efforts have produced superb, yet complex, algorithms which may be difficult to use for a wide segment of the Digital Signal Processing (DSP) community. This paper presents a simple, easily implemented and high effective method which solves this problem. This method severely degrades non-sinusoidal noise while leaving the embedded sinusoid(s) relatively undisturbed. The algorithm, simply put, exploits the difference between the net effect of integration and differentiation of sinusoids versus the effect of these operations on random noise and other signal sequences. The cross-correlation of sine wave with its differentiated (and/or integrated) self is quite high. Conversely, the cross-reduction of a noise sequence with its differentiated (and/or integrated) self is much lower. Therefore, it is reasonable to assume that for sequences consisting of a sinusoid in noise, significant signal-to-noise-ratios (SNRs) in the correlation results are achievable using a combination of differentiation (and/or integration) and cross-correlation operations on such sequences. This technique has been applied to actual Doppler radar data, as well as to synthesized data, with excellent improvement in signal detection capability. 4 refs.

  13. Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.

  14. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  15. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (< 1 kV) and series connected step-up (1:10) transformers.

    PubMed

    Redondo, L M; Fernando Silva, J; Margato, E

    2007-03-01

    This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.

  16. Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature

    NASA Astrophysics Data System (ADS)

    Ibrahim, Yücedağ; Ahmet, Kaya; Şemsettin, Altındal; Ibrahim, Uslu

    2014-04-01

    In order to investigate of cobalt-doped interfacial polyvinyl alcohol (PVA) layer and interface trap (Dit) effects, Al/p-Si Schottky barrier diodes (SBDs) are fabricated, and their electrical and dielectric properties are investigated at room temperature. The forward and reverse admittance measurements are carried out in the frequency and voltage ranges of 30 kHz-300 kHz and -5 V-6 V, respectively. C-V or ɛ'-V plots exhibit two distinct peaks corresponding to inversion and accumulation regions. The first peak is attributed to the existence of Dit, the other to the series resistance (Rs), and interfacial layer. Both the real and imaginary parts of dielectric constant (ɛ' and ɛ″) and electric modulus (M' and M″), loss tangent (tan δ), and AC electrical conductivity (σac) are investigated, each as a function of frequency and applied bias voltage. Each of the M' versus V and M″ versus V plots shows a peak and the magnitude of peak increases with the increasing of frequency. Especially due to the Dit and interfacial PVA layer, both capacitance (C) and conductance (G/w) values are strongly affected, which consequently contributes to deviation from both the electrical and dielectric properties of Al/Co-doped PVA/p-Si (MPS) type SBD. In addition, the voltage-dependent profile of Dit is obtained from the low-high frequency capacitance (CLF-CHF) method.

  17. Connecting Renewables Directly to the Grid: Resilient Multi-Terminal HVDC Networks with High-Voltage High-Frequency Electronics

    SciTech Connect

    2012-01-23

    GENI Project: GE is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid—eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must be converted to high-voltage levels before it can be sent along the grid’s network of transmission lines. Power companies do this because less electricity is lost along the lines when the voltage is high.

  18. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  19. Comparative analysis of the intrinsic voltage gain and unit gain frequency between SOI and bulk FinFETs up to high temperatures

    NASA Astrophysics Data System (ADS)

    Oliveira, Alberto Vinicius de; Agopian, Paula Ghedini Der; Martino, Joao Antonio; Simoen, Eddy; Claeys, Cor; Collaert, Nadine; Thean, Aaron

    2016-09-01

    This paper presents an experimental analysis of the analog application figures of merit: the intrinsic voltage gain (AV) and unit gain frequency, focusing on the performance comparison between silicon triple gate pFinFET devices, which were processed on both Si and Silicon-On-Insulator (SOI) substrates. The high temperature (from 25 °C to 150 °C) influence and different channel lengths and fin widths were also taken into account. While the temperature impact on the intrinsic voltage gain (AV) is limited, the unit gain frequency was strongly affected due to the carrier mobility degradation at higher temperatures, for both p- and n-type FinFET structures. In addition, the pFinFETs showed slightly larger AV values compared to the n-type counterparts, whereby the bulk FinFETs presented a higher dispersion than the SOI FinFETs.

  20. Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of Au /GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Wang, R. X.; Xu, S. J.; Shi, S. L.; Beling, C. D.; Fung, S.; Zhao, D. G.; Yang, H.; Tao, X. M.

    2006-10-01

    Under identical preparation conditions, Au /GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers.

  1. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  2. Cavitation on hydrofoils with sinusoidal leading edge

    NASA Astrophysics Data System (ADS)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  3. Studies on frequency and gate voltage effects on the dielectric properties of Au/n-Si (110) structure with PVA-nickel acetate composite film interfacial layer

    NASA Astrophysics Data System (ADS)

    Tunç, T.; Gökçen, M.; Uslu, İ.

    2012-11-01

    The admittance technique was used in order to investigate the frequency dependence of dielectric constant ( ɛ'), dielectric loss ( ɛ″), dielectric loss tangent (tan δ), the ac electrical conductivity ( σ ac), and the electric modulus of PVA (Ni-doped) structure. Experimental results revealed that the values of ɛ' , ɛ″, (tan δ), σ ac and the electric modulus show fairly large frequency and gate bias dispersion due to the interface charges and polarization. The σ ac is found to increase with both increasing frequency and voltage. It can be concluded that the interface charges and interfacial polarization have strong influence on the dielectric properties of metal-polymer-semiconductor (MIS) structures especially at low frequencies and in depletion and accumulation regions. The results of this study indicate that the ɛ' values of Au/PVA/n-Si with Nickel-doped PVA interfacial layer are quite higher compared to those with pure and other dopant/mixture's of PVA.

  4. Transient visually evoked potentials to sinusoidal gratings in optic neuritis.

    PubMed Central

    Plant, G T

    1983-01-01

    Transient visually evoked potentials (VEPs) to sinusoidal gratings over a range of spatial frequencies have been recorded in cases of optic neuritis. The use of the response to pattern onset in addition to the response to pattern reversal extended the range to higher spatial frequencies by up to two octaves. There was an increase in VEP delay and a greater degree of discrimination from a control group at higher spatial frequencies. This finding is discussed in the light of previous reports of luminance and checkerboard VEPs in demyelinating optic nerve disease. An attempt is made to relate amplitude changes in various VEP components to contrast sensitivity measurements in this group of patients. PMID:6663312

  5. Voltage mode electronically tunable full-wave rectifier

    NASA Astrophysics Data System (ADS)

    Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan

    2017-01-01

    The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.

  6. Riding the Ferris Wheel: A Sinusoidal Model

    ERIC Educational Resources Information Center

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2011-01-01

    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  7. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  8. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.

    PubMed

    Miura, Hidekazu; Yamada, Akihiro; Shiraishi, Yasuyuki; Yambe, Tomoyuki

    2015-08-01

    We have been developing transcutaneous energy transmission system (TETS) for a ventricular assist device, shape memory alloy (SMA) fibered artificial organs and so on, the system has high efficiency and a compact size. In this paper, we summarize the development, design method and characteristics of the TETS. New control methods for stabilizing output voltage or current of the TETS are proposed. These methods are primary side, are outside of the body, not depending on a communication system from the inside the body. Basically, the TETS operates at the fixed frequency with a suitable compensation capacitor so that the internal impedance is minimalized and a flat load characteristic is obtained. However, when the coil shifted from the optimal position, the coupling factor changes and the output is fluctuated. TETS has a resonant property; its output can be controlled by changing the driving frequency. The continuous current to continuous voltage driving method was implemented by changing driving frequency and setting of limitation of low side frequency. This method is useful for battery charging system for electrically driven artificial hearts and also useful for SMA fibered artificial organs which need intermittent high peak power comsumption. In this system, the internal storage capacitor is charged slowly while the fibers are turned off and discharge the energy when the fibers are turned on. We examined the effect of the system. It was found that the size and maximum output of the TETS would able to be reduced.

  9. AlGaN/GaN-HEMTs with a breakdown voltage higher than 100 V and maximum oscillation frequency f{sub max} as high as 100 GHz

    SciTech Connect

    Mokerov, V. G. Kuznetsov, A. L.; Fedorov, Yu. V.; Bugaev, A. S.; Pavlov, A. Yu.; Enyushkina, E. N.; Gnatyuk, D. L.; Zuev, A. V.; Galiev, R. R.; Ovcharenko, E. N.; Sveshnikov, Yu. N.; Tsatsulnikov, A. F.; Ustinov, V. M.

    2009-04-15

    The N-Al{sub 0.27}Ga{sub 0.73}N/GaN High Electron Mobility Transistors (HEMTs) with different gate lengths L{sub g} (ranging from 170 nm to 0.5 {mu}m) and gate widths W{sub s} (ranging from 100 to 1200 {mu}m) have been studied. The S parameters have been measured; these parameters have been used to determine the current-gain cutoff frequency f{sub t}, the maximum oscillation frequency f{sub max}, and the power gain MSG/MAG and Mason's coefficients were investigated in the frequency range from 10 MHz to 67 GHz in relation to the gate length and gate width. It was found that the frequencies f{sub t} and f{sub max} attain their maximum values of f{sub t} = 48 GHz and f{sub max} = 100 GHz at L{sub g} = 170 nm and W{sub g} = 100 {mu}m. The optimum values of W{sub g} and output power P out of the basic transistors have been determined for different frequencies of operation. It has also been demonstrated that the 170 nm Al{sub 0.27}Ga{sub 0.73}N/GaN HEMT technology provides both good frequency characteristics and high breakdown voltages and is very promising for high-frequency applications (up to 40 GHz)

  10. Extraordinary tunability of high-frequency devices using Hf0.3Zr0.7O2 ferroelectric at very low applied voltages

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Aldrigo, Martino; Modreanu, Mircea; Dragoman, Daniela

    2017-03-01

    This paper presents the applications of the Hf0.3Zr0.7O2 ferroelectric with a thickness of 10 nm for tuning high-frequency devices such as filters, phase shifters, and phased antenna arrays in the X band when the low bias voltages in the range -3 V-+3 V are applied. In this respect, we show that a bandpass filter shifts its central frequency located at 10 GHz with 3 GHz, a phase shifter produces a phase difference of about 60 degrees in the X band, while the antenna array formed by two patched antennas is steering its lobe with ±32° at 10 GHz. These results open the way for the tunability of high frequency devices for very low power applications, which represent one of the most challenging issues in applied physics.

  11. Modulation of hair cell voltage responses to tones by low-frequency biasing of the basilar membrane in the guinea pig cochlea.

    PubMed

    Russell, I J; Kössl, M

    1992-05-01

    Inner (IHC) and outer (OHC) hair cell receptor potentials were recorded during stimulation with combinations of high-frequency (HF) tones and a 100 Hz tone burst of constant level (80 dB SPL). For frequencies at and below characteristic frequency (CF), OHC AC receptor potentials were suppressed by the 100 Hz tone at levels of the HF tone below about 70 dB SPL (the initial steep part of the AC/level function) and at levels that were frequency specific for frequencies above CF. Suppression was associated with a phase lead for frequencies at and close to the CF. For frequencies above CF, the OHC AC response was either suppressed or augmented at levels of the HF tone both below and above 70 dB SPL, depending on the frequency. The action of the 100 Hz tone on the AC response/level functions was to change nonmonotonic functions into monotonic functions or vice versa. IHC DC receptor potentials were suppressed maximally at the CF and at levels and frequencies where suppression of the OHC AC response and the appearance of the IHC DC response overlapped. For levels of the HF tone above 70 dB SPL, the amplitude of the responses of both IHCs and OHCs to the 100 Hz tone are suppressed and become more symmetrical through selective attenuation of the depolarizing phase of the IHC response and the hyperpolarizing phase of the OHC response. In IHCs from insensitive preparations, the response to the 100 Hz tone is augmented in the presence of the HF tone, which may indicate a shift in the operating point of transduction. At frequencies about one-half an octave below the CF, the phase of the 100 Hz voltage response of OHCs but not IHCs is inverted for levels of the HF tone above about 90 dB SPL. It is proposed that amplitude and phase changes in the response to the HF tone due to the presence of the 100 Hz tone are the result of changes in OHC feedback processes and in the mode of movement of the interface between OHC stereocilia and tectorial membrane. The interaction between the

  12. Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures: Frequency dependence of capacitance and conductance

    SciTech Connect

    Köhler, K.; Pletschen, W.; Godejohann, B.; Müller, S.; Menner, H. P.; Ambacher, O.

    2015-11-28

    Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation between frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.

  13. Rectification of confined diffusion driven by a sinusoidal force

    NASA Astrophysics Data System (ADS)

    Kalinay, Pavol

    2014-04-01

    A particle diffusing in an asymmetric periodic channel, driven by a sinusoidal force F(t )=F0cosωt (the rocking ratchet) is considered. The asymptotic solution of the generalized Fick-Jacobs equation describing the system is studied in the nonadiabatic regime. The leading term of the rectified current, appearing in the order ˜F02, is derived. The method presented enables us to solve the problem analytically for a sawtooth channel and also to look for approximative formulas applicable in a wide range of frequencies ω. Even the simplest approximation qualitatively reproduces the current reversal at higher frequencies as the result of growing phase lag of the rocking density behind the driving force.

  14. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.

    PubMed

    Hamlet, William R; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K(+) (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17-E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies.

  15. Orbital component extraction by time-variant sinusoidal modeling.

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-04-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model

  16. Calibration of Voltage Transformers and High- Voltage Capacitors at NIST

    PubMed Central

    Anderson, William E.

    1989-01-01

    The National Institute of Standards and Technology (NIST) calibration service for voltage transformers and high-voltage capacitors is described. The service for voltage transformers provides measurements of ratio correction factors and phase angles at primary voltages up to 170 kV and secondary voltages as low as 10 V at 60 Hz. Calibrations at frequencies from 50–400 Hz are available over a more limited voltage range. The service for high-voltage capacitors provides measurements of capacitance and dissipation factor at applied voltages ranging from 100 V to 170 kV at 60 Hz depending on the nominal capacitance. Calibrations over a reduced voltage range at other frequencies are also available. As in the case with voltage transformers, these voltage constraints are determined by the facilities at NIST. PMID:28053409

  17. Attenuation of intense sinusoidal waves in air-saturated, bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, Herbert L.; Blackstock, David T.

    1987-01-01

    As intense, initially sinusoidal waves propagate in fluids, shocks form and excess attenuation of the wave occurs. Data are presented indicating that shock formation is not necessary for the occurrence of excess attenuation in nonlinear, lossy media, i.e., air-saturated, porous materials. An empirical equation is used to describe the excess attenuation of intense sinusoids in porous materials. The acoustic nonlinearity of and the excess attenuation in porous materials may be predicted directly from dc flow resistivity data. An empirical relationship is used to relate an acoustic nonlinearity parameter to the fundamental frequency and relative dc nonlinearity of two structurally different materials.

  18. Full-field step profile measurement with sinusoidal wavelength scanning interferometer

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Sasaki, Osami; Suzuki, Takamasa

    2014-05-01

    A sinusoidal wavelength scanning interferometer is proposed for 3-D profile measurement. The interference phase-shift signal generated by the sinusoidal wavelength scanning contains information of optical path difference (OPD) covering nm-mm scale structure. The interference phase-shift signal was obtained by the four-step phase shifting method. The sinusoidal wavelength shifting bandwidth of 5.7 nm with a frequency of approximately 180 Hz was performed by the Littman-Metcalf external resonator-type tunable laser with a center of 772.1 nm. The full-field step-height surface profile measurement and 3-D surface measurement were conducted by a CCD image sensor with an accuracy of few tens nm. The surface profile of gauge blocks with a step-height of up to 10 μm was successfully measured.

  19. The inhibition of stuttering via the presentation of natural speech and sinusoidal speech analogs.

    PubMed

    Saltuklaroglu, Tim; Kalinowski, Joseph

    2006-08-14

    Sensory signals containing speech or gestural (articulatory) information (e.g., choral speech) have repeatedly been found to be highly effective inhibitors of stuttering. Sine wave analogs of speech consist of a trio of changing pure tones representative of formant frequencies. They are otherwise devoid of traditional speech cues, yet have proven to evoke consistent linguistic percepts in listeners. Thus, we investigated the potency of sinusoidal speech for inhibiting stuttering. Ten adults who stutter read while listening to (a) forward-flowing natural speech; (b) forward-flowing sinusoid analogs of natural speech; (c) reversed natural speech; (d) reversed sinusoid analogs of natural speech; and (e) a continuous 1000 Hz pure tone. The levels of stuttering inhibition achieved using the sinusoidal stimuli were potent and not significantly different from those achieved using natural speech (approximately 50% in forward conditions and approximately 25% in the reversed conditions), suggesting that the patterns of undulating pure tones are sufficient to endow sinusoidal sentences with 'quasi-gestural' qualities. These data highlight the sensitivity of a specialized 'phonetic module' for extracting gestural information from sensory stimuli. Stuttering inhibition is thought to occur when perceived gestural information facilitates fluent productions via the engagement of mirror neurons (e.g., in Broca's area), which appear to play a crucial role in our ability to perceive and produce speech.

  20. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.

  1. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2016-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.

  2. Response of a radial-bladed centrifugal pump to sinusoidal disturbances for noncavitating flow

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Blade, R. J.; Stevans, W.

    1971-01-01

    A radial-bladed centrifugal pump was run in water with sinusoidal fluctuations of pressure and flow rate imposed at the pump inlet. Since the flow was noncavitating, zero gain was assumed in computing pump impedance. The inertive reactance became greater than the resistance at relatively low frequencies. An electric circuit model was developed in order to explain the trends of inertance and resistance with frequency.

  3. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  4. Wind turbines using self-excited three-phase induction generators: an innovative solution for voltage-frequency control

    NASA Astrophysics Data System (ADS)

    Brudny, J. F.; Pusca, R.; Roisse, H.

    2008-08-01

    A considerable number of communities throughout the world, most of them isolated, need hybrid energy solutions either for rural electrification or for the reduction of diesel use. Despite several research projects and demonstrations which have been conducted in recent years, wind-diesel technology remains complex and much too costly. Induction generators are the most robust and common for wind energy systems but this option is a serious challenge for electrical regulation. When a wind turbine is used in an off-grid configuration, either continuously or intermittently, precise and robust regulation is difficult to attain. The voltage parameter regulation option, as was experienced at several remote sites (on islands and in the arctic for example), is a safe, reliable and relatively simple technology, but does not optimize the wave quality and creates instabilities. These difficulties are due to the fact that no theory is available to describe the system, due to the inverse nature of the problem. In order to address and solve the problem of the unstable operation of this wind turbine generator, an innovative approach is described, based on a different induction generator single phase equivalent circuit.

  5. Field oriented control of an induction machine in a high frequency link power system

    NASA Technical Reports Server (NTRS)

    Sul, Seung K.; Lipo, Thomas A.

    1988-01-01

    A field-oriented controlled induction machine drive operating with a high-frequency single-phase sinusoidal voltage link is presented. System performance is investigated by computer simulation and is verified by a test on a prototype system. A novel control loop to minimize the link voltage fluctuation is proposed. The capability of rapid demagnetization of the induction machine by current regulation is investigated. A current-modulation technique termed mode control is proposed, and its performance is compared with that of the conventional delta-modulation technique.

  6. Spur-reduced digital sinusoid synthesis

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.; Zimmerman, G. A.

    1993-01-01

    This article presents and analyzes a technique for reducing the spurious signal content in digital sinusoid synthesis. Spurious-harmonic (spur) reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to those produced by a pseudonoise (PN) generator are analyzed. This phase-dithering method provides a spur reduction of 6(M plus one) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid lookup tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse resolution, highly linear digital to analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.

  7. Spur-reduced digital sinusoid synthesis

    NASA Astrophysics Data System (ADS)

    Flanagan, M. J.; Zimmerman, G. A.

    1993-11-01

    This article presents and analyzes a technique for reducing the spurious signal content in digital sinusoid synthesis. Spurious-harmonic (spur) reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to those produced by a pseudonoise (PN) generator are analyzed. This phase-dithering method provides a spur reduction of 6(M plus one) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid lookup tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse resolution, highly linear digital to analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.

  8. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    NASA Astrophysics Data System (ADS)

    Giusi, G.; Giordano, O.; Scandurra, G.; Rapisarda, M.; Calvi, S.; Ciofi, C.

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz1/2, while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  9. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results.

  10. Experimental studies on the power-frequency breakdown voltage of CF3I/N2/CO2 gas mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Tian, Shuangshuang; Xiao, Song; Li, Yi; Deng, Zaitao; Tang, Ju

    2017-03-01

    Trifluoroiodomethane is a promising alternative to SF6 because of its good insulation properties and much less serious greenhouse effect than SF6. Previous studies have shown that the insulation performance of CF3I mixed with CO2 or N2 can equal that of SF6. This study explored the frequency breakdown characteristics of CF3I and SF6 mixed with two buffer gases. The effects of air pressure and field strength were analyzed. The fixed mixing ratio of CF3I and SF6 was 30% in the experiment. The breakdown experiment was conducted by changing the mixing ratio of CO2 and N2. Results showed that the CO2/N2 mixture ratio did not exert a synergetic effect, and the CF3I/CO2 breakdown performance was better than that of CF3I/N2 in the quasi-uniform and highly non-uniform electric fields. CO2 possibly provided the C atoms for the entire system to maintain a certain balance in C, and this balance inhibited the decomposition of CF3I. The breakdown performance of SF6/N2 was good in quasi-uniform field, whereas that of SF6/CO2 was good in the highly non-uniform field.

  11. Pseudolinear Circuit Theory for Sinusoidal Oscillator Performance Maximization

    NASA Astrophysics Data System (ADS)

    Ohira, Takashi; Wuren, Tuya

    This paper introduces a theory for fast optimization of the circuit topology and parameters in sinusoidal oscillators. The theory starts from a system model composed of standard active and passive elements. We then include even the output load in the circuit, so that there is no longer any interaction with the outside of the system through the port. This model is thus called no-input-no-output (NINO) oscillator. The circuit is cut at an arbitrary branch, and is characterized in terms of the scalar impedance from the cut point. This is called active impedance because it is a function of not only the stimulating frequency but also the active device gain. The oscillation frequency and necessary device gain are estimated by solving impedance-domain Barkhausen equilibrium equations. This estimation works for the adjustment of circuit elements to meet the specified oscillation frequency. The estimation of necessary device gain enables us to maximize the oscillation amplitude, thanks to the inherent negative-slope nonlinearity of active devices. The active impedance is also used to derive the oscillation Q (quality) factor, which serves as a key criterion for sideband noise minimization i.e. frequency spectrum purification. As an alternative measure to active impedance, we also introduce branch admittance matrix determinant. This has the same numerical effect as the scalar impedance but can be used to formulate oscillator characteristics in a more elegant fashion, and provides a lucent picture of the physical behavior of each element in the circuit. Based on the proposed theory, we provide the tabled formulas of oscillation frequency, necessary device gain, active Q factor for a variety of typical Colpitts, Hartley, and cross-coupled twin-FET (field-effect transistor) oscillators.

  12. Magnetostrictive vibrations model of a three-phase transformer core and the contribution of the fifth harmonic in the grid voltage

    NASA Astrophysics Data System (ADS)

    Gorji Ghalamestani, Setareh; Vandevelde, Lieven; Dirckx, Joris J. J.; Melkebeek, Jan A. A.

    2014-05-01

    The effect of the fifth harmonic in the grid voltage (with fundamental frequency of 50 Hz) on the vibrations of a three-phase transformer core is computed, since such harmonic has the largest contribution in the European grid voltage. The computational method is a two-dimensional (2D) finite element technique. The modal vibrations under various magnetisations (viz with different fifth harmonic components) are compared with those obtained under a purely sinusoidal magnetisation and showed that the variations for the 100 Hz harmonic of the vibrations are small. However, the 200 Hz harmonic showed a significant increase when a fifth harmonic was present on the applied voltage. In fact, the presence of a fundamental component with 50 Hz frequency and a fifth harmonic on the magnetisation signal generates a 200 Hz harmonic on the magnetostriction strains (and the magnetic forces), and thus this harmonic increases significantly.

  13. Simultaneous powerline interference and baseline wander removal from ECG and EMG signals by sinusoidal modeling.

    PubMed

    Zivanovic, Miroslav; González-Izal, Miriam

    2013-10-01

    We present a compact approach to joint modeling of powerline interference (PLI) and baseline wonder (BW) for denoising of biopotential signals. Both PLI and BW are modeled by a set of harmonically related sinusoids modulated by low-order time polynomials. The sinusoids account on the harmonicity and mean instantaneous frequency of the PLI in the analysis window, while the polynomials capture the frequency and amplitude deviations from their nominal values and characterize the BW at the same time. The resulting model is linear-in-parameters and the solution to the corresponding linear system is estimated in a simple and efficient way through linear least-squares. The proposed modeling method was evaluated on real electrocardiographic (ECG) and electromyographic (EMG) signals against three reference methods for different analysis scenarios. The comparative study suggests that the proposed method outperforms the reference methods in terms of residual interference energy in the denoised biopotential signals.

  14. Multifunction Current Differencing Cascaded Transconductance Amplifier (MCDCTA) and Its Application to Current-Mode Multiphase Sinusoidal Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Chunhua; Lin, Hairong

    2015-09-01

    In this study, a new versatile active element, namely multifunction current differencing cascaded transconductance amplifier (MCDCTA), is proposed. This device which adopts a simple configuration enjoys the performances of low-voltage, low-input and high-output impedance, wide bandwidth etc. It simplifies the design of the current-mode analog signal processing circuit greatly, especially the design of high-order filter and oscillator circuits. Moreover, an example as a new current-mode multiphase sinusoidal oscillator (MSO) using MCDCTA is described in this paper. The proposed oscillator, which employs only one MCDCTA and minimum grounded passive elements, is easy to be realized. It can provide random n (n being odd or even) output current signals and these output currents are equally spaced in phase all at high output impedance terminals. Its oscillation condition and the oscillation frequency can be adjusted independently, linearly and electronically by controlling the bias currents of MCDCTA. The operation of the proposed oscillator has been testified through PSPICE simulation and experimental results.

  15. Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms.

    PubMed

    Dietz, V; Trippel, M; Ibrahim, I K; Berger, W

    1993-01-01

    With subjects standing on a treadmill moving sinusoidally backward and forward, recordings of electromyographic (EMG) leg and trunk muscle activity, head and joint movements and platform torque were made with the subjects' eyes open or closed. The sinusoidal frequency was changed, stepwise and randomly, between 0.5, 0.3 and 0.25 Hz. The amplitude of the deflection was constant at +/- 12 cm. During an adapted sinus cycle, the maximum leg muscle EMG activity was recorded in the tibialis anterior around the posterior turning point and in the gastrocnemius around the anterior turning point in the treadmill cycle. This activity was associated with a forward inclination of the body around the posterior point and a straightening of the body at the anterior point. Both the degree of body inclination and the corresponding EMG activity were dependent upon the sinusoidal frequency. The programmed adjustment of the body inclination was such that the result of inertial and gravitational forces acting on the body coincided with the axis of the body at the posterior turning point. At the anterior point, the adjustment was achieved mainly by strong activation of the leg extensors. The latencies of the compensatory muscle responses to a change in treadmill frequency were significantly shorter at the posterior point for the gastrocnemius than for the tibialis anterior, and at the anterior point for the tibialis anterior than for the gastrocnemius. No correlated changes were seen in the corresponding head and joint movements. The difference in latency can best be attributed to the different body postures during the sinusoid. Early activation of the gastrocnemius is required due to the forward-directed impulse to the inclined body at the posterior point, and of the tibialis anterior muscle due to the backward-directed impulse to the erect body at the anterior point. It is suggested that afferent input from extensor load receptors provides information about the position of the body

  16. Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators.

    PubMed

    Baylon-Cardiel, Javier L; Jesús-Pérez, Nadia M; Chávez-Santoscoy, Ana V; Lapizco-Encinas, Blanca H

    2010-12-07

    Low frequency alternating current insulator-based dielectrophoresis is a novel technique that allows for highly controlled manipulation of particles. By varying the shape of an AC voltage applied across a microchannel containing an array of insulating cylindrical structures it was possible to concentrate and immobilize microparticles in bands; and then, move the bands of particles to a different location. Mathematical modeling was performed to analyze the distribution of the electric field and electric field gradient as function of the shape of the AC applied potential, employing frequencies in the 0.2-1.25 Hz range. Three different signals were tested: sinusoidal, half sinusoidal and sawtooth. Experimental results demonstrated that this novel dielectrophoretic mode allows highly controlled particle manipulation.

  17. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  18. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  19. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  20. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  1. Sinusoidal nanotextures for light management in silicon thin-film solar cells.

    PubMed

    Köppel, G; Rech, B; Becker, C

    2016-04-28

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.

  2. Sinusoidal nanotextures for light management in silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Köppel, G.; Rech, B.; Becker, C.

    2016-04-01

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.

  3. Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration.

    PubMed

    Zhou, Zhen; Griffin, Michael J

    2014-01-01

    The dependence of biodynamic responses of the seated human body on the frequency, magnitude and waveform of vertical vibration has been studied in 20 males and 20 females. With sinusoidal vibration (13 frequencies from 1 to 16 Hz) at five magnitudes (0.1-1.6 ms(-2) r.m.s.) and with random vibration (1-16 Hz) at the same magnitudes, the apparent mass of the body was similar with random and sinusoidal vibration of the same overall magnitude. With increasing magnitude of vibration, the stiffness and damping of a model fitted to the apparent mass reduced and the resonance frequency decreased (from 6.5 to 4.5 Hz). Male and female subjects had similar apparent mass (after adjusting for subject weight) and a similar principal resonance frequency with both random and sinusoidal vibration. The change in biodynamic response with increasing vibration magnitude depends on the frequency of the vibration excitation, but is similar with sinusoidal and random excitation.

  4. Optical antennas with sinusoidal modulation in width.

    PubMed

    Dikken, Dirk Jan; Segerink, Frans B; Korterik, Jeroen P; Pfaff, Stefan S; Prangsma, Jord C; Herek, Jennifer L

    2016-08-08

    Small metal structures sustaining plasmon resonances in the optical regime are of great interest due to their large scattering cross sections and ability to concentrate light to subwavelength volumes. In this paper, we study the dipolar plasmon resonances of optical antennas with a constant volume and a sinusoidal modulation in width. We experimentally show that by changing the phase of the width-modulation, with a small 10 nm modulation amplitude, the resonance shifts over 160 nm. Using simulations we show how this simple design can create resonance shifts greater than 600 nm. The versatility of this design is further shown by creating asymmetric structures with two different modulation amplitudes, which we experimentally and numerically show to give rise to two resonances. Our results on both the symmetric and asymmetric antennas show the capability to control the localization of the fields outside the antenna, while still maintaining the freedom to change the antenna resonance wavelength. The antenna design we tested combines a large spectral tunability with a small footprint: all the antenna dimensions are factor 7 to 13 smaller than the wavelength, and hold potential as a design element in meta-surfaces for beam shaping.

  5. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    SciTech Connect

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-11-15

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation.

  6. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans

    PubMed Central

    Fukuoka, Yoshiyuki; Iihoshi, Masaaki; Nazunin, Juhelee Tuba; Abe, Daijiro; Fukuba, Yoshiyuki

    2017-01-01

    Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback. PMID:28076413

  7. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro

    NASA Astrophysics Data System (ADS)

    Jensen, A. L.; Durand, D. M.

    2007-06-01

    Deep brain stimulation (DBS), also known as high frequency stimulation (HFS), is a well-established therapy for Parkinson's disease and essential tremor, and shows promise for the therapeutic control of epilepsy. However, the direct effect of DBS on neural elements close to the stimulating electrode remains an important unanswered question. Computational studies have suggested that HFS has a dual effect on neural elements inhibiting cell bodies, while exciting axons. Prior experiments have shown that sinusoidal HFS (50 Hz) can suppress synaptic and non-synaptic cellular activity in several in vitro epilepsy models, in all layers of the hippocampus. However, the effects of HFS on axons near the electrode are still unclear. In the present study, we tested the hypothesis that HFS suppresses axonal conduction in vitro. Sinusoidal HFS was applied to the alvear axon field of transverse rat hippocampal slices. The results show that HFS suppresses the alvear compound action potential (CAP) as well as the CA1 antidromic evoked potential (AEP). Complete suppression was observed as a 100% reduction in the amplitude of the evoked field potential for the duration of the stimulus. Evoked potential width and latency were not significantly affected by sinusoidal HFS. Suppression was dependent on HFS amplitude and frequency, but independent of stimulus duration and synaptic transmission. The frequency dependence of sinusoidal HFS is similar to that observed in clinical DBS, with maximal suppression between 50 and 200 Hz. HFS produced not only suppression of axonal conduction but also a correlated rise in extracellular potassium. These data provide new insights into the effects of HFS on neuronal elements, and show that HFS can block axonal activity through non-synaptic mechanisms.

  8. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro.

    PubMed

    Jensen, A L; Durand, D M

    2007-06-01

    Deep brain stimulation (DBS), also known as high frequency stimulation (HFS), is a well-established therapy for Parkinson's disease and essential tremor, and shows promise for the therapeutic control of epilepsy. However, the direct effect of DBS on neural elements close to the stimulating electrode remains an important unanswered question. Computational studies have suggested that HFS has a dual effect on neural elements inhibiting cell bodies, while exciting axons. Prior experiments have shown that sinusoidal HFS (50 Hz) can suppress synaptic and non-synaptic cellular activity in several in vitro epilepsy models, in all layers of the hippocampus. However, the effects of HFS on axons near the electrode are still unclear. In the present study, we tested the hypothesis that HFS suppresses axonal conduction in vitro. Sinusoidal HFS was applied to the alvear axon field of transverse rat hippocampal slices. The results show that HFS suppresses the alvear compound action potential (CAP) as well as the CA1 antidromic evoked potential (AEP). Complete suppression was observed as a 100% reduction in the amplitude of the evoked field potential for the duration of the stimulus. Evoked potential width and latency were not significantly affected by sinusoidal HFS. Suppression was dependent on HFS amplitude and frequency, but independent of stimulus duration and synaptic transmission. The frequency dependence of sinusoidal HFS is similar to that observed in clinical DBS, with maximal suppression between 50 and 200 Hz. HFS produced not only suppression of axonal conduction but also a correlated rise in extracellular potassium. These data provide new insights into the effects of HFS on neuronal elements, and show that HFS can block axonal activity through non-synaptic mechanisms.

  9. Sinusoidal-wavelength-scanning interferometer with double feedback control for real-time distance measurement.

    PubMed

    Sasaki, Osami; Akiyama, Kazuhiro; Suzuki, Takamasa

    2002-07-01

    In addition to a conventional phase a the interference signal of a sinusoidal-wavelength-scanning interferometer has a phase-modulation amplitude Zb that is proportional to the optical path difference L and amplitude b of the wavelength scan. L and b are controlled by a double feedback system so that the phase alpha and the amplitude Zb are kept at 3pi/2 and pi, respectively. The voltage applied to a device that displaces a reference mirror to change the optical path difference becomes a ruler with scales smaller than a wavelength. Voltage applied to a device that determines the amplitude of the wavelength scan becomes a ruler marking every wavelength. These two rulers enable one to measure an absolute distance longer than a wavelength in real time.

  10. Genetic manipulation of sinusoidal endothelial cells.

    PubMed

    Takei, Yoshiyuki; Maruyama, Atsushi; Ikejima, Kenichi; Enomoto, Nobuyuki; Yamashina, Shunhei; Lemasters, John J; Sato, Nobuhiro

    2007-06-01

    Altered gene expression in liver sinusoidal endothelial cells (SEC) is associated with a variety of aspects of liver pathophysiology. It is, therefore, possible to envision a new therapeutic strategy for treatment of intractable liver diseases and achievement of graft-specific immunotolerance through modulation of SEC functions by genetic engineering. The SEC possesses unique hyaluronan receptors that recognize and internalize hyaluronic acid (HA). This characteristic was used in the development of a system for targeting foreign DNA to SEC. A gene carrier system was prepared by coupling HA oligomers to poly L-lysine (PLL) in a 1:1 weight ratio by reductive amination reaction. The resulting copolymer (PLL-g-HA) was mixed with various amounts of DNA in 154 mM NaCl. Inter-polyelectrolyte complex formation between PLL-g-HA and DNA exhibited minimal self-aggregation, explaining the highly soluble nature of the complex. Complex formation between PLL-g-HA and DNA was further assessed with a gel retardation assay. The titration point representing the minimum proportion of PLL-g-HA required to retard the DNA completely occurred at a 1:1 copolymer (based on PLL) to DNA charge ratio. Following intravenous injection of (32)P-labeled pSV beta-Gal plasmid complexed to PLL-g-HA in Wistar rats, >90% of the injected counts were shown to be taken up by the liver. Further, it was shown that the PLL-g-HA/DNA complex was distributed exclusively in the SEC. At 72 h after injection of 90 mug of pSV beta-Gal in a PLL-g-HA-complexed form, a large number of SEC expressing beta-galactosidase were detected. So, the PLL-g-HA/DNA system permits targeted delivery of exogenous nucleotide agents selectively to the liver SEC, providing a novel strategy for manipulation of SEC functions.

  11. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...

  12. Computer Program for Thin Wire Antenna over a Perfectly Conducting Ground Plane. [using Galerkins method and sinusoidal bases

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for a thin-wire antenna over a perfect ground plane. The analysis is performed in the frequency domain, and the exterior medium is free space. The antenna may have finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, and gain. The program uses sinusoidal bases and Galerkin's method.

  13. An active noise control algorithm for controlling multiple sinusoids.

    PubMed

    Lee, S M; Lee, H J; Yoo, C H; Youn, D H; Cha, I W

    1998-07-01

    The filtered-x LMS algorithm and its modified versions have been successfully applied in suppressing acoustic noise such as single and multiple tones and broadband random noise. This paper presents an adaptive algorithm based on the filtered-x LMS algorithm which may be applied in attenuating tonal acoustic noise. In the proposed method, the weights of the adaptive filter and estimation of the phase shift due to the acoustic path from a loudspeaker to a microphone are computed simultaneously for optimal control. The algorithm possesses advantages over other filtered-x LMS approaches in three aspects: (1) each frequency component is processed separately using an adaptive filter with two coefficients, (2) the convergence parameter for each sinusoid can be selected independently, and (3) the computational load can be reduced by eliminating the convolution process required to obtain the filtered reference signal. Simulation results for a single-input/single-output (SISO) environment demonstrate that the proposed method is robust to the changes of the acoustic path between the actuator and the microphone and outperforms the filtered-x LMS algorithm in simplicity and convergence speed.

  14. Self-sustained oscillations of a sinusoidally-deformed plate

    NASA Astrophysics Data System (ADS)

    Muriel, Diego F.; Cowen, Edwin A.

    2015-11-01

    Motivated by energy harvesting, the oscillatory motion of a deformed elastic material with aspect ratio Length/Width=2, immerse in an incompressible flow is studied experimentally. To induce the wave-like deformation a polycarbonate sheet is placed under longitudinal compression with external forcing provided by equispaced tension lines anchored in a frame. No additional constrains are placed in the material. Based on quantitative image-based edge detection, ADV, and PIV measurements, we document the existence of three natural states of motion. Bellow a critical velocity, a stable state presents a sinusoidal-like deformation with weak small perturbations. Above a critical velocity, instability appears in the form of a traveling wave with predictable dominant frequency accompanied by higher-order harmonics. As the flow velocity increases the instability converges faster to its limit cycle in the phase plane (e.g., vertical velocity and position), until the stable oscillatory mode transitions to chaos showing a broad energy spectrum and unstable limit cycle. The underlying objective is to induce the onset of the instability at lower critical velocities for higher bending rigidities, promoting possible energy extraction and increasing the range at which stable oscillations appear.

  15. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  16. Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60 nm CMOS technology on 300 mm wafer process

    NASA Astrophysics Data System (ADS)

    Imamoto, Takuya; Ma, Yitao; Muraguchi, Masakazu; Endoh, Tetsuo

    2015-04-01

    In this paper, DC and low-frequency noise (LFN) characteristics have been investigated with actual measurement data in both n- and p-type vertical MOSFETs (V-MOSFETs) for the first time. The V-MOSFETs which was fabricated on 300 mm bulk silicon wafer process have realized excellent DC performance and a significant reduction of flicker (1/f) noise. The measurement results show that the fabricated V-MOSFETs with 60 nm silicon pillar and 100 nm gate length achieve excellent steep sub-threshold swing (69 mV/decade for n-type and 66 mV/decade for p-type), good on-current (281 µA/µm for n-type 149 µA/µm for p-type), low off-leakage current (28.1 pA/µm for n-type and 79.6 pA/µm for p-type), and excellent on-off ratio (1 × 107 for n-type and 2 × 106 for p-type). In addition, it is demonstrated that our fabricated V-MOSFETs can control the threshold voltage (Vth) by changing the channel doping condition, which is the useful and low-cost technique as it has been widely used in the conventional bulk planar MOSFET. This result indicates that V-MOSFETs can control Vth more finely and flexibly by the combined the use of the doping technique with other techniques such as work function engineering of metal-gate. Moreover, it is also shown that V-MOSFETs can suppress 1/f noise (L\\text{gate}WS\\text{Id}/I\\text{d}2 of 10-13-10-11 µm2/Hz for n-type and 10-12-10-10 µm2/Hz for p-type) to one or two order lower level than previously reported nanowire type MOSFET, FinFET, Tri-Gate, and planar MOSFETs. The results have also proved that both DC and 1/f noise performances are independent from the bias voltage which is applied to substrate or well layer. Therefore, it is verified that V-MOSFETs can eliminate the effects from substrate or well layer, which always adversely affects the circuit performances due to this serial connection.

  17. A 400-mV 2.4-GHz frequency-shift keying transmitter using a capacitor switch across a transformer for a wide tuning range voltage-controlled oscillator

    NASA Astrophysics Data System (ADS)

    Miyahara, Yasunori; Ishikawa, Keisuke; Kuroda, Tadahiro

    2017-04-01

    We use a simple directly modulated closed loop to develop a 2.1-mW, 2.4-GHz frequency-shift keying (FSK) transmitter that operates on 400-mV DC supply. Connecting a capacitor bank switch via a transformer in the voltage control oscillator (VCO) to the frequency-divider circuit expands the frequency tuning range without reducing VCO performance. A prototype was fabricated using the 65-nm standard CMOS process with a chip size of 1.65 × 1.85 mm2. A modulation output signal spectrum of ‑42 dBc at 1.5 MHz with ‑6 dBm at the PA buffer output terminal; moreover, a VCO phase noise of ‑101 dBc/Hz at 1 MHz is achieved. The FSK transmitter can readily use voltages supplied by harvested energy because of the low power consumption of the sensor network.

  18. Nonequilibrium response of a voltage gated sodium ion channel and biophysical characterization of dynamic hysteresis.

    PubMed

    Pal, Krishnendu; Das, Biswajit; Gangopadhyay, Gautam

    2017-02-21

    Here we have studied the dynamic as well as the non-equilibrium thermodynamic response properties of voltage-gated Na-ion channel. Using sinusoidally oscillating external voltage protocol we have both kinetically and energetically studied the non-equilibrium steady state properties of dynamic hysteresis in details. We have introduced a method of estimating the work done associated with the dynamic memory due to a cycle of oscillating voltage. We have quantitatively characterised the loop area of ionic current which gives information about the work done to sustain the dynamic memory only for ion conduction, while the loop area of total entropy production rate gives the estimate of work done for overall gating dynamics. The maximum dynamic memory of Na-channel not only depends on the frequency and amplitude but it also depends sensitively on the mean of the oscillating voltage and here we have shown how the system optimize the dynamic memory itself in the biophysical range of field parameters. The relation between the average ionic current with increasing frequency corresponds to the nature of the average dissipative work done at steady state. It is also important to understand that the utilization of the energy from the external field can not be directly obtained only from the measurement of ionic current but also requires nonequilibrium thermodynamic study.

  19. Signal Analysis Algorithms for Optimized Fitting of Nonresonant Laser Induced Thermal Acoustics Damped Sinusoids

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Miller, Corey A.

    2008-01-01

    This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.

  20. Continuously varying skin potentials elicited by sinusoidally varying electric shock potentials

    NASA Technical Reports Server (NTRS)

    Senders, J. W.; Senders, V. L.; Tursky, B.

    1973-01-01

    An investigation was carried out to determine whether a form of quasi-linear systems analysis can be applied to electrodormal responses to yield new insights into the nature of the response mechanisms and their interrelationships. The response investigated was the electrodermal response (galvanic skin potential, GSP) as elicited by an electric shock stimulus applied to the skin. The response subsequent to this stimulation was examined and its characteristics measured. A series of experimental runs on three Ss was accomplished, using sinusoidal modulation envelopes of frequencies. Results showed that it was possible to drive the GSP and to achieve relatively high coherence between the driving frequency and the response itself. The analysis was limited to Fourier analysis of the response in order to determine the relative energies at the driving frequency and at successive harmonics of that driving frequency, and correlational analysis in order to determine the degree of linear relationship between the driving frequency and the driven response.

  1. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  2. [Analysis of lorentzian line shape function broadened by non-sinusoidal wavelength modulation].

    PubMed

    Sun, You-Qun; Wang, Yun-Tao; Ruan, Chi; Xu, Song-Song

    2014-03-01

    In the present work, the Fourier analysis of Lorentzian line shape broadened by non-sinusoidal wavelength modulation was investigated, in which the third order and above harmonic items were ignored. The analytical expression of n-order Fourier coefficient was brought out, where a variable K named harmonic distortion to characterize the ratio of the second harmonic to the first harmonic was introduced. Numerical simulations based on the cases of K > 0.01 and K < 0.01 were carried out, and the result shows: non-sinusoidal modulation has little effect compared with the sinusoidal modulation when K value is less than 0.01, however, if K value is about 0.1 or higher, the center of the Fourier amplitude curve would deviate from the origin of coordinates. With the increase in the harmonic distortion, the deviation of the curve grows, and high order harmonics are more sensitive to the non-sinusoidal modulation compared with the low order harmonics. In addition, when harmonic distortion cannot be ignored, for example K > 0.01, the effect of different depths of modulation on the odd and even order harmonic amplitude curve is significant. And the numerical simulation shows there exists an optimum value of modulation depth which could minimize the impact of the harmonic distortion, and both large K value and small K value would cause a great error. The conclusion of this work could be applied in error analysis of wavelength modulation spectroscopy system And the results are helpful to deepening understanding of WMS and would be the important reference for some kind of frequency stabilization technology in laser instrument.

  3. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  4. A technique for simultaneously improving the product of cutoff frequency-breakdown voltage and thermal stability of SOI SiGe HBT

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhang, Wan-Rong; Jin, Dong-Yue; Zhao, Yan-Xiao; Wang, Xiao

    2016-12-01

    The product of the cutoff frequency and breakdown voltage (fT×BVCEO) is an important figure of merit (FOM) to characterize overall performance of heterojunction bipolar transistor (HBT). In this paper, an approach to introducing a thin N+-buried layer into N collector region in silicon-on-insulator (SOI) SiGe HBT to simultaneously improve the FOM of fT×BVCEO and thermal stability is presented by using two-dimensional (2D) numerical simulation through SILVACO device simulator. Firstly, in order to show some disadvantages of the introduction of SOI structure, the effects of SOI insulation layer thickness (TBOX) on fT, BVCEO, and the FOM of fT×BVCEO are presented. The introduction of SOI structure remarkably reduces the electron concentration in collector region near SOI substrate insulation layer, obviously reduces fT, slightly increases BVCEO to some extent, but ultimately degrades the FOM of fT×BVCEO. Although the fT, BVCEO, and the FOM of fT×BVCEO can be improved by increasing SOI insulator SiO2 layer thickness TBOX in SOI structure, the device temperature and collector current are increased due to lower thermal conductivity of SiO2 layer, as a result, the self-heating effect of the device is enhanced, and the thermal stability of the device is degraded. Secondly, in order to alleviate the foregoing problem of low electron concentration in collector region near SOI insulation layer and the thermal stability resulting from thick TBOX, a thin N+-buried layer is introduced into collector region to not only improve the FOM of fT×BVCEO, but also weaken the self-heating effect of the device, thus improving the thermal stability of the device. Furthermore, the effect of the location of the thin N+-buried layer in collector region is investigated in detail. The result show that the FOM of fT×BVCEO is improved and the device temperature decreases as the N+-buried layer shifts toward SOI substrate insulation layer. The approach to introducing a thin N+-buried layer

  5. Sinusoidal stimulation trains suppress epileptiform spikes induced by 4-AP in the rat hippocampal CA1 region in-vivo.

    PubMed

    Zheshan Guo; Zhouyan Feng; Ying Yu; Wenjie Zhou; Zhaoxiang Wang; Xuefeng Wei

    2016-08-01

    Deep brain stimulation (DBS) shows promises in the treatment of refractory epilepsy. Due to the complex causes of epilepsy, the mechanisms of DBS are still unclear. Depolarization block caused by the persistent excitation of neurons may be one of the possible mechanisms. To test the hypothesis, 4-aminopyridine (4-AP) was injected in rat hippocampal CA1 region in-vivo to induce epileptiform activity. Sinusoidal stimulation trains were applied to the afferent pathway (Schaffer collaterals) of CA1 region to suppress the epileptiform spikes. Results show that 2-min long trains of sinusoidal stimulation (50 Hz) decreased the firing rate of population spikes (PS) and decreased the PS amplitudes significantly. In addition, small positive sharp waves replaced PS activity during the periods of stimulation. A lower frequency sinusoidal stimulation (10 Hz) failed to decrease the firing rate of PS, but decreased the PS amplitudes significantly. These results suggest that stimulation trains of sinusoidal waves could suppress epileptiform spikes. Presumably, the stimulation with a high enough frequency might excite the downstream neurons persistently and elevate the membrane potentials continuously, thereby cause depolarization blocks in the neurons. The findings of the study provide insights in revealing the mechanisms of DBS, and have important implications to the clinical treatment of epilepsy.

  6. Speech Transformations Based on a Sinusoidal Representation

    DTIC Science & Technology

    1986-05-16

    synthesis system originally was designed for single-speaker signals, it is equally capable of recovering and modifying nonspeech signals such as music...if w* is the ftth frequency estimate on the kth analysis frame, i.e., u\\ = wj(kR) (2.7) where " ~" denotes estimate, then the corresponding... designed for single-speaker signals, the reconstruction does not break down for multiple speakers nor for nonspeech sounds such as music and marine

  7. A surface profile reconstruction system using sinusoidal phase-modulating interferometry and fiber-optic fringe projection

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fan, Feng; Xiao, Fu

    2014-06-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer for surface profile reconstruction is presented. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer. The surface profile is constructed basing on fringe projection. Fringe patterns are vulnerable to external disturbances such as temperature fluctuation and mechanical vibration, which cause phase drift and decrease measuring accuracy. We build a closed-loop feedback phase compensation system, the bias value of external disturbances superimposed on fringe patterns can be reduced to about 50 mrad, and the phase stability for interference fringes is less than 5.76 mrad. By measuring the surface profile of a paper plate for two times, the repeatability is estimated to be about 11 nm, and is equivalent to be about λ/69. For a plane with 100 × 100 points, a single measurement takes less than 140 ms, and the feasibility for real-time profile measurement with high accuracy has been verified.

  8. Magnetic properties of 6.5% silicon steel sheets under PWM voltage excitation

    SciTech Connect

    Namikawa, M.; Ninomiya, H.; Tanaka, Y.; Takada, Y.

    1998-07-01

    Power losses of 6.5% silicon steel sheets under PWM (Pulse Width Modulation) voltage excitation were examined. The PWM wave was composed of a 50Hz fundamental wave, a 16kHz carrier frequency wave and some other higher harmonics. It was found that the power losses of the inductor cores were much larger than those of the transformer cores when the cores were driven by a PWM inverter, although such a great difference was not observed under sinusoidal voltage excitation. Power losses of the inductor made of 6.5% silicon steel sheets and conventional grain oriented 3% silicon steel sheets under PWM voltage excitation were also investigated. It was found that the power losses of the inductor made of 6.5% silicon steel sheets were reduced by more than 30% compared to those of the inductor made of grain oriented 3% silicon steel sheets. This was because the grain oriented 3% silicon steel sheets had higher losses at higher harmonics found in the PWM excitation. Therefore, it was clearly shown that 6.5% silicon steel sheet was a suitable material for the inductor under PWM voltage excitation.

  9. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Tinghai; Lu, Xiaohui; Zhao, Hongwei; Chen, Dong; He, Pu; Wang, Liang; Zhao, Xilu

    2016-08-01

    The smooth impact drive mechanism (SIDM) actuator is traditionally excited by a saw-tooth wave, but it requires large input voltages for high-speed operation and load capacity. To improve the output characteristic of the SIDM operating at low input voltage, a novel driving method based on ultrasonic friction reduction technology is proposed in this paper. A micro-amplitude sinusoidal signal with high frequency is applied to the rapid deformation stage of the traditional saw-tooth wave. The proposed driving method can be realized by a composite waveform that includes a driving wave (D-wave) and a friction regulation wave (FR-wave). The driving principle enables lower input voltage to be used in normal operation, and the principle of the proposed driving method is analyzed. A prototype of the SIDM is fabricated, and its experimental system is established. The tested results indicate that the actuator has suitable velocity and load characteristics while operating at lower input voltage, and the load capacity of the actuator is 2.4 times that of an actuator excited by a traditional saw-tooth driving wave.

  10. Phase and amplitude retrieval of objects embedded in a sinusoidal background from its diffraction pattern

    SciTech Connect

    Wu, Chu; Ng, Tuck Wah; Neild, Adrian

    2010-04-01

    Efforts of phase and amplitude retrieval from diffraction patterns have almost exclusively been applied for nonperiodic objects. We investigated the quality of retrieval of nonperiodic objects embedded in a sinusoidal background, using the approach of iterative hybrid input-output with oversampling. Two strategies were employed; one by filtering in the frequency domain prior to phase retrieval, and the other by filtering the phase or amplitude image after retrieval. Results obtained indicate better outcomes with the latter approach provided detector noise is not excessive.

  11. Time-dependent perturbation of a two-state quantum system by a sinusoidal field

    NASA Technical Reports Server (NTRS)

    Dion, D. R.; Hirschfelder, J. O.

    1976-01-01

    Different methods for solving the 'two-level problem' are discussed, namely, the problem of what happens to a material system having only two nondegenerate energy levels when it is perturbed by an electromagnetic field that varies with time in a monochromatic sinusoidal fashion. The various methods discussed include: (1) the Sen Gupta technique using nondegenerate Rayleigh-Schroedinger perturbation theory, (2) the Salwen-Winter-Shirley partitioning perturbation technique, (3) the Shirley and series degenerate Rayleigh-Schroedinger expansion, (4) the degenerate Rayleigh-Schroedinger technique for considering high frequency fields, and (5) the singular perturbation expansion technique.

  12. Constant RMS versus constant peak modulation for the perceptual equivalence of sinusoidal amplitude modulated signals.

    PubMed

    Regele, Oliver B; Koivuniemi, Andrew S; Otto, Kevin J

    2013-01-01

    Neuroprosthetics using intracortical microstimulation can potentially alleviate sensory deprivation due to injury or disease. However the information bandwidth of a single microstimulation channel remains largely unanswered. This paper presents three experiments that examine the importance of Peak Power/Charge and RMS Power/Charge for detection of acoustic and electrical Sinusoidal Amplitude Modulated stimuli by the auditory system. While the peripheral auditory system is sensitive to RMS power cues for the detection of acoustic stimuli, here we provide results that suggest that the auditory cortex is sensitive to peak charge cues for electrical stimuli. Varying the modulation frequency and depth do not change this effect for detection of modulated electrical stimuli.

  13. How to Face Chronic Liver Disease: The Sinusoidal Perspective

    PubMed Central

    Fernández-Iglesias, Anabel; Gracia-Sancho, Jordi

    2017-01-01

    Liver microcirculation plays an essential role in the progression and aggravation of chronic liver disease. Hepatic sinusoid environment, mainly composed by hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, intimately cooperate to maintain global liver function and specific phenotype of each cell type. However, continuous liver injury significantly deregulates liver cells protective phenotype, leading to parenchymal and non-parenchymal dysfunction. Recent data have enlightened the molecular processes that mediate hepatic microcirculatory injury, and consequently, opened the possibility to develop new therapeutic strategies to ameliorate liver circulation and viability. The present review summarizes the main cellular components of the hepatic sinusoid, to afterward focus on non-parenchymal cells phenotype deregulation due to chronic injury, in the specific clinical context of liver cirrhosis and derived portal hypertension. Finally, we herein detail new therapies developed at the bench-side with high potential to be translated to the bedside. PMID:28239607

  14. Bottomside sinusoidal irregularities in the equatorial F region

    NASA Technical Reports Server (NTRS)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  15. Calibrating angular transducer using sinusoidal and shock excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Peng, Jun

    2012-06-01

    Primary angular vibration calibration system and primary angular shock calibration system are developed by Changcheng Institute of Metrology and Measurement (CIMM). The both systems using laser interferometer and grating measure rotational angle, angular velocity and angular acceleration, which are traceable to the International System of Units (SI). This paper will study the dynamic performance of an angular accelerometer and a gyro under the excitation of sinusoidal and shock using the calibration systems. It shows that the angular transducers should be calibrated using both sinusoidal and shock excitation to obtain more detailed dynamic information.

  16. Estimation of amplitude and standard deviation of noisy sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-01-01

    A simple method to estimate the amplitude and standard deviation of sinusoidal signals corrupted with additive Gaussian noise is proposed. For this, a two-parameter model is developed by sorting the samples of the signal. This reduced parametric model allows robust parameter estimation, even if the phase function of the sinusoid is nonlinear, discontinuous, and unknown. The functionality and performance of the proposed method are analyzed by several computer simulations; the used GNU Octave program is provided. The proposed method can be useful for unbiased envelope estimation in fringe pattern normalization among other potential applications.

  17. Analytical formula for three points sinusoidal signals amplitude estimation errors

    NASA Astrophysics Data System (ADS)

    Nicolae Vizireanu, Dragos; Viorica Halunga, Simona

    2012-01-01

    In this note, we show that the amplitude estimation of sinusoidal signals proposed in Wu and Hong [Wu, S.T., and Hong, J.L. (2010), 'Five-point Amplitude Estimation of Sinusoidal Signals: With Application to LVDT Signal Conditioning', IEEE Transactions on Instrumentation and Measurement, 59, 623-630] is a particular case of Vizireanu and Halunga [Vizireanu, D.N, and Halunga, S.V. (2011), 'Single Sine Wave Parameters Estimation Method Based on Four Equally Spaced Samples', International Journal of Electronics, 98(7), pp. 941-948]. An analytical formula for amplitude estimation errors as effects of sampling period deviation is obtained.

  18. High-frequency AC/DC converter with unity power factor and minimum harmonic distortion

    SciTech Connect

    Wernekinch, E.R.

    1987-01-01

    The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimental results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.

  19. 2011 In-Water Testing of Aquatic Nuisance Species Dispersal Barriers IIA and IIB with Increased Voltage and Frequency Operating Parameters

    DTIC Science & Technology

    2011-08-01

    moored barge during the tow as- sembly scenarios shown in Figure 5. Hull voltage potentials were meas- ured between a copper/copper sulfate reference...Results and observations Results of the corrosion potential tests are listed in Chapter 4, Table 12.Anticipated corrosion activity for ferrous

  20. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.

    PubMed

    Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu

    2014-06-01

    A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.

  1. Improvement of a large-amplitude sinusoidal pressure generator for dynamic calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Robinson, R. E.

    1972-01-01

    Results of research on the improvement of a sinusoidal pressure generator are presented. The generator is an inlet-area-modulated, gas-flow-through device (siren type) which was developed to dynamically calibrate pressure transducers and pressure probes. Tests were performed over a frequency range of 100 Hz to 20 kHz at average chamber pressures (bias pressure) between 30 and 50 psia (21 and 35 N/sq cm abs) and between 150 and 300 psia (104 and 207 N/sq cm abs). Significant improvements in oscillation pressure waveform were obtained but with reduction in available generator oscillation pressure amplitude range. Oscillation pressure amplitude, waveform, and waveform spectral content are given as functions of frequency for the two bias pressure conditions. The generator and instrumentation for frequency, amplitude, and spectrum measurements are described.

  2. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.

    PubMed

    Yoshida, Motoharu; Giocomo, Lisa M; Boardman, Ian; Hasselmo, Michael E

    2011-08-31

    Neurons from layer II of the medial entorhinal cortex show subthreshold membrane potential oscillations (SMPOs) which could contribute to theta-rhythm generation in the entorhinal cortex and to generation of grid cell firing patterns. However, it is unclear whether single neurons have a fixed unique oscillation frequency or whether their frequency varies depending on the mean membrane potential in a cell. We therefore examined the frequency of SMPOs at different membrane potentials in layer II stellate-like cells of the rat medial entorhinal cortex in vitro. Using whole-cell patch recordings, we found that the fluctuations in membrane potential show a broad band of low power frequencies near resting potential that transition to more narrowband oscillation frequencies with depolarization. The transition from broadband to narrowband frequencies depends on the location of the neuron along the dorsoventral axis in the entorhinal cortex, with dorsal neurons transitioning to higher-frequency oscillations relative to ventral neurons transitioning to lower-frequency oscillations. Once SMPOs showed a narrowband frequency, systematic frequency changes were not observed with further depolarization. Using a Hodgkin-Huxley-style model of membrane currents, we show that differences in the influence of depolarization on the frequency of SMPOs at different dorsal to ventral positions could arise from differences in the properties of the h current. The properties of frequency changes in this data are important for evaluating models of the generation of grid cell firing fields with different spacings along the dorsal-to-ventral axis of medial entorhinal cortex.

  3. Sinusoidal galvanic vestibular stimulation (sGVS) induces a vasovagal response in the rat

    PubMed Central

    Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Xiang, Yongqing; Raphan, Theodore; Holstein, Gay R.; Yakushin, Sergei B.

    2011-01-01

    Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008–0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15–20 mmHg) and HR (≈3 beat*s−1), followed by a slow recovery over 1–6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s−1/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025–0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s−1/g (HR) for pitches of 20–90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans. PMID:21374078

  4. Frequency modulation television analysis: Threshold impulse analysis. [with computer program

    NASA Technical Reports Server (NTRS)

    Hodge, W. H.

    1973-01-01

    A computer program is developed to calculate the FM threshold impulse rates as a function of the carrier-to-noise ratio for a specified FM system. The system parameters and a vector of 1024 integers, representing the probability density of the modulating voltage, are required as input parameters. The computer program is utilized to calculate threshold impulse rates for twenty-four sets of measured probability data supplied by NASA and for sinusoidal and Gaussian modulating waveforms. As a result of the analysis several conclusions are drawn: (1) The use of preemphasis in an FM television system improves the threshold by reducing the impulse rate. (2) Sinusoidal modulation produces a total impulse rate which is a practical upper bound for the impulse rates of TV signals providing the same peak deviations. (3) As the moment of the FM spectrum about the center frequency of the predetection filter increases, the impulse rate tends to increase. (4) A spectrum having an expected frequency above (below) the center frequency of the predetection filter produces a higher negative (positive) than positive (negative) impulse rate.

  5. Detection of multiple sinusoids using a parallel ale

    SciTech Connect

    David, R.A.

    1984-01-01

    This paper introduces an Adaptive Line Enhancer (ALE) whose parallel structure enables the detection and enhancement of multiple sinusoids. A function describing the performance surface is derived for the case where several line signals are buried in white noise. A steepest descent adaptive algorithm is derived, and simulations are used to demonstrate its performance.

  6. Using Antenna Arrays to Motivate the Study of Sinusoids

    ERIC Educational Resources Information Center

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  7. Sound waves in two-dimensional ducts with sinusoidal walls

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  8. Deep-etched sinusoidal polarizing beam splitter grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  9. Transient voltage oscillations in coils

    SciTech Connect

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

  10. Response of autaptic Hodgkin-Huxley neuron with noise to subthreshold sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Wang, Hengtong; Chen, Yong

    2016-11-01

    In this work, we investigated the response of a stochastic Hodgkin-Huxley (HH) neuron with an autapse to subthreshold sinusoidal signals. It is found that the autapse not only adjusts the stochastic responses, but also improves the detection of subthreshold signals. In the case of weak noise, the autapse facilitates the response of neuron to the subthreshold sinusoidal signals with a small parameter region in tdelay- ω space. The increased noise intensity enlarges this parameter region and increases the corresponding response frequency in such range. As the autaptic intensity increases, however, this parameter region shrunks. We also observed that there is an optimal range of the delay time of autapse, within which the stochastic HH neuron fires action potentials with high frequency. The corresponding response spike train for the optimal delay time is nearly a regular sequence with the interspike intervals approximated to the delay time. The current results reveal a novel resonance phenomenon facilitated by autapse, named autaptic delay-induced coherence resonance.

  11. Sinusoidal phase-modulating self-mixing interferometer with nanometer resolution and improved measurement velocity range.

    PubMed

    Xia, Wei; Liu, Qiang; Hao, Hui; Guo, Dongmei; Wang, Ming; Chen, Xuzong

    2015-09-10

    A new signal-processing method based on an electronic frequency down-conversion technique has been introduced into a sinusoidal phase-modulating, self-mixing interferometer. The developed interferometer employs an electro-optical crystal placed in the external cavity of a He-Ne laser to generate the sinusoidal phase modulation with high modulation rate and ultralow insertion loss. Phase quadrature signals which have been amplitude-modulated by the sine and cosine functions, respectively, of the measured displacement can be extracted from the high-density optical fringes through the use of dual-channel multiplier/filter circuits. Therefore, the displacement of the external target can be retrieved from the phase quadrature signals with nanometer resolution and high computational efficiency. Moreover, a much-improved measurement speed from 2.5 to 22  mm/s has been realized owing to the simplified signal-processing method. The performance of the proposed interferometer has been experimentally verified by comparison to an Agilent 5529A dual-frequency laser interferometer. The measurement results from the two instruments agree well, and we therefore expect that our new technique offers a powerful instrument for high-speed metrology sciences.

  12. A practical implementation of multi-frequency widefield frequency-domain FLIM

    PubMed Central

    Chen, Hongtao

    2013-01-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945

  13. Attitude control and sloshing suppression for liquid-filled spacecraft in the presence of sinusoidal disturbance

    NASA Astrophysics Data System (ADS)

    Zhang, Honghua; Wang, Zeguo

    2016-11-01

    The attitude regulation for a liquid-filled spacecraft in the presence of low frequency sinusoidal disturbance is considered in this paper. The liquid-filled spacecraft is modelled as a rigid body attached with a simple pendulum. A novel control scheme is proposed, which is composed of Active Disturbance Rejection Control (ADRC), Positive Position Feedback (PPF), Extended State Observer (ESO) and Singular Spectrum Analysis (SSA). The unknown sloshing mode could be estimated from the combined ESO and SSA, and accordingly ADRC and PPF controller is designed for the stabilization of the spacecraft. Particularly, the parameters of the disturbance are not required as long as its frequency is lower than the sloshing one. The proposed approach could provide stabilization for the spacecraft, rejection for the disturbance, and active damping for the sloshing. Its effectiveness is validated by numerical simulations.

  14. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in

  15. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  16. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Yu; Zhang, Lizhe

    2010-05-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  17. Focal nodular hyperplasia with major sinusoidal dilatation: a misleading entity

    PubMed Central

    Laumonier, Hervé; Frulio, Nora; Laurent, Christophe; Balabaud, Charles; Zucman-Rossi, Jessica; Bioulac-Sage, Paulette

    2010-01-01

    Focal nodular hyperplasia (FNH) is a benign liver lesion thought to be a non-specific response to locally increased blood flow. Although the diagnosis of FNH and hepatocellular adenoma (HCA) has made great progress over the last few years using modern imaging techniques, there are still in daily practice some difficulties concerning some atypical nodules. Here, the authors report the case of a 47-year-old woman with a single liver lesion thought to be, by imaging, an inflammatory HCA with major sinusoidal congestion. This nodule was revealed to be, at the microscopical level and after specific immunostaining and molecular analysis, an FNH with sinusoidal dilatation (so-called telangiectatic focal nodular hyperplasia). PMID:22798311

  18. Normal seasonal variations for atmospheric radon concentration: a sinusoidal model.

    PubMed

    Hayashi, Koseki; Yasuoka, Yumi; Nagahama, Hiroyuki; Muto, Jun; Ishikawa, Tetsuo; Omori, Yasutaka; Suzuki, Toshiyuki; Homma, Yoshimi; Mukai, Takahiro

    2015-01-01

    Anomalous radon readings in air have been reported before an earthquake activity. However, careful measurements of atmospheric radon concentrations during a normal period are required to identify anomalous variations in a precursor period. In this study, we obtained radon concentration data for 5 years (2003-2007) that can be considered a normal period and compared it with data from the precursory period of 2008 until March 2011, when the 2011 Tohoku-Oki Earthquake occurred. Then, we established a model for seasonal variation by fitting a sinusoidal model to the radon concentration data during the normal period, considering that the seasonal variation was affected by atmospheric turbulence. By determining the amplitude in the sinusoidal model, the normal variation of the radon concentration can be estimated. Thus, the results of this method can be applied to identify anomalous radon variations before an earthquake.

  19. Sinusoidal input describing function for hysteresis followed by elementary backlash

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.

    1976-01-01

    The author proposes a new sinusoidal input describing function which accounts for the serial combination of hysteresis followed by elementary backlash in a single nonlinear element. The output of the hysteresis element drives the elementary backlash element. Various analytical forms of the describing function are given, depending on the a/A ratio, where a is the half width of the hysteresis band or backlash gap, and A is the amplitude of the assumed input sinusoid, and on the value of the parameter representing the fraction of a attributed to the backlash characteristic. The negative inverse describing function is plotted on a gain-phase plot, and it is seen that a relatively small amount of backlash leads to domination of the backlash character in the describing function. The extent of the region of the gain-phase plane covered by the describing function is such as to guarantee some form of limit cycle behavior in most closed-loop systems.

  20. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    SciTech Connect

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-05-28

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  1. Electric Stimulation with Sinusoids and White Noise for Neural Prostheses

    PubMed Central

    Freeman, Daniel K.; Rizzo, Joseph F.; Fried, Shelley I.

    2010-01-01

    We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell's spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with a peak response that occurs 25 ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS. PMID:20582268

  2. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1975-01-01

    The mutual impedance expressions for parallel dipoles in terms of sine-integrals and cosine-integrals have been published by King (1957). The investigation reported provides analogous expressions for nonparallel dipoles. The expressions presented are most useful when the monopoles are close together. The theory of moment methods shows an approach for employing the mutual impedance of filamentary sinusoidal dipoles to calculate the impedance and scattering properties of straight and bent wires with small but finite diameter.

  3. Evolution of statistical properties for a nonlinearly propagating sinusoid.

    PubMed

    Shepherd, Micah R; Gee, Kent L; Hanford, Amanda D

    2011-07-01

    The nonlinear propagation of a pure sinusoid is considered using time domain statistics. The probability density function, standard deviation, skewness, kurtosis, and crest factor are computed for both the amplitude and amplitude time derivatives as a function of distance. The amplitude statistics vary only in the postshock realm, while the amplitude derivative statistics vary rapidly in the preshock realm. The statistical analysis also suggests that the sawtooth onset distance can be considered to be earlier than previously realized.

  4. The sinusoidal probe: a new approach to improve electrode longevity

    PubMed Central

    Sohal, Harbaljit S.; Jackson, Andrew; Jackson, Richard; Clowry, Gavin J.; Vassilevski, Konstantin; O’Neill, Anthony; Baker, Stuart N.

    2014-01-01

    Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive brain–machine interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We have designed a sinusoidal probe in order to reduce movement of the recording tip relative to the surrounding neural tissue. The probe was microfabricated from flexible materials and incorporated a sinusoidal shaft to minimize tethering forces and a 3D spheroid tip to anchor the recording site within the brain. Compared to standard microwire electrodes, the signal-to-noise ratio and local field potential power of sinusoidal probe recordings from rabbits was more stable across recording periods up to 678 days. Histological quantification of microglia and astrocytes showed reduced neuronal tissue damage especially for the tip region between 6 and 24 months post-implantation. We suggest that the micromotion-reducing measures incorporated into our design, at least partially, decreased the magnitude of gliosis, resulting in enhanced longevity of recording. PMID:24808859

  5. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy

    PubMed Central

    Sackey-Aboagye, Bridget; Olsen, Abby L.; Mukherjee, Sarmistha M.; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E.; Lee, Gi Yun; Naga, Hani

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN. PMID:27741254

  6. Study of the generator/motor operation of induction machines in a high frequency link space power system

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Sood, Pradeep K.

    1987-01-01

    Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.

  7. Estimating Transmissivity from the Water Level Fluctuations of a Sinusoidally Forced Well

    USGS Publications Warehouse

    Mehnert, E.; Valocchi, A.J.; Heidari, M.; Kapoor, S.G.; Kumar, P.

    1999-01-01

    The water levels in wells are known to fluctuate in response to earth tides and changes in atmospheric pressure. These water level fluctuations can be analyzed to estimate transmissivity (T). A new method to estimate transmissivity, which assumes that the atmospheric pressure varies in a sinusoidal fashion, is presented. Data analysis for this simplified method involves using a set of type curves and estimating the ratio of the amplitudes of the well response over the atmospheric pressure. Type curves for this new method were generated based on a model for ground water flow between the well and aquifer developed by Cooper et al. (1965). Data analysis with this method confirmed these published results: (1) the amplitude ratio is a function of transmissivity, the well radius, and the frequency of the sinusoidal oscillation; and (2) the amplitude ratio is a weak function of storativity. Compared to other methods, the developed method involves simpler, more intuitive data analysis and allows shorter data sets to be analyzed. The effect of noise on estimating the amplitude ratio was evaluated and found to be more significant at lower T. For aquifers with low T, noise was shown to mask the water level fluctuations induced by atmospheric pressure changes. In addition, reducing the length of the data series did not affect the estimate of T, but the variance of the estimate was higher for the shorter series of noisy data.

  8. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qing

    2017-03-01

    In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.

  9. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields.

    PubMed

    Joosten, S; Pammler, K; Silny, J

    2009-02-07

    The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.

  10. Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Lo Bue, M.; Mazaleyrat, F.

    2009-02-01

    Classically, low frequency losses in soft magnetic materials and ferrites in particular are measured by flux metric method under sinusoidal waveform excitation voltage. However, in typical application of modern power electronics, the frequency currently exceeds 100 kHz. This feature is at the origin of a difficulty: the phase shift between current and voltage can be disturbed by current probe delay. Thus, the results can be affected by large errors. As a consequence, it becomes more and more important to develop alternative methods to measure losses in magnetic materials. It is proposed to use calorimetric method which is by principle free of the above mentioned problems. The experimental device is described in details and the results are reported for experiments conducted on a commercial Mn-Zn ferrite under sinusoidal waveform regime for frequencies varying from 10 to 200 kHz. Comparisons with flux metric measurement show that significant differences appear typically for Bf products above 5000 V/m2 (50 kHz×100 mT).

  11. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  12. Construction of a low-frequency high-power piezoelectric transformer with a specified step-up voltage transformation ratio using two identical bolt-clamped Langevin-type transducers

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Konno, Takuma; Kosugi, Satoshi

    2015-06-01

    We propose a low-frequency piezoelectric transformer comprising two identical bolt-clamped Langevin-type transducers (BLTs) and a stepped horn with a half-wavelength straight extension. The transformer can realize a specified step-up voltage transformation ratio as determined by the cross-sectional area ratio of the horn whose both ends the two BLTs are connected to, and the driving frequency at which the specified transformation ratio is realized can be set near its mechanical resonance. Thus, it can be mechanically held firmly at its vibratory node without affecting the mechanical vibration mode or resulting in a loss of energy. After relevant finite-element simulations, experiments were conducted for a trial-fabricated transformer of the above type. As a result, the experimental results predicted by the simulations were obtained in step-up operation. The influence of the load resistance on the deviation of the driving frequency from its total mechanical resonance of 53.1 kHz was found to be less than 130 Hz (0.24% of the resonance frequency) only. High-power performance of the piezoelectric transformer was also demonstrated.

  13. Optimization of the sinusoidal phase modulation technique in resonant fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Wang, Linglan; Li, Hanzhao; Zhang, Jianjie; Ma, Huilian; Jin, Zhonghe

    2017-03-01

    The sinusoidal wave phase modulation and demodulation have been widely used in the signal processing system of the resonant fiber optic gyro (RFOG). An appropriate selection of the modulation frequency is of great importance, for the frequency value directly affects the slope of the demodulation curve at the resonance point which carries the gyro output information. A large demodulation slope is pursued in a high-performance RFOG. In this paper, an analytical expression of the demodulation slope is for the first time deduced in both transmission-type and reflection-type fiber ring resonators without any approximation. The relationship between the slope value and the modulation frequency at the resonance point is accurately calculated. The calculated best modulation frequency maximizing the demodulation slope at the resonance point is different from previous widely used optimal frequency given by the Lorentzian approximation method. More importantly, both theoretical and experimental results indicate that the achieved maximal demodulation slope from the proposed analytical expression method is double of that obtaining from the Lorentzian approximation method.

  14. High-Frequency Resonance in the Gerbil Medial Superior Olive

    PubMed Central

    Mikiel-Hunter, Jason; Kotak, Vibhakar; Rinzel, John

    2016-01-01

    A high-frequency, subthreshold resonance in the guinea pig medial superior olive (MSO) was recently linked to the efficient extraction of spatial cues from the fine structure of acoustic stimuli. We report here that MSO neurons in gerbil also have resonant properties and, based on our whole-cell recordings and computational modeling, that a low-voltage-gated potassium current, IKLT, underlies the resonance. We show that resonance was lost following dynamic clamp replacement of IKLT with a leak conductance and in the model when voltage-gating of IKLT was suppressed. Resonance was characterized using small amplitude sinusoidal stimuli to generate impedance curves as typically done for linear systems analysis. Extending our study into the nonlinear, voltage-dependent regime, we increased stimulus amplitude and found, experimentally and in simulations, that the subthreshold resonant frequency (242Hz for weak stimuli) increased continuously to the resonant frequency for spiking (285Hz). The spike resonance of these phasic-firing (type III excitable) MSO neurons and of the model is of particular interest also because previous studies of resonance typically involved neurons/models (type II excitable, such as the standard Hodgkin-Huxley model) that can fire tonically for steady inputs. To probe more directly how these resonances relate to MSO neurons as slope-detectors, we presented periodic trains of brief, fast-rising excitatory post-synaptic potentials (EPSCs) to the model. While weak subthreshold EPSC trains were essentially low-pass filtered, resonance emerged as EPSC amplitude increased. Interestingly, for spike-evoking EPSC trains, the threshold amplitude at spike resonant frequency (317Hz) was lower than the single ESPC threshold. Our finding of a frequency-dependent threshold for repetitive brief EPSC stimuli and preferred frequency for spiking calls for further consideration of both subthreshold and suprathreshold resonance to fast and precise temporal processing

  15. Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study.

    PubMed

    Dougalis, Antonios G; Matthews, Gillian A C; Liss, Birgit; Ungless, Mark A

    2017-04-03

    Dopamine (DA) neurons of the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus (DRN) fire spontaneous action potentials (APs) at slow, regular patterns in vitro but a detailed account of their intrinsic membrane properties responsible for spontaneous firing is currently lacking. To resolve this, we performed a voltage-clamp electrophysiological study in brain slices to describe their major ionic currents and then constructed a computer model and used simulations to understand the mechanisms behind autorhythmicity in silico. We found that vlPAG/DRN DA neurons exhibit a number of voltage-dependent currents activating in the subthreshold range including, a hyperpolarization-activated cation current (IH), a transient, A-type, potassium current (IA), a background, 'persistent' (INaP) sodium current and a transient, low voltage activated (LVA) calcium current (ICaLVA). Brain slice pharmacology, in good agreement with computer simulations, showed that spontaneous firing occurred independently of IH, IA or calcium currents. In contrast, when blocking sodium currents, spontaneous firing ceased and a stable, non-oscillating membrane potential below AP threshold was attained. Using the DA neuron model we further show that calcium currents exhibit little activation (compared to sodium) during the interspike interval (ISI) repolarization while, any individual potassium current alone, whose blockade positively modulated AP firing frequency, is not required for spontaneous firing. Instead, blockade of a number of potassium currents simultaneously is necessary to eliminate autorhythmicity. Repolarization during ISI is mediated initially via the deactivation of the delayed rectifier potassium current, while a sodium background 'persistent' current is essentially indispensable for autorhythmicity by driving repolarization towards AP threshold.

  16. A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions.

    PubMed

    Zimmermann, D; Kiesel, M; Terpitz, U; Zhou, A; Reuss, R; Kraus, J; Schenk, W A; Bamberg, E; Sukhorukov, V L

    2008-01-01

    Interactions of structurally dissimilar anionic compounds with the plasma membrane of HEK293 cells were analyzed by patch clamp and electrorotation. The combined approach provides complementary information on the lipophilicity, preferential affinity of the anions to the inner/outer membrane leaflet, adsorption depth and transmembrane mobility. The anionic species studied here included the well-known lipophilic anions dipicrylamine (DPA(-)), tetraphenylborate (TPB(-)) and [W(2)(CO)(10)(S(2)CH)](-), the putative lipophilic anion B(CF(3))(4)(-) and three new heterocyclic W(CO)(5) derivatives. All tested anions partitioned strongly into the cell membrane, as indicated by the capacitance increase in patch-clamped cells. The capacitance increment exhibited a bell-shaped dependence on membrane voltage. The midpoint potentials of the maximum capacitance increment were negative, indicating the exclusion of lipophilic anions from the outer membrane leaflet. The adsorption depth of the large organic anions DPA(-), TPB(-) and B(CF(3))(4)(-) increased and that of W(CO)(5) derivatives decreased with increasing concentration of mobile charges. In agreement with the patch-clamp data, electrorotation of cells treated with DPA(-) and W(CO)(5) derivatives revealed a large dispersion of membrane capacitance in the kilohertz to megahertz range due to the translocation of mobile charges. In contrast, in the presence of TPB(-) and B(CF(3))(4)(-) no mobile charges could be detected by electrorotation, despite their strong membrane adsorption. Our data suggest that the presence of oxygen atoms in the outer molecular shell is an important factor for the fast translocation ability of lipophilic anions.

  17. Estimation of the sinusoidal oscillation parameters in the adaptive optics system based on the example of the photovoltaic system

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2015-05-01

    In adaptive optics systems, there is a problem of a sinusoidal oscillations rejection. This paper presents the estimation method that can be used to reject these oscillations on the example of the photovoltaic system. In such a system, photovoltaic panels generate the DC signal converted by the inverter to the AC signal with specified parameters. This paper focuses on the fast and accurate estimation of these parameters taking into account the presence of harmonics in the sinusoidal signal. The estimation method is based on using maximum decay sidelobes windows and the Fast Fourier Transform procedure. In reality, the AC signal is not a pure sinusoid and it is often distorted in a deterministic manner by harmonics, and in a random manner by white, "colored" or quantization noise. The estimation error depends on the systematic error, i.e. the error caused by the quantization noise and the error caused by harmonic components. Several parameters determine which error component is dominant in the estimation results. The value of the error caused by harmonic components depends mainly on the distance between the harmonic component and the fundamental component in a frequency domain and the THD (Total Harmonic Distortion) ratio of the signal. The level of this maximum relative error is approximately 10-3 for the tested signal with THD=50%. It is important to use a filter that reduces unwanted harmonics before the data processing. The information provided in this paper can be used to determine the approximate level of estimation error before starting the estimation process.

  18. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation

    PubMed Central

    Ilmoniemi, Risto J.; Mäki, Hanna; Saari, Jukka; Salvador, Ricardo; Miranda, Pedro C.

    2016-01-01

    Background: The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. Objective: To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. Methods: We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. Results: The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. Conclusion: The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS. PMID:27555808

  19. Sinusoidal current and stress evolutions in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  20. Microenvironmental Regulation of the Sinusoidal Endothelial Cell Phenotype In Vitro

    PubMed Central

    March, Sandra; Hui, Elliot E.; Underhill, Gregory H.; Khetani, Salman; Bhatia, Sangeeta N.

    2010-01-01

    Liver Sinusoidal Endothelial Cells (LSEC) differ, both structurally and functionally, from endothelial cells (EC) lining blood vessels of other tissues. For example, in contrast to other EC, LSEC posses fenestrations, have low detectable levels of PECAM-1 expression, and in rat tissue, they distinctively express a cell surface marker recognized by the SE-1 antibody. These unique phenotypic characteristics seen in hepatic tissue are lost over time upon culture in vitro; therefore, this study sought to systematically examine the effects of microenvironmental stimuli, namely, extracellular matrix (ECM) and neighboring cells, on the LSEC phenotype in vitro. In probing the role of the underlying extracellular matrix, we identified collagen I and collagen III as well as mixtures of collagen I/collagen IV/fibronectin as having a positive effect on LSEC survival. Furthermore, using a stable hepatocellular model (hepatocyte-fibroblast) we were able to prolong the expression of both SE-1 and phenotypic functions of LSEC such as Factor VIII activity in co-cultured LSECs through the production of short-range paracrine signals. In the course of these experiments, we identified the antigen recognized by SE-1 as CD32b. Collectively, this study has identified several microenvironmental regulators of liver sinusoidal endothelial cells that prolong their phenotypic functions for up to 2 weeks in culture, enabling the development of better in vitro models of liver physiology and disease. PMID:19585615

  1. Does pressure cause liver cirrhosis? The sinusoidal pressure hypothesis

    PubMed Central

    Mueller, Sebastian

    2016-01-01

    Independent of their etiology, all chronic liver diseases ultimately lead to liver cirrhosis, which is a major health problem worldwide. The underlying molecular mechanisms are still poorly understood and no efficient treatment strategies are available. This paper introduces the sinusoidal pressure hypothesis (SPH), which identifies an elevated sinusoidal pressure (SP) as cause of fibrosis. SPH has been mainly derived from recent studies on liver stiffness. So far, pressure changes have been exclusively seen as a consequence of cirrhosis. According to the SPH, however, an elevated SP is the major upstream event that initiates fibrosis via biomechanic signaling by stretching of perisinusoidal cells such as hepatic stellate cells or fibroblasts (SPH part I: initiation). Fibrosis progression is determined by the degree and time of elevated SP. The SPH predicts that the degree of extracellular matrix eventually matches SP with critical thresholds > 12 mmHg and > 4 wk. Elevated arterial flow and final arterialization of the cirrhotic liver represents the self-perpetuating key event exposing the low-pressure-organ to pathologically high pressures (SPH part II: perpetuation). It also defines the “point of no return” where fibrosis progression becomes irreversible. The SPH is able to explain the macroscopic changes of cirrhotic livers and the uniform fibrotic response to various etiologies. It also opens up new views on the role of fat and disease mechanisms in other organs. The novel concept will hopefully stimulate the search for new treatment strategies. PMID:28082801

  2. Method and apparatus for spur-reduced digital sinusoid synthesis

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A. (Inventor); Flanagan, Michael J. (Inventor)

    1995-01-01

    A technique for reducing the spurious signal content in digital sinusoid synthesis is presented. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to that produced by a pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M + 1) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.

  3. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    PubMed Central

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Oostenveld, Robert

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (>40 Hz) occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC). However, the CFC patterns might be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 or 1.5 mg of lorazepam (LZP; GABAergic enhancer) in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM), we were able to demonstrate that posterior alpha (8–12 Hz) phase was coupled to beta-low gamma band (20–45 Hz) amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh) values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD). Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs. Furthermore, we

  4. A feedback control system for real-time formant estimation. I--Static and dynamic analysis for sinusoidal input signals.

    PubMed

    Zierhofer, C M; Hochmair, E S

    1993-09-01

    This paper presents a novel analog scheme suitable for the real-time estimation of formant frequencies. Formant tracking is based on a feedback technique which uses both the amplitude and phase characteristics of two stagger-tuned bandpass filters to give an improved dynamic behavior. The implementation of the system requires a small number of components, and is practical for low-power applications. An analysis of the static and dynamic behavior is given for sinusoidal input signals. The transient response is independent of the amplitude level of the input signal. The system is designed for second formant detection in a cochlear prosthesis system.

  5. Ultradian rhythmicity of tyrosine aminotransferase activity in Euglena gracillis: Analysis by cosine and non-sinusoidal fitting procedures

    NASA Astrophysics Data System (ADS)

    Neuhaus-Steinmetz, Ulrich; Balzer, Ivonne; Hardeland, Rüdiger

    1990-03-01

    Although the geophysical periodicity of the earth's rotation corresponds to a biological cyclicity of ca. 24 h, cellular temporal organization comprises a multifrequency time structure, in which ultradian rhythms may be regarded as subelements of the circadian oscillator. In Euglena gracilis kept under conditons in which various cellular functions oscillate with a circadian period, tyrosine aminotransferase activity exhibited predominantly an ultradian cycle, whereas its circadian frequency was only weakly expressed. Ultradian period lengths were in the range of 4 5 h, as demonstrated by least squares fitting of cosines and of a non-sinusoidal regression function.

  6. Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, W.F.

    1982-03-09

    Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

  7. Hepatic Sinusoidal Obstruction Syndrome Induced by Non-transplant Chemotherapy for Non-Hodgkin Lymphoma

    PubMed Central

    Sakumura, Miho; Tajiri, Kazuto; Miwa, Shigeharu; Nagata, Kohei; Kawai, Kengo; Miyazono, Takayoshi; Arita, Kotaro; Wada, Akinori; Murakami, Jun; Sugiyama, Toshiro

    2017-01-01

    Hepatic sinusoidal obstruction syndrome (SOS), a serious complication that mainly occurs after hematopoietic-stem cell transplantation (HSCT), is caused by damage to the sinusoidal endothelial cells after the obstruction of the sinusoid. Recently, hepatic SOS was reported to occur after non-HSCT chemotherapies. This report describes a patient who experienced hepatic SOS after non-HSCT chemotherapy for non-Hodgkin lymphoma. A liver biopsy showed the slight dilatation of the hepatic sinusoid, which may be indicative of hepatic SOS. Hepatic SOS should be included in the differential diagnosis of patients with severe liver injury following the administration of chemotherapy regimens that are toxic to the vascular endothelial cells. PMID:28202860

  8. Absolute phase recovery in structured light illumination systems: Sinusoidal vs. intensity discrete patterns

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos

    2016-09-01

    Structured light illumination is a well-established technology for noncontact 3D surface measurements. A common challenge in those systems is to obtain the absolute surface information using few measurement frames. This work discusses techniques based on the projection of multiple sinusoidal fringe patterns with different fringe period, as well as the projection of intensity discrete Gray Code and grey-level coded patterns. The use of sinusoidal multi-frequency techniques has been since years an on-going area of research, where various algorithms have been developed based on beats, look-up tables, or number-theoretical approaches. This work shows that a related technique, the so-called algebraic reconstruction technique that is borrowed from the area of multi-wavelength interferometry can be used for this purpose. This approach provides a robust analytical solution to the phase-unwrapping problem. However, this work argues that despite these advances, the acquisition of additional phase maps obtained with different fringe periods requires too many measurement frames, and hence is inefficient. Motivated by that, this work proposes a new grey level coding scheme that uses only few measurement frames, overcomes typical defocus errors, and has an error detecting feature. The latter feature makes the need of separate error detecting algorithms obsolete. This so-called closed-loop space filling curve can be implemented with an arbitrary number of N grey-levels enabling to code up to (2N) code-words. The performance of this so-called closed-loop space filling curve is demonstrated using experimental data.

  9. Optical bistable device with one sinusoidal amplitude grating

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Orriols, G.

    1994-07-01

    A novel type of optical bistable device (OBD) based the Abble theory is proposed, in which the modulation is realized by moving one sinusoidal amplitude grating. When the parameters of this system are chosen properly this system can be a one-channel or two-channel optical bistable device. The mathematical models which describe the optically bistability are obtained. Numerical simulations on the optical bistabilities and the stability analysis on this system for two cases are given. The two-channel OBD may work as a 1 × 2 optical switch or a stable filter for wavelength division multiplexing, and may be applied in code-division multiple access networks and optical recovery circuit.

  10. Comparison of sinusoidal perceptron with multilayer classical perceptron

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Baradaran, T.; Ashenayi, Kaveh; Vogh, James

    1991-03-01

    A new multi-threshold Perceptron capable of handling both binary and analog input is presented and discussed. The modified Perceptron replaces the sigmoid function with sinusoidal function. A computer program has been developed to simulate behavior of a network utilizing the modified Perceptron. Both XOR and Parity Check problems were solved using a single-layer network utilizing this modified Perceptron. Based on the results obtained from the simulation the modified Perceptron is capable of solving problems (such as XOR) that can not be solved using a single-layer of the classical Perceptron. Also a network utilizing this modified Perceptron requires fewer number of iterations to converge to a solution than that of a multi-layer Perceptron network using back propagation. 1.

  11. Sinusoidal Obstruction Syndrome (Hepatic Veno-Occlusive Disease)

    PubMed Central

    Fan, Cathy Q.; Crawford, James M.

    2014-01-01

    Hepatic sinusoidal obstruction syndrome (SOS) is an obliterative venulitis of the terminal hepatic venules, which in its more severe forms imparts a high risk of mortality. SOS, also known as veno-occlusive disease (VOD), occurs as a result of cytoreductive therapy prior to hematopoietic stem cell transplantation (HSCT), following oxaliplatin-containing adjuvant or neoadjuvant chemotherapy for colorectal carcinoma metastatic to the liver and treated by partial hepatectomy, in patients taking pyrrolizidine alkaloid-containing herbal remedies, and in other particular settings such as the autosomal recessive condition of veno-occlusive disease with immunodeficiency (VODI). A central pathogenic event is toxic destruction of hepatic sinusoidal endothelial cells (SEC), with sloughing and downstream occlusion of terminal hepatic venules. Contributing factors are SEC glutathione depletion, nitric oxide depletion, increased intrahepatic expression of matrix metalloproteinases and vascular endothelial growth factor (VEGF), and activation of clotting factors. The clinical presentation of SOS includes jaundice, development of right upper-quadrant pain and tender hepatomegaly, ascites, and unexplained weight gain. Owing to the potentially critical condition of these patients, transjugular biopsy may be the preferred route for liver biopsy to exclude other potential causes of liver dysfunction and to establish a diagnosis of SOS. Treatment includes rigorous fluid management so as to avoid excessive fluid overload while avoiding too rapid diuresis or pericentesis, potential use of pharmaceutics such as defibrotide, coagulolytic agents, or methylprednisolone, and liver transplantation. Proposed strategies for prevention and prophylaxis include reduced-intensity conditioning radiation for HSCT, treatment with ursodeoxycholic acid, and inclusion of bevacizumab with oxaliplatin-based chemotherapeutic regimes. While significant progress has been made in understanding the pathogenesis

  12. Nematic liquid crystals on sinusoidal channels: the zigzag instability

    NASA Astrophysics Data System (ADS)

    Silvestre, Nuno M.; Romero-Enrique, Jose M.; Telo da Gama, Margarida M.

    2017-01-01

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  13. Sinusoidal obstruction syndrome (hepatic veno-occlusive disease).

    PubMed

    Fan, Cathy Q; Crawford, James M

    2014-12-01

    Hepatic sinusoidal obstruction syndrome (SOS) is an obliterative venulitis of the terminal hepatic venules, which in its more severe forms imparts a high risk of mortality. SOS, also known as veno-occlusive disease (VOD), occurs as a result of cytoreductive therapy prior to hematopoietic stem cell transplantation (HSCT), following oxaliplatin-containing adjuvant or neoadjuvant chemotherapy for colorectal carcinoma metastatic to the liver and treated by partial hepatectomy, in patients taking pyrrolizidine alkaloid-containing herbal remedies, and in other particular settings such as the autosomal recessive condition of veno-occlusive disease with immunodeficiency (VODI). A central pathogenic event is toxic destruction of hepatic sinusoidal endothelial cells (SEC), with sloughing and downstream occlusion of terminal hepatic venules. Contributing factors are SEC glutathione depletion, nitric oxide depletion, increased intrahepatic expression of matrix metalloproteinases and vascular endothelial growth factor (VEGF), and activation of clotting factors. The clinical presentation of SOS includes jaundice, development of right upper-quadrant pain and tender hepatomegaly, ascites, and unexplained weight gain. Owing to the potentially critical condition of these patients, transjugular biopsy may be the preferred route for liver biopsy to exclude other potential causes of liver dysfunction and to establish a diagnosis of SOS. Treatment includes rigorous fluid management so as to avoid excessive fluid overload while avoiding too rapid diuresis or pericentesis, potential use of pharmaceutics such as defibrotide, coagulolytic agents, or methylprednisolone, and liver transplantation. Proposed strategies for prevention and prophylaxis include reduced-intensity conditioning radiation for HSCT, treatment with ursodeoxycholic acid, and inclusion of bevacizumab with oxaliplatin-based chemotherapeutic regimes. While significant progress has been made in understanding the pathogenesis

  14. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    PubMed

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  15. Representative Sinusoids for Hepatic Four-Scale Pharmacokinetics Simulations

    PubMed Central

    Schwen, Lars Ole; Schenk, Arne; Kreutz, Clemens; Timmer, Jens; Bartolomé Rodríguez, María Matilde; Kuepfer, Lars; Preusser, Tobias

    2015-01-01

    The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the body. The corresponding biochemical processes are typically subject to spatial variations at different length scales. Zonal enzyme expression along sinusoids leads to zonated metabolization already in the healthy state. Pathological states of the liver may involve liver cells affected in a zonated manner or heterogeneously across the whole organ. This spatial heterogeneity, however, cannot be described by most computational models which usually consider the liver as a homogeneous, well-stirred organ. The goal of this article is to present a methodology to extend whole-body pharmacokinetics models by a detailed liver model, combining different modeling approaches from the literature. This approach results in an integrated four-scale model, from single cells via sinusoids and the organ to the whole organism, capable of mechanistically representing metabolization inhomogeneity in livers at different spatial scales. Moreover, the model shows circulatory mixing effects due to a delayed recirculation through the surrounding organism. To show that this approach is generally applicable for different physiological processes, we show three applications as proofs of concept, covering a range of species, compounds, and diseased states: clearance of midazolam in steatotic human livers, clearance of caffeine in mouse livers regenerating from necrosis, and a parameter study on the impact of different cell entities on insulin uptake in mouse livers. The examples illustrate how variations only discernible at the local scale influence substance distribution in the plasma at the whole-body level. In particular, our results show that simultaneously considering variations at all relevant spatial scales may be necessary to understand their impact on observations at the organism scale. PMID:26222615

  16. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-06

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.

  17. Electron Temperature Measurement by Floating Probe Method Using AC Voltage

    NASA Astrophysics Data System (ADS)

    Satoshi, Nodomi; Shuichi, Sato; Mikio, Ohuchi

    2016-11-01

    This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.

  18. Multilevel cascade voltage source inverter with separate DC sources

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  19. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  20. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  1. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  2. Response of the seated human body to whole-body vertical vibration: discomfort caused by sinusoidal vibration.

    PubMed

    Zhou, Zhen; Griffin, Michael J

    2014-01-01

    Frequency weightings for predicting vibration discomfort assume the same frequency-dependence at all magnitudes of vibration, whereas biodynamic studies show that the frequency-dependence of the human body depends on the magnitude of vibration. This study investigated how the frequency-dependence of vibration discomfort depends on the acceleration and the force at the subject-seat interface. Using magnitude estimation, 20 males and 20 females judged their discomfort caused by sinusoidal vertical acceleration at 13 frequencies (1-16 Hz) at magnitudes from 0.1 to 4.0 ms(-2) r.m.s. The frequency-dependence of their equivalent comfort contours depended on the magnitude of vibration, but was less dependent on the magnitude of dynamic force than the magnitude of acceleration, consistent with the biodynamic non-linearity of the body causing some of the magnitude-dependence of equivalent comfort contours. There were significant associations between the biodynamic responses and subjective responses at all frequencies in the range 1-16 Hz. Practitioner Summary: Vertical seat vibration causes discomfort in many forms of transport. This study provides the frequency-dependence of vibration discomfort over a range of vibration magnitudes and shows how the frequency weightings in the current standards can be improved.

  3. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events.

    PubMed

    Spruston, N; Jaffe, D B; Williams, S H; Johnston, D

    1993-08-01

    1. The voltage- and space-clamp errors associated with the use of a somatic electrode to measure current from dendritic synapses are evaluated using both equivalent-cylinder and morphologically realistic models of neuronal dendritic trees. 2. As a first step toward understanding the properties of synaptic current distortion under voltage-clamp conditions, the attenuation of step and sinusoidal voltage changes are evaluated in equivalent cylinder models. Demonstration of the frequency-dependent attenuation of voltage in the cable is then used as a framework for understanding the distortion of synaptic currents generated at sites remote from the somatic recording electrode and measured in the voltage-clamp recording configuration. 3. Increases in specific membrane resistivity (Rm) are shown to reduce steady-state voltage attenuation, while producing only minimal reduction in attenuation of transient voltage changes. Experimental manipulations that increase Rm therefore improve the accuracy of estimates of reversal potential for electrotonically remote synapses, but do not significantly reduce the attenuation of peak current. In addition, increases in Rm have the effect of slowing the kinetics of poorly clamped synaptic currents. 4. The effects of the magnitude of the synaptic conductance and its kinetics on the measured synaptic currents are also examined and discussed. The error in estimating parameters from measured synaptic currents is greatest for synapses with fast kinetics and large conductances. 5. A morphologically realistic model of a CA3 pyramidal neuron is used to demonstrate the generality of the conclusions derived from equivalent cylinder models. The realistic model is also used to fit synaptic currents generated by stimulation of mossy fiber (MF) and commissural/associational (C/A) inputs to CA3 neurons and to estimate the amount of distortion of these measured currents. 6. Anatomic data from the CA3 pyramidal neuron model are used to construct a

  4. Experimental studies for determining human discomfort response to vertical sinusoidal vibration

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1975-01-01

    A study was conducted to investigate several problems related to methodology and design of experiments to obtain human comfort response to vertical sinusoidal vibration. Specifically, the studies were directed to the determination of (1) the adequacy of frequency averaging of vibration data to obtain discomfort predictors, (2) the effect of practice on subject ratings, (3) the effect of the demographic factors of age, sex, and weight, and (4) the relative importance of seat and floor vibrations in the determination of measurement and criteria specification location. Results indicate that accurate prediction of discomfort requires knowledge of both the acceleration level and frequency content of the vibration stimuli. More importantly, the prediction of discomfort was shown to be equally good based upon either floor accelerations or seat accelerations. Furthermore, it was demonstrated that the discomfort levels in different seats resulting from similar vibratory imputs were equal. Therefore, it was recommended that criteria specifications and acceleration measurements be made at the floor location. The results also indicated that practice did not systematically influence discomfort responses nor did the demographic factors of age, weight, and sex contribute to the discomfort response variation.

  5. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    PubMed

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  6. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    NASA Astrophysics Data System (ADS)

    Yépez, L. D.; Carrillo, J. L.; Donado, F.; Sausedo-Solorio, J. M.; Miranda-Romagnoli, P.

    2016-06-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena.

  7. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  8. DISPLAY OF PIXEL LOSS AND REPLICATION IN REPROJECTING RASTER DATA FROM THE SINUSOIDAL PROJECTION

    EPA Science Inventory

    Recent studies show the sinusoidal projection to be a superior planar projection for representing global raster datasets. This study uses the sinusoidal projection as a basis for evaluating pixel loss and replication in eight other planar map projections. The percent of pixels ...

  9. Frequency domain photoacoustic and fluorescence microscopy

    PubMed Central

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A.; Berer, Thomas

    2016-01-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain. PMID:27446698

  10. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    PubMed Central

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  11. Effective slip boundary conditions for sinusoidally corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Lin; Chen, Shiyi; Robbins, Mark O.

    2016-11-01

    Molecular dynamics simulations are used to investigate the effective slip boundary condition for a simple fluid flowing over surfaces with one-dimensional sinusoidal roughness in the Wenzel state. The effective slip length is calculated as a function of the corrugation amplitude for flows along two principal orientations: transverse and longitudinal to the corrugation. Different atomic configurations, bent and stepped, are examined for strong and weak wall-fluid interactions and high and low wall densities. Molecular dynamics results for sparse bent surfaces quantitatively agree with continuum hydrodynamic predictions with a constant local slip length. Increasing the roughness amplitude reduces the effective slip length and the reduction is larger for transverse flow than longitudinal flow. Atomic effects become important for dense surfaces, because the local slip length varies with the local curvature and atomic spacing along the wall. These effects can be captured by applying a spatially varying boundary condition to the Navier-Stokes equations. Results for stepped surfaces are qualitatively different than continuum predictions, with the effect of corrugation rising linearly with corrugation amplitude rather than quadratically. There is an increased drag for transverse flow that is proportional to the density of step edges and lowers the slip length. Edges tend to increase the slip length for longitudinal flow because of order induced along the edges.

  12. Cell biology and pathology of liver sinusoidal endothelial cells.

    PubMed

    Enomoto, Katsuhiko; Nishikawa, Yuji; Omori, Yasufumi; Tokairin, Takuo; Yoshida, Masayuki; Ohi, Naoto; Nishimura, Takuya; Yamamoto, Youhei; Li, Qinchang

    2004-12-01

    Growing evidence revealed that liver sinusoidal endothelial cells (SEC) play several important roles in physiology and pathology of the liver. It has been well understood that their structural characteristics, such as the membrane sieve and lack of basement membrane, facilitate direct contact of soluble and insoluble serum substances with hepatic parenchymal cells, resulting in enhancement of hepatic metabolic activity. In addition, SEC is now regarded as a member of the scavenger endothelial cells, which have potential to eliminate a variety of macromolecules from the blood circulation by receptor-mediated endocytosis. It is reported that molecules preferentially eliminated by SEC are denatured or modified proteins such as advanced glycation end products, extracellular matrix components including hyaluronic acid, and some lipoproteins. The nature of the scavenger receptors corresponding to these molecules remains to be clarified. Recently, it was noted that SEC has an antigen-presenting function similar to dendritic cells. Taken together, it is suggested that SEC, cooperating with Kupffer cells and hepatic dendritic cells, may partake of immunoregulatory functions in the liver. SEC also plays a pivotal role in the pathological process of ischemia-reperfusion injury following liver surgery and liver transplantation. Thus, it is of importance to elucidate the mechanisms of apoptosis and proliferation of SEC. Recent results on the regulation of growth and apoptotic signaling of SEC are discussed.

  13. Sinusoidal Wave Estimation Using Photogrammetry and Short Video Sequences

    PubMed Central

    Rupnik, Ewelina; Jansa, Josef; Pfeifer, Norbert

    2015-01-01

    The objective of the work is to model the shape of the sinusoidal shape of regular water waves generated in a laboratory flume. The waves are traveling in time and render a smooth surface, with no white caps or foam. Two methods are proposed, treating the water as a diffuse and specular surface, respectively. In either case, the water is presumed to take the shape of a traveling sine wave, reducing the task of the 3D reconstruction to resolve the wave parameters. The first conceived method performs the modeling part purely in 3D space. Having triangulated the points in a separate phase via bundle adjustment, a sine wave is fitted into the data in a least squares manner. The second method presents a more complete approach for the entire calculation workflow beginning in the image space. The water is perceived as a specular surface, and the traveling specularities are the only observations visible to the cameras, observations that are notably single image. The depth ambiguity is removed given additional constraints encoded within the law of reflection and the modeled parametric surface. The observation and constraint equations compose a single system of equations that is solved with the method of least squares adjustment. The devised approaches are validated against the data coming from a capacitive level sensor and on physical targets floating on the surface. The outcomes agree to a high degree. PMID:26690171

  14. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Malhotra, Ashim; Henning, Justin R; Ibrahim, Junaid; Vera, Valery; Cieza-Rubio, Napoleon E; Hassan, Burhan U; Pachter, H Leon; Cohen, Steven; Frey, Alan B; Miller, George

    2010-08-15

    The normal liver is characterized by immunologic tolerance. Primary mediators of hepatic immune tolerance are liver sinusoidal endothelial cells (LSECs). LSECs block adaptive immunogenic responses to Ag and induce the generation of T regulatory cells. Hepatic fibrosis is characterized by both intense intrahepatic inflammation and altered hepatic immunity. We postulated that, in liver fibrosis, a reversal of LSEC function from tolerogenic to proinflammatory and immunogenic may contribute to both the heightened inflammatory milieu and altered intrahepatic immunity. We found that, after fibrotic liver injury from hepatotoxins, LSECs become highly proinflammatory and secrete an array of cytokines and chemokines. In addition, LSECs gain enhanced capacity to capture Ag and induce T cell proliferation. Similarly, unlike LSECs in normal livers, in fibrosis, LSECs do not veto dendritic cell priming of T cells. Furthermore, whereas in normal livers, LSECs are active in the generation of T regulatory cells, in hepatic fibrosis LSECs induce an immunogenic T cell phenotype capable of enhancing endogenous CTLs and generating potent de novo CTL responses. Moreover, depletion of LSECs from fibrotic liver cultures mitigates the proinflammatory milieu characteristic of hepatic fibrosis. Our findings offer a critical understanding of the role of LSECs in modulating intrahepatic immunity and inflammation in fibro-inflammatory liver disease.

  15. Adsorption of "soft" spherical particles onto sinusoidally-corrugated substrates.

    PubMed

    Schoch, Phillip K; Genzer, Jan

    2014-10-14

    We utilize a Monte Carlo simulation scheme based on the bond fluctuation model to simulate settlement of "soft" adhesive particles onto sinusoidally-corrugated substrates. Particles are composed of a hard inner core with a "soft" adhesive shell made of surface-grafted polymer chains. These chains adhere to surface lattice sites via pair wise non-specific interactions acting between the substrate and the last two segments of the polymer grafts on the particle. This simulation scheme is aimed at comprehending single particle adsorption behavior to find the highest adhesion energy locations for given test surfaces and elucidate test surfaces that reduce adhesion energy. Parameters in this study are set by the particle, the substrate and an interaction parameter between the two. Particle parameters include core diameter (D), grafting density of polymer (σ) and length of grafted polymer (N). Substrate parameters include wavelength (λ) and amplitude (A). Our results show that the wavelength of substrate features plays a significant role in the settlement of single particle systems. At λ = D/2 we observe a minimum in the adhesion energy and at λ = D we observe a uniform settlement location of the particles. Increasing N leads to a reduction in the effectiveness of substrate topography to direct the settlement of individual particles into specific sites on the substrate.

  16. High-Voltage Pulse Voltage Generator,

    DTIC Science & Technology

    1979-12-21

    the invention: I. I. Kalyatskiy, V. I. Kurets, and V. I. Safronov Well-known are pulse voltage generators which employ the Arkad’yev- Marx principle of...P2, and hereafter the device operates like an ordinary GIN [pulse volt- age generator] according to the Arkad’yev- Marx principle. The Object of the...Invention The high-voltage pulse voltage generator, assembled according to the Arkad’yev- Marx arrangement, each stage of which incorporates reactive

  17. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  18. Comparison of high temperature, high frequency core loss and dynamic B-H loops of a 2V-49Fe-49Co and a grain oriented 3Si-Fe alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1992-01-01

    The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.

  19. The effect of sinusoidal rolling ground motion on lifting biomechanics.

    PubMed

    Ning, Xiaopeng; Mirka, Gary A

    2010-12-01

    The objective of this study was to quantify the effects of ground surface motion on the biomechanical responses of a person performing a lifting task. A boat motion simulator (BMS) was built to provide a sinusoidal ground motion (simultaneous vertical linear translation and a roll angular displacement) that simulates the deck motion on a small fishing boat. Sixteen participants performed lifting, lowering and static holding tasks under conditions of two levels of mass (5 and 10 kg) and five ground moving conditions. Each ground moving condition was specified by its ground angular displacement and instantaneous vertical acceleration: A): +6°, -0.54 m/s(2); B): +3°, -0.27 m/s(2); C): 0°, 0m/s(2); D): -3°, 0.27 m/s(2); and E): -6°, 0.54 m/s(2). As they performed these tasks, trunk kinematics were captured using the lumbar motion monitor and trunk muscle activities were evaluated through surface electromyography. The results showed that peak sagittal plane angular acceleration was significantly higher in Condition A than in Conditions C, D and E (698°/s(2) vs. 612-617°/s(2)) while peak sagittal plane angular deceleration during lowering was significantly higher in moving conditions (conditions A and E) than in the stationary condition C (538-542°/s(2) vs. 487°/s(2)). The EMG results indicate that the boat motions tend to amplify the effects of the slant of the lifting surface and the external oblique musculature plays an important role in stabilizing the torso during these dynamic lifting tasks.

  20. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  1. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    NASA Astrophysics Data System (ADS)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  2. Characteristics and performance of offset phase locked single frequency heterodyned laser systems

    NASA Astrophysics Data System (ADS)

    Tulchinsky, David A.; Hastings, Alexander S.; Williams, Keith J.

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  3. Characteristics and performance of offset phase locked single frequency heterodyned laser systems.

    PubMed

    Tulchinsky, David A; Hastings, Alexander S; Williams, Keith J

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  4. VOLTAGE-CONTROLLED TRANSISTOR OSCILLATOR

    DOEpatents

    Scheele, P.F.

    1958-09-16

    This patent relates to transistor oscillators and in particular to those transistor oscillators whose frequencies vary according to controlling voltages. A principal feature of the disclosed transistor oscillator circuit resides in the temperature compensation of the frequency modulating stage by the use of a resistorthermistor network. The resistor-thermistor network components are selected to have the network resistance, which is in series with the modulator transistor emitter circuit, vary with temperature to compensate for variation in the parameters of the transistor due to temperature change.

  5. Group velocity dispersion measurement method using sinusoidally phase-modulated continuous wave light based on cyclic nature of optical waveform change by group velocity dispersion.

    PubMed

    Yamamoto, Takashi; Mori, Takayoshi; Sakamoto, Taiji; Kurokawa, Kenji; Tomita, Shigeru; Tsubokawa, Makoto

    2010-09-20

    We show that any optical pulse train recovers its original waveform after passing through a group velocity dispersion (GVD) device when the total GVD value of the device is equal to an integral multiple of 1/(2πf(rep)(2)), where f(rep) is the repetition rate of the optical pulse train. In addition, we detail our proposed GVD measurement method, or optical phase-modulation (PM) method, which utilizes a sinusoidally PM continuous wave (CW) light as a probe light. The total GVD B(2) of a device under test (DUT) is derived by using a very simple equation, |B(2)|=1/(2πf(null)(2)), where f(null) is the smallest modulation frequency at which the sinusoidally PM light becomes CW light again after passing through the DUT.

  6. Batteries: Widening voltage windows

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Wang, Chunsheng

    2016-10-01

    The energy output of aqueous batteries is largely limited by the narrow voltage window of their electrolytes. Now, a hydrate melt consisting of lithium salts is shown to expand such voltage windows, leading to a high-energy aqueous battery.

  7. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  8. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    SciTech Connect

    Valladares, C.E.; DasGupta, A.; Whitney, H.E.

    1986-01-01

    A new category of equatorial F region plasma irregularities characterized by nearly sinusoidal wave forms in the ion number density N/sub i/ was observed by the Atmosphere Explorer satellites. Multisatellite scintillation observations made at Huancayo, Peru and spaced-receiver drive measurements made at Ancon, Peru are associated with such irregularities observed by AE-E on a few nights in December 1979. The scintillations continue for a period of almost 6 hours, at a level that varies from moderate to fairly intense (S4 = 0.1-0.8 at 250 MHz), and these S4 fluctuations are quite well correlated, even over a distance of 1000 km. The irregularities constituting the large patch are found to drift eastward at a velocity of approximately 140 m/s. This and other such events are accompanied by the frequency spread signatures on Huancayo ionograms, as previously reported. The unique feature of the Fourier spectra associated with such bottomside sinusiodal (BSS) irregularities is the presence of Fresnel oscillations, which allow a determination of the velocity of the diffraction pattern perpendicular to the direction of the ray from the satellite to the ground station. The velocity so determined agrees well with the results of simultaneously performed spaced-receiver drift measurements. The presence of Fresnel oscillations indicates that the BSS irregularities occur in a relatively thin layer. However, while the scintillation data indicate a high frequency, roll off with a spectral index of the order of -3 to -4, the in-situ data tend to indicate that the index is of the order -5 to -6. Modeling studies are necessary to resolve this difference.

  9. Mixed voltage VLSI design

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  10. Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi; Osawa, Naoki; Wedaa, Hassan; Otani, Yoshio

    2016-06-01

    The aim of this study is to investigate the effect of the intermediate frequency (1-10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect.

  11. Ultrastructural changes in hepatic sinusoidal endothelial cells acutely exposed to colloidal iron.

    PubMed

    Bassett, Mark L; Dahlstrom, Jane E; Taylor, Matthew C; Koina, Mark E; Maxwell, Lesley; Francis, Douglas; Jain, Sanjiv; McLean, Allan J

    2003-07-01

    Hepatic sinusoidal endothelial cells form an important interface between the vascular system, represented by the sinusoids, and the space of Disse that surrounds the hepatocyte microvilli. This study aimed to assess the light microscopic and ultrastructural effects of acute exposure of hepatic sinusoidal endothelial cells to colloidal iron by injection of rats with iron polymaltose. Eight minutes after a single intravenous injection of iron polymaltose sinusoidal endothelial cells showed defenestration, and thickening and layering as assessed by transmission electron microscopy. Kupffer cells and stellate cells appeared activated. These changes were not observed in control animals, experiments using equivalent doses of maltose, or experiments using colloidal carbon except for Kupffer cell activation due to colloidal carbon. No significant light microscopic changes were seen in study or control animals. The findings indicate that acute exposure to colloidal iron causes changes in hepatic sinusoidal endothelial cells, stellate cells and Kupffer cells. This may be the result of a direct toxic effect of iron or increased production of reactive oxygen species. These observations suggest a possible mechanism for defenestration of sinusoidal endothelial cells in ageing and in disease states.

  12. Voltage Generation of Three-Phase Double Sided Internal Stator Axial Flux Permanent Magnet (AFPM) Generator

    NASA Astrophysics Data System (ADS)

    Kastawan, I. M. W.; Rusmana

    2017-03-01

    This paper describes the development of a multidisc AFPM generator type namely the double sided internal stator. This generator consists of one stator disc with two surface sides placed in the middle between two rotor discs. 18 permanent magnet poles are placed in one rotor disc while 9 three-phase windings with 1450 turns per-winding are placed in one surface side of the stator disc. The laboratory test results show that three-phase sinusoidal voltage magnitude in range of 79 – 150 V (phase to neutral) is generated for 219 – 402 rpm of rotor speed. In its nominal speed i.e. 333 rpm, a 124.8 V, 50 Hz, three-phase sinusoidal voltage is generated with only 1.6% THD in average and 0°, ‑124°, ‑240° phase angles. Comparison with another type of multidisc AFPM generator namely the double sided internal rotor shows that the developed AFPM generator can produce an output voltage that is almost 2.5 times higher. Nevertheless, both generators are able to generate a relatively balance three-phase sinusoidal voltage with low THD value.

  13. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  14. High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation.

    PubMed

    Xia, Wei; Wang, Ming; Yang, Zhenyu; Guo, Wenhua; Hao, Hui; Guo, Dongmei

    2013-02-01

    A sinusoidal phase-modulating He-Ne laser subject to weak optical feedback has been used to develop an interferometer that is capable of performing real-time displacement measurement with nanometer accuracy. The principle and the signal processing method are introduced. A commercial dual-frequency interferometer is included in the displacement measurement in both small and large ranges to evaluate the performance of the developed interferometer. Experimental results show that the average errors and standard deviations of the interferometer are in good agreement with data obtained from the commercial interferometer. The resolution and the multiple feedback effect of the interferometer are discussed in detail. These results show that the development of the interferometer is reasonable and feasible.

  15. Photoacoustic imaging of voltage signals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rao, Bin; Zhang, Ruiying; Wang, Lihong V.

    2016-03-01

    Optical imaging of brain voltage signals is significantly limited in depth due to optical scattering and the absorptive property of brain tissue. Photoacoustic (PA) imaging promises to break this hard limit by utilizing both ballistic and diffused photons. To demonstrate the feasibility of PA, we used an in vivo mouse model. The brain cortex tissue was stained with dipicrylamine dye, electrically stimulated, and imaged with a customized dual-isosbestic-wavelength PA microscope (DIW-PAM). DIW-PAM separates voltage-induced PA signals from blood-induced PA signals and thereby allows recording the voltage response of mouse cortex tissue without interference from hemoglobin responses. The resting state PA voltage response signal exhibited a noise-like signal in the frequency domain. Upon 3 Hz electrical stimulation, the PA voltage response signal showed frequency peaks of 3.2 Hz and 6.3 Hz (Fig. 1). Although dipicrylamine dye is not fast enough for recording neuron action potentials, it served well for the purpose of this feasibility study. In conclusion, we successfully demonstrated in vivo photoacoustic imaging of mouse brain voltage signals for the first time. If a fast voltage-sensitive dye is available, using photoacoustic computed tomography (PACT) instead of PA microscopy could allow acquiring full-field PA action potential images at a speed limited only by the laser pulse repetition rate.

  16. Frequency Spreading in Underwater Acoustic Signal Transmission.

    DTIC Science & Technology

    1980-04-15

    acoustic signal transmitted and received underwater J-2 J.2 Signal spectrum computing block diagram. J-3 Chapter I. Frequency spreading 1.0 Introduction... transmitted frequency can be expected in the received signal [1] - [18]. This frequency spreading behavior is the result of the amplitude and phase...result of phase modulation of the transmitted sinusoid by the moving surface, and the separation between the spectral lines at the receiving point is

  17. Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance

    PubMed Central

    Carbó Tano, Martín; Vilarchao, María Eugenia

    2015-01-01

    Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na+-dependent spikes, but express an LT-VACC that was sensitive to 250 μM Ni2+ and 100 μM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca2+ signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment. PMID:25972583

  18. Enhanced ν-optical time domain reflectometry using gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xuping; Shi, Yuanlei; Shan, Yuanyuan; Sun, Zhenhong; Qiao, Weiyan; Zhang, Yixin

    2016-09-01

    Optical time domain reflectometry (OTDR) is one of the most successful diagnostic tools for nondestructive attenuation measurement of a fiber link. To achieve better sensitivity, spatial resolution, and avoid dead-zone in conversional OTDR, a single-photon detector has been introduced to form the photon-counting OTDR (ν-OTDR). We have proposed a ν-OTDR system using a gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector (SPAD). Benefiting from the superior performance of a sinusoidal gated SPAD on dark count probability, gating frequency, and gate duration, our ν-OTDR system has achieved a dynamic range (DR) of 33.4 dB with 1 μs probe pulse width after an equivalent measurement time of 51 s. This obtainable DR corresponds to a sensing length over 150 km. Our system has also obtained a spatial resolution of 5 cm at the end of a 5-km standard single-mode fiber. By employing a sinusoidal gating technique, we have improved the ν-OTDR spatial resolution and significantly reduced the measurement time.

  19. Microwave integrated circuit for Josephson voltage standards

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  20. The role of liver sinusoidal cells in local hepatic immune surveillance

    PubMed Central

    Wohlleber, Dirk; Knolle, Percy A

    2016-01-01

    Although the liver's function as unique immune organ regulating immunity has received a lot of attention over the last years, the mechanisms determining hepatic immune surveillance against infected hepatocytes remain less well defined. Liver sinusoidal cells, in particular, liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), serve as physical platform for recruitment and anchoring of blood-borne immune cells in the liver. Liver sinusoidal cells also function as portal of entry for infectious microorganisms targeting the liver such as hepatotropic viruses, bacteria or parasites. At the same time, liver sinusoidal cells actively contribute to achieve immune surveillance against bacterial and viral infections. KCs function as adhesion hubs for CD8 T cells from the circulation, which initiates the interaction of virus-specific CD8 T cells with infected hepatocytes. Through their phagocytic function, KCs contribute to removal of bacteria from the circulation and engage in cross talk with sinusoidal lymphocyte populations to achieve elimination of phagocytosed bacteria. LSECs contribute to local immune surveillance through cross-presentation of viral antigens that causes antigen-specific retention of CD8 T cells from the circulation. Such cross-presentation of viral antigens activates CD8 T cells to release TNF that in turn triggers selective killing of virus-infected hepatocytes. Beyond major histocompatibility complex (MHC)-restricted T-cell immunity, CD1- and MR1-restricted innate-like lymphocytes are found in liver sinusoids whose roles in local immune surveillance against infection need to be defined. Thus, liver sinusoidal cell populations bear key functions for hepatic recruitment and for local activation of immune cells, which are both required for efficient immune surveillance against infection in the liver. PMID:28090319

  1. Control Strategy of a Parallel System Using Both Matrix Converter and Voltage Type Inverter

    NASA Astrophysics Data System (ADS)

    Itoh, Jun-Ichi; Tamura, Hiroshi

    This paper proposes a control strategy for a matrix converter and voltage type inverter in a parallel system that does not require of interconnection reactors. The proposed control strategy is to divide the operation time between a matrix converter and a voltage type inverter. The operation time of each converter is divided in every carrier cycle. As a result, interconnection reactors are not required and the sinusoidal input current waveform of a matrix converter can be obtained. The total output voltage of the proposed system and the output power division ratio for a matrix converter and a voltage type inverter are controlled by the time division ratio of each converter. Furthermore, the voltage error resulting from the operation of time division control was analyzed and compensated. The availability of the proposed system and the validity of the proposed control method are confirmed by experimental results.

  2. Dynamic optical frequency domain reflectometry.

    PubMed

    Arbel, Dror; Eyal, Avishay

    2014-04-21

    We describe a dynamic Optical Frequency Domain Reflectometry (OFDR) system which enables real time, long range, acoustic sensing at high sampling rate. The system is based on a fast scanning laser and coherent detection scheme. Distributed sensing is obtained by probing the Rayleigh backscattered light. The system was tested by interrogation of a 10 km communication type single mode fiber and successfully detected localized impulse and sinusoidal excitations.

  3. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  4. Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow.

    PubMed

    Yang, Hao; Li, Ning; Du, Yu; Tong, Chunfang; Lü, Shouqin; Hu, Jinrong; Zhang, Yan; Long, Mian

    2017-02-01

    Neutrophil (polymorphonuclear leukocyte, PMN) recruitment in the liver sinusoid takes place in almost all liver diseases and contributes to pathogen clearance or tissue damage. While PMN rolling unlikely appears in liver sinusoids and Mac-1 or CD44 is assumed to play respective roles during in vivo local or systematic inflammatory stimulation, the regulating mechanisms of PMN adhesion and crawling dynamics are still unclear from those in vivo studies. Here we developed a two-dimensional in vitro sinusoidal model with primary liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) to investigate TNF-α-induced PMN recruitment under shear flow. Our data demonstrated that LFA-1 dominates the static or shear resistant adhesion of PMNs while Mac-1 decelerates PMN crawling on LSEC monolayer. Any one of LFA-1, Mac-1, and CD44 molecules is not able to work effectively for mediating PMN transmigration across LSEC monolayer. The presence of KCs only affects the randomness of PMN crawling. These findings further the understandings of PMN recruitment under shear flow in liver sinusoids.

  5. Modeling and Frequency Tracking of Marine Mammal Whistle Calls

    DTIC Science & Technology

    2009-02-01

    initialization in a speech compression ap - plication . Even with the improved HTLS initialization procedure, the computational load of the STLN algorithm is...unless it was necessary to detect abrupt frequency shifts. 3.2.4 Single Harmonic Linear + Sinusoidal Chirp Fig. 3-5 demonstrates the frequency...between an actual frequency shift and estimation error. Watermark retrieval is performed by detecting abrupt frequency shifts in the fundamental frequency

  6. Characterizing Random Telegraph Frequency Noise in a Micromechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Sun, Fengpei; Zou, Jie; Maizelis, Zakhar; Chan, Ho Bun

    2014-03-01

    We perform a comprehensive study of the effect of random telegraph frequency noise(RTFN) on a micromechanical torsional oscillator. A sinusoidal driving voltage is applied to one electrode of the oscillator to excite its torsional vibration. Telegraph noise is applied to the other electrode so that the eigenfrequency of the oscillator randomly jumps back and forth between two states. This arrangement resembles a mechanical oscillator dispersively coupled to a classical or quantum two-level system. As the jumping rate of the eigenfrequency is increased, the two peaks in the spectrum of the time-averaged vibration amplitude merge into a single peak, displaying spectral broadening followed by motional narrowing. Furthermore, we analyze the ratios of the moments of the complex vibration amplitude to the powers of the averaged complex amplitude as a function of the driving frequency. If RTFN is absent, the ratios are equal to one; otherwise they deviate from one near resonance and approach to one far off resonance. The shape of the spectra depends strongly on the characteristics of RTFN and this dependence remains valid even in the presence of strong thermal or detector noise. Our results are in good agreement with theoretical predictions.

  7. Time-frequency signature sparse reconstruction using chirp dictionary

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen T. H.; Amin, Moeness G.; Ghogho, Mounir; McLernon, Des

    2015-05-01

    This paper considers local sparse reconstruction of time-frequency signatures of windowed non-stationary radar returns. These signals can be considered instantaneously narrow-band, thus the local time-frequency behavior can be recovered accurately with incomplete observations. The typically employed sinusoidal dictionary induces competing requirements on window length. It confronts converse requests on the number of measurements for exact recovery, and sparsity. In this paper, we use chirp dictionary for each window position to determine the signal instantaneous frequency laws. This approach can considerably mitigate the problems of sinusoidal dictionary, and enable the utilization of longer windows for accurate time-frequency representations. It also reduces the picket fence by introducing a new factor, the chirp rate α. Simulation examples are provided, demonstrating the superior performance of local chirp dictionary over its sinusoidal counterpart.

  8. High voltage RF feedthrough bushing

    DOEpatents

    Grotz, Glenn F.

    1984-01-01

    Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  9. Voltage-controlled photonic oscillator.

    PubMed

    Savchenkov, A A; Ilchenko, V S; Liang, W; Eliyahu, D; Matsko, A B; Seidel, D; Maleki, L

    2010-05-15

    We report the development and demonstration of an X-band voltage-controlled photonic oscillator based on a whispering gallery mode resonator made of an electro-optic crystalline material. The oscillator has good spectral purity and wide, agile, linear tunability. We have modified the existing theoretical model of the opto-electronic oscillator to describe the performance of our tunable oscillator and have found a good agreement between the theoretical predictions and the measurement results. We show that the device is promising for higher-frequency applications where high-performance tunable oscillators with wide tunability do not exist.

  10. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  11. Selective and localized radiofrequency heating of skin and fat by controlling surface distributions of the applied voltage: analytical study

    NASA Astrophysics Data System (ADS)

    Jiménez-Lozano, Joel; Vacas-Jacques, Paulino; Anderson, R. Rox; Franco, Walfre

    2012-11-01

    At low frequencies (hundreds of kHz to a few MHz), local energy absorption is proportional to the conductivity of tissue and the intensity of the internal electric field. At 1 MHz, the electric conductivity ratio between skin and fat is approximately 10; hence, skin would heat more provided the intensity of the electric field is similar in both tissues. It follows that selective and localized heat deposition is only feasible by varying electric fields locally. In this study, we vary local intensities of the internal electric field in skin, fat and muscle by altering its direction through modifying surface distributions of the applied voltage. In addition, we assess the long-term effects of these variations on tissue thermal transport. To this end, analytical solutions of the electric and bioheat equations were obtained using a regular perturbation method. For voltage distributions given by second- and eight-degree functions, the power absorption in fat is much greater than in skin by the electrode center while the opposite is true by the electrode edge. For a sinusoidal function, the absorption in fat varies laterally from greater to lower than in skin, and then this trend repeats from the center to the edge of the electrode. Consequently, zones of thermal confinement selectively develop in the fat layer. Generalizing these functions by parametrization, it is shown that radiofrequency (RF) heating of layered tissues can be selective and precisely localized by controlling the spatial decay, extent and repetition of the surface distribution of the applied voltage. The clinical relevance of our study is to provide a simple, non-invasive method to spatially control the heat deposition in layered tissues. By knowing and controlling the internal electric field, different therapeutic strategies can be developed and implemented.

  12. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  13. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.

    PubMed

    Namekata, Naoto; Adachi, Shunsuke; Inoue, Shuichiro

    2009-04-13

    We report a telecom-band single-photon detector for gigahertz clocked quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 1.5 GHz. A quantum efficiency of 10.8 % at 1550 nm was obtained with a dark count probability per gate of 6.3 x 10(-7) and an afterpulsing probability of 2.8 %. Moreover, the maximum detection rate of the detector is 20 MHz.

  14. Hepatic sinusoidal dilatation with portal hypertension during azathioprine treatment after kidney transplantation.

    PubMed

    Gerlag, P G; Lobatto, S; Driessen, W M; Deckers, P F; Van Hooff, J P; Schröder, E; Assmann, K M; Van Haelst, U J

    1985-01-01

    An unusual hepatic disease developed in 3 patients with a well-functioning kidney graft 16-24 months after transplantation. Vague abdominal pain, increased bleeding tendency and edema were initial complaints, and hepato- or splenomegaly and ascites were found as well. Liver function tests were not or only mildly disturbed; hemolysis and pancytopenia were always present. Colloid uptake was absent at liver scintigraphy and the hepatic venous wedge pressure was increased. Esophageal varices were demonstrated. Liver biopsy showed extensive midzonal and pericentral sinusoidal dilatation. After discontinuation of azathioprine the symptoms and the extent of sinusoidal dilatation disappeared gradually, but after 1-3 years fibrosis or micronodular cirrhosis had developed and splenomegaly with hypersplenism remained. These observations strongly suggest an association between chronic use of azathioprine and the development of venous congestion of the liver with sinusoidal dilatation, eventually resulting in chronic liver disease.

  15. In situ analysis of texture development from sinusoidal stress at high pressure and temperature

    SciTech Connect

    Li, Li; Weidner, Donald J.

    2015-12-15

    Here, we present a new experimental protocol to investigate the relationship between texture, plastic strain, and the mechanisms of plastic deformation at high pressure and temperature. The method utilizes synchrotron X-ray radiation as the probing tool, coupled with a large-volume high pressure deformation device (D-DIA). The intensity of X-ray diffraction peaks within the spectrum of the sample is used for sampling texture development in situ. The unique feature of this study is given by the sinusoidal variation of the intensity when a sinusoidal strain is applied to the sample. For a sample of magnesium oxide at elevated pressure and temperature, we demonstrate observations that are consistent with elasto-plastic models for texture development and for diffraction-peak measurements of apparent stress. The sinusoidal strain magnitude was 3%.

  16. The Integrity bare-metal stent made by continuous sinusoid technology.

    PubMed

    Turco, Mark A

    2011-05-01

    The Integrity Coronary Stent System (Medtronic Vascular, CA, USA) is a low-profile, open-cell, cobalt-chromium-alloy advanced bare-metal iteration of the well-known Driver/Micro-Driver Coronary Stent System (Medtronic Vascular). The Integrity stent is made with a process called continuous sinusoid technology. This process allows stent construction via wrapping a single thin strand of wire around a mandrel in a sinusoid configuration, with laser fusion of adjacent crowns. The wire-forming process and fusion pattern provide the stent with a continuous preferential bending plane, intended to allow easier access to, and smoother tracking within, distal and tortuous vessels while radial strength is maintained. Continuous sinusoid technology represents innovation in the design of stent platforms and will provide a future stent platform for newer technology, including drug-eluting stent platforms, drug-filled stents and core wire stents.

  17. Voltage correction power flow

    SciTech Connect

    Rajicic, D.; Ackovski, R.; Taleski, R. . Dept. of Electrical Engineering)

    1994-04-01

    A method for power flow solution of weakly meshed distribution and transmission networks is presented. It is based on oriented ordering of network elements. That allows an efficient construction of the loop impedance matrix and rational organization of the processes such as: power summation (backward sweep), current summation (backward sweep) and node voltage calculation (forward sweep). The first step of the algorithm is calculation of node voltages on the radial part of the network. The second step is calculation of the breakpoint currents. Then, the procedure continues with the first step, which is preceded by voltage correction. It is illustrated that using voltage correction approach, the iterative process of weakly meshed network voltage calculation is faster and more reliable.

  18. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  19. Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process.

    PubMed

    Ookhtens, M; Hobdy, K; Corvasce, M C; Aw, T Y; Kaplowitz, N

    1985-01-01

    Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of

  20. Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process.

    PubMed Central

    Ookhtens, M; Hobdy, K; Corvasce, M C; Aw, T Y; Kaplowitz, N

    1985-01-01

    Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of

  1. No effect of exposure to static and sinusoidal magnetic fields on nitric oxide production by macrophages

    SciTech Connect

    Mnaimneh, S. |; Bizri, M. |; Veyret, B.

    1996-12-31

    The effects of exposure to static (1--100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields.

  2. Sinusoidal Vertical Motion of a Sonobuoy Suspension: Experimental Data and a Theoretical Model

    DTIC Science & Technology

    2008-06-01

    dB par décade. Selon des expériences, le coefficient d’inertie Ci et le coefficient de frottement Cf d’un disque circulaire en mouvement sinusoïdal... coefficient CI and the drag coefficient CD of a circular disk in sinusoidal motion are in fact not constants, but depend on the dimensionless ratio of...investigation of hydrodynamic added mass and damping of disks in sinusoidal motion revealed that these coefficients may not be constant, but may in fact be

  3. Primary Liver Sinusoidal Non-Hodgkin's Lymphoma Presenting as Acute Liver Failure

    PubMed Central

    Nagral, Aabha; Jhaveri, Ajay; Kalthoonical, Vilesh; Bhat, Ganapathi; Mahajan, Pravin; Borges, Anita

    2015-01-01

    We describe a case of a middle-aged woman, who presented to us with fever, anorexia, abdominal distension from a massive hepatomegaly, low hemoglobin, and acute liver failure. A liver biopsy revealed B cell non-Hodgkin's lymphoma predominantly in the sinusoids with CD10, CD20, and Bcl-2 positive on immunohistochemistry. She initially responded well to chemotherapy but succumbed 6 months later to the recurrence of disease. Sinusoidal non-Hodgkin's lymphoma of the liver should be considered in the differential diagnosis of a patient with large hepatomegaly presenting with acute liver failure. PMID:26900276

  4. Sinusoidal response of composite-material plates with material damping.

    NASA Technical Reports Server (NTRS)

    Siu, C. C.; Bert, C. W.

    1973-01-01

    A general forced-vibration analysis is presented for laminated anisotropic rectangular plates including material damping. The theory used is the laminated version of the Mindlin plate theory and includes thickness-shear flexibility and rotatory and coupling inertia. A solution is obtained by the Rayleigh-Ritz method, extended to include the energy dissipated and the work done by the excitation. The analysis is applied to prediction of the resonant frequencies and associated nodal patterns and damping ratios of the first five modes for a series of rectangular plates with free edges. The plates considered consist of unidirectional boron-fiber/epoxy composite material with respective fiber orientations of 0, 10, 30, 45, 60, and 90 deg.

  5. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  6. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  7. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  8. High Voltage Piezoelectric System for Generating Neutrons

    DTIC Science & Technology

    2013-06-01

    Piezoelectric transformer structural modeling - a review,” Ultrasonics , Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp...1 High Voltage Piezoelectric System for Generating Neutrons Brady Gall, Student Member, IEEE, Scott D. Kovaleski, Senior Member, IEEE, James A...Compact electrical neutron generators are a desir- able alternative to radioisotope neutron sources. A piezoelectric transformer system is presented

  9. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  10. Single Event Transients in Low Voltage Dropout (LVDO) Voltage Regulators

    NASA Technical Reports Server (NTRS)

    LaBel, K.; Karsh, J.; Pursley, S.; Kleyner, I.; Katz, R.; Poivey, C.; Kim, H.; Seidleck, C.

    2006-01-01

    This viewgraph presentation reviews the use of Low Voltage Dropout (LVDO) Voltage Regulators in environments where heavy ion induced Single Event Transients are a concern to the designers.Included in the presentation are results of tests of voltage regulators.

  11. Josephson device for voltage measurement

    NASA Astrophysics Data System (ADS)

    Régent, A.; Villegier, J. C.; Angénieux, G.; Monllor, C.; Delahaye, F.

    This paper describes a new Josephson device with microwave integrated circuit for voltage standard. The circuit is essentially made of a resonator (Nb), the Josephson junction (Nb, NbOx, Pb-In) and a capacitive microstrip section (Pb-In) which ends the rf part; the dc connections are through Cauer Filters (Nb or Pb-In). A niobium film is deposited on the opposite side of the fused quartz substrate as a ground plane. The circuit is enclosed in a special package with outside dc and rf connections. The technology ensures very good cyclability and lifetime with storage at room temperature. In liquid helium (4.2 K) with a very weak rf power less than 0.5 milliwatts at the frequency resonance (11.5 GHz), 100 μ A high current steps were obtained near a polarization of 4.5 mV. These devices allows a precision of 1 × 10 -7 on the volt standard when used with a series-parallel divider of fixed value (ratio 225). The precise adjustment of the voltages is made by a slight drift of the rf frequency of the source, allowed by the high rf coupling factor of the device and the band width of its resonance.

  12. Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Zhu, Ge; Zheng, Fu; Wang, Chao; Sun, Zhibin; Zhai, Guangjie; Zhao, Qing

    2016-11-01

    We characterized the dependence of the timing jitter of an InGaAs/InP single-photon avalanche diode on the excess bias voltage (V ex) when operated in 1-GHz sinusoidally gated mode. The single-photon avalanche diode was cooled to -30 degrees Celsius. When the V ex is too low (0.2 V-0.8 V) or too high (3 V-4.2 V), the timing jitter is increased with the V ex, particularly at high V ex. While at middle V ex (1 V-2.8 V), the timing jitter is reduced. Measurements of the timing jitter of the same avalanche diode with pulsed gating show that this effect is likely related to the increase of both the amplitude of the V ex and the width of the gate-on time. For the 1-GHz sinusoidally gated detector, the best jitter of 93 ps is achieved with a photon detection efficiency of 21.4% and a dark count rate of ˜2.08×10-5 per gate at the V ex of 2.8 V. To evaluate the whole performance of the detector, we calculated the noise equivalent power (NEP) and the afterpulse probability (P ap). It is found that both NEP and P ap increase quickly when the V ex is above 2.8 V. At 2.8-V V ex, the NEP and P ap are ˜2.06×10-16 W/Hz1/2 and 7.11%, respectively. Therefore, the detector should be operated with V ex of 2.8 V to exploit the fast time response, low NEP and low P ap. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275024, 61274024, and 61474123), the Youth Innovation Promotion Association, China (Grant No. 2013105), and the Ministry of Science and Technology of China (Grant Nos. 2013YQ030595-3 and 2011AA120101).

  13. Oxaliplatin-induced sinusoidal obstruction syndrome mimicking metastatic colon cancer in the liver

    PubMed Central

    CHOI, JUNG-HYE; WON, YOUNG-WOONG; KIM, HYUN SUNG; OH, YOUNG-HA; LIM, SANGHYEOK; KIM, HAN-JOON

    2016-01-01

    Oxaliplatin is an effective chemotherapeutic agent for the treatment of colorectal cancer; however, it may cause liver injury, particularly sinusoidal obstruction syndrome (SOS). Although SOS does not usually present with focal lesions on radiological images, the present study describes the case of a 22-year-old woman with oxaliplatin-induced SOS mimicking metastatic colon cancer in the liver. An abdominal computed tomography revealed a novel 1 cm, low-density lesion in segment 1 of the liver following the administration of the fourth round of oxaliplatin-based adjuvant chemotherapy for stage III colon cancer. Since the lesion was indistinguishable from metastasis, even with detailed imaging studies, including magnetic resonance imaging and positron emission tomography-computed tomography, an isolated caudate lobectomy was planned. The cut surface of the resected liver showed a localized reddish congested lesion measuring 1.4 cm in diameter. The adjacent hepatic parenchyma also demonstrated diffuse sinusoidal congestion with a nutmeg-like appearance. Histologically, the lesion exhibited severe sinusoidal congestion with peliosis hepatis-like features. The widened sinusoidal space was outlined by markedly attenuated hepatic cords and filled with erythrocytes. The final diagnosis was oxaliplatin-induced SOS. The patient recovered completely and was relapse-free at the time of writing. PMID:27073565

  14. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip.

    PubMed

    Du, Yu; Li, Ning; Yang, Hao; Luo, Chunhua; Gong, Yixin; Tong, Chunfang; Gao, Yuxin; Lü, Shouqin; Long, Mian

    2017-02-28

    Physiologically, four major types of hepatic cells - the liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes - reside inside liver sinusoids and interact with flowing peripheral cells under blood flow. It is hard to mimic an in vivo liver sinusoid due to its complex multiple cell-cell interactions, spatiotemporal construction, and mechanical microenvironment. Here we developed an in vitro liver sinusoid chip by integrating the four types of primary murine hepatic cells into two adjacent fluid channels separated by a porous permeable membrane, replicating liver's key structures and configurations. Each type of cells was identified with its respective markers, and the assembled chip presented the liver-specific unique morphology of fenestration. The flow field in the liver chip was quantitatively analyzed by computational fluid dynamics simulations and particle tracking visualization tests. Intriguingly, co-culture and shear flow enhance albumin secretion independently or cooperatively, while shear flow alone enhances HGF production and CYP450 metabolism. Under lipopolysaccharide (LPS) stimulations, the hepatic cell co-culture facilitated neutrophil recruitment in the liver chip. Thus, this 3D-configured in vitro liver chip integrates the two key factors of shear flow and the four types of primary hepatic cells to replicate key structures, hepatic functions, and primary immune responses and provides a new in vitro model to investigate the short-duration hepatic cellular interactions under a microenvironment mimicking the physiology of a liver.

  15. Hepatic angiosarcoma mimicking sinusoidal obstruction syndrome/venoocclusive disease: a pathologic-radiologic correlation.

    PubMed

    Wiland, Homer O; Pai, Rish K; Purysko, Andrei S

    2012-08-01

    We present a case of a 63-year-old man with liver dysfunction and biopsy findings of venoocclusive disease (VOD) who, at autopsy, was discovered to have multifocal hepatic angiosarcoma. After double lung transplantation, he initially presented with signs of liver failure and portal hypertension resulting in recurrent high-volume ascites. Clinically, VOD was considered, and tacrolimus was discontinued, due to its known association with VOD. This, however, did not result in clinical improvement, and computed tomography eventually revealed the development of multiple low-attenuating hepatic lesions over the course of several months. Biopsies of the masses and background liver demonstrated changes most consistent with VOD, characterized by sinusoidal congestion affecting the centrilobular areas with associated hepatocyte atrophy and dropout. A reticulin stain highlighted deposition of reticulin fibers within the sinusoids and central veins. Scattered sinusoidal atypical cells were identified; however, a definitive diagnosis of malignancy was not possible. He eventually passed away because of complications of liver disease. At autopsy, there were multiple firm, red-brown masses identified throughout both hepatic lobes. Upon histologic review, the masses were shown to be angiosarcoma. Away from the tumor, the liver also demonstrated features of VOD. It is likely that the histologic appearance of VOD in the background liver probably represents secondary changes due to injury to the hepatic sinusoids by the primary malignancy. We conclude that it is necessary to consider the possibility of unsampled vascular malignancy when hepatic masses are identified on imaging and histology is consistent with VOD.

  16. [Application of sinusoidal modulated currents and radon therapy in patients with uroliths in upper urinary tracts].

    PubMed

    Karpukhin, I V; Li, A A; Gusarov, I I; Slepushkina, T G; Dubovskoĭ, A V; Derevnina, N A

    2003-01-01

    The paper describes the method of elimination of the upper urinary tract uroliths using a combination of the following modalities: sinusoidal modulated currents, drinking of artificial radon water, radon water baths and no-spa medication. Evacuation of the concrements or their fragments from the upper urinary tracts reached 80%.

  17. The influence of large deformations on mechanical properties of sinusoidal ligament structures

    NASA Astrophysics Data System (ADS)

    Strek, Tomasz; Jopek, Hubert; Wojciechowski, Krzysztof W.

    2016-05-01

    Studies of mechanical properties of materials, both theoretical and experimental, usually deal with linear characteristics assuming a small range of deformations. In particular, not much research has been published devoted to large deformations of auxetic structures - i.e. structures exhibiting negative Poisson’s ratio. This paper is focused on mechanical properties of selected structures that are subject to large deformations. Four examples of structure built of sinusoidal ligaments are studied and for each geometry the impact of deformation size and geometrical parameters on the effective mechanical properties of these structures are investigated. It is shown that some of them are auxetic when compressed and non-auxetic when stretched. Geometrical parameters describing sinusoidal shape of ligaments strongly affect effective mechanical properties of the structure. In some cases of deformation, the increase of the value of amplitude of the sinusoidal shape decreases the effective Poisson’s ratio by 0.7. Therefore the influence of geometry, as well as the arrangement of ligaments allows for smart control of mechanical properties of the sinusoidal ligament structure being considered. Given the large deformation of the structure, both a linear elastic material model, and a hyperelastic Neo-Hookean material model are used.

  18. Distance and velocity detection based on a deep sinusoidal phase-modulated interferometer.

    PubMed

    Chien, P Y; Chang, Y S; Chang, M W

    1995-10-01

    A deep phase-modulation signal with a sinusoidal waveform is employed on a Michelson interferometer for detecting distance and velocity signals simultaneously. This approach is simple to implement and has a wide-dynamic-range capability with a linear scale factor.

  19. High ac-voltage sensitivity of a quartz needle sensor used in noncontact scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Hartmann, C.; Mertin, W.; Bacher, G.

    2005-11-01

    The ac-voltage sensitivity of a needle sensor used in a scanning force microscope has been investigated. The voltage sensitivity varies depending if the needle sensor is used as an active or passive device. Using it as an active device, we achieve a voltage sensitivity down to 100μV if the frequency and phase of the excitation voltage of the needle sensor is matched to the voltage of the device under test.

  20. Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation

    PubMed Central

    Hudson, Todd E.; Landy, Michael S.

    2016-01-01

    A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation. Motor adaptation is fundamental to the neural control of movement, affording an automatic process to maintain a consistent relationship between motor plans and movement outcomes. That is, adaptation is described as updating an internal mapping between desired motor outcome and motor output (Sanger, 2004; Shadmehr, Smith, & Krakauer, 2010), not a deliberate corrective action. Here, using a method that relies on extremely small perturbations that

  1. Hydrogen sulfide modulates sinusoidal constriction and contributes to hepatic microcirculatory dysfunction during endotoxemia.

    PubMed

    Norris, Eric J; Feilen, Nicole; Nguyen, Nhat H; Culberson, Cathy R; Shin, Min C; Fish, Madeleine; Clemens, Mark G

    2013-06-15

    Hydrogen sulfide (H₂S) affects vascular resistance; however, its effect on the hepatic microcirculation has not been investigated. Hepatic sinusoidal perfusion is dysregulated during sepsis, contributing to liver injury. Therefore, the present study determined the effect of H₂S on the hepatic microcirculation and the contribution of endogenous H₂S to hepatic microcirculatory dysfunction in an endotoxin model of sepsis. Portal infusion of H₂S increased portal pressure in vivo (6.8 ± 0.2 mmHg before H₂S vs. 8.6 ± 0.8 mmHg peak during H₂S infusion, P < 0.05). Using intravital microscopy, we observed decreased sinusoidal diameter (6.2 ± 0.27 μm before H₂S vs. 5.7 ± 0.3 μm after H₂S, P < 0.05) and increased sinusoidal heterogeneity during H₂S infusion (P < 0.05) and net constriction. Since hepatic H₂S levels are elevated during sepsis, we used the cystathionine γ lyase inhibitor DL-propargylglycine (PAG) to determine the contribution of H₂S to the hypersensitization of the sinusoid to the vasoconstrictor effect of endothelin-1 (ET-1). PAG treatment significantly attenuated the sinusoidal sensitization to ET-1 in endotoxin-treated animals. ET-1 infusion increased portal pressure to 175% of baseline in endotoxemic animals, which was reduced to 143% following PAG treatment (P < 0.05). PAG abrogated the increase in sinusoidal constriction after ET-1 infusion in LPS-treated rats (30.9% reduction in LPS rats vs. 11.6% in PAG/LPS rats, P < 0.05). Moreover, PAG treatment significantly attenuated the increase in NADH fluorescence following ET-1 exposure during endotoxemia (61 grayscale units LPS vs. 21 units in PAG/LPS, P < 0.05), suggesting an improvement in hepatic oxygen availability. This study is the first to demonstrate a vasoconstrictor action of H₂S on the hepatic sinusoid and provides a possible mechanism for the protective effect of PAG treatment during sepsis.

  2. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  3. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  4. High Voltage Distribution

    NASA Astrophysics Data System (ADS)

    Norbeck, Edwin; Miller, Michael; Onel, Yasar

    2010-11-01

    For detector arrays that require 5 to 10 kV at a few microamps each for hundreds of detectors, using hundreds of HV power supplies is unreasonable. Bundles of hundreds of HV cables take up space that should be filled with detectors. A typical HV module can supply 1 ma, enough current for hundreds of detectors. It is better to use a single HV module and distribute the current as needed. We show a circuit that, for each detector, measures the current, cuts off the voltage if the current exceeds a set maximum, and allows the HV to be turned on or off from a control computer. The entire array requires a single HV cable and 2 or 3 control lines. This design provides the same voltage to all of the detectors, the voltage set by the single HV module. Some additional circuitry would allow a computer controlled voltage drop between the HV and each individual detector.

  5. High-voltage distributors

    NASA Technical Reports Server (NTRS)

    Mcchesney, J. F., Jr.

    1974-01-01

    Two distributors reduce high-voltage breakdowns and corona discharges. Both distributors are constructed to prevent air traps and facilitate servicing without soldering. Occurrence of coronas is also minimized due to smooth surfaces of device.

  6. Age and Individual Differences in Controlled Force Exertion Measured by a Computer-Generated Sinusoidal and Quasi-Random Display

    ERIC Educational Resources Information Center

    Nagasawa, Yoshinori; Demura, Shinichi

    2010-01-01

    This study examined age group and individual differences in controlled force exertion by emulating sinusoidal and quasi-random waveforms in 222 right-handed female adults aged 20 to 86 years. The subjects matched their submaximal grip strength by the dominant hand to changing demand values displayed as either a sinusoidal or a quasi-random…

  7. Expression of ABH blood group antigens, Ulex europaeus agglutinin I, and type IV collagen in the sinusoids of hepatocellular carcinoma.

    PubMed

    Terada, T; Nakanuma, Y

    1991-01-01

    The expression of blood group antigens (A, B, H, Lewis(a) and Lewis(b)), Ulex europaeus agglutinin I (UEA-I), factor VIII-related antigen, and type IV collagen on the sinusoids was examined immunohistochemically in 15 cases of hepatocellular carcinomas (HCC), 11 cases of cirrhosis, 12 cases of chronic active hepatitis, and in a control sample of 16 normal livers. Sinusoidal endothelial cells of HCC characteristically showed a diffuse and strong immunoreactivity to ABH blood group antigens in the specimen with a comparable ABO blood group. The sinusoidal endothelial cells were also diffusely and strongly positive for UEA-I receptors. In contrast, in cirrhosis and chronic active hepatitis a few sinusoidal endothelial cells were positive for ABH blood group antigens and UEA-I receptors. In normal livers, only a few sinusoidal endothelial cells were positive for ABH blood group antigens and UEA-1 receptors. Tests for factor VIII-related antigen and Lewis blood group antigens were almost negative on sinusoidal endothelial cells. Although type IV collagen was distributed diffusely in the space of Disse in these four groups, its expression was strongest in HCC. Blood vessels of portal tracts and fibrous septa were positive for ABH blood group antigens, UEA-1 receptors, factor VIII-related antigen, and type IV collagen, but negative for Lewis blood group antigens. These findings suggest that some sinusoidal endothelial cells undergo "capillarization" in cirrhosis and chronic active hepatitis, and that the majority of sinusoidal endothelial cells of HCC have phenotypic characteristics of capillaries.

  8. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids

    PubMed Central

    McDonald, Braedon; McAvoy, Erin F.; Lam, Florence; Gill, Varinder; de la Motte, Carol; Savani, Rashmin C.; Kubes, Paul

    2008-01-01

    Adhesion molecules known to be important for neutrophil recruitment in many other organs are not involved in recruitment of neutrophils into the sinusoids of the liver. The prevailing view is that neutrophils become physically trapped in inflamed liver sinusoids. In this study, we used a biopanning approach to identify hyaluronan (HA) as disproportionately expressed in the liver versus other organs under both basal and inflammatory conditions. Spinning disk intravital microscopy revealed that constitutive HA expression was restricted to liver sinusoids. Blocking CD44–HA interactions reduced neutrophil adhesion in the sinusoids of endotoxemic mice, with no effect on rolling or adhesion in postsinusoidal venules. Neutrophil but not endothelial CD44 was required for adhesion in sinusoids, yet neutrophil CD44 avidity for HA did not increase significantly in endotoxemia. Instead, activation of CD44–HA engagement via qualitative modification of HA was demonstrated by a dramatic induction of serum-derived HA-associated protein in sinusoids in response to lipopolysaccharide (LPS). LPS-induced hepatic injury was significantly reduced by blocking CD44–HA interactions. Administration of anti-CD44 antibody 4 hours after LPS rapidly detached adherent neutrophils in sinusoids and improved sinusoidal perfusion in endotoxemic mice, revealing CD44 as a potential therapeutic target in systemic inflammatory responses involving the liver. PMID:18362172

  9. Influence of fog parameters on withstand voltage of contaminated insulators

    SciTech Connect

    Naito, K.; Ito, M.; Katsukawa, H.; Kawaguchi, T.; Suzuki, Y.

    1983-03-01

    This paper describes the investigation results of fog parameters which affect the withstand voltage of contaminated insulators. As a result, the guideline is proposed on fog conditions such as density, droplet size distribution, temperature rise in the fog room, and so on, basing upon the comparison between natural and artificial fog conditions and the relation between fog condition and power-frequency withstand voltage.

  10. Analytical model for the radio-frequency sheath.

    PubMed

    Czarnetzki, Uwe

    2013-12-01

    symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.

  11. Analytical model for the radio-frequency sheath

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe

    2013-12-01

    symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.

  12. Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz

    NASA Technical Reports Server (NTRS)

    Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.

    2011-01-01

    A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.

  13. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  14. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  15. Inner Voltage Clamping

    PubMed Central

    Feldberg, Stephen W.; Delgado, Alicia B.

    1978-01-01

    Ketterer, et al. (1971) have suggested that a combination of electrostatic and chemical interactions may cause hydrophobic ions absorbed within a bilayer lipid membrane to reside in two potential wells, each close to a membrane surface. The resulting two planes of charges would define three regions of membrane dielectric: two identical outer regions each between a plane of absorbed charges and the plane of closest approach of ions in the aqueous phase; and the inner region between the two planes of adsorbed charges. The theory describing charge translocation across the inner region is based on a simple three-capacitor model. A significant theoretical conclusion is that the difference between the voltage across the inner region, Vi, and the voltage across the entire membrane, Vm, is directly proportional to the amount of charge that has flowed in a voltage clamp experiment. We demonstrate that we can construct an “inner voltage clamp” that can maintain, with positive feedback, a constant inner voltage, Vi. The manifestation of proper feedback is that the clamp current (after a voltage step) will exhibit pure (i.e., single time-constant) exponential decay, because the voltage dependent rate constants governing translocation will be independent of time. The “pureness” of the exponential is maximized when the standard deviation of the least-square fit of the appropriate exponential equation to the experimental data is minimized. The concomitant feedback is directly related to the capacitances of the inner and outer membrane regions, Ci and Co. Experimental results with tetraphenylborate ion adsorbed in bacterial phosphatidylethanolamine/n-decane bilayers indicate Ci ∼ 5 · 10-7F/cm2 and Co ≈ 5 · 10-5F/cm2. PMID:620078

  16. High-Voltage Digital-To-Analog Converter

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.

    1990-01-01

    High-voltage 10-bit digital-to-analog converter operates under computer control to put out voltages up to 500 V at currents up to 35 mA. Circuit includes high-voltage power supply used to generate high-voltage square wave at frequency set by computer at value between 0.2 Hz and 10 Hz. Used to drive 0.02-microfarad, 1-kV capacitor at slewing rate of 1 V/microsecond to provide signal for robotic imaging system.

  17. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube

    SciTech Connect

    Sohbatzadeh, Farshad; Omran, Azadeh Valinataj

    2014-11-15

    In this work, we developed transporting atmospheric pressure cold plasma using single electrode configuration through a sub-millimetre flexible dielectric tube beyond 100 cm. It was shown that the waveform of the applied high voltage is essential for controlling upstream and downstream plasma inside the tube. In this regard, sawtooth waveform enabled the transport of plasma with less applied high voltage compared to sinusoidal and pulsed form voltages. A cold plasma string as long as 130 cm was obtained by only 4 kV peak-to-peak sawtooth high voltage waveform. Optical emission spectroscopy revealed that reactive chemical species, such as atomic oxygen and hydroxyl, are generated at the tube exit. The effect of tube diameter on the transported plasma was also examined: the smaller the diameter, the higher the applied voltage. The device is likely to be used for sterilization, decontamination, and therapeutic endoscopy as already suggested by other groups in recent past years.

  18. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  19. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  20. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  1. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  2. High voltage coaxial switch

    DOEpatents

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  3. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  4. Voltage Regulators for Photovoltaic Systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  5. Stable Josephson reference voltages between 0. 1 and 1. 3 V for high-precision voltage standards

    SciTech Connect

    Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J.H.; Vollmer, E.

    1985-12-01

    A new series array of 1440 Josephson tunnel junctions has been developed and tested as a reference voltage standard. It yields microwave induced quantized voltage steps up to 1.3 V. The steps are usually stable for more than 5 h with a microwave driving frequency of either 70 or 90 GHz. A high-resolution comparison of a constant voltage step at the 1-V level with the electromotive force of a saturated Weston cell is described. The comparison shows that the step voltage is constant to within +- 1 nV over the full step width.

  6. Stable Josephson reference voltages between 0.1 and 1.3 V for high precision voltage standards

    NASA Astrophysics Data System (ADS)

    Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J. H.; Vollmer, E.

    1985-12-01

    A new series array of 1440 Josephson tunnel junctions has been developed and tested as a reference voltage standard. It yields microwave induced quantized voltage steps up to 1.3 V. The steps are usually stable for more than 5 h with a microwave driving frequency of either 70 or 90 GHz. A high-resolution comparison of a constant voltage step at the 1-V level with the electromotive force of a saturated Weston cell is described. The comparison shows that the step voltage is constant to within + or - 1 nV over the full step width.

  7. Electro-optic control of a PPLN-unpoled LiNbO3 boundary for low-voltage Q switching of an intracavity frequency-doubled Nd3+:YVO4 laser.

    PubMed

    Torregrosa, A J; Maestre, H; Fernández-Pousa, C R; Pereda, J A; Capmany, J

    2009-08-01

    We present a simple technique to integrate an electro-optic Q switch in a periodically poled bulk lithium niobate crystal bounded by two unpoled (monodomain) regions. The technique exploits the high sensitivity to low applied electric fields of the total internal reflection condition in the periodic poled-unpoled boundary for the small grazing incidence angles associated with the diffraction of a focused Gaussian beam that propagates in the periodically poled region with its axis parallel to the boundary. When the arrangement is placed intracavity to a 1064 nm diode-pumped Nd(3+):YVO(4) laser, it performs simultaneously as a Q switch and as a second-harmonic generator, with Q switching starting at applied voltages as low as 1 V over a 500 microm thickness and with no additional optical elements.

  8. Geomagnetism and induced voltage

    NASA Astrophysics Data System (ADS)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-07-01

    Introductory physics laboratories have seen an influx of conceptual integrated science over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it is initiated by the change in the magnetic flux due to the Earth's magnetic field and movement. This simple and enjoyable experiment will demonstrate how basic concepts in physics and geology can help us think about possible health effects due to the induced voltage.

  9. Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends.

    PubMed

    Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F

    2017-01-15

    We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.

  10. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation.

    PubMed

    Nan, Nan; Wang, Xiangzhao; Bu, Peng; Li, Zhongliang; Guo, Xin; Chen, Yan; Wang, Xuan; Yuan, Fenghua; Sasaki, Osami

    2014-04-20

    A novel full-range Fourier domain Doppler optical coherence tomography (full-range FD-DOCT) using sinusoidal phase modulation for B-M scan is proposed. In this sinusoidal B-M scan, zero optical path difference (OPD) position does not move corresponding to lateral scanning points in contrast to linear B-M scan. Since high phase sensitivity arises around the zero OPD position, the proposed full-range FD-DOCT can achieve easily high velocity sensitivity without mirror image around the zero OPD position. Velocity sensitivity dependent on the OPD and the interval of scanning points is examined, and flow velocity detection capability is verified through Doppler imaging of a flow phantom and an in vivo biological sample.

  11. Frequentist model comparison tests of sinusoidal variations in measurements of Newton's gravitational constant

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu

    2016-07-01

    In 2015, Anderson et al. (EPL, 110 (2015) 10002) have claimed to find evidence for periodic sinusoidal variations (period = 5.9 years) in measurements of Newton's gravitational constant. These claims have been disputed by Pitkin (EPL, 111 (2015) 30002). Using the Bayesian model comparison, he argues that a model with an unknown Gaussian noise component is favored over any periodic variations by more than e 30. We re-examine the claims of Anderson et al. using frequentist model comparison tests, both with and without errors in the measurement times. Our findings lend support to Pitkin's claim that a constant term along with an unknown systematic offset provides a better fit to the measurements of Newton's constant, compared to any sinusoidal variations.

  12. Differential influence of sinusoidal and noisy inputs on synaptic connections in a network with STDP

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Schuster, H. G.; Ngo, H.-V. V.; Mölle, M.; Born, J.

    2012-05-01

    We hypothesize that the type of cortical network activation influences synaptic connectivity in the network, eventually expressed in an altered responsiveness to external stimuli. Our predictions are based on a time discrete canonical model of spike-time-dependent plasticity. The results show that, at a given synaptic connection strength in the network, sinusoidal input to the network can decrease synaptic potentiation whereas uncorrelated noise increases synaptic potentiation, implying that these opposing effects manifest themselves in respective decreases and increases of the network response to an external stimulus. These predictions are in qualitative agreement with visually evoked responses obtained in humans after 9 hour periods of visual deprivation (used to increase sinusoidal EEG alpha-activity in cortical networks) or normal daytime vision (as an approximate of noise input).

  13. Influence of ELF sinusoidal electromagnetic fields on proliferation and metabolite yield of fungi.

    PubMed

    Berg, Albrecht; Berg, Hermann

    2006-01-01

    The response of mycelium proliferation in 12 strains of fungi were tested by sinusoidal ELF 50 Hz electromagnetic field treatment in the range B = 0.6-10 mT over 10 days. The ratio of experiment/control indicated three types of proliferation changes: a) no significant change, b) a strong decrease down to E/C = 0.2, c) a maximization of mycelium diameter by treatment at 5-7 mT. According to these results, effects can be produced noninvasively by varying either magnetic intensities or time of treatment. As yet, systematic bioelectromagnetic research using sinusoidal electromagnetic fields (SEMF)-on fermentation of fungi is still in its initial stages.

  14. Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche

    SciTech Connect

    Kubota, Yoshiaki; Takubo, Keiyo; Suda, Toshio

    2008-02-08

    In response to changing signals, quiescent hematopoietic stem cells (HSCs) can be induced to an activated cycling state and provide multi-lineage hematopoietic cells to the whole body via blood vessels. However, the precise localization of quiescent HSCs in bone marrow microenvironment is not fully characterized. Here, we performed whole-mount immunostaining of bone marrow and found that BrdU label-retaining cells (LRCs) definitively reside in the sinusoidal hypoxic zone distant from the 'vascular niche'. Although LRCs expressed very low level of a well-known HSC marker, c-kit in normal circumstances, myeloablation by 5-FU treatment caused LRCs to abundantly express c-kit and proliferate actively. These results demonstrate that bone marrow LRCs reside in the sinusoidal hypoxic niche, and function as a regenerative cell pool of HSCs.

  15. Sinusoidal rotatory chair system by an auto-tuning fuzzy PID controller

    SciTech Connect

    Park, H.A.; Cha, I.S.; Baek, H.L.

    1995-12-31

    This paper presents DC servo motor speed control characteristics by fuzzy logic controller and considers position following control response with controller. A sinusoidal rotatory chair system using an auto tuning fuzzy PID control was designed to evaluate the vestibular function. Then the system is investigated for the effects of change by the fuzziness of fuzzy variable. If this system is supported by a channel, it is considered for application in industry of multi joint robot and precision parallel driving.

  16. 15th International Symposium on Cells of the Hepatic Sinusoid, 2010.

    PubMed

    DeLeve, Laurie D; Jaeschke, Hartmut; Kalra, Vijay K; Asahina, Kinji; Brenner, David A; Tsukamoto, Hidekazu

    2011-07-01

    This is a meeting report of the presentations given at the 15th International Symposium on Cells of the Hepatic Sinusoid, held in 2010. The areas covered include the contributions of the various liver cell populations to liver disease, molecular and cellular targets involved in steatohepatitis, hepatic fibrosis and cancer and regenerative medicine. In addition to a review of the science presented at the meeting, this report provides references to recent literature on the topics covered at the meeting.

  17. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    SciTech Connect

    Suzuki, Shingo; Namekata, Naoto Inoue, Shuichiro; Tsujino, Kenji

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  18. Application of a Notch Digital Filter to Elimination of Sinusoidal Disturbances from Helicopter Flight Data.

    DTIC Science & Technology

    1986-04-01

    disturbances. An optimal Kalman filtering approach was found to be impractical [2]. However, additional research showed that the .. optimal filter...Evans, R.J. - "Application of Fast Fourier Transforms to Sinusoidal Disturbance Rejection and its -. , Relationship to Kalman Filtering". University of...1206 .......... F% .9 REQUEHCY Hz Fiue9 Feunc epneo Csae oc Filtr fo ALPA=0975 nd d-0.1 I. %.0. .2

  19. [The sequential use of local vacuum magnetotherapy and papaverine electrophoresis with sinusoidal modulated currents in impotence].

    PubMed

    Karpukhin, I V; Bogomol'nyĭ, V A

    1997-01-01

    105 patients with chronic nonspecific prostatitis were examined and treated with papaverin electrophoresis using sinusoidal modulated currents (SMC) and local vacuum magnetotherapy (LVMT). Papaverin SMC electrophoresis and LVMT stimulated cavernous circulation. The highest stimulation was achieved at successive use of LVMT and the electrophoresis. LVMT followed by the electrophoresis maintained good cavernous circulation for 5-6 hours after the procedure in the course of which several spontaneous erections were observed.

  20. Double sinusoidal phase-modulating distributed-Bragg-reflector laser-diode interferometer for distance measurement.

    PubMed

    Suzuki, Takamasa; Suda, Hiromi; Sasaki, Osami

    2003-01-01

    A previously proposed double sinusoidal phase-modulating (DSPM) laser-diode interferometer measures distances larger than a half-wavelength by detecting modulation depth. Although it requires a vibrating mirror to provide the second modulation to the interference signal, such vibrations naturally affect measurement accuracy. We propose a static-type DSPM laser-diode interferometer that uses no mechanical modulation. Our experimental results indicate a measurement error of +/- 1.6 microm.

  1. Experimental Results: Detection and Tracking of Low SNR Sinusoids Using Real-Time LMS and RLS Lattice Adaptive Line Enhancers.

    DTIC Science & Technology

    1991-08-01

    DETECTION AND TRACKING OF LOW SNR SINUSOIDS USING REAL-TIMNE LMS AND RI S LATTIICE, ADAPTIVE LINE PR: SSWh ENHANCRS RE: 0300000liN 6 AIJTHCRISI WVl: D68...RESULTS: DETECTION AND TRACKING OF LOW SNR SINUSOIDS USING REAL-TIME LMS AND RLS LATTICE ADAPTIVE LINE ENHANCERS i f. Terence R. Albert, Hana Abusalem...obtained from a real-time custom hardware SNR sinusoids and filter parameters such as system using 32-bit IEEE floating point filter length, and adaption

  2. Robust audio watermark method using sinusoid patterns based on pseudo-random sequences

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Kobayashi, Yoshiyuki; Sawato, Shusaku; Inoue, Akira

    2003-06-01

    In recent years, the spread spectrum watermarking technology has become the most promising technique that not only widely used for still image and video watermarking, but also used for audio watermarking. However, some technique problems such as requiring psycho-acoustic shaping used for reducing audible noise have greatly limited the utility of spread spectrum watermarking technology in audio watermarking. In this paper, we propose a novel audio watermarking method using spread spectrum watermarking technology by which we can embed watermark audio signals inaudibly with a robust to a wide range of unintended and intended attacks. In proposed method, the watermark is represented by sinusoidal patterns consisting of sinusoids with the phase-modulated by the elements of pseudo-random sequence. We theoretically and experimentally confirmed that the sinusoidal patterns based on pseudo-random sequences keep the same correlation property of pseudo-random sequences and have the characteristics of high robustness with less noise, being easy to manipulate, and without requirement of psycho-acoustic shaping. The watermark detection is done by blind detection and the effectiveness of proposed method have been certificated by the test of STEP2001.

  3. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  4. Early effect of a single intravenous injection of ethanol on hepatic sinusoidal endothelial fenestrae in rabbits

    PubMed Central

    Jacobs, Frank; Wisse, Eddie; De Geest, Bart

    2009-01-01

    Background It has been postulated that ethanol affects hepatic sinusoidal and perisinusoidal cells. In the current experimental study, we investigated the early effect of a single intravenous dose of ethanol on the diameter of liver sinusoidal endothelial fenestrae in New Zealand White rabbits. The diameter of fenestrae in these rabbits is similar to the diameter found in humans with healthy livers. The effect of ethanol on the size of fenestrae was studied using transmission electron microscopy, because plastic embedding provides true measures for the diameter of fenestrae. Results After intravenous administration of a single dose of 0.75 g/kg, ethanol concentration peaked at 1.1 ± 0.10 g/l at ten minutes after injection. Compared to control rabbits (103 ± 1.1 nm; n = 8), the average diameter of fenestrae in ethanol-injected rabbits determined at 10 minutes after injection was significantly (p < 0.01) smaller (96 ± 2.2 nm; n = 5). Detailed analysis of distribution histograms of the diameters of fenestrae showed that the effect of ethanol was highly homogeneous. Conclusion A decrease of the diameter of fenestrae 10 minutes after ethanol administration is likely the earliest morphological alteration induced by ethanol in the liver and underscores the potential role of liver sinusoidal endothelial cells in alcoholic liver injury. PMID:19594919

  5. Propagation of Sinusoidally-Corrugated Shock Fronts of Laser-Supported Detonations

    NASA Astrophysics Data System (ADS)

    Honda, T.; Kawaguchi, A.; Hanta, Y.; Susa, A.; Namba, S.; Johzaki, T.; Endo, T.; Shiraga, H.; Shigemori, K.; Koga, M.; Nagatomo, H.

    The behavior of sinusoidally-rippled shock fronts is a fundamental research topic in the dynamics of shock waves [1]. The Whitham's ray-shock theory, which is sometimes called the geometrical-shock-dynamics (GSD) theory, is known as a simple method for analyzing the behavior of a non-planar shock front. In this theory, narrow ray tubes corresponding to the light rays in the geometrical optics are placed perpendicularly to the every portions of a non-planar shock front, and the evolution of the shock front is calculated by tracking the shock front in each ray tube sequentially. When the behavior of an inert sinusoidally-rippled shock front is analyzed by the GSD theory and the Chester-Chisnell-Whitham's (CCW's) A-M relationship [2], where A is the cross-sectional area of a ray tube and M is the propagation Mach number of the shock wave in the ray tube, the amplitude of the shock-front ripple oscillates as the shock wave propagates [3]. Actually, the behavior of an inert sinusoidally-rippled shock front is influenced by the fluid motion in the shock-compressed region, and the amplitude of the shock-front ripple shows damped oscillation as the shock wave propagates [1,3,4,5].

  6. Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines.

    PubMed

    Huang, Lingzhen; Dong, Liang; Chen, Yantian; Qi, Hanshi; Xiao, Dengming

    2006-01-01

    Low frequency magnetic fields have previously been shown to affect cell functions. In this article, the effects of 20 mT, 50 Hz sinusoidal magnetic field on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines (HL-60 and SK-Hep-1) were investigated. Inhibition of cell growth was observed. On the other hand, the exposure also increased the Na+, K+ ion concentration and osmolarity in cell supernatant compared to the control group. To our knowledge, this is the first study on cancer cells where magnetic fields affect osmolarity in cell supernatant. In addition, a model of cells exposed to the oscillating magnetic field is described as well as the characteristics of ions in and out of cells. The experimental data appears to be consistent with the theoretical analysis. The results are also discussed in terms of the relationships among cell growth, ion concentration, and osmolarity. Magnetic field inhibitions of cell growth in vitro may relate to changes in cell ion concentration and osmolarity.

  7. Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation.

    PubMed

    Ledda, Mario; D'Emilia, Enrico; Giuliani, Livio; Marchese, Rodolfo; Foletti, Alberto; Grimaldi, Settimio; Lisi, Antonella

    2015-02-01

    In vivo control of osteoblast differentiation is an important process needed to maintain the continuous supply of mature osteoblast cells for growth, repair, and remodeling of bones. The regulation of this process has also an important and significant impact on the clinical strategies and future applications of cell therapy. In this article, we studied the effect of nonpulsed sinusoidal electromagnetic field radiation tuned at calcium-ion cyclotron frequency of 50 Hz exposure treatment for bone differentiation of human mesenchymal stem cells (hMSCs) alone or in synergy with dexamethasone, their canonical chemical differentiation agent. Five days of continuous exposure to calcium-ion cyclotron resonance affect hMSC proliferation, morphology, and cytoskeletal actin reorganization. By quantitative real-time polymerase chain reaction, we also observed an increase of osteoblast differentiation marker expression such as Runx2, alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OPN) together with the osteoprotegerin mRNA modulation. Moreover, in these cells, the increase of the protein expression of OPN and ALP was also demonstrated. These results demonstrate bone commitment of hMSCs through a noninvasive and biocompatible differentiating physical agent treatment and highlight possible applications in new regenerative medicine protocols.

  8. Sinusoidal Coding.

    DTIC Science & Technology

    1995-01-01

    then made the filter bank pitch-adaptive thus ensuring roughly one sine wave per filter . The analysis in these systems does not explicitly model and...estimate the sine- wave components, but rather views them as outputs of a bank of uniformly-spaced bandpass filters . The synthesis waveform can be...viewed as a sum of the modified outputs of this filter bank . Although speech of good quality has reportedly been synthesized using these techniques

  9. Building Sinusoids

    ERIC Educational Resources Information Center

    Landers, Mara G.

    2013-01-01

    In this article, the author describes the development and implementation of a measurement-based group activity designed to support students in understanding the connection between angle magnitude and the shape of the sine function. She explains that the benefit of this activity is that it allows students to build their trigonometric knowledge…

  10. Geomagnetism and Induced Voltage

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  11. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  12. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  13. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  14. Basic study of transient breakdown voltage in solid dielectric cables

    NASA Astrophysics Data System (ADS)

    Bahder, G.; Sosnowski, M.; Katz, C.

    1980-09-01

    A comprehensive review of the technical and scientific publications relating to crosslinked polyethylene (XLPE) and ethylene propylene rubber (EPR) insulated cables revealed that there is very little known with respect to the life expectancy, the final factory voltage test background and the mechanism of voltage breakdown of these cables. A new methodology for the investigation of breakdown voltages of XLPE and EPR insulated cables was developed which is based on the investigation of breakdown voltages at various voltage transients such as unipolarity pulses and dual-polarity pulses, and a.c. voltage at power and high frequency. Also, a new approach to statistical testing was developed which allows one to establish a correlation among the breakdown voltages obtained with various voltage transients. Finally, a method for the determination of threshold voltage regardless of the magnitude of apparent charge was developed. A model of breakdown and electrical aging of XLPE and EPR insulated cables was developed as well as life expectancy characteristics for high voltage stress XLPE insulated cables operated in a dry environment at room temperature and at 900 C.

  15. Comparison between habituation of the cat vestibulo-ocular reflex by velocity steps and sinusoidal vestibular stimulation in the dark.

    PubMed

    Clément, Gilles; Flandrin, Jean-Marc; Courjon, Jean-Hubert

    2002-01-01

    Changes in the horizontal vestibulo-ocular reflex (VOR) in darkness were investigated in naive cats during: (1) repeated sessions of angular velocity steps, (2) one continuous 1-h session of sinusoidal oscillations at 0.01, 0.02, 0.04, or 0.12 Hz, and (3) repeated sessions of 1-h sinusoidal oscillations at 0.02 and 0.04 Hz. Before and after each vestibular training, the VOR response parameters elicited by both velocity steps and sinusoidal oscillations were measured in order to evaluate the transfer of habituation from one stimulus to the other. After training with velocity steps, the amplitude and duration of the VOR to velocity steps decreased by about 67% and 52%, respectively. This vestibular habituation transferred to the VOR response generated by sinusoidal oscillations, since a decrease in VOR gain was observed at 0.02 and 0.04 Hz, and an increase in phase lead was observed at 0.02, 0.04, and 0.08 Hz. After 1 h exposure to sinusoidal oscillations, the VOR gain was only reduced by 21-28%, whereas VOR phase lead decreased. The same changes were observed during subsequent sessions, with no retention of the response decrements from one session to the next. At the end of sinusoidal training, the amplitude of the VOR generated by velocity steps was slightly altered. After sinusoidal training, the weak changes in the VOR gain accompanied by a decrease in the VOR phase lead, and the absence of retention of these effects from one session to the next, suggest these changes are not characteristics of a vestibular habituation. Previous reports of vestibular habituation induced by repeated sinusoidal oscillations may be confounded by the fact that the angular velocity steps used for quantifying the effects may have been responsible for this habituation.

  16. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  17. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  18. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  19. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  20. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  1. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  2. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  3. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  4. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  5. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  6. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  7. Reliability of utricular function testing sinusoidal translation profile during unilateral centrifugation.

    PubMed

    Buytaert, K I; Vanspauwen, R; Van de Heyning, P H; Wuyts, F L

    2010-01-01

    The unilateral centrifugation test is one of the few vestibular tests that evaluate the utricles side by side. During this test, a subject is rotated about an earth vertical axis at high rotation speeds (e.g. 400 degrees/s) and translated sideways along the interaural axis to align the axis of rotation consecutively with the right and the left utricle. The combined rotation and translation induces ocular counter rolling (OCR), which is measured using three-dimensional video-oculography. Recently, a new model has been proposed to analyse the OCR. The model is based on contributions from both the semicircular canals and the utricles. Concomitant with the new model a new stimulation profile using a sinusoidal translation profile during the unilateral centrifugation has been introduced [1]. The current study presents the test-retest reliability as well as the robustness of the new stimulation method, based on data of 67 healthy subjects. Test-retest reliability was based on repeated measurements of a group of subjects. To test the robustness of the new sinusoidal translation paradigm, we investigated the effect of a different amplitude of the sinusoidal translation (6 cm instead of 4 cm) and of an offset in translation (from -3 to +5 cm, instead of from -4 to +4 cm) on the parameters. Several statistical measures were used to reflect the reliability: intraclass correlation coefficient (ICC), the "coefficient of variation of the method error" and the "minimal difference" (MD). All relevant variables from the physiological model for the OCR induced by unilateral centrifugation show a good to excellent reliability during the test-retest study and the relevant parameters remain unaffected by the changes applied to the translation profile (p > 0.05) as predicted by the model. Additionally, all observed differences are smaller than the MD values calculated in the test-retest part of the study.

  8. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  9. Skin vascular response in the hand during sinusoidal exercise in physically trained subjects.

    PubMed

    Yamazaki, Fumio; Sone, Ryoko

    2003-09-01

    The effect of physical training on the cutaneous vascular response during transient exercise load is unclear. We determined the phase response and amplitude response of cutaneous vascular conductance (CVC) in the hand during sinusoidal exercise in endurance exercise-trained and untrained subjects. Subjects exercised on a cycle ergometer with a sinusoidal load for 32 min. The load variation ranged from 10% [23 (1) W in the trained group, 19 (1) W in the untrained group] to 60% [137 (4) W, 114 (6) W] of peak O(2) uptake, and five different time periods (1, 2, 4, 8, and 16 min) were selected. Skin blood flow in the dorsal hand and palm were monitored by laser-Doppler flowmetry. CVC was evaluated from the ratio of blood flow to mean arterial pressure. During sinusoidal exercise, the amplitude of CVC was smaller in the dorsal hand than palm for shorter periods (1, 2, and 4 min) ( P<0.05). The phase lag of CVC was smaller in the dorsal hand than palm for longer periods (8 and 16 min) ( P<0.05). The amplitude response did not differ significantly between the two groups. The phase lag of CVC in the dorsal hand ( P<0.05) and palm ( P=0.06) was larger in the trained group than untrained group. These findings suggest that glabrous and nonglabrous skin vascular responses in the hand differ during transient exercise load, and physically trained subjects show a slower vascular response in the two skin areas to exercise stimulation than do untrained subjects.

  10. Regular structures in 5CB liquid crystals under the joint action of ac and dc voltages

    NASA Astrophysics Data System (ADS)

    Aguirre, Luis E.; Anoardo, Esteban; Éber, Nándor; Buka, Ágnes

    2012-04-01

    A nematic liquid crystal with high, positive dielectric anisotropy (5CB) has been studied under the influence of the combined action of a dc and an ac electric field. Broad frequency, voltage, and cell thickness ranges were considered. Pattern morphologies were identified; the thresholds and critical wave numbers were measured and analyzed as a function of frequency, dc-to-ac voltage ratio, and thickness. The current-voltage characteristics were simultaneously detected.

  11. Bioresponses in men after repeated exposures to single and simultaneous sinusoidal or stochastic whole body vibrations of varying bandwidths and noise.

    PubMed

    Manninen, O

    1986-01-01

    This study deals with the changes in temporary hearing threshold (TTS2), upright body posture sway amplitudes in the X and Y direction, heart rate (HR), R-wave amplitude (RWA), systolic (SBP) and diastolic (DBP) blood pressure, pulse pressure (PP) and the index characterizing haemodynamic activity (HDI), when the subjects were exposed to noise alone, to vibrations alone or to simultaneous noise and vibrations. The experiments were carried out in an exposure chamber and the number of exposure combinations was 12. Seven healthy, male students volunteered as subjects, making a total number of 84 experiments. For each person the experiment consisted of a 30-min control period, five consecutive 16-min exposures, between which there was a 4-min measuring interval, and a 15-min recovery period. The noise was broadband (bandwidth 0.2-16.0 kHz) A-weighted (white) noise. The noise categories were: (1) no noise and (2) noise with an intensity of 90 dBA. The categories of low-frequency whole body vibration in the direction of the Z-axis were: (1) vibration within the range 4.4-5.6 Hz, (2) vibration within the range 2.8-5.6 Hz, (3) vibration within the range 2.8-11.2 Hz, (4) vibration within the range 1.4-11.2 Hz and (5) sinusoidal vibration with a frequency of 5 Hz. The (rms) acceleration in all the vibration models was 2.12 m/s2. The results showed that the TTS2 values at 4 and 6 kHz increased as a result of simultaneous exposure to noise and vibration significantly more than as a result of exposure to noise alone. The TTS2 values increased more intensely during the first 16-min exposure. The means of the variances in the amplitudes of body upright posture sway changed not only after exposures to vibration alone, but also after exposure to noise alone. The means of the sway variances in the X and Y directions at 0.1 Hz and within the range 0.06 to 2.00 Hz increased only when the vibration in the noise-vibration combination was sinusoidal. The changes in the heart rate, R

  12. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    NASA Technical Reports Server (NTRS)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  13. Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Quan, C.; Zhu, R.; Tay, C. J.

    2012-08-01

    Digital sinusoidal phase-shifting fringe projection profilometry (DSPFPP) is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. However, a highly accurate profile is often hindered by nonlinear response, color crosstalk and imbalance of a pair of digital projector and CCD/CMOS camera. In this paper, several phase error correction methods, such as Look-Up-Table (LUT) compensation, intensity correction, gamma correction, LUT-based hybrid method and blind phase error suppression for gray and color-encoded DSPFPP are described. Experimental results are also demonstrated to evaluate the effectiveness of each method.

  14. Radio frequency strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Jr., Milford S. (Inventor)

    1989-01-01

    A radio frequency strain monitor includes a voltage controlled oscillator for generating an oscillating signal that is input into a propagation path. The propagation path is preferably bonded to the surface of a structure to be monitored and produces a propagated signal. A phase difference between the oscillating and propagated signals is detected and maintained at a substantially constant value which is preferably a multiple of 90.degree. by changing the frequency of the oscillating signal. Any change in frequency of the oscillating signal provides an indication of strain in the structure to which the propagation path is bonded.

  15. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  16. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  17. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  18. Excitation of voltage oscillations in an induction voltage adder

    NASA Astrophysics Data System (ADS)

    Bruner, Nichelle; Genoni, Thomas; Madrid, Elizabeth; Welch, Dale; Hahn, Kelly; Oliver, Bryan

    2009-07-01

    The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories’ Radiographic Integrated Test Stand (RITS), the Atomic Weapons Establishment’s planned Hydrus Facility, and the Naval Research Laboratory’s Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-in-cell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper.

  19. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  20. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  1. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  2. Optimum power and efficiency of piezoelectric vibration energy harvesters with sinusoidal and random vibrations

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Elfrink, R.; Jambunathan, M.; de Nooijer, C.; Wang, Z.; Rovers, M.; Vullers, R.; van Schaijk, R.

    2012-10-01

    Assuming a sinusoidal vibration as input, an inertial piezoelectric harvester designed for maximum efficiency of the electromechanical energy conversion does not always lead to maximum power generation. In this case, what can be gained by optimizing the efficiency of the device? Detailing an answer to this question is the backbone of this paper. It is shown that, while the maximum efficiency operating condition does not always lead to maximum power generation, it corresponds always to maximum power per square unit deflection of the piezoelectric harvester. This understanding allows better optimization of the generated power when the deflection of the device is limited by hard stops. This is illustrated by experimental measurements on vacuum-packaged MEMS harvesters based on AlN as piezoelectric material. The results obtained for a sinusoidal vibration are extended to random vibrations. In this case, we demonstrate that the optimum generated power is directly proportional to the efficiency of the harvester, thus answering the initial question. For both types of studied vibrations, simple closed-form formulas describing the generated power and efficiency in optimum operating conditions are elaborated. These formulas are based on parameters that are easily measured or modeled. Therefore, they are useful performance metrics for existing piezoelectric harvesters.

  3. Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kagawa, Y.

    2012-12-01

    In the balancing of a flexible rotor, insufficient damping for a rotor-bearing system may cause excessive vibrations in trial runs. In addition, conventional modal balancing methods are generally time-consuming because they try to balance the rotor one mode at a time. To overcome these issues, we developed a control system using multilayer piezoelectric actuators in order to suppress the vibration of a flexible rotor and to estimate its modal unbalances simultaneously. The H-infinity controller was designed to achieve robust performance for an uncertainty of the system, and its damping ability was examined in free and forced vibration tests. Large reductions were observed in the response near resonance. Then, steady-state responses of the system excited by sinusoidal forces were measured to investigate the estimation accuracy of sinusoidal external forces, and good agreement was observed between the estimated and the experimental results. Furthermore, it was demonstrated that feedforward plus feedback control using the estimated modal force significantly improved the performance of suppression of flexible shaft vibrations compared with simple feedback control.

  4. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    SciTech Connect

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis.

  5. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    NASA Astrophysics Data System (ADS)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  6. Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan-glycocalyx.

    PubMed

    Takei, Yoshiyuki; Maruyama, Atsushi; Ferdous, Anwarul; Nishimura, Yoshiya; Kawano, Sunao; Ikejima, Kenichi; Okumura, Shigetoshi; Asayama, Shoichiro; Nogawa, Masayuki; Hashimoto, Masao; Makino, Yoko; Kinoshita, Masahiko; Watanabe, Sumio; Akaike, Toshihiro; Lemasters, John J; Sato, Nobuhiro

    2004-04-01

    Liver sinusoidal endothelial cells (SECs) possess unique receptors that recognize and internalize hyaluronic acid (HA). To develop a system for targeting foreign DNA to SECs, comb-type polycations having HA side chains were prepared by coupling HA to poly(L-lysine) (PLL). The HA-grafted-PLL copolymer (PLL-g-HA) thus formed was mixed with DNA in 154 mM NaCl to form soluble nanoassociates bearing hydrated hyaluronate shells. Agarose gel retardation assays revealed selective interaction of the PLL backbone with DNA despite the presence of polyanionic HA side chains. To determine whether the PLL-g-HA/DNA complexes were recognized by SEC HA receptors in vivo, we injected Wistar rats i.v. via the tail vein with PLL-g-HA complexed to a beta-galactosidase expression plasmid (pSV beta-Gal) labeled with 32P. One hour postinjection, >90% of the injected radioactivity remained in the liver. Administration of the PLL-g-HA complexed to an FITC-labeled DNA revealed that the carrier-DNA complex was distributed exclusively in SECs. A large number of SECs expressing beta-galactosidase was detected along the sinusoidal lining after transfection with PLL-g-HA/pSV beta-Gal. Moreover, PLL-g-HA effectively stabilized DNA triplex formation. In conclusion, the new PLL-g-HA/DNA carrier system permits targeted transfer of exogenous genes selectively to the SECs.

  7. Biliary obstruction dissipates bioelectric sinusoidal-canalicular barrier without altering taurocholate uptake

    SciTech Connect

    Cotting, J.; Zysset, T.; Reichen, J.

    1989-02-01

    To study immediate events during extrahepatic cholestasis, we investigated the effect of short-term biliary obstruction on the bioelectrical sinusoidal-canalicular barrier in the rat using molecular weight-matched uncharged and negatively charged inert solute pairs. The bioelectrical barrier averaged -22 +/- 5 and -18 +/- 4 mV (NS) using the pair carboxy-/methoxyinulin and ferrocyanide/sucrose, respectively. After a 20-min biliary obstruction both decreased by 61 and 11%, respectively, but only the large molecular weight pair (the inulins) returned to base line after release of the obstruction. Inert solute clearances were increased after short biliary obstruction depending on molecular size and negative charge (ferrocyanide greater than sucrose greater than carboxyinulin greater than inulin), suggesting that both permeability and bioelectrical barriers were affected by obstruction. The hepatic extraction in vivo of a passively transported drug not excreted into bile (D-propranolol) was not affected by obstruction, whereas that of an actively transported drug (glycocholate) decreased from 66 +/- 8 to 41 +/- 20% during biliary obstruction (P less than 0.01). Unidirectional transfer of glycocholate was not affected by short-term biliary obstruction in the situ perfused rat liver; however, 2 min after (14C)glycocholate administration, increased return was observed in hepatic venous effluent in obstructed animals. Our findings demonstrate a loss of the bioelectrical barrier immediately after short-term biliary obstruction. Decreased hepatic extraction in the view of unaltered sinusoidal uptake demonstrates regurgitation of bile into blood during short-term biliary obstruction.

  8. Biliary obstruction dissipates bioelectric sinusoidal-canalicular barrier without altering taurocholate uptake.

    PubMed

    Cotting, J; Zysset, T; Reichen, J

    1989-02-01

    To study immediate events during extrahepatic cholestasis, we investigated the effect of short-term biliary obstruction on the bioelectrical sinusoidal-canalicular barrier in the rat using molecular weight-matched uncharged and negatively charged inert solute pairs. The bioelectrical barrier averaged -22 +/- 5 and -18 +/- 4 mV (NS) using the pair carboxy-/methoxyinulin and ferrocyanide/sucrose, respectively. After a 20-min biliary obstruction both decreased by 61 and 11%, respectively, but only the large molecular weight pair (the inulins) returned to base line after release of the obstruction. Inert solute clearances were increased after short biliary obstruction depending on molecular size and negative charge (ferrocyanide greater than sucrose greater than carboxyinulin greater than inulin), suggesting that both permeability and bioelectrical barriers were affected by obstruction. The hepatic extraction in vivo of a passively transported drug not excreted into bile (D-propranolol) was not affected by obstruction, whereas that of an actively transported drug (glycocholate) decreased from 66 +/- 8 to 41 +/- 20% during biliary obstruction (P less than 0.01). Unidirectional transfer of glycocholate was not affected by short-term biliary obstruction in the situ perfused rat liver; however, 2 min after [14C]glycocholate administration, increased return was observed in hepatic venous effluent in obstructed animals. Our findings demonstrate a loss of the bioelectrical barrier immediately after short-term biliary obstruction. Decreased hepatic extraction in the view of unaltered sinusoidal uptake demonstrates regurgitation of bile into blood during short-term biliary obstruction.

  9. Lensing Effects on the Brightness of SN Ia, When Using the Sinusoidal Potential.

    NASA Astrophysics Data System (ADS)

    Dadras, M. J.; Bartlett, D. F.; Motl, P.

    2004-05-01

    In this paper the effects of gravitational lensing of SN Ia are studied, for the case when the Newtonian potential is replaced by the sinusoidal potential (GM/r -> (GM cos[kr])/r). First we treat the point-mass case, then move on to the instance of a diffuse mass. As one might guess, with this new potential, the plot of the bending angle (α ) with respect to impact parameter (b) goes from dropping off as b-1, to having oscillations that die off as the b-1/2. This in turn will cause dramatic effects on magnification and brightness. In principle the value of the cosmological deceleration parameter (q0), can be determined by a measurement of the ratio of α to b. Wambsganss et al (1997) and Holz (1998) discussed the effects of weak gravitational lensing from large-scale structure on determining q0 within standard cosmology. Following their reasoning, we extend that work to the case of the sinusoidal potential.

  10. Primary sinusoidal lymphoma of the liver revealed by autoimmune hemolytic anemia.

    PubMed

    Pouderoux, P; Gris, J C; Pignodel, C; Joujoux, J M; Schved, J F; Balmes, J L

    1997-01-01

    Primary liver lymphomas usually present with the clinical picture of a liver tumor, and are characterized by a predominantly portal invasion by lymphoid cells of the B-cell phenotype. We report a case of primary sinusoidal lymphoma of the liver, in a 36 year-old male patient, revealed by homogeneous hepatosplenomegaly and infiltration of liver sinusoids by morphologically normal lymphocytes, without destruction of the parenchyma. Immunohistochemistry in paraffin-embedded tissue sections was positive for the pan T-cell marker MTI, weakly positive for UCHLI, and negative for CD3, and B-cell markers were negative; these findings were consistent with the diagnosis of T-cell lymphoma. The clinical, histological and immunological presentation of this lymphoma was similar to that of hepatosplenic gamma delta T-cell lymphoma. Autoimmune hemolytic anaemia preceded the lymphoma. Despite chemotherapy, the patient died 24 months after the initial presentation in the leukemic phase. A better understanding of this exceptional but characteristic entity is required for an accurate and early diagnosis.

  11. Long Term Maintenance of a Microfluidic 3-D Human Liver Sinusoid

    PubMed Central

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J.; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L.; Usta, O. Berk

    2016-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA’s initiative to replicate and replace chronic and acute drug testing in animals. For this purpose we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic), urea excretion (detoxification) was observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies. PMID:26152452

  12. Long-term maintenance of a microfluidic 3D human liver sinusoid.

    PubMed

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L; Usta, Osman Berk

    2016-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA's initiative to replicate and replace chronic and acute drug testing in animals. For this purpose, we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip, using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic) and urea excretion (detoxification) were observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies.

  13. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy.

    PubMed

    Shen, Yunyun; Xia, Ruohong; Jiang, Hengjun; Chen, Yanfeng; Hong, Ling; Yu, Yunxian; Xu, Zhengping; Zeng, Qunli

    2016-08-01

    As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.

  14. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum

    SciTech Connect

    Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; Karkhanis, V.; Ramaprabhu, P.

    2015-11-09

    Other work employed Richtmyer-Meshkov theory to describe the development of spikes and bubblesfrom shocked sinusoidal surfaces. Here, we discuss the effects of machining different two-dimensional shaped grooves in copper and examine the resulting flow of the material after being shocked into liquid on release. For these simulations, a high performance molecular dynamics code, SPaSM, was used with machined grooves of kh 0 = 1 and kh 0 = 1/8, where 2h 0 is the peak-to-valley height of the perturbation with wavelength λ, and k = 2π/λ. The surface morphologies studied include a Chevron, a Fly-Cut, a Square-Wave, and a Gaussian. Furthermore, we describe extensions to an existing ejecta source model that better captures the mass ejected from these surfaces. We also investigate the same profiles at length scales of order 1 cm for an idealized fluid equation of state using the FLASH continuum hydrodynamics code. Our findings indicate that the resulting mass can be scaled by the missing area of a sinusoidal curve with an effective wavelength, λeff , that has the same missing area. Finally, our extended ejecta mass formula works well for all the shapes considered and captures the corresponding time evolution and total mass.

  15. Focal Sinusoidal Obstruction Syndrome Caused by Oxaliplatin-Induced Chemotherapy: A Case Report

    PubMed Central

    Kawai, Takaharu; Yamazaki, Shintaro; Iwama, Atsuko; Higaki, Tokio; Sugitani, Masahiko; Takayama, Tadatoshi

    2016-01-01

    Introduction Sinusoidal obstruction syndrome (SOS) is a severe adverse event of long-term chemotherapy in patients with colorectal cancer. It usually develops as liver congestion due to diffuse microscopic obstruction in liver parenchyma. In contrast, it sometimes appears as a liver mass occurring with local parenchymal hemorrhaging, and is often misdiagnosed as liver metastasis. Case Presentation A 40-year-old woman with rectal cancer underwent high anterior resection and partial liver resection of segment 7 due to synchronous liver metastasis. She received oxaliplatin-based chemotherapy (mFOLFOX6) as adjuvant chemotherapy for 6 months. A 13-mm irregular low-echoic mass was detected by CT in segment 3 of the liver 12 months after the operation. The mass was again resected as a liver metastasis because it had increased in size. The pathological diagnosis was focal SOS, which showed sinusoidal dilation and congestion by hepatocyte trabeculae in the liver parenchyma. Conclusions Atypical irregular tumors should be considered as SOS when the patient has received oxaliplatin-based chemotherapy. A qualitative imaging modality diagnosis, such as with diffusion-weighted MRI, is superior to a morphological diagnosis in focal SOS. This imaging modality can prevent unnecessary operations. PMID:27822263

  16. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum

    DOE PAGES

    Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; ...

    2015-11-09

    Other work employed Richtmyer-Meshkov theory to describe the development of spikes and bubblesfrom shocked sinusoidal surfaces. Here, we discuss the effects of machining different two-dimensional shaped grooves in copper and examine the resulting flow of the material after being shocked into liquid on release. For these simulations, a high performance molecular dynamics code, SPaSM, was used with machined grooves of kh 0 = 1 and kh 0 = 1/8, where 2h 0 is the peak-to-valley height of the perturbation with wavelength λ, and k = 2π/λ. The surface morphologies studied include a Chevron, a Fly-Cut, a Square-Wave, and a Gaussian.more » Furthermore, we describe extensions to an existing ejecta source model that better captures the mass ejected from these surfaces. We also investigate the same profiles at length scales of order 1 cm for an idealized fluid equation of state using the FLASH continuum hydrodynamics code. Our findings indicate that the resulting mass can be scaled by the missing area of a sinusoidal curve with an effective wavelength, λeff , that has the same missing area. Finally, our extended ejecta mass formula works well for all the shapes considered and captures the corresponding time evolution and total mass.« less

  17. A Novel Modular Bioreactor to In Vitro Study the Hepatic Sinusoid

    PubMed Central

    Illa, Xavi; Vila, Sergi; Yeste, Jose; Peralta, Carmen; Gracia-Sancho, Jordi; Villa, Rosa

    2014-01-01

    We describe a unique, versatile bioreactor consisting of two plates and a modified commercial porous membrane suitable for in vitro analysis of the liver sinusoid. The modular bioreactor allows i) excellent control of the cell seeding process; ii) cell culture under controlled shear stress stimulus, and; iii) individual analysis of each cell type upon completion of the experiment. The advantages of the bioreactor detailed here are derived from the modification of a commercial porous membrane with an elastomeric wall specifically moulded in order to define the cell culture area, to act as a gasket that will fit into the bioreactor, and to provide improved mechanical robustness. The device presented herein has been designed to simulate the in vivo organization of a liver sinusoid and tested by co-culturing endothelial cells (EC) and hepatic stellate cells (HSC). The results show both an optimal morphology of the endothelial cells as well as an improvement in the phenotype of stellate cells, most probably due to paracrine factors released from endothelial cells. This device is proposed as a versatile, easy-to-use co-culture system that can be applied to biomedical research of vascular systems, including the liver. PMID:25375141

  18. Measurement and mathematical modelling of elastic and resistive lung mechanical properties studied at sinusoidal expiratory flow.

    PubMed

    Bitzén, Ulrika; Niklason, Lisbet; Göransson, Ingegerd; Jonson, Björn

    2010-11-01

    Elastic pressure/volume (P(el) /V) and elastic pressure/resistance (P(el) /R) diagrams reflect parenchymal and bronchial properties, respectively. The objective was to develop a method for determination and mathematical characterization of P(el) /V and P(el) /R relationships, simultaneously studied at sinusoidal flow-modulated vital capacity expirations in a body plethysmograph. Analysis was carried out by iterative parameter estimation based on a composite mathematical model describing a three-segment P(el) /V curve and a hyperbolic P(el) /R curve. The hypothesis was tested that the sigmoid P(el) /V curve is non-symmetric. Thirty healthy subjects were studied. The hypothesis of a non-symmetric P(el) /V curve was verified. Its upper volume asymptote was nearly equal to total lung capacity (TLC), indicating lung stiffness increasing at high lung volume as the main factor limiting TLC at health. The asymptotic minimal resistance of the hyperbolic P(el) /R relationship reflected lung size. A detailed description of both P(el) /V and P(el) /R relationships was simultaneously derived from sinusoidal flow-modulated vital capacity expirations. The nature of the P(el) /V curve merits the use of a non-symmetric P(el) /V model.

  19. Wetting of anisotropic sinusoidal surfaces—experimental and numerical study of directional spreading

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Bigerelle, M.; Kubiak, K. J.; Mathia, T. G.; Khatir, Z.; Anselme, K.

    2014-10-01

    Directional wettability, i.e. the variation of wetting properties, depending on the surface orientation, can be achieved by anisotropic surface texturing. A new high-precision process can produce homogeneous sinusoidal surfaces (in particular, parallel grooves) at the microscale, with a nanoscale residual roughness five orders of magnitude smaller than the texture features. Static wetting experiments have shown that this pattern, even with a very small aspect ratio, can induce a strong variation of the contact angle, depending on the direction of the observation. A comparison with numerical simulations (using Surface Evolver software) shows good agreement and could be used to predict fluid-solid interaction and droplet behaviour on textured surfaces. Two primary mechanisms of directional spreading of water droplets on textured stainless steel surface have been identified. The first one is the mechanical barrier created by the textured surface peaks; this limits spreading in a perpendicular direction to the surface anisotropy. The second one is the capillary action inside of the sinusoidal grooves, which accelerates spreading along the grooves. Spreading has been shown to depend strongly on the history of wetting and internal drop dynamics.

  20. The membrane potential waveform of bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency

    PubMed Central

    Tseng, Hua-an; Nadim, Farzan

    2010-01-01

    Many oscillatory networks involve neurons that exhibit intrinsic rhythmicity, but possess a large variety of voltage-gated currents which interact in a complex fashion making it difficult to determine which factors control frequency. Yet, these neurons often have preferred (resonance) frequencies that can be close to the network frequency. Because the preferred frequency results from the dynamics of ionic currents, it can be assumed to depend on parameters that determine the neuron’s oscillatory waveform shape. The pyloric network frequency in the crab Cancer borealis is correlated with the preferred frequency of its bursting pacemaker neurons AB and PD. We measure the preferred frequency of the PD neuron in voltage-clamp, which allows control of the oscillation voltage range and waveforms (sine waves and realistic oscillation waveforms), and showthat1) the preferred frequency depends on the voltage range of the oscillating voltage waveform; 2) the slope of the waveform near its peak has a strongly negative correlation with the preferred frequency; and 3) correlations between parameters of the PD neuron oscillation waveform and its preferred frequency can be used to predict shifts in the network frequency. As predicted by these results, dynamic clamp shifts of the upper or lower voltage limits of the PD neuron waveform during ongoing oscillations changed the network frequency, consistent with the predictions from the preferred frequency. These results show that the voltage waveform of oscillatory neurons can be predictive of their preferred frequency and thus the network oscillation frequency. PMID:20702710

  1. The membrane potential waveform of bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency.

    PubMed

    Tseng, Hua-an; Nadim, Farzan

    2010-08-11

    Many oscillatory networks involve neurons that exhibit intrinsic rhythmicity but possess a large variety of voltage-gated currents that interact in a complex fashion, making it difficult to determine which factors control frequency. Yet these neurons often have preferred (resonance) frequencies that can be close to the network frequency. Because the preferred frequency results from the dynamics of ionic currents, it can be assumed to depend on parameters that determine the neuron's oscillatory waveform shape. The pyloric network frequency in the crab Cancer borealis is correlated with the preferred frequency of its bursting pacemaker neurons anterior burster and pyloric dilator (PD). We measured the preferred frequency of the PD neuron in voltage clamp, which allows control of the oscillation voltage range and waveforms (sine waves and realistic oscillation waveforms), and showed that (1) the preferred frequency depends on the voltage range of the oscillating voltage waveform; (2) the slope of the waveform near its peak has a strongly negative correlation with the preferred frequency; and (3) correlations between parameters of the PD neuron oscillation waveform and its preferred frequency can be used to predict shifts in the network frequency. As predicted by these results, dynamic clamp shifts of the upper or lower voltage limits of the PD neuron waveform during ongoing oscillations changed the network frequency, consistent with the predictions from the preferred frequency. These results show that the voltage waveform of oscillatory neurons can be predictive of their preferred frequency and thus the network oscillation frequency.

  2. Conductance hysteresis in the voltage-dependent anion channel.

    PubMed

    Rappaport, Shay M; Teijido, Oscar; Hoogerheide, David P; Rostovtseva, Tatiana K; Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2015-09-01

    Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths.

  3. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  4. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    pump fluids with very precise control across membranes containing conical pores via the application of a symmetric sinusoidal voltage. The combination of pressure and asymmetric EOF can also provide a means to generate new nanopore electrical behaviors, including negative differential resistance (NDR), in which the current through a conical pore decreases with increasing driving force (applied voltage), similar to solid-state tunnel diodes. NDR results from a positive feedback mechanism between the ion distributions and EOF, yielding a true bistability in both fluid flow and electrical current at a critical applied voltage. Nanopore-based NDR is extremely sensitive to the surface charge near the nanopore opening, suggesting possible applications in chemical sensing.

  5. Transistor voltage comparator performs own sensing

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.

    1965-01-01

    Detection of the highest voltage input among a group of varying voltage inputs is accomplished by a transistorized voltage comparison circuit. The collector circuits of the transistors perform the sensing function. Input voltage levels are governed by the transistors.

  6. Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses

    NASA Astrophysics Data System (ADS)

    Nuij, P. W. J. M.; Bosgra, O. H.; Steinbuch, M.

    2006-11-01

    For high-precision motion systems, modelling and control design specifically oriented at friction effects is instrumental. The sinusoidal input describing function theory represents an approximative mathematical framework for analysing non-linear system behaviour. This theory, however, limits the description of the non-linear system behaviour to a quasi-linear amplitude-dependent relation between sinusoidal excitation and sinusoidal response. In this paper, an extension to higher-order describing functions is realised by introducing the concept of the harmonics generator. The resulting higher-order sinusoidal input describing functions (HOSIDFs) relate the magnitude and phase of the higher harmonics of the periodic response of the system to the magnitude and phase of a sinusoidal excitation. Based on this extension two techniques to measure HOSIDFs are presented. The first technique is FFT based. The second technique is based on IQ (in-phase/quadrature-phase) demodulation. In a simulation, the measurement techniques have been tested by comparing the simulation results to analytically derived results from a known (backlash) non-linearity. In a subsequent practical case study both techniques are used to measure the changes in dynamic behaviour as a function of drive level due to friction in an electric motor. Both methods prove successful for measuring HOSIDFs.

  7. Spatial frequency doubling - Retinal or central. [visual illusion

    NASA Technical Reports Server (NTRS)

    Richards, W.; Felton, T. B.

    1973-01-01

    When a wide field is sinusoidally modulated both in space and in time, the spatial frequency of the pattern will appear doubled at high rates of modulation. Kelly (1966) proposed that this illusion is due to temporal integration of the nonlinear brightness response of the visual system. The anatomical locus of this temporal integrator is uncertain, and could be subcortical. Results indicate that spatial frequency doubling follows binocular disparity detection and is thus a cortical phenomenon.

  8. Instantaneous frequency based newborn EEG seizure characterisation

    NASA Astrophysics Data System (ADS)

    Mesbah, Mostefa; O'Toole, John M.; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are better represented in the joint time-frequency domain than in either the time domain or the frequency domain. Characterising newborn EEG seizure nonstationarities helps to better understand their time-varying nature and, therefore, allow developing efficient signal processing methods for both modelling and seizure detection and classification. In this article, we used the instantaneous frequency (IF) extracted from a time-frequency distribution to characterise newborn EEG seizures. We fitted four frequency modulated (FM) models to the extracted IFs, namely a linear FM, a piecewise-linear FM, a sinusoidal FM, and a hyperbolic FM. Using a database of 30-s EEG seizure epochs acquired from 35 newborns, we were able to show that, depending on EEG channel, the sinusoidal and piecewise-linear FM models best fitted 80-98% of seizure epochs. To further characterise the EEG seizures, we calculated the mean frequency and frequency span of the extracted IFs. We showed that in the majority of the cases (>95%), the mean frequency resides in the 0.6-3 Hz band with a frequency span of 0.2-1 Hz. In terms of the frequency of occurrence of the four seizure models, the statistical analysis showed that there is no significant difference( p = 0.332) between the two hemispheres. The results also indicate that there is no significant differences between the two hemispheres in terms of the mean frequency ( p = 0.186) and the frequency span ( p = 0.302).

  9. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  10. High voltage feedthrough bushing

    DOEpatents

    Brucker, John P.

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  11. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  12. Comparative High Voltage Impulse Measurement

    PubMed Central

    FitzPatrick, Gerald J.; Kelley, Edward F.

    1996-01-01

    A facility has been developed for the determination of the ratio of pulse high voltage dividers over the range from 10 kV to 300 kV using comparative techniques with Kerr electro-optic voltage measurement systems and reference resistive voltage dividers. Pulse voltage ratios of test dividers can be determined with relative expanded uncertainties of 0.4 % (coverage factor k = 2 and thus a two standard deviation estimate) or less using the complementary resistive divider/Kerr cell reference systems. This paper describes the facility and specialized procedures used at NIST for the determination of test voltage divider ratios through comparative techniques. The error sources and special considerations in the construction and use of reference voltage dividers to minimize errors are discussed, and estimates of the measurement uncertainties are presented. PMID:27805083

  13. Distortion in the frequency demodulator using feedback.

    NASA Technical Reports Server (NTRS)

    Hoffman, E.; Schilling, D. L.

    1972-01-01

    The response of a frequency demodulator using feedback (FMFB) to a frequency modulated signal is analyzed. Canonical equations of operation are obtained. Harmonic distortion is calculated for the case of a sinusoidal modulating signal. Intermodulation distortion is calculated assuming a noise-like modulation. Design curves are presented. The special case of harmonic and intermodulation distortion in a discriminator is also presented. It is shown that the results obtained in this paper by treating the discriminator as a degenerate FMFB compare favorably with those obtained by other authors. However, the results presented here do not require digital computation.

  14. An expert system to analyze high frequency dependent data for the space shuttle main engine turbopumps

    NASA Technical Reports Server (NTRS)

    Garcia, Raul C., Jr.

    1987-01-01

    The prototype expert system ADDAMX identifies selected sinusoid frequencies from spectral data graphs as speed frequencies and harmonics from each turbopump, frequency feed through from one turbopump to another, frequencies generated by turbopump bearings, pseudo 3N for the phase 2 high pressure fuel turbopump, and electrical noise. ADDAMX does the analysis in an interactive or batch mode and the results can be displayed on the screen or hardcopy.

  15. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration.

    PubMed

    Patten, Daniel A; Wilson, Garrick K; Bailey, Dalan; Shaw, Robert K; Jalkanen, Sirpa; Salmi, Marko; Rot, Antal; Weston, Chris J; Adams, David H; Shetty, Shishir

    2017-01-01

    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs.

  16. Voltage induced mechanical/spin wave propagation over long distances

    NASA Astrophysics Data System (ADS)

    Chen, C.; Barra, A.; Mal, A.; Carman, G.; Sepulveda, A.

    2017-02-01

    We simulated the generation and propagation of spin waves (SWs) using two excitation methods, namely, magnetic field and voltage induced strain. A fully coupled non-linear magnetoelastic model, combining Landau-Lifshitz-Gilbert with elastodynamic equations, is used to study the propagation characteristics of SWs in magnetoelastic materials. Simulation results show that for excitation frequencies above ferromagnetic resonance (FMR), SWs excited by voltage induced strain propagate over longer distances compared to SWs excited by magnetic field. In addition, strain mediated SWs exhibit loss characteristics, which are relatively independent of the magnetic losses (Gilbert damping). Moreover, it is also shown that strain induced SWs can also be excited at frequencies below FMR.

  17. Fos Expression in Neurons of the Rat Vestibulo-Autonomic Pathway Activated by Sinusoidal Galvanic Vestibular Stimulation

    PubMed Central

    Holstein, Gay R.; Friedrich Jr., Victor L.; Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Yakushin, Sergei B.; Cohen, Bernard

    2012-01-01

    The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02–0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo

  18. Fiber-optic project-fringe interferometry with sinusoidal phase modulating system

    NASA Astrophysics Data System (ADS)

    Zhang, Fukai; Duan, Fajie; Lv, Changrong; Duan, Xiaojie; Bo, En; Feng, Fan

    2013-06-01

    A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach-Zehnder interferometer structure and Young's double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.

  19. Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Gui; Kim, Seunghwan

    2006-04-01

    Nervous systems under periodic stimuli display rich dynamical states including mode-locking and chaotic responses, which have been a subject of intense studies in neurodynamics. The bifurcation structure of the Hodgkin-Huxley neuron under sinusoidal stimulus is studied in detail. The mechanisms of the firing onset and rich firing dynamics are studied with the help of the codimension-2 bifurcations, which play the role of the organizing center for myriads of saddle-node, period-doubling, and inverse-flip bifurcations forming the boundaries of the complex mode-locking structure. This study provides a useful insight into the organization of similar bifurcation structures in excitable systems such as neurons under periodic forcing.

  20. Color two-dimensional barcode patterns for extra encrypting sinusoidal-function scrambled data

    NASA Astrophysics Data System (ADS)

    Yeh, Sheng Lih; Lin, Kuang Tsan; Lin, Shyh-Tsong

    2016-06-01

    Conventional two-dimensional (2-D) barcode patterns are printed with black and white squares to encode texts. A few papers have proposed special 2-D barcode patterns with extra encrypted data, but the security of extra encrypted data is not emphasized usually. Therefore, this paper proposes color 2-D barcode patterns composed of black, blue, white, and yellow subsquares to extra encrypt binary data with higher security. Because blue looks like black and yellow looks like white, a color 2-D barcode pattern performs like a conventional 2-D barcode pattern. On the other hand, black, blue, white, and yellow subsquares are used to denote binary data. The security of extra encrypted data depends on an image scrambling algorithm by using the sinusoidal function, and the image scrambling algorithm can make a scrambled image have a high image scrambling degree percentage even after image scrambling is operated only one time.

  1. Modulation of the stretch reflex during volitional sinusoidal tracking in Parkinson's disease.

    PubMed

    Johnson, M T; Kipnis, A N; Lee, M C; Loewenson, R B; Ebner, T J

    1991-02-01

    Sinusoidal visually-guided wrist tracking, in normal and parkinsonian subjects, was perturbed by torque transients every 90 degrees throughout the movement. Long-latency stretch reflex and volitional EMG amplitude modulations were assessed as functions of the tracking phase. Reflex modulation during tracking, both in wrist flexor and extensor muscles, was found to differ significantly between parkinsonian and normal subjects. In the parkinsonian group, the abnormality consisted of an increased reflex activity during tracking phases in which the muscle was lengthening. At these phases the reflex generated torque is opposite in direction to the volitionally generated torque and the tracking movement. No differences in the unperturbed volitional EMG modulation were observed between groups for this error constrained tracking paradigm. Significant correlations were found between ratings of bradykinesia and the amount of abnormal reflex modulation in the wrist flexor. These data suggest that a component of bradykinesia results from a defective coordination of supraspinal reflex and volitional control systems.

  2. Regenerated phase-shifted sinusoids assisted EMD for adaptive analysis of fringe patterns

    NASA Astrophysics Data System (ADS)

    Wang, Chenxing; Kemao, Qian; Da, Feipeng

    2016-12-01

    Fringe patterns are often produced from optical metrology. It is important yet challenging to reduce noise and remove a complicated background in a fringe pattern, for which empirical mode decomposition based methods have been proven useful. However, the mode-mixing problem and the difficulty in automatic mode classification limit the application of these methods. In this paper, a newly developed method named regenerated phase-shifted sinusoids assisted empirical mode decomposition is introduced to decompose a fringe pattern, and subsequently, a new noise-signal-background classification strategy is proposed. The former avoids the mode-mixing problem appearing during the decomposition, while the latter adaptively classifies the decomposition results to remove the noise and background. The proposed method is testified by both simulation and real experiments, which shows effective and robust for fringe pattern analysis under different noise, fringe modulation, and defects.

  3. Local Density of States in One-dimensional Photonic Crystals and Sinusoidal Superlattices

    NASA Astrophysics Data System (ADS)

    Ignatchenko, V. A.; Tsikalov, D. S.

    We have calculated the local density of states (LDOS) for four Brillouin zones of a superlattice for a plane source depending on its location relative to the change in the profile of dielectricpermeability ɛ(z) of the superlattice. It is shown that the LDOS for the cases of sinusoidal and rectangular profiles of ɛ(z) are close to each other in the first and second Brillouin zones, and sharp differences between them appear beginning with the third zone. Radical changes in the LDOS occur in a rectangular superlattice with different thicknesses of adjacent layers. In this case, the function LDOS has a sharp jump at the edges of the allowed bands in the transition from one layer to another. The effects studied theoretically in this paper, can be detected and studied experimentally by the intensively developing currently methods of nanooptics.

  4. Mathieu function solutions for photoacoustic waves in sinusoidal one-dimensional structures.

    PubMed

    Wu, Binbin; Diebold, Gerald J

    2012-07-01

    The photoacoustic effect for a one-dimensional structure, the sound speed of which varies sinusoidally in space, is shown to be governed by an inhomogeneous Mathieu equation with the forcing term dependent on the spatial and temporal properties of the exciting optical radiation. New orthogonality relations, traveling wave Mathieu functions, and solutions to the inhomogeneous Mathieu equation are found, which are used to determine the character of photoacoustic waves in infinite and finite length phononic structures. Floquet solutions to the Mathieu equation give the positions of the band gaps, the damping of the acoustic waves within the band gaps, and the dispersion relation for photoacoustic waves. The solutions to the Mathieu equation give the photoacoustic response of the structure, show the space equivalent of subharmonic generation and acoustic confinement when waves are excited within band gaps.

  5. [The analysis of sinusoidal modulated method used for measuring fluorescence lifetime].

    PubMed

    Feng, Ying; Huang, Shi-hua

    2007-12-01

    This paper has built a system with a sinusoidal modulated LED as the excitation source. Such exciter was used upon the sample Eu2 L'3 x nH2O (L' = C4H4O4). Both the excitation light and the 5Do-7F2 emission of Eu3+ ion were measured. Fluorescence lifetime, which approximate to 0.680 ms, can then be obtained from the measured excitation and fluorescence waveforms by non-linear least square curve fitting based on the principle of phase-shift measurement of fluorescence lifetime. Data processing methods considering respectively the high order harmonics in the modulation and multi-exponential decay of the fluorescence were discussed. A method of utilizing Fourier series expandedness to amendatory the result was put forward. Accordingly, the applicability for phase-shift method was expanded as well as a more exact result was acquired.

  6. Sinusoidal hemangioma of the breast: diagnostic evaluation management and literature review

    PubMed Central

    2017-01-01

    Vascular tumors of the breast are rare and may pose a diagnostic challenge. Breast hemangioma is a very rare benign vascular neoplasm accounting for 0.4% of all breast tumors. It is most commonly detected as an incidental microscopic finding in biopsy specimens obtained for unrelated reasons. We describe here a very rare case of a sinusoidal breast hemangioma in a postmenopausal patient who presented with a palpable breast mass. A complete surgical resection was performed because the tumor exhibited atypical imaging features. We conclude that although in carefully selected cases of breast hemangioma a conservative management with follow up imaging is a reasonable option, in cases with atypical imaging or pathological characteristics a complete surgical resection of the vascular tumor is mandatory in order to exclude the possibility of an underlying angiosarcoma. PMID:28210560

  7. El Perfil Sinusoidal del Jet HH 31 en la Protoestrella IRAS 042482612

    NASA Astrophysics Data System (ADS)

    Ferrero, L. V.; Gómez, M. N.

    In this contribution we study the HH 31 jet; associated with the Class I proto-star; IRAS 042482612 (age 10 yrs); in the Taurus molecular cloud. We use mid-infrared images; taken by Spitzer and WISE; to analyze the sinusoidal or S-shape chain of knots (or EGOs) that delineate the jet. The binarity of the central source naturally explains the wiggling jet. The orbital period is 2.7 times the estimated dynamical time of the jet. The spatial difference between knots agrees with time elapse expected between quasi-periodic FU Orionis events; suggesting that central star might have experimented this type of events several times since its birth. FULL TEXT IN SPANISH

  8. Optimal sinusoidal modelling of gear mesh vibration signals for gear diagnosis and prognosis

    NASA Astrophysics Data System (ADS)

    Man, Zhihong; Wang, Wenyi; Khoo, Suiyang; Yin, Juliang

    2012-11-01

    In this paper, the synchronous signal average of gear mesh vibration signals is modelled with the multiple modulated sinusoidal representations. The signal model parameters are optimised against the measured signal averages by using the batch learning of the least squares technique. With the optimal signal model, all components of a gear mesh vibration signal, including the amplitude modulations, the phase modulations and the impulse vibration component induced by gear tooth cracking, are identified and analysed with insight of the gear tooth crack development and propagation. In particular, the energy distribution of the impulse vibration signal, extracted from the optimal signal model, provides sufficient information for monitoring and diagnosing the evolution of the tooth cracking process, leading to the prognosis of gear tooth cracking. The new methodologies for gear mesh signal modelling and the diagnosis of the gear tooth fault development and propagation are validated with a set of rig test data, which has shown excellent performance.

  9. Single-shot calibration of soft x-ray mirrors using a sinusoidal transmission grating.

    PubMed

    Shpilman, Z; Ehrlich, Y; Maman, S; Levy, I; Shussman, T; Oren, G; Zakosky Nueberger, I; Hurvitz, G

    2014-11-01

    Calibration of soft x-ray diagnostics is a challenge due to the lack of laboratory-size calibrated sources. An in situ calibration method for newly developed x-ray mirrors, is presented. The x-ray source is produced by laser-matter interaction, and twin transmission gratings which create two identical dispersion lines. The gratings have a sinusoidal transmission function, which produces a highly precise high-orders free spectrum. An x-ray mirror interacts with one of the dispersion lines, and the mirror efficiency curve as a function of wavelength is extracted. Mirror efficiency shows good agreement with the literature, and evidence of water layer may justify the need of in situ calibration.

  10. Rigorous analysis of the propagation of sinusoidal pulses in bacteriorhodopsin films.

    PubMed

    Acebal, Pablo; Blaya, Salvador; Carretero, Luis; Madrigal, R F; Fimia, A

    2012-11-05

    The propagation of sinusoidal pulses in bacteriorhodopsin films has been theoretically analyzed using a complete study of the photoinduced processes that take into account all the physical parameters, the coupling of rate equations with the energy transfer equation and the temperature change during the experiment. The theoretical approach was compared to experimental data and a good concordance was observed. This theoretical treatment, can be widely applied, i.e when arbitrary pump and/or signal is used or in the case of the pump and signal beams have different wavelengths. Due to we have performed a rigorous analysis, from this treatment the corresponding two level approximation has also been analyzed for these systems.

  11. Effect of sinusoidal density modulations on stimulated Raman and Brillouin scattering instabilities

    NASA Astrophysics Data System (ADS)

    Depierreux, Sylvie; Bandulet, Heidi; Lewis, Kevin; Labaune, Christine; Baldis, Hector; Michard, Alain

    2003-10-01

    Stimulated Raman (SRS) and Brillouin (SBS) scattering are expected to reach significant levels in the long and homogeneous plasmas that will be produced with the NIF and LMJ. We have performed an experiment as to measure modifications of SRS and SBS of a 1.053 μ m interaction beam when a small scale ( ˜6μ m) sinusoidal modulation of the density is imposed along the laser propagation axis. These density perturbations can affect the SRS and SBS development as they break the plasma homogeneity and can couple to the stimulated electron plasma waves (EPW) and ion acoustic waves (IAW). Diagnostics of the SRS and SBS activities include time, space and spectrally resolved analysis of the light Thomson scattered off stimulated EPW and IAW as well as backscattering measurements.

  12. Three-dimensional surface capture for body measurement using projected sinusoidal patterns

    NASA Astrophysics Data System (ADS)

    Demers, Michelle H.; Hurley, Jeffery D.; Wulpern, Richard C.; Grindon, John R.

    1997-03-01

    A non-contact body measurement system (BMS) is under development for use in making made-to-measure apparel, and for other applications related to body measurement. The BMS design which consists of six stationary structured-light projectors and six CCD cameras is presented. The system acquires two-dimensional images of sinusoidal projected patterns utilizing a phase-shifting technique similar to phase measurement profilometry. Given calibrated projector and camera geometrical parameters, the solution for calculating three-dimensional surface points of a human body from the camera images is developed. A statistical error analysis is presented for the phase measurement and the three-dimensional point solution in terms of system measurement errors. An operating developmental implementation of the BMS is described and pictured. Contour plots of test subjects taken with this system, showing digitized three-dimensional surface segments, are presented and discussed.

  13. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  14. P-selectin expression in a colon tumor model exposed by sinusoidal electromagnetic fields

    PubMed Central

    TUNCEL, HANDAN; SHIMAMOTO, FUMIO; ÇIRAKOĞLU, AYŞE; KORPINAR, MEHMET ALI; KALKAN, TUNAYA

    2013-01-01

    P-selectin is mainly involved in the initial process of tumor cell adhesion to platelets. The aim of the present study was to determine the expression level of P-selectin in a colon tumor model affected by sinusoidal electromagnetic fields (SMF). Male Wistar albino rats aged 2-2.5 months were used. The animals were divided into the I [N-Methyl-N-Nitrosurea (MNU)], II (SMF-MNU), III (SMF) and IV (control) groups. The rats were housed five per polycarbonate cage. Sixty milligrams of MNU was dissolved in 6 ml sterile 0.9% NaCl. Prepared solutions were administered intra rectally (i.r.) to the 1st and 3rd groups as 0.2 ml/per animal. The same procedure was applied to the 2nd and 4th groups, although 0.2 ml/per animal sterile isotonic solution was administered instead. This procedure was repeated once a week for 10 weeks. Following the administration of MNU, the 2nd and 3rd groups were exposed to a sinusoidal magnetic field (SMF, 50 Hz, 5 mT) for 6 h/day for 8 months. P-selectin expression of the four groups of rat colon tissues was determined using immunohistochemistry on paraffin sections. The labeled streptavidin biotin method was performed. Fisher’s exact test was used for differences between proportions. Results showed that there was no statistically significant (P>0.05) change in the expression level of P-selectin. However, this result should be verified by both in vivo and in vitro experiments to determine the effects of the magnetic fields on P-selectin. PMID:24648955

  15. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    NASA Astrophysics Data System (ADS)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  16. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  17. Smaller insulators handle higher voltage

    SciTech Connect

    Wilt, G.

    1997-10-01

    Researcher at Lawrence Livermore have designed the Ultra High Gradient Insulator, a device that can reliably withstand electrical voltages four times greater than before. The Ultra-HGI is designed with alternating layers which divide voltages so finely that the chances of failure are small, and when they do occur, they are confined to a very small portion of the insulator.

  18. High-voltage supplies for corona-electrostatic separators

    SciTech Connect

    Iuga, A.; Neamtu, V.; Suarasan, I.; Morar, R.; Dascalescu, L.

    1995-12-31

    The selection of the high-voltage supply can play an important role in the optimization of electrostatic separation processes. The present work aimed to evaluate the influence of the main high-voltage parameters (waveform, polarity, level) on the efficiency of electroseparation, in the case of insulation-metal granular mixtures. A roll-type laboratory electroseparator was employed for the experimental study and the tests were carried out with granular materials prelevated from the technological flow sheet of a recycling plant for electric wire scraps. The experiments shown the existence of a strong interdependence between the level of the operating voltage and the other electrical parameters. Although the full-wave rectifier allows for lower operating voltages than the half-wave rectifier, its general effectiveness in electroseparation processes is superior. The optimum operating voltage of an electroseparator seems to be slightly lower than the level at which the frequency of the spark discharges tends to exceed 60 min{sup {minus}1}. The oscillograms of the voltage and of the current across the separator proved to be of great use for studying the transition from corona to spark discharges. Good insulation-metal electroseparation can be achieved at either positive or negative polarity of the high-voltage supply, but negative electrode energization is recommended for most industry applications.

  19. Response of dairy cattle to transient voltages and magnetic fields

    SciTech Connect

    Reinemann, D.J.; Laughlin, N.K.; Stetson, L.E.

    1995-07-01

    Stray voltages in dairy facilities have been studied since the 1970`s. Previous research using steady-state ac and dc voltages has defined cow-contact voltage levels which may cause behavior and associated production problems. This research was designed to address concerns over possible effects of transient voltages and magnetic fields on dairy cows. Dairy cows response to transient voltages and magnetic fields was measured. The waveforms of the transient voltages applied were: 5 cycles of 60-Hz ac with a total pulse time of 83 ms, 1 cycle of 60-Hz ac with a total pulse time of 16 ms, and 1 cycle of an ac square wave (spiking positive and negative) of 2-ms duration. Alternating magnetic fields were produced by passing 60-Hz ac fundamental frequency with 2nd and 3rd harmonic and random noise components in metal structures around the cows. The maximum magnetic field associated with this current flow was in excess of 4 G. A wide range of sensitivity to transient voltages was observed among cows. Response levels from 24 cows to each transient exposure were normally distributed. No responses to magnetic fields were observed.

  20. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.