Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.
[EMD Time-Frequency Analysis of Raman Spectrum and NIR].
Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe
2016-02-01
This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.
Frequency spectrum analysis of laser generated ultrasonic waves in ablative regime
NASA Astrophysics Data System (ADS)
Mi, Bao; Ume, I. Charles
2002-05-01
In this paper, laser ultrasonic signals generated in ablative regime are measured in a number of metal samples (2024 Al, 6061 Al, 7075 Al, mild steel, and copper) with a broadband laser interferometer. The frequency spectra are analyzed and compared for different thicknesses (50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm), and for different power densities. Hanning windowing is applied before frequency analysis is performed. The experimental data match the theoretical predictions very well. The results show that the frequency spectrum extends from 0 to 15 MHz, while the center frequency occurs near 2 MHz. The detailed distribution of the spectrum is dependent on the material, thickness, and laser power density.
NASA Astrophysics Data System (ADS)
Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng
2008-01-01
This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.
Signal Identification and Isolation Utilizing Radio Frequency Photonics
2017-09-01
analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters
Fast Fourier Transform Spectral Analysis Program
NASA Technical Reports Server (NTRS)
Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.
1969-01-01
Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.
Time Correlations and the Frequency Spectrum of Sound Radiated by Turbulent Flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye
1997-01-01
Theories of turbulent time correlations are applied to compute frequency spectra of sound radiated by isotropic turbulence and by turbulent shear flows. The hypothesis that Eulerian time correlations are dominated by the sweeping action of the most energetic scales implies that the frequency spectrum of the sound radiated by isotropic turbulence scales as omega(exp 4) for low frequencies and as omega(exp -3/4) for high frequencies. The sweeping hypothesis is applied to an approximate theory of jet noise. The high frequency noise again scales as omega(exp -3/4), but the low frequency spectrum scales as omega(exp 2). In comparison, a classical theory of jet noise based on dimensional analysis gives omega(exp -2) and omega(exp 2) scaling for these frequency ranges. It is shown that the omega(exp -2) scaling is obtained by simplifying the description of turbulent time correlations. An approximate theory of the effect of shear on turbulent time correlations is developed and applied to the frequency spectrum of sound radiated by shear turbulence. The predicted steepening of the shear dominated spectrum appears to be consistent with jet noise measurements.
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
Real time analysis of voiced sounds
NASA Technical Reports Server (NTRS)
Hong, J. P. (Inventor)
1976-01-01
A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.
Radio frequency spectrum management
NASA Astrophysics Data System (ADS)
Sujdak, E. J., Jr.
1980-03-01
This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
Characterizing resonant component in speech: A different view of tracking fundamental frequency
NASA Astrophysics Data System (ADS)
Dong, Bin
2017-05-01
Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
Spectrum Management and Electromagnetic Compatibility Issues in the Department of Defense
1991-01-01
Interference JEWC Joint Electronic Warfare Center JRFL Joint Restricted Frequency List JSMS Joint Spectrum Management System JT&E Joint Test and Evaluation JTAC...Joint Restricted Frequency List (JRFL) is essentially a list of frequencies prohibited from use by ECM units. Creation and maintenance of the JRFL to...sponsored by CECOM, developed a prototype that primarily acted as an analysis of the restricted frequency list as a predecessor to DECON. Presently the Army
A frequency standard via spectrum analysis and direct digital synthesis
NASA Astrophysics Data System (ADS)
Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong
2014-11-01
We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-04-20
We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52 GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.
Frequency domain analysis of errors in cross-correlations of ambient seismic noise
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri
2016-12-01
We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.
EMG circuit design and AR analysis of EMG signs.
Hardalaç, Firat; Canal, Rahmi
2004-12-01
In this study, electromyogram (EMG) circuit was designed and tested on 27 people. Autoregressive (AR) analysis of EMG signals recorded on the ulnar nerve region of the right hand in resting position was performed. AR method, especially in the calculation of the spectrums of stable signs, is used for frequency analysis of signs, which give frequency response as sharp peaks and valleys. In this study, as the result of AR method analysis of EMG signals frequency-time domain, frequency spectrum curves (histogram curves) were obtained. As the images belonging to these histograms were evaluated, fibrillation potential widths of the muscle fibers of the ulnar nerve region of the people (material of the study) were examined. According to the degeneration degrees of the motor nerves, nine people had myopathy, nine had neuropathy, and nine were normal.
NASA Astrophysics Data System (ADS)
Jian, X. H.; Dong, F. L.; Xu, J.; Li, Z. J.; Jiao, Y.; Cui, Y. Y.
2018-05-01
The feasibility of differentiating tissue components by performing frequency domain analysis of photoacoustic images acquired at different wavelengths was studied in this paper. Firstly, according to the basic theory of photoacoustic imaging, a brief theoretical model for frequency domain analysis of multiwavelength photoacoustic signal was deduced. The experiment results proved that the performance of different targets in frequency domain is quite different. Especially, the acoustic spectrum characteristic peaks of different targets are unique, which are 2.93 MHz, 5.37 MHz, 6.83 MHz, and 8.78 MHz for PDMS phantom, while 13.20 MHz, 16.60 MHz, 26.86 MHz, and 29.30 MHz for pork fat. The results indicated that the acoustic spectrum of photoacoustic imaging signals is possible to be utilized for tissue composition characterization.
Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang
2012-03-12
The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.
Pulse analysis of acoustic emission signals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Houghton, J. R.
1976-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.
Melkonian, D; Korner, A; Meares, R; Bahramali, H
2012-10-01
A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Method of estimating pulse response using an impedance spectrum
Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G
2014-10-21
Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.
Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-06-15
An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1981-01-01
A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.
[Continuum based fast Fourier transform processing of infrared spectrum].
Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai
2009-12-01
To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.
Observing random walks of atoms in buffer gas through resonant light absorption
NASA Astrophysics Data System (ADS)
Aoki, Kenichiro; Mitsui, Takahisa
2016-07-01
Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.
NASA Astrophysics Data System (ADS)
Liang, B.; Iwnicki, S. D.; Zhao, Y.
2013-08-01
The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.
NASA Technical Reports Server (NTRS)
Ha, Tri T.; Pratt, Timothy
1989-01-01
The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.
Injection Locking Techniques for Spectrum Analysis
NASA Astrophysics Data System (ADS)
Gathma, Timothy D.; Buckwalter, James F.
2011-04-01
Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.
Magnetoplasmon spectrum for realistic off-plane structure of dissipative 2D system
NASA Astrophysics Data System (ADS)
Cheremisin, M. V.
2017-12-01
The rigorous analysis of the textbook result (Chiu and Quinn, 1974) gives unexpectedly the dramatic change of the magnetoplasmon spectrum taking into account both the arbitrary dissipation and asymmetric off-plane structure of 2D system. For given wave vector the dissipation enhancement leads to decrease(increase) of magnetoplasmon frequency at low(high) magnetic field. At certain range of disorder the purely relaxational mode appears in magnetoplasmon spectrum. In strong magnetic fields the magnetoplasmon frequency falls to cyclotron resonance line even in presence of finite dissipation. The observation of nonlinearity and, moreover, the mysterious zig-zag behavior 2D magnetoplasmon spectrum is consistent with our findings.
The Trial Software version for DEMETER power spectrum files visualization and mapping
NASA Astrophysics Data System (ADS)
Lozbin, Anatoliy; Inchin, Alexander; Shpadi, Maxim
2010-05-01
In the frame of Kazakhstan's Scientific Space System creation for earthquakes precursors research, the hardware and software of DEMETER satellite was investigated. The data processing Software of DEMETER is based on package SWAN under IDL Virtual machine and realizes many features, but we can't find an important tool for the spectrograms analysis - space-time visualization of power spectrum files from electromagnetic devices as ICE and IMSC. For elimination of this problem we have developed Software which is offered to use. The DeSS (DEMETER Spectrogram Software) - it is Software for visualization, analysis and a mapping of power spectrum data from electromagnetic devices ICE and IMSC. The Software primary goal is to give the researcher friendly tool for the analysis of electromagnetic data from DEMETER Satellite for earthquake precursors and other ionosphere events researches. The Input data for DeSS Software is a power spectrum files: - Power spectrum of 1 component of the electric field in the VLF range (APID 1132); - Power spectrum of 1 component of the electric field in the HF range (APID 1134); - Power spectrum of 1 component of the magnetic field in the VLF range (APID 1137). The main features and operations of the software is possible: - various time and frequency filtration; - visualization of time dependence of signal intensity on fixed frequency; - spectral density visualization for fixed frequency range; - spectrogram autosize and smooth spectrogram; - the information in each point of the spectrogram: time, frequency and intensity; - the spectrum information in the separate window, consisting of 4 blocks; - data mapping with 6 range scale. On the map we can browse next information: - satellite orbit; - conjugate point at the satellite altitude; - north conjugate point at the altitude 110 km; - south conjugate point at the altitude 110 km. This is only trial software version to help the researchers and we always ready collaborate with scientists for software improvement. References: 1. D.Lagoutte, J.Y. Brochot, D. de Carvalho, L.Madrias and M. Parrot. DEMETER Microsatellite. Scientific Mission Center. Data product description. DMT-SP-9-CM-6054-LPC. 2. D.Lagoutte, J.Y. Brochot, P.Latremoliere. SWAN - Software for Waveform Analysis. LPCE/NI/003.E - Part 1 (User's guide), Part 2 (Analysis tools), Part 3 (User's project interface).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffner, D. A.; Brown, M. R.; Rock, A. B.
The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which canmore » then be compared to the behavior of the frequency spectrum.« less
DoD Spectrum Management: A Critical Analysis
2008-06-01
Restricted Frequency List (JRFL) ......................................................... 17 Doctrine...quickly. 16 Joint Restricted Frequency List (JRFL) According to JP 1-02, Department of Defense Dictionary of Military and Associated Terms, JRFL is
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Analysis of axial compressive loaded beam under random support excitations
NASA Astrophysics Data System (ADS)
Xiao, Wensheng; Wang, Fengde; Liu, Jian
2017-12-01
An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.
Noncolocated Time-Reversal MUSIC: High-SNR Distribution of Null Spectrum
NASA Astrophysics Data System (ADS)
Ciuonzo, Domenico; Rossi, Pierluigi Salvo
2017-04-01
We derive the asymptotic distribution of the null spectrum of the well-known Multiple Signal Classification (MUSIC) in its computational Time-Reversal (TR) form. The result pertains to a single-frequency non-colocated multistatic scenario and several TR-MUSIC variants are here investigated. The analysis builds upon the 1st-order perturbation of the singular value decomposition and allows a simple characterization of null-spectrum moments (up to the 2nd order). This enables a comparison in terms of spectrums stability. Finally, a numerical analysis is provided to confirm the theoretical findings.
Spiousas, Ignacio; Etchemendy, Pablo E.; Eguia, Manuel C.; Calcagno, Esteban R.; Abregú, Ezequiel; Vergara, Ramiro O.
2017-01-01
Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1–6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it. PMID:28690556
Spiousas, Ignacio; Etchemendy, Pablo E; Eguia, Manuel C; Calcagno, Esteban R; Abregú, Ezequiel; Vergara, Ramiro O
2017-01-01
Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1-6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it.
Energy spectrum analysis - A model of echolocation processing. [in animals
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Titlebaum, E. L.
1976-01-01
The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.
A statistical package for computing time and frequency domain analysis
NASA Technical Reports Server (NTRS)
Brownlow, J.
1978-01-01
The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.
NASA Astrophysics Data System (ADS)
Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro
When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.
Recurrent bottlenecks in the malaria life cycle obscure signals of positive selection.
Chang, Hsiao-Han; Hartl, Daniel L
2015-02-01
Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright-Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.
Pulse analysis of acoustic emission signals
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Packman, P. F.
1977-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.
Pulse analysis of acoustic emission signals
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Packman, P. F.
1977-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.
Terahertz Josephson spectral analysis and its applications
NASA Astrophysics Data System (ADS)
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
NASA Astrophysics Data System (ADS)
Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu
2018-03-01
Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.
The use of SESK as a trend parameter for localized bearing fault diagnosis in induction machines.
Saidi, Lotfi; Ben Ali, Jaouher; Benbouzid, Mohamed; Bechhoefer, Eric
2016-07-01
A critical work of bearing fault diagnosis is locating the optimum frequency band that contains faulty bearing signal, which is usually buried in the noise background. Now, envelope analysis is commonly used to obtain the bearing defect harmonics from the envelope signal spectrum analysis and has shown fine results in identifying incipient failures occurring in the different parts of a bearing. However, the main step in implementing envelope analysis is to determine a frequency band that contains faulty bearing signal component with the highest signal noise level. Conventionally, the choice of the band is made by manual spectrum comparison via identifying the resonance frequency where the largest change occurred. In this paper, we present a squared envelope based spectral kurtosis method to determine optimum envelope analysis parameters including the filtering band and center frequency through a short time Fourier transform. We have verified the potential of the spectral kurtosis diagnostic strategy in performance improvements for single-defect diagnosis using real laboratory-collected vibration data sets. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Rogue-wave pattern transition induced by relative frequency.
Zhao, Li-Chen; Xin, Guo-Guo; Yang, Zhan-Ying
2014-08-01
We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis is performed on these different type rogue waves, and the spectrum relations between them are discussed. We demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.
Spectrum analysis of radar life signal in the three kinds of theoretical models
NASA Astrophysics Data System (ADS)
Yang, X. F.; Ma, J. F.; Wang, D.
2017-02-01
In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.
Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis
NASA Astrophysics Data System (ADS)
Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe
2013-07-01
The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the spectrum for the radially constrained bearing and only visible in the envelope spectrum for the "load-free" bearing. Concerning results in flight conditions, frequency readjustment demonstrates good performances when applied on the spectrum, showing that a fully automated bearing decision procedure is applicable for operational helicopter monitoring.
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
[Experimental and calculated spectra of the amplicons UBC-85 and UBC-126 (RAPD-PCR)].
Glazko, G V; Rogozin, I B; Glazko, V I; Zelenaia, L B; Sozinov, A A
1997-01-01
The comparative analysis of experimental amplification spectrum in 13 Ungulata species and counting ones in DNA sequences of different taxa in GenBank (mammalian, other vertebrate, invertebrate, viruses, prokaryote) with the uses of RAPD-PCR primers UBC-85 and UBC-126 was carried out. The particularities of the distribution of amplicons' frequencies in experimental and counting spectrums were revealed, for some of them the similar increased frequencies in mammalian and prokaryotic species were observed.
Spectral analysis of highly aliased sea-level signals
NASA Astrophysics Data System (ADS)
Ray, Richard D.
1998-10-01
Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.
Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes
NASA Astrophysics Data System (ADS)
Zhou, Yuzhe
2016-11-01
The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.
Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-10-15
A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.
NASA Astrophysics Data System (ADS)
Wang, Ruofan; Wang, Jiang; Li, Shunan; Yu, Haitao; Deng, Bin; Wei, Xile
2015-01-01
In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.
Wang, Ruofan; Wang, Jiang; Li, Shunan; Yu, Haitao; Deng, Bin; Wei, Xile
2015-01-01
In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.
Normal coordinate analysis of the vibrational spectrum of benzil molecule
NASA Astrophysics Data System (ADS)
Volovšek, V.; Colombo, L.
1993-03-01
Normal coordinate analysis is performed for the benzil molecule. Force constants of phenyl rings are transferred from earlier studies on binuclear aromatic molecules. The existance of some low-frequency internal modes have been proved, thus eliminating the earlier explanations of the excess of the bands observed in the low-frequency Raman and FIR spectra of benzil crystal.
Oscillation spectrum of WASP-33 from the MOST photometry
NASA Astrophysics Data System (ADS)
Mkrtichian, David
2015-08-01
We present results of extended continuous time series photometry of the Delta Scuti type pulsating exoplanet host star WASP-33 obtained in two seasons (2011 and 2013) with the MOST space telescope. Our frequency analysis yealds rich, low-amplitude multi-frequency spectrum of oscillation modes. We discuss possible resonances between the orbiital period of the planet and frequencies of the oscillation modes. We present results of our measurements of planets orbital O-C variations and analyze possible existence of invisible planets in the system. We review recent results of the high-resolution spectroscopic campaign on WASP-33 and confirm the retrograde orbital motion of the planet WASP-33b.
Post-processing of auditory steady-state responses to correct spectral leakage.
Felix, Leonardo Bonato; de Sá, Antonio Mauricio Ferreira Leite Miranda; Mendes, Eduardo Mazoni Andrade Marçal; Moraes, Márcio Flávio Dutra
2009-06-30
Auditory steady-state responses (ASSRs) are electrical manifestations of brain due to high rate sound stimulation. These evoked responses can be used to assess the hearing capabilities of a subject in an objective, automatic fashion. Usually, the detection protocol is accomplished by frequency-domain techniques, such as magnitude-squared coherence, whose estimation is based on the fast Fourier transform (FFT) of several data segments. In practice, the FFT-based spectrum may spread out the energy of a given frequency to its side bins and this escape of energy in the spectrum is called spectral leakage. The distortion of the spectrum due to leakage may severely compromise statistical significance of objective detection. This work presents an offline, a posteriori method for spectral leakage minimization in the frequency-domain analysis of ASSRs using coherent sampling criterion and interpolation in time. The technique was applied to the local field potentials of 10 Wistar rats and the results, together with those from simulated data, indicate that a leakage-free analysis of ASSRs is possible for any dataset if the methods showed in this paper were followed.
Detection of main tidal frequencies using least squares harmonic estimation method
NASA Astrophysics Data System (ADS)
Mousavian, R.; Hossainali, M. Mashhadi
2012-11-01
In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.
Spectrum Situational Awareness Capability: The Military Need and Potential Implementation Issues
2006-10-01
Management Sensor Systems Frequency Management EW Systems Frequency Management Allied Battlespace Spectrum Management Restricted Frequency List Frequency...Management Restricted Frequency List Frequency Allocation Table Civil Frequency Use Data Inputs Negotiation and allocation process © Dstl 2006 26th...Management Restricted Frequency List Data Inputs Negotiation and allocation process Frequency Allocation Table SSA ES INT COP etc WWW Spectrum
The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne
NASA Astrophysics Data System (ADS)
Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.
2017-09-01
We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.
Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V
2007-01-01
Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.
Roller Bearing Health Monitoring Using CPLE Frequency Analysis Method
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi; Jones, Jess H.
2007-01-01
This paper describes a unique vibration signature analysis technique Coherence Phase Line Enhancer (CPLE) Frequency Analysis - for roller bearing health monitoring. Defects of roller bearing (e.g. wear, foreign debris, crack in bearing supporting structure, etc.) can cause small bearing characteristic frequency shifts due to minor changes in bearing geometry. Such frequency shifts are often too small to detect by the conventional Power Spectral Density (PSD) due to its frequency bandwidth limitation. This Coherent Phase Line Enhancer technology has been evolving over the last few years and has culminated in the introduction of a new and novel frequency spectrum which is fully described in this paper. This CPLE technology uses a "key phasor" or speed probe as a preprocessor for this analysis. With the aid of this key phasor, this CPLE technology can develop a two dimensional frequency spectrum that preserves both amplitude and phase that is not normally obtained using conventional frequency analysis. This two-dimensional frequency transformation results in several newly defined spectral functions; i. e. CPLE-PSD, CPLE-Coherence and the CPLE-Frequency. This paper uses this CPLE frequency analysis to detect subtle, low level bearing related signals in the High Pressure Fuel Pump (HPFP) of the Space Shuttle Main Engine (SSME). For many rotating machinery applications, a key phasor is an essential measurement that is used in the detection of bearing related signatures. There are times however, when a key phasor is not available; i. e. during flight of any of the SSME turbopumps or on the SSME High Pressure Oxygen Turbopump (HPOTP) where no speed probe is present. In this case, the CPLE analysis approach can still be achieved using a novel Pseudo Key Phasor (PKP) technique to reconstruct a 1/Rev PKP signal directly from external vibration measurements. This paper develops this Pseudo Key Phasor technique and applies it to the SSME vibration data.
A methodology for spectral wave model evaluation
NASA Astrophysics Data System (ADS)
Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.
2017-12-01
Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave climate, omitting the energy in the frequency band between the two lower limits tested can lead to an incomplete characterization of model performance. This methodology was developed to aid in selecting a comparison frequency range that does not needlessly increase computational expense and does not exclude energy to the detriment of model performance analysis.
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.
Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M
2012-08-24
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D
2018-02-22
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).
Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.
2018-01-01
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
Frequency modulation television analysis: Threshold impulse analysis. [with computer program
NASA Technical Reports Server (NTRS)
Hodge, W. H.
1973-01-01
A computer program is developed to calculate the FM threshold impulse rates as a function of the carrier-to-noise ratio for a specified FM system. The system parameters and a vector of 1024 integers, representing the probability density of the modulating voltage, are required as input parameters. The computer program is utilized to calculate threshold impulse rates for twenty-four sets of measured probability data supplied by NASA and for sinusoidal and Gaussian modulating waveforms. As a result of the analysis several conclusions are drawn: (1) The use of preemphasis in an FM television system improves the threshold by reducing the impulse rate. (2) Sinusoidal modulation produces a total impulse rate which is a practical upper bound for the impulse rates of TV signals providing the same peak deviations. (3) As the moment of the FM spectrum about the center frequency of the predetection filter increases, the impulse rate tends to increase. (4) A spectrum having an expected frequency above (below) the center frequency of the predetection filter produces a higher negative (positive) than positive (negative) impulse rate.
Acoustooptical Spectrum Analysis Modeling.
1981-06-01
broadband applications of acoustooptical spectrum analysis will result in nonuniform frequency responses requiring such modifications before using the AOSA...Ofl itW W Z Ztc 11 kAlI 11 (A* I -z -1 41 lz - 4-- a f~d V) LAIR 2 *ZF43 t0i Oc c U -x v~ w. >IUJU U .4J >U 114 " lU -- M 0aLI-- ftplx 4 cc C <oo - n
Airborne RF Measurement System and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.
AESOP 3.0 Highlights: Afloat Electromagnetic Spectrum Operations Program
2011-03-01
Restricted Frequency List (JRFL) MCEB Pub 8, Version 2.0.1 (1 July 2010); Tactical Information - JRFL Enhanced Mapping Capability 2-D and 3-D maps with...includes Joint Restricted Frequency List (JRFL) frequencies UNCLASSIFIED 14 Satellite Availability & Analysis (SA2) AESOP 3.0 – SA2 v5.7.2 Software
An illustrative analysis of technological alternatives for satellite communications
NASA Technical Reports Server (NTRS)
Metcalfe, M. R.; Cazalet, E. G.; North, D. W.
1979-01-01
The demand for satellite communications services in the domestic market is discussed. Two approaches to increasing system capacity are the expansion of service into frequencies presently allocated but not used for satellite communications, and the development of technologies that provide a greater level of service within the currently used frequency bands. The development of economic models and analytic techniques for evaluating capacity expansion alternatives such as these are presented. The satellite orbit spectrum problem, and also outlines of some suitable analytic approaches are examined. Illustrative analysis of domestic communications satellite technology options for providing increased levels of service are also examined. The analysis illustrates the use of probabilities and decision trees in analyzing alternatives, and provides insight into the important aspects of the orbit spectrum problem that would warrant inclusion in a larger scale analysis.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1980-01-01
Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
Enseki, Mayumi; Nukaga, Mariko; Tabata, Hideyuki; Hirai, Kota; Matsuda, Shinichi; Mochizuki, Hiroyuki
2017-05-01
Using a breath sound analyzer, we investigated clinical parameters for detecting bronchial reversibility in infants. A total of 59 infants (4-39 months, mean age 7.8 months) were included. In Study 1, the intra- and inter-observer variability was measured in 23 of 59 infants. Breath sound parameters, the frequency at 99% of the maximum frequency (F 99 ), frequency at 25%, 50%, and 75% of the power spectrum (Q 25 , Q 50 , and Q 75 ), and highest frequency of inspiratory breath sounds (HFI), and parameters obtained using the ratio of parameters, i.e. spectrum curve indices, the ratio of the third and fourth area to total area (A 3 /A T and B 4 /A T , respectively) and ratio of power and frequency at F 75 and F 50 (RPF 75 and RPF 50 ), were calculated. In Study 2, the relationship between parameters of breath sounds and age and stature were studied. In Study 3, breath sounds were studied before and after β 2 agonist inhalation. In Study 1, the data showed statistical intra- and inter-observer reliability in A 3 /A T (p=0.042 and 0.034, respectively) and RPF 50 (p=0.001 and 0.001, respectively). In Study 2, there were no significant relationships between age, height, weight, and BMI. In Study 3, A 3 /A T and RPF 50 significantly changed after β 2 agonist inhalation (p=0.001 and p<0.001, respectively). Breath sound analysis can be performed in infants, as in older children, and the spectrum curve indices are not significantly affected by age-related factors. These sound parameters may play a role in the assessment of bronchial reversibility in infants. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS
NASA Technical Reports Server (NTRS)
Brownlow, J. D.
1994-01-01
The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval are removed by least-squares detrending. As many as ten channels of data may be analyzed at one time. Both tabular and plotted output may be generated by the SPA program. This program is written in FORTRAN IV and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 142K (octal) of 60 bit words. This core requirement can be reduced by segmentation of the program. The SPA program was developed in 1978.
A Meta-Analysis of Sensory Modulation Symptoms in Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Ben-Sasson, Ayelet; Hen, Liat; Fluss, Ronen; Cermak, Sharon A.; Engel-Yeger, Batya; Gal, Eynat
2009-01-01
Sensory modulation symptoms are common in persons with autism spectrum disorders (ASD); however have a heterogeneous presentation. Results from 14 studies indicated a significant high difference between ASD and typical groups in the presence/frequency of sensory symptoms, with the greatest difference in under-responsivity, followed by…
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
Characterization of bone microstructure using photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding
2015-03-01
Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.
2016-05-20
Because methyl formate (HCOOCH{sub 3}) is abundant in the interstellar medium and has a strong, complex spectrum, it is a major contributor to the list of identified astrophysical lines. Because of its spectral complexity, with many low lying torsional and vibrational states, the quantum mechanical (QM) analysis of its laboratory spectrum is challenging and thus incomplete. As a result it is assumed that methyl formate is also one of the major contributors to the lists of unassigned lines in astrophysical spectra. This paper provides a characterization, without the need for QM analysis, of the spectrum of methyl formate between 214.6more » and 265.4 GHz for astrophysically significant temperatures. The experimental basis for this characterization is a set of 425 spectra, with absolute intensity calibration, recorded between 248 and 408 K. Analysis of these spectra makes possible the calculation of the Complete Experimental Spectrum of methyl formate as a function of temperature. Of the 7132 strongest lines reported in this paper, 2523 are in the QM catalogs. Intensity differences of 5%–10% from those calculated via QM models were also found. Results are provided in a frequency point-by-point catalog that is well suited for the simulation of overlapped spectra. The common astrophysical line frequency, line strength, and lower state energy catalog is also provided.« less
NASA Astrophysics Data System (ADS)
McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.
2016-05-01
Because methyl formate (HCOOCH3) is abundant in the interstellar medium and has a strong, complex spectrum, it is a major contributor to the list of identified astrophysical lines. Because of its spectral complexity, with many low lying torsional and vibrational states, the quantum mechanical (QM) analysis of its laboratory spectrum is challenging and thus incomplete. As a result it is assumed that methyl formate is also one of the major contributors to the lists of unassigned lines in astrophysical spectra. This paper provides a characterization, without the need for QM analysis, of the spectrum of methyl formate between 214.6 and 265.4 GHz for astrophysically significant temperatures. The experimental basis for this characterization is a set of 425 spectra, with absolute intensity calibration, recorded between 248 and 408 K. Analysis of these spectra makes possible the calculation of the Complete Experimental Spectrum of methyl formate as a function of temperature. Of the 7132 strongest lines reported in this paper, 2523 are in the QM catalogs. Intensity differences of 5%-10% from those calculated via QM models were also found. Results are provided in a frequency point-by-point catalog that is well suited for the simulation of overlapped spectra. The common astrophysical line frequency, line strength, and lower state energy catalog is also provided.
Analysis and design of a class-D amplifier
NASA Technical Reports Server (NTRS)
1968-01-01
Analysis of a basic class-D amplifier circuit configuration shows its adaptability to a variety of applications. The feedback, input and output configuration and the frequency spectrum of the pulse-width-modulated signal are analyzed.
Bunegin, L; Wahl, D; Albin, M S
1994-03-01
Cerebral embolism has been implicated in the development of cognitive and neurological deficits following bypass surgery. This study proposes methodology for estimating cerebral air embolus volume using transcranial Doppler sonography. Transcranial Doppler audio signals of air bubbles in the middle cerebral artery obtained from in vivo experiments were subjected to a fast-Fourier transform analysis. Audio segments when no air was present as well as artifact resulting from electrocautery and sensor movement were also subjected to fast-Fourier transform analysis. Spectra were compared, and frequency and power differences were noted and used for development of audio band-pass filters for isolation of frequencies associated with air emboli. In a bench model of the middle cerebral artery circulation, repetitive injections of various air volumes between 0.5 and 500 microL were made. Transcranial Doppler audio output was band-pass filtered, acquired digitally, then subjected to a fast-Fourier transform power spectrum analysis and power spectrum integration. A linear least-squares correlation was performed on the data. Fast-Fourier transform analysis of audio segments indicated that frequencies between 250 and 500 Hz are consistently dominant in the spectrum when air emboli are present. Background frequencies appear to be below 240 Hz, and artifact resulting from sensor movement and electrocautery appears to be below 300 Hz. Data from the middle cerebral artery model filtered through a 307- to 450-Hz band-pass filter yielded a linear relation between emboli volume and the integrated value of the power spectrum near 40 microL. Detection of emboli less than 0.5 microL was inconsistent, and embolus volumes greater than 40 microL were indistinguishable from one another. The preliminary technique described in this study may represent a starting point from which automated detection and volume estimation of cerebral emboli might be approached.
A Computationally Efficient Method for Polyphonic Pitch Estimation
NASA Astrophysics Data System (ADS)
Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio
2009-12-01
This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.
Multiple-taper spectral analysis: A stand-alone C-subroutine
NASA Astrophysics Data System (ADS)
Lees, Jonathan M.; Park, Jeffrey
1995-03-01
A simple set of subroutines in ANSI-C are presented for multiple taper spectrum estimation. The multitaper approach provides an optimal spectrum estimate by minimizing spectral leakage while reducing the variance of the estimate by averaging orthogonal eigenspectrum estimates. The orthogonal tapers are Slepian nπ prolate functions used as tapers on the windowed time series. Because the taper functions are orthogonal, combining them to achieve an average spectrum does not introduce spurious correlations as standard smoothed single-taper estimates do. Furthermore, estimates of the degrees of freedom and F-test values at each frequency provide diagnostics for determining levels of confidence in narrow band (single frequency) periodicities. The program provided is portable and has been tested on both Unix and Macintosh systems.
A breath sound analysis in children with cough variant asthma.
Enseki, Mayumi; Nukaga, Mariko; Tadaki, Hiromi; Tabata, Hideyuki; Hirai, Kota; Kato, Masahiko; Mochizuki, Hiroyuki
2018-05-29
Cough variant asthma (CVA) is characterized by a chronic cough and bronchial hyperresponsiveness without confirmation of wheezing. Using a breath sound analyzer, we evaluate the characteristics of breath sound in children with CVA. Nine children with CVA (median age, 7.0 years) participated. The existence of breath sounds was confirmed by sound spectrogram. Breath sound parameters, the frequency limiting 50% and 99% of the power spectrum (F 50 and F 99 ), the roll-off from 600 to 1200 Hz (Slope) and spectrum curve indices, the ratio of the third and fourth area to the total area of the power spectrum (P 3 /P T and P 4 /P T ) and the ratio of power and frequency at 50% and 75% of the highest frequency of the power spectrum (RPF 75 and RPF 50 ) were calculated before and after β 2 agonist inhalation. A spirogram and/or forced oscillation technique were performed in all subjects. On a sound spectrogram, wheezing was confirmed in seven of nine patients. All wheezing on the image was polyphonic, and they almost disappeared after β 2 agonist inhalation. An analysis of the breath sound spectrum showed that P T , P 3 /P T , P 4 /P T , RPF 50 and RPF 75 were significantly increased after β 2 agonist inhalation. Children with CVA showed a high rate of inaudible wheezing that disappeared after β 2 agonist inhalation. Changes in the spectrum curve indices also indicated the bronchial reversibility. These results may suggest the characteristics of CVA in children. Copyright © 2018 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Keller, T S; Colloca, C J; Fuhr, A W
1999-02-01
To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.
NASA Astrophysics Data System (ADS)
Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.
2017-11-01
Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.
Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R
2013-01-01
Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.
Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis
Her, Shiuh-Chuan; Lin, Sheng-Tung
2014-01-01
Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1984-01-01
The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.
2016-03-07
We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of themore » reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.« less
Hédoux, Alain; Decroix, Anne-Amandine; Guinet, Yannick; Paccou, Laurent; Derollez, Patrick; Descamps, Marc
2011-05-19
Raman investigations are carried out both in crystalline forms of caffeine and during the isothermal transformation of the orientationally disordered form I into the stable form II at 363 K. The time dependence of the Raman spectrum exhibits no significant change in the intramolecular regime (above 100 cm(-1)), resembling the spectrum of the liquid state. By contrast, significant changes are observed below 100 cm(-1), and the low-frequency spectra of forms I and II are observed to be different from that of the liquid. The temperature dependence of the 5-600 cm(-1) spectrum gives information on the static disorder through the analysis of collective motions, while information on dynamic disorder are obtained from the study of the 555 cm(-1) band corresponding to internal vibrations in the pyrimidine ring. This analysis indubitably reveals that form II is also orientationally disordered with a local molecular arrangement that mimics that in form I and the liquid state. The comparison of the low-frequency spectra recorded in theophylline and form II of caffeine allows one to describe the stable form of caffeine from the packing arrangement of anhydrous theophylline with the consideration of reorientational molecular disorder. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Kalosakas, G.; Aubry, S.; Tsironis, G. P.
1998-10-01
We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
Tailoring noise frequency spectrum to improve NIR determinations.
Xie, Shaofei; Xiang, Bingren; Yu, Liyan; Deng, Haishan
2009-12-15
Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.
Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang
2017-04-03
Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.
Zhang, Y T; Frank, C B; Rangayyan, R M; Bell, G D
1992-09-01
Analysis of vibration signals emitted by the knee joint has the potential for the development of a noninvasive procedure for the diagnosis and monitoring of knee pathology. In order to obtain as much information as possible from the power density spectrum of the knee vibration signal, it is necessary to identify the physiological factors (or physiologically relevant parameters) that shape the spectrum. This paper presents a mathematical model for knee vibration signals, in particular the physiological patello-femoral pulse (PFP) train produced by slow knee movement. It demonstrates through the mathematical model that the repetition rate of the physiological PFP train introduces repeated peaks in the power spectrum, and that it affects the spectrum mainly at low frequencies. The theoretical results also show that the spectral peaks at multiples of the PFP repetition rate become more evident when the variance of the interpulse interval (IPI) is small, and that these spectral peaks shift toward higher frequencies with increasing PFP repetition rates. To evaluate the mathematical model, a simulation algorithm was developed, which generates PFP signals with adjustable repetition rate and IPI variance. Signals generated by simulation were seen to possess representative spectral characteristics typically observed in physiological PFP signals. This simulation procedure allows an interactive examination of several factors which affect the PFP train spectrum. Finally, in vivo measurements of physiological PFP signals of normal volunteers are presented. Results of simulations and analysis of signals recorded from human subjects support the mathematical model's prediction that the IPI statistics play a very significant role in determining the low-end power spectrum of the physiological PFP signal.(ABSTRACT TRUNCATED AT 250 WORDS)
An operational modal analysis method in frequency and spatial domain
NASA Astrophysics Data System (ADS)
Wang, Tong; Zhang, Lingmi; Tamura, Yukio
2005-12-01
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Effect of water depth on wind-wave frequency spectrum I. Spectral form
NASA Astrophysics Data System (ADS)
Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo
1996-06-01
Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John
2006-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John
2007-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
Pei, Qing; Zhang, David D; Li, Guodong; Lee, Harry F
2015-01-01
The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60-80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15-35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory.
Pei, Qing; Zhang, David D.; Li, Guodong; Lee, Harry F.
2015-01-01
The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60–80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15–35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory. PMID:26039087
NASA Astrophysics Data System (ADS)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.
A new multifunction acousto-optic signal processor
NASA Technical Reports Server (NTRS)
Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.
1984-01-01
An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.
Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis
NASA Technical Reports Server (NTRS)
Murty, A. N.
1978-01-01
The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.
Airplane wing vibrations due to atmospheric turbulence
NASA Technical Reports Server (NTRS)
Pastel, R. L.; Caruthers, J. E.; Frost, W.
1981-01-01
The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.
Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James
2010-09-01
This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P < 0.01), when expressed in mean-scaled units. The augmentation of LF powers in PPGV during haemodialysis may indicate the recovery and possibly further enhancement of peripheral sympathetic vascular modulation subsequent to volume unloading, whilst the increase in respiratory HF power in PPGV is most likely a sign of preload reduction. Spectral analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Maximov, Jewgenij; Bliznetsov, Alexej M.; Sanchez Perez, Karla J.
2011-03-01
The technique under proposal for a precise spectrum analysis within an algorithm of the collinear wave heterodyning implies a two-stage integrated processing, namely, the wave heterodyning of a signal in a square-law nonlinear medium and then the optical processing in the same solid state cell. The technical advantage of this approach lies in providing a direct multichannel parallel processing of ultra-high-frequency radio-wave signals with essentially improved frequency resolution. This technique imposes specific requirements on the cell's material. We focus our attention on the solid solutions of thallium chalcogenides and take the TlBr-TlI (thallium bromine-thallium iodine) solution, which forms KRS-5 cubic-symmetry crystals with the mass-ratio 58% of TlBr to 42% of TlI. Analysis shows that the acousto-optical cell made of a KRS-5 crystal oriented along the [111]-axis and the corresponding longitudinal elastic mode for producing the dynamic diffractive grating can be exploited. With the acoustic velocity of about 1.92 × 105 cm/s and attenuation of ~10 dB/(cm GHz2), a similar cell is capable of providing an optical aperture of ~5.0 cm and one of the highest figures of acousto-optical merit in solid states in the visible range. Such a cell is rather desirable for the application to direct 5000-channel parallel spectrum analysis with an improved up to 10-5 relative frequency resolution.
NASA Astrophysics Data System (ADS)
Kiuchi, R.; Mori, J. J.
2015-12-01
As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period
2012-01-01
Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID:22920159
Method and apparatus for frequency spectrum analysis
NASA Technical Reports Server (NTRS)
Cole, Steven W. (Inventor)
1992-01-01
A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.
Spread-spectrum multiple access using wideband noncoherent MFSK
NASA Technical Reports Server (NTRS)
Ha, Tri T.; Pratt, Timothy; Maggenti, Mark A.
1987-01-01
Two spread-spectrum multiple access systems which use wideband M-ary frequency shift keying (FSK) (MFSK) as the primary modulation are presented. A bit error rate performance analysis is presented and system throughput is calculated for sample C band and Ku band satellite systems. Sample link analyses are included to illustrate power and adjacent satellite interference considerations in practical multiple access systems.
High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs
NASA Astrophysics Data System (ADS)
Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.
2017-06-01
Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.
Remote sensing frequency sharing studies, tasks 1, 2, 5, and 6
NASA Technical Reports Server (NTRS)
Boyd, Douglas; Tillotson, Tom
1986-01-01
The following tasks are discussed: adjacent and harmonic band analysis; analysis of impact of sensor resolution on interference; development of performance criteria, interference criteria, sharing criteria, and coordination criteria; and spectrum engineering for NASA microwave sensor projects.
Cardozo, Adalgiso Coscrato; Gonçalves, Mauro; Dolan, Patricia
2011-12-01
Changes in the mean or median frequency of the electromyographic (EMG) power spectrum are often used to assess skeletal muscle fatigue. A more global analysis of the spectral changes using frequency banding may provide a more sensitive measure of fatigue than changes in mean or median frequency. So, the aim of the present study was to characterize changes in different power spectrum frequency bands and compare these with changes in median frequency. Twenty male subjects performed isometric contractions of the back muscles in an isometric dynamometer at 30%, 40%, 50% and 60% of maximum voluntary contraction. During each contraction, surface EMG signals were recorded from the right and left longissimus thoracis muscles, and endurance time was measured. The EMG power spectra were divided into four frequency bands (20-50 Hz; 50-80 Hz; 80-110 Hz; 110-140 Hz) and changes in power in each band with fatigue were compared with changes in median frequency. The percentage changes in 20-50 Hz band were greater than in all other and the rate of change in power, indicated by the slope, was also greatest in 20-50 Hz band. Also, 20-50 Hz band had a greater change in power than the median frequency. Power in the low frequency part of the EMG power spectrum increases with fatigue in a load-dependent manner. The rate of change in low frequency power may be a useful indicator of fatigue rate or "fatigability" in the back muscles. Also, changes in low frequency power are more evident than changes in the median frequency. Copyright © 2011 Elsevier Ltd. All rights reserved.
THE LOW-FREQUENCY RADIO CATALOG OF FLAT-SPECTRUM SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; Giroletti, M.; D'Abrusco, R.
A well known property of the γ-ray sources detected by Cos-B in the 1970s, by the Compton Gamma-Ray Observatory in the 1990s, and recently by the Fermi observations is the presence of radio counterparts, particularly for those associated with extragalactic objects. This observational evidence is the basis of the radio-γ-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with γ-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts formore » the unidentified γ-ray sources allowed us to extend the radio-γ-ray connection in the MHz regime. We also showed that blazars below 1 GHz maintain flat radio spectra. Thus, on the basis of these new results, we assembled a low-frequency radio catalog of flat-spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey and of the Westerbork in the southern hemisphere catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of γ-ray sources. First, we found NVSS counterparts of Westerbork Synthesis Radio Telescope radio sources, and then we selected flat-spectrum radio sources according to a new spectral criterion, specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28,358 radio sources and their logN-logS distributions. Finally, a comparison with the Green Bank 6 cm radio source catalog was performed to investigate the spectral shape of the low-frequency flat-spectrum radio sources at higher frequencies.« less
Analysis on optical heterodyne frequency error of full-field heterodyne interferometer
NASA Astrophysics Data System (ADS)
Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli
2017-06-01
The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.
A Cognitive Agent for Spectrum Monitoring and Informed Spectrum Access
2017-06-01
electromagnetic environments (EMEs) to understand what spectrum bands are accessed, when those bands are accessed, and how much energy is...recall. The cognitive agent in this report uses the second approach. The knowledge domain of the cognitive agent is the electromagnetic spectrum. The...Knowledge DTV digital television EME electromagnetic environments FM frequency modulated RF radio frequency VHF very high frequency
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contributemore » to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, Dassia
2014-01-21
Stick-spectrum expressions for electronic two-dimensional (2D) photon-echo (PE) signal of a generic multi-level system are presented and employed to interrelate oscillations in individual peaks of 2D PE signal and the underlying properties (eigenstates and coherent dynamics) of excitonic or vibronic systems. When focusing on the identification of the origin of oscillations in the rephasing part of 2D PE it is found, in particular, that multiple frequencies in the evolution of the individual peaks do not necessarily directly reflect the underlying system dynamics. They may originate from the excited-state absorption contribution to the signal, or arise due to multi-level vibrational structuremore » of the electronic ground state, and represent a superposition of system frequencies, while the latter may evolve independently. The analytical stick-spectrum predictions are verified and illustrated by numerical calculations of 2D PE signals of an excitonic trimer and of a displaced harmonic oscillator with unequal vibrational frequencies in the two electronic states. The excitonic trimer is the smallest excitonic oligomer where excited-state absorption may represent a superposition of excited-state coherences and significantly influence the phase of the observed oscillations. The displaced oscillator is used to distinguish between the frequencies of the ground-state and of the excited-state manifolds, and to demonstrate how the location of a cross peak in 2D pattern of the PE signal “predetermines” its oscillatory behavior. Although the considered models are kept as simple as possible for clarity, the stick-spectrum analysis provides a solid general basis for interpretation of oscillatory signatures in electronic 2D PE signals of much more complex systems with multi-level character of the electronic states.« less
NASA Astrophysics Data System (ADS)
Karabacak, M.; Kurt, M.; Cinar, M.; Ayyappan, S.; Sudha, S.; Sundaraganesan, N.
In this work, experimental and theoretical study on the molecular structure and the vibrational spectra of 3-aminobenzophenone (3-ABP) is presented. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set for optimized geometry and were compared with Fourier transform infrared spectrum (FTIR) in the region of 400-4000 cm-1 and with Fourier Transform Raman spectrum in the region of 50-4000 cm-1. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values.
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin
2016-12-01
Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.
NASA Technical Reports Server (NTRS)
Shaposhnikov, Nickolai; Titarchuk, Lev
2006-01-01
We present timing and spectral analysis of approx. 2.2 Ms of Rossi X-ray Time Explorer (RXTE) archival data from Cyg X-1. Using the generic Comptonization model we reveal that the spectrum of Cyg X-1 consists of three components: a thermal seed photon spectrum, a Comptonized part of the seed photon spectrum and the iron line. We find a strong correlation between 0.1-20 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power-law index. Presence of two spectral phases (states) are clearly seen in the data when the spectral indices saturate at low and high values of QPO frequencies. This saturation effect was discovered earlier in a number of black hole candidate (BHC) sources and now we strongly confirm this phenomenon in Cyg X-1. In the soft state this index- QPO frequency correlation shows a saturation of the photon index Gamma approx. 2.1 at high values of the low frequency upsilon(sub L). The saturation level of Gamma approx. 2.1 is the lowest value found yet in BHCs. The bolometric luminosity does not show clear correlation with the index. We also show that Fe K(sub alpha) emission line strength (equivalent width, EW) correlates with the QPO frequency. EW increases from 200 eV in the low/hard state to 1.5 keV in the high/soft state. The revealed observational correlations allow us to propose a scenario for the spectral transition and iron line formation which occur in BHC sources. We also present the spectral state (the power-law index) evolution for eight years of Cyg X-1 observations by RXTE.
NASA Astrophysics Data System (ADS)
Kuznetsov, M.; Stone, J.; Stulz, L. W.
1991-11-01
We report measurements of intensity as a function of both time and frequency for frequency modulation and switching of a tunable semiconductor laser. Because of the uncertainty principle limitations, the measured time-frequency signal can have a complex structure and does not show the simple-minded picture of a laser spectrum whose center frequency varies in time. The observations are explained by a theory of the time-dependent spectral measurements, well known in the field of speech analysis. We discuss implications for channel switching speed and channel interference in switched, frequency-multiplexed optical networks.
Modulation of high frequency noise by engine tones of small boats.
Pollara, Alexander; Sutin, Alexander; Salloum, Hady
2017-07-01
The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.
A mechanism to explain the spectrum of Hessdalen Lights phenomenon
NASA Astrophysics Data System (ADS)
Paiva, G. S.; Taft, C. A.
2012-07-01
In this work, we present a model to explain the apparently contradictory spectrum observed in Hessdalen Lights (HL) phenomenon. According to our model, its nearly flat spectrum on the top with steep sides is due to the effect of optical thickness on the bremsstrahlung spectrum. At low frequencies self-absorption modifies the spectrum to follow the Rayleigh-Jeans part of the blackbody curve. This spectrum is typical of dense ionized gas. Additionally, spectrum produced in the thermal bremsstrahlung process is flat up to a cutoff frequency, ν cut, and falls off exponentially at higher frequencies. This sequence of events forms the typical spectrum of HL phenomenon when the atmosphere is clear, with no fog.
Topics in Chemical Instrumentation.
ERIC Educational Resources Information Center
Settle, Frank A. Jr., Ed.
1989-01-01
Using Fourier transformation methods in nuclear resonance has made possible increased sensitivity in chemical analysis. This article describes data acquisition, data processing, and the frequency spectrum as they relate to this technique. (CW)
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1979-01-01
Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.
Alternative methods to smooth the Earth's gravity field
NASA Technical Reports Server (NTRS)
Jekeli, C.
1981-01-01
Convolutions on the sphere with corresponding convolution theorems are developed for one and two dimensional functions. Some of these results are used in a study of isotropic smoothing operators or filters. Well known filters in Fourier spectral analysis, such as the rectangular, Gaussian, and Hanning filters, are adapted for data on a sphere. The low-pass filter most often used on gravity data is the rectangular (or Pellinen) filter. However, its spectrum has relatively large sidelobes; and therefore, this filter passes a considerable part of the upper end of the gravity spectrum. The spherical adaptations of the Gaussian and Hanning filters are more efficient in suppressing the high-frequency components of the gravity field since their frequency response functions are strongly field since their frequency response functions are strongly tapered at the high frequencies with no, or small, sidelobes. Formulas are given for practical implementation of these new filters.
Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan
2016-01-01
High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.
[Amplitude modulation in sound signals by mammals].
Nikol'skiĭ, A A
2012-01-01
Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.
Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui
2010-03-01
Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.
Short wind waves on the ocean: Wavenumber-frequency spectra
NASA Astrophysics Data System (ADS)
Plant, William J.
2015-03-01
Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.
The frequency spectrum crisis - Issues and answers
NASA Astrophysics Data System (ADS)
Armes, G. L.
The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.20 Definitions... spectrum frequencies or the reallocation of spectrum frequencies from Federal use to exclusive non-Federal...
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.20 Definitions... spectrum frequencies or the reallocation of spectrum frequencies from Federal use to exclusive non-Federal...
Frequency noise measurement of diode-pumped Nd:YAG ring lasers
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Win, Moe Zaw
1990-01-01
The combined frequency noise spectrum of two model 120-01A nonplanar ring oscillator lasers was measured by first heterodyne detecting the IF signal and then measuring the IF frequency noise using an RF frequency discriminator. The results indicated the presence of a 1/f-squared noise component in the power-spectral density of the frequency fluctuations between 1 Hz and 1 kHz. After incorporating this 1/f-squared into the analysis of the optical phase tracking loop, the measured phase error variance closely matches the theoretical predictions.
NASA Astrophysics Data System (ADS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-11-01
Modeling of guided Lamb waves propagation in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs is evaluated in this paper. Here, the Legendre polynomial method is used to calculate dispersion curves, frequency spectrum and field distributions of guided Lamb waves propagation modes in AlAs, GaAs, AlAs/GaAs and AlAs/GaAs/AlAs-1/2/1 structures. In fact, formulations are given for open-circuit surface. Consequently, the polynomial method is numerically stable according to the total number of layers and the frequency range. This analysis is meaningful for the applications of the piezoelectric-semiconductor multilayered structures made of AlAs and GaAs such as in novel acoustic devices.
Stability Criteria Analysis for Landing Craft Utility
2017-12-01
Square meter m/s Meters per Second m/s2 Meters per Second Squared n Vertical Displacement of Sea Water Free Surface n3 Ship’s Heave... Displacement n5 Ship’s Pitch Angle p(ξ) Rayleigh Distribution Probability Function POSSE Program of Ship Salvage Engineering pk...Spectrum Constant γ JONSWAP Wave Spectrum Peak Factor Γ(λ) Gamma Probability Function Δ Ship’s Displacement Δω Small Frequency
[Design of flat field holographic concave grating for near-infrared spectrophotometer].
Xiang, Xian-Yi; Wen, Zhi-Yu
2008-07-01
Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.
A novel method for detecting airway narrowing using breath sound spectrum analysis in children.
Tabata, Hideyuki; Hirayama, Mariko; Enseki, Mayumi; Nukaga, Mariko; Hirai, Kota; Furuya, Hiroyuki; Mochizuki, Hiroyuki
2016-01-01
Using a breath sound analyzer, we investigated new clinical parameters that are rarely affected by airflow in young children. A total of 65 children with asthma participated in this study (mean age 9.6 years). In Study 1, the intra- and inter-observer variability was measured. Common breath sound parameters, frequency at 99%, 75%, and 50% of the maximum frequency (F99, F75, and F50) and the highest frequency of inspiratory breath sounds were calculated. In addition, new parameters obtained using the ratio of sound spectra parameters, i.e., the spectrum curve indexes including the ratio of the third and fourth area to the total area and the ratio of power and frequency at F75 and F50, were calculated. In Study 2, 51 children underwent breath sound analyses. In Study 3, breath sounds were studied before and after methacholine inhalation. In Study 1, the data showed good inter- and intra-observer reliability. In Study 2, there were significant relationships between the airflow rate, age, height, and spirometric and common breath sound parameters. However, there were no significant relationships between the airflow rate and the spectrum curve indexes. Moreover, the spectrum curve indexes showed no relationships with age, height, or spirometric parameters. In Study 3, all parameters significantly changed after methacholine inhalation. Some spectrum curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully indicate airway narrowing. These parameters may play a role in the assessment of bronchoconstriction in children. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
A wideband, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer.
Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J
1988-12-01
This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.
Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2016-03-01
The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.
Zheng, Hai-ming; Li, Guang-jie; Wu, Hao
2015-06-01
Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.
NASA Technical Reports Server (NTRS)
Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Porter, A. J.
1985-01-01
Load-cell and acoustic responses indicate bonding condition nondestructively. Signal recorded by load cell direct and instantaneous measure of local stiffness of material at point of impact. Separate and distinctly different measurement that sensed by microphone. Spectrum analysis of pulse obtained from debonded point will only show frequencies below 425 Hz because insulation alone does not have stiffness to support energy at higher frequencies.
NASA Astrophysics Data System (ADS)
Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo
2018-03-01
As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.
Chang, Yen-Liang; Hung, Chao-Ho; Chen, Po-Yueh; Chen, Wei-Chang; Hung, Shih-Han
2015-10-01
Acoustic analysis is often used in speech evaluation but seldom for the evaluation of oral prostheses designed for reconstruction of surgical defect. This study aimed to introduce the application of acoustic analysis for patients with velopharyngeal insufficiency (VPI) due to oral surgery and rehabilitated with oral speech-aid prostheses. The pre- and postprosthetic rehabilitation acoustic features of sustained vowel sounds from two patients with VPI were analyzed and compared with the acoustic analysis software Praat. There were significant differences in the octave spectrum of sustained vowel speech sound between the pre- and postprosthetic rehabilitation. Acoustic measurements of sustained vowels for patients before and after prosthetic treatment showed no significant differences for all parameters of fundamental frequency, jitter, shimmer, noise-to-harmonics ratio, formant frequency, F1 bandwidth, and band energy difference. The decrease in objective nasality perceptions correlated very well with the decrease in dips of the spectra for the male patient with a higher speech bulb height. Acoustic analysis may be a potential technique for evaluating the functions of oral speech-aid prostheses, which eliminates dysfunctions due to the surgical defect and contributes to a high percentage of intelligible speech. Octave spectrum analysis may also be a valuable tool for detecting changes in nasality characteristics of the voice during prosthetic treatment of VPI. Copyright © 2014. Published by Elsevier B.V.
Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V
2016-10-28
Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02) THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.
NASA Astrophysics Data System (ADS)
Yoshihara, Akira; Maeda, Toshiteru; Kawamura, Satoshi; Nakamura, Shintaro; Nojima, Tsutomu; Takeda, Yoshihiko; Ohnuma, Shigehiro
2018-04-01
A systematic study of Brillouin light scattering (BLS) from superparamagnetic (SPM) and ferromagnetic (FM) Co-Al-O granular films was performed under magnetic fields of up to 4.6 kOe in the standard backscattering geometry at room temperature. The SPM and FM boundary, defined as the Co composition at which the exchange field vanishes, was found to be located at xC(Co) = 59.3 ± 1.3 at. %. From FM films we observed a pair of bulk spin-wave peaks on both the positive- and negative-frequency sides and a surface localized Damon-Eshbach peak only on the positive-frequency side under the present scattering conditions. From SPM films, a pair of broader but propagative excitation peaks with asymmetric intensity were observed on both frequency sides in a spectrum. We performed a numerical analysis of the BLS spectrum by employing the theory developed by Camley and Mills (CM) while retaining dipole and exchange couplings for FM films and only dipole coupling for SPM films. The CM theory successfully reproduced the observed spectrum for both SPM and FM films. The SPM spectrum exhibits a singlet-doublet peak structure similarly to an FM SW spectrum. The SPM peak stems from the dipole-coupled larger-amplitude precession motion of the granule magnetic moment around the external-field-induced magnetization.
Non Debye approximation on specific heat of solids
NASA Astrophysics Data System (ADS)
Bhattacharjee, Ruma; Das, Anamika; Sarkar, A.
2018-05-01
A simple non Debye frequency spectrum is proposed. The normalized frequency spectrum is compared to that of Debye spectrum. The proposed spectrum, provides a good account of low frequency phonon density of states, which gives a linear temperature variation at low temperature in contrast to Debye T3 law. It has been analyzed that the proposed model provides a good account of excess specific heat for nanostructure solid.
Time-frequency analysis of transient signals - application to cardiovascular control
NASA Astrophysics Data System (ADS)
Keselbrener, Laurence; Akselrod, Solange
A method for time-frequency decomposition (SDA) is presented for the analysis of cardiovascular signals, during steady state as well as under transient conditions. The SDA is applied to a simulated noisy non-stationary signal. It reliably discloses the time evolution of the different spectral components of the signal and does not present noise propagation as other time-frequency methods, such as Wigner-Ville distribution does. A comparison with the well-known short-time Fourier transform is also performed for non-stationary simulated signal showing that the SDA achieves a higher time-frequency resolution. Two physiological applications are then presented in which the SDA is used for the analysis of HR and BP variability, reflecting the activity of the autonomic nervous system. The power spectra of heart rate (HR) and blood pressure (BP) fluctuations during a change of posture from supine to standing are calculated. The decrease of vagal activity on standing is obvious and can be quantified from the spectrum of HR fluctuations. The increase in the LF fluctuations of both BP and HR spectra reflect the enhancement in sympathetic activity on standing. Finally, the power spectrum of fetal HR fluctuations is obtained by SDA. The respiratory peak is observed and can help in evaluating fetal well-being.
Sutton, G. G.; Sykes, K.
1967-01-01
1. When a subject attempts to exert a steady pressure on a joystick he makes small unavoidable errors which, irrespective of their origin or frequency, may be called tremor. 2. Frequency analysis shows that low frequencies always contribute much more to the total error than high frequencies. If the subject is not allowed to check his performance visually, but has to rely on sensations of pressure in the finger tips, etc., the error power spectrum plotted on logarithmic co-ordinates approximates to a straight line falling at 6 db/octave from 0·4 to 9 c/s. In other words the amplitude of the tremor component at each frequency is inversely proportional to frequency. 3. When the subject is given a visual indication of his errors on an oscilloscope the shape of the tremor spectrum alters. The most striking change is the appearance of a tremor peak at about 9 c/s, but there is also a significant increase of error in the range 1-4 c/s. The extent of these changes varies from subject to subject. 4. If the 9 c/s peak represents oscillation of a muscle length-servo it would appear that greater use is made of this servo when positional information is available from the eyes than when proprioceptive impulses from the limbs have to be relied on. ImagesFig. 2 PMID:6048997
On the Power Spectrum of Motor Unit Action Potential Trains Synchronized With Mechanical Vibration.
Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; Cesarelli, Mario; Iuppariello, Luigi; Bifulco, Paolo
2018-03-01
This study provides a definitive analysis of the spectrum of a motor unit action potential train (MUAPT) elicited by mechanical vibratory stimulation via a detailed and concise mathematical formulation. Experimental studies demonstrated that MUAPs are not exactly synchronized with the vibratory stimulus but show a variable latency jitter, whose effects have not been investigated yet. Synchronized action potential train was represented as a quasi-periodic sequence of a given MU waveform. The latency jitter of action potentials was modeled as a Gaussian stochastic process, in accordance to the previous experimental studies. A mathematical expression for power spectrum of a synchronized MUAPT has been derived. The spectrum comprises a significant continuous component and discrete components at the vibratory frequency and its harmonics. Their relevance is correlated to the level of synchronization: the weaker the synchronization the more relevant is the continuous spectrum. Electromyography (EMG) rectification enhances the discrete components. The derived equations have general validity and well describe the power spectrum of actual EMG recordings during vibratory stimulation. Results are obtained by appropriately setting the level of synchronization and vibration frequency. This paper definitively clarifies the nature of changes in spectrum of raw EMG recordings from muscles undergoing vibratory stimulation. Results confirm the need of motion artifact filtering for raw EMG recordings during stimulation and strongly suggest to avoid EMG rectification that significantly alters the spectrum characteristics.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-11-25
A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.
Measurement of CIB power spectra with CAM-SPEC from Planck HFI maps
NASA Astrophysics Data System (ADS)
Mak, Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine
2015-08-01
We present new measurements of the cosmic infrared background (CIB) anisotropies and its first likelihood using Planck HFI data at 353, 545, and 857 GHz. The measurements are based on cross-frequency power spectra and likelihood analysis using the CAM-SPEC package, rather than map based template removal of foregrounds as done in previous Planck CIB analysis. We construct the likelihood of the CIB temperature fluctuations, an extension of CAM-SPEC likelihood as used in CMB analysis to higher frequency, and use it to drive the best estimate of the CIB power spectrum over three decades in multiple moment, l, covering 50 ≤ l ≤ 2500. We adopt parametric models of the CIB and foreground contaminants (Galactic cirrus, infrared point sources, and cosmic microwave background anisotropies), and calibrate the dataset uniformly across frequencies with known Planck beam and noise properties in the likelihood construction. We validate our likelihood through simulations and extensive suite of consistency tests, and assess the impact of instrumental and data selection effects on the final CIB power spectrum constraints. Two approaches are developed for interpreting the CIB power spectrum. The first approach is based on simple parametric model which model the cross frequency power using amplitudes, correlation coefficients, and known multipole dependence. The second approach is based on the physical models for galaxy clustering and the evolution of infrared emission of galaxies. The new approaches fit all auto- and cross- power spectra very well, with the best fit of χ2ν = 1.04 (parametric model). Using the best foreground solution, we find that the cleaned CIB power spectra are in good agreement with previous Planck and Herschel measurements.
Karain, Wael
2016-10-01
The dynamics of a protein and the water surrounding it are coupled via nonbonded energy interactions. This coupling can exhibit a complex, nonlinear, and nonstationary nature. The THz frequency spectrum for this interaction energy characterizes both the vibration spectrum of the water hydrogen bond network, and the frequency range of large amplitude modes of proteins. We use a Recurrence Plot based Wiener-Khinchin method RPWK to calculate this spectrum, and the results are compared to those determined using the classical auto-covariance-based Wiener-Khinchin method WK. The frequency spectra for the total nonbonded interaction energy extracted from molecular dynamics simulations between the β-Lactamase Inhibitory Protein BLIP, and water molecules within a 10 Å distance from the protein surface, are calculated at 150, 200, 250, and 310 K, respectively. Similar calculations are also performed for the nonbonded interaction energy between the residues 49ASP, 53TYR, and 142PHE in BLIP, with water molecules within 10 Å from each residue respectively at 150, 200, 250, and 310 K. A comparison of the results shows that RPWK performs better than WK, and is able to detect some frequency data points that WK fails to detect. This points to the importance of using methods capable of taking the complex nature of the protein-solvent energy landscape into consideration, and not to rely on standard linear methods. In general, RPWK can be a valuable addition to the analysis tools for protein molecular dynamics simulations. Proteins 2016; 84:1549-1557. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Generalized Doppler and aberration kernel for frequency-dependent cosmological observables
NASA Astrophysics Data System (ADS)
Yasini, Siavash; Pierpaoli, Elena
2017-11-01
We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.
Determining Aliasing in Isolated Signal Conditioning Modules
NASA Technical Reports Server (NTRS)
2009-01-01
The basic concept of aliasing is this: Converting analog data into digital data requires sampling the signal at a specific rate, known as the sampling frequency. The result of this conversion process is a new function, which is a sequence of digital samples. This new function has a frequency spectrum, which contains all the frequency components of the original signal. The Fourier transform mathematics of this process show that the frequency spectrum of the sequence of digital samples consists of the original signal s frequency spectrum plus the spectrum shifted by all the harmonics of the sampling frequency. If the original analog signal is sampled in the conversion process at a minimum of twice the highest frequency component contained in the analog signal, and if the reconstruction process is limited to the highest frequency of the original signal, then the reconstructed signal accurately duplicates the original analog signal. It is this process that can give birth to aliasing.
Buchholz, Jörg M
2011-07-01
Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (1) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. Copyright © 2011 Elsevier B.V. All rights reserved.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Fast focus estimation using frequency analysis in digital holography.
Oh, Seungtaik; Hwang, Chi-Young; Jeong, Il Kwon; Lee, Sung-Keun; Park, Jae-Hyeung
2014-11-17
A novel fast frequency-based method to estimate the focus distance of digital hologram for a single object is proposed. The focus distance is computed by analyzing the distribution of intersections of smoothed-rays. The smoothed-rays are determined by the directions of energy flow which are computed from local spatial frequency spectrum based on the windowed Fourier transform. So our method uses only the intrinsic frequency information of the optical field on the hologram and therefore does not require any sequential numerical reconstructions and focus detection techniques of conventional photography, both of which are the essential parts in previous methods. To show the effectiveness of our method, numerical results and analysis are presented as well.
Micro acoustic spectrum analyzer
Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.
2004-11-23
A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.
Comparative study of various normal mode analysis techniques based on partial Hessians.
Ghysels, An; Van Speybroeck, Veronique; Pauwels, Ewald; Catak, Saron; Brooks, Bernard R; Van Neck, Dimitri; Waroquier, Michel
2010-04-15
Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. 2009 Wiley Periodicals, Inc.
Comparative Study of Various Normal Mode Analysis Techniques Based on Partial Hessians
GHYSELS, AN; VAN SPEYBROECK, VERONIQUE; PAUWELS, EWALD; CATAK, SARON; BROOKS, BERNARD R.; VAN NECK, DIMITRI; WAROQUIER, MICHEL
2014-01-01
Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. PMID:19813181
Bashashati, Ali; Noureddin, Borna; Ward, Rabab K; Lawrence, Peter D; Birch, Gary E
2006-03-01
A power spectral analysis study was conducted to investigate the effects of using an electromagnetic motion tracking sensor on an electroencephalogram (EEG) recording system. The results showed that the sensors do not generate any consistent frequency component(s) in the power spectrum of the EEG in the frequencies of interest (0.1-55 Hz).
NASA Technical Reports Server (NTRS)
Hagfors, T.; Zamlutti, C. J.
1974-01-01
The Arecibo 430 MHz incoherent scatter radar (ISR) was used to monitor the effects of modifying the ionosphere by a high power HF transmitter feeding the 305 m reflector antenna. When in the ordinary magnetoionic mode parametric instabilities develop in the ionosphere near the reflection level. Manifestations of these instabilities are the strong enhancement of Langmuir oscillations in the direction of the ISR beam at a wavelength of 35 cm and the simultaneous much weaker enhancement of ion oscillations in that direction. The spectral analysis of the enhanced peak with a height resolution of 2.4 km shows that the ionic mode enhancement most often has a double humped frequency spectrum corresponding to up- and down-going ion acoustic waves. The shape of the frequency spectrum is interpreted in terms of a stable oscillation which is driven by a secondary electrostatic field caused by nonlinear interaction of Langmuir waves within a cone centered on the magnetic field and by the scattering of the pump field on stable Langmuir waves travelling along the direction of the ISR.
Global examination of the wind-dependence of very low frequency underwater ambient noise.
Nichols, Stephen M; Bradley, David L
2016-03-01
Ocean surface winds play a key role in underwater ambient noise generation. One particular frequency band of interest is the infrasonic or very low frequency (VLF) band from 1 to 20 Hz. In this spectral band, wind generated ocean surface waves interact non-linearly to produce acoustic waves, which couple into the seafloor to generate microseisms, as explained by the theory developed by Longuet-Higgins. This study examines long term data sets in the VLF portion of the ambient noise spectrum, collected by the hydroacoustic systems of the Comprehensive Nuclear-Test Ban Treaty Organization in the Atlantic, Pacific, and Indian Oceans. Three properties of the noise field were examined: (a) the behavior of the acoustic spectrum slope from 1 to 5 Hz, (b) correlation of noise levels and wind speeds, and (c) the autocorrelation behavior of both the noise field and the wind. Analysis results indicate the spectrum slope is site dependent, and for both correlation methods, a high correlation between wind and the noise field in the 1-5 Hz band.
NASA Astrophysics Data System (ADS)
Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.
2018-03-01
In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.
Atomic torsional modal analysis for high-resolution proteins.
Tirion, Monique M; ben-Avraham, Daniel
2015-03-01
We introduce a formulation for normal mode analyses of globular proteins that significantly improves on an earlier one-parameter formulation [M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)] that characterized the slow modes associated with protein data bank structures. Here we develop that empirical potential function that is minimized at the outset to include two features essential to reproduce the eigenspectra and associated density of states in the 0 to 300cm-1 frequency range, not merely the slow modes. First, introduction of preferred dihedral-angle configurations via use of torsional stiffness constants eliminates anomalous dispersion characteristics due to insufficiently bound surface side chains and helps fix the spectrum thin tail frequencies (100-300cm-1). Second, we take into account the atomic identities and the distance of separation of all pairwise interactions, improving the spectrum distribution in the 20 to 300cm-1 range. With these modifications, not only does the spectrum reproduce that of full atomic potentials, but we obtain stable reliable eigenmodes for the slow modes and over a wide range of frequencies.
Spectral saliency via automatic adaptive amplitude spectrum analysis
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan
2016-03-01
Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.
Kapucu, Fikret E.; Välkki, Inkeri; Mikkonen, Jarno E.; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M. A.; Hyttinen, Jari A. K.
2016-01-01
Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis. PMID:27803660
Application of time-frequency analysis to the evaluation of the condition of car suspension
NASA Astrophysics Data System (ADS)
Szymański, G. M.; Josko, M.; Tomaszewski, F.; Filipiak, R.
2015-06-01
The article presents possibilities of use of vibration signal parameters for the evaluation of elements' clearance in the car suspension system. The time-spectrum analysis has been proposed to determine the frequency band connected with car body free vibration generated by impacts of suspension elements in case of clearance in suspension elements fixing to the car body. Diagnostic models allowing evaluation of shock absorber fastening to the car body are described in this work.
NASA Astrophysics Data System (ADS)
Bordikar, M. R.; Scales, W. A.; Mahmoudian, A.; Kim, H.; Bernhardt, P. A.; Redmon, R.; Samimi, A. R.; Brizcinski, S.; McCarrick, M. J.
2014-01-01
Recently, narrowband emissions ordered near the H+ (proton) gyrofrequency (fcH) were reported in the stimulated electromagnetic emission (SEE) spectrum during active geomagnetic conditions. This work presents new observations and theoretical analysis of these recently discovered emissions. These emission lines are observed in the stimulated electromagnetic emission (SEE) spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during recent ionospheric modification experiments at the High Frequency Active Auroral Research (HAARP) facility near Gakona, Alaska. The spectral lines are typically shifted below and above the pump wave frequency by harmonics of a frequency roughly 10% less than fcH (≈ 800 Hz) with a narrow emission bandwidth less than the O+ gyrofrequency (≈ 50 Hz). However, new observations and analysis of emission lines ordered by a frequency approximately 10% greater than fcH are presented here for the first time as well. The interaction altitude for the heating for all the observations is in the range of 160 km up to 200 km. As described previously, proton precipitation due to active geomagnetic conditions is considered as the reason for the presence of H+ ions known to be a minor background constituent in this altitude region. DMSP satellite observations over HAARP during the heating experiments and ground-based magnetometer and riometer data validate active geomagnetic conditions. The theory of parametric decay instability in multi-ion component plasma including H+ ions as a minority species described in previous work is expanded in light of simultaneously observed preexisting SEE features to interpret the newly reported observations. Impact of active geomagnetic conditions on the SEE spectrum as a diagnostic tool for proton precipitation event characterization is discussed.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.
Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D
2001-01-01
A comparative analysis was made of the effect of two kinds of EMI MMD-radiation: EMI MMD-waves, generated by a vehicle "Jav-1 M" (42.2 and 53.5 HHz), and EMI MMD-waves exerting influence with frequencies of molecular spectrum of radiation and nitric oxide absorption (150.176-150.644 HHz), obtained with a specially created generator, with respect to their influence on the functional ability of platelets of unstable angina pectoris patients. It was shown that in vitro EMI MMD-fluctuations with frequencies of molecular spectrum of radiation and nitric oxide absorption exert a stronger inhibiting influence on the functional activity of platelets of unstable angina pectoris patients. Features of the action of various kinds of EMI MMD-effect on the activative-high-speed characteristics of platelet aggregation are shown.
Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2012-01-01
We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.
Photoacoustic simulation study of chirp excitation response from different size absorbers
NASA Astrophysics Data System (ADS)
Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.
2017-03-01
Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.
Frequency Estimator Performance for a Software-Based Beacon Receiver
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.; Miranda, Felix
2014-01-01
As propagation terminals have evolved, their design has trended more toward a software-based approach that facilitates convenient adjustment and customization of the receiver algorithms. One potential improvement is the implementation of a frequency estimation algorithm, through which the primary frequency component of the received signal can be estimated with a much greater resolution than with a simple peak search of the FFT spectrum. To select an estimator for usage in a QV-band beacon receiver, analysis of six frequency estimators was conducted to characterize their effectiveness as they relate to beacon receiver design.
Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2001-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.
Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2014-10-14
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.
Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2014-05-20
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.
An Effective Method for Substance Detection Using the Broad Spectrum THz Signal: A “Terahertz Nose”
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.
2015-01-01
We propose an effective method for the detection and identification of dangerous substances by using the broadband THz pulse. This pulse excites, for example, many vibrational or rotational energy levels of molecules simultaneously. By analyzing the time-dependent spectrum of the THz pulse transmitted through or reflected from a substance, we follow the average response spectrum dynamics. Comparing the absorption and emission spectrum dynamics of a substance under analysis with the corresponding data for a standard substance, one can detect and identify the substance under real conditions taking into account the influence of packing material, water vapor and substance surface. For quality assessment of the standard substance detection in the signal under analysis, we propose time-dependent integral correlation criteria. Restrictions of usually used detection and identification methods, based on a comparison between the absorption frequencies of a substance under analysis and a standard substance, are demonstrated using a physical experiment with paper napkins. PMID:26020281
NASA Technical Reports Server (NTRS)
Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)
1999-01-01
The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.
NASA Astrophysics Data System (ADS)
Yoon, Young Wook; Chae, Sang Youl; Lim, Manho; Lee, Sang Kuk
2015-08-01
We report spectroscopic observations of the α,α-dichlorobenzyl radical obtained by corona excited supersonic jet expansion using a pinhole-type glass nozzle. Vibronically excited but jet-cooled radicals were generated by corona discharge of the precursor benzotrichloride with a large amount of helium carrier gas, from which the visible vibronic emission spectrum was recorded using a long path monochromator. From an analysis of the spectrum observed, the electronic energy of the D1 → D0 transition and a few vibrational mode frequencies in the ground electronic state were obtained for the α,α-dichlorobenzyl radical by comparing observed frequencies with those obtained by ab initio calculation.
Keinan, Alon; Mullikin, James C; Patterson, Nick; Reich, David
2007-10-01
Large data sets on human genetic variation have been collected recently, but their usefulness for learning about history and natural selection has been limited by biases in the ways polymorphisms were chosen. We report large subsets of SNPs from the International HapMap Project that allow us to overcome these biases and to provide accurate measurement of a quantity of crucial importance for understanding genetic variation: the allele frequency spectrum. Our analysis shows that East Asian and northern European ancestors shared the same population bottleneck expanding out of Africa but that both also experienced more recent genetic drift, which was greater in East Asians.
Astrosat/LAXPC Reveals the High-energy Variability of GRS 1915+105 in the X Class
NASA Astrophysics Data System (ADS)
Yadav, J. S.; Misra, Ranjeev; Verdhan Chauhan, Jai; Agrawal, P. C.; Antia, H. M.; Pahari, Mayukh; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Manchanda, R. K.; Paul, B.; Shah, Parag; Ishwara-Chandra, C. H.
2016-12-01
We present the first quick look analysis of data from nine AstroSat's Large Area X-ray Proportional Counter (LAXPC) observations of GRS 1915+105 during 2016 March when the source had the characteristics of being in the Radio-quiet χ class. We find that a simple empirical model of a disk blackbody emission, with Comptonization and a broad Gaussian Iron line can fit the time-averaged 3-80 keV spectrum with a systematic uncertainty of 1.5% and a background flux uncertainty of 4%. A simple dead time corrected Poisson noise level spectrum matches well with the observed high-frequency power spectra till 50 kHz and as expected the data show no significant high-frequency (\\gt 20 {Hz}) features. Energy dependent power spectra reveal a strong low-frequency (2-8 Hz) quasi-periodic oscillation and its harmonic along with broadband noise. The QPO frequency changes rapidly with flux (nearly 4 Hz in ˜5 hr). With increasing QPO frequency, an excess noise component appears significantly in the high-energy regime (\\gt 8 keV). At the QPO frequencies, the time-lag as a function of energy has a non-monotonic behavior such that the lags decrease with energy till about 15-20 keV and then increase for higher energies. These first-look results benchmark the performance of LAXPC at high energies and confirms that its data can be used for more sophisticated analysis such as flux or frequency-resolved spectro-timing studies.
A Requirements-Driven Optimization Method for Acoustic Treatment Design
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2016-01-01
Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.
FBMC receiver for multi-user asynchronous transmission on fragmented spectrum
NASA Astrophysics Data System (ADS)
Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri
2014-12-01
Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.
1995-06-13
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.
Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.
1995-01-01
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.
A New Proof of the Expected Frequency Spectrum under the Standard Neutral Model.
Hudson, Richard R
2015-01-01
The sample frequency spectrum is an informative and frequently employed approach for summarizing DNA variation data. Under the standard neutral model the expectation of the sample frequency spectrum has been derived by at least two distinct approaches. One relies on using results from diffusion approximations to the Wright-Fisher Model. The other is based on Pólya urn models that correspond to the standard coalescent model. A new proof of the expected frequency spectrum is presented here. It is a proof by induction and does not require diffusion results and does not require the somewhat complex sums and combinatorics of the derivations based on urn models.
Achieving spectrum conservation for the minimum-span and minimum-order frequency assignment problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1992-01-01
Effective and efficient solutions of frequency assignment problems assumes increasing importance as the radiofrequency spectrum experiences ever increasing utilization by diverse communications services, requiring that the most efficient use of this resource be achieved. The research presented explores a general approach to the frequency assignment problem, in which such problems are categorized by the appropriate spectrum conserving objective function, and are each treated as an N-job, M-machine scheduling problem appropriate for the objective. Results obtained and presented illustrate that such an approach presents an effective means of achieving spectrum conserving frequency assignments for communications systems in a variety of environments.
Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes
NASA Astrophysics Data System (ADS)
Zhang, F.; Li, C.
2012-12-01
Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;
Portable instant display and analysis reflectance spectrometer
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H. (Inventor)
1985-01-01
A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.
Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings
NASA Technical Reports Server (NTRS)
Sanandres, Luis A.
1991-01-01
A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
Time-frequency analysis of SEMG--with special consideration to the interelectrode spacing.
Alemu, M; Kumar, Dinesh Kant; Bradley, Alan
2003-12-01
The surface electromyogram (SEMG) is a complex, nonstationary signal. The spectrum of the SEMG is dependent on the force of contraction being generated and other factors like muscle fatigue and interelectrode distance (IED). The spectrum of the signal is time variant. This paper reports the experimental research conducted to study the influence of force of muscle contraction and IED on the SEMG signal using time-frequency (T-F) analysis. Two T-F techniques have been used: Wigner-Ville distribution (WVD) and Choi-Williams distribution (CWD). The experiment was conducted with the help of ten healthy volunteers (five males and five females) who performed isometric elbow flexions of the active right arm at 20%, 50%, and 80% of their maximal voluntary contraction. The SEMG signal was recorded using surface electrodes placed at a distance of 18 and 36 mm over biceps brachii muscle. The results indicate that the two distributions were spread out across the frequency range at smaller IED. Further, regardless of the spacing, both distributions displayed increased spectral compression with time at higher contraction level.
Analysis of long term heart rate variability: methods, 1/f scaling and implications
NASA Technical Reports Server (NTRS)
Saul, J. P.; Albrecht, P.; Berger, R. D.; Cohen, R. J.
1988-01-01
The use of spectral techniques to quantify short term heart rate fluctuations on the order of seconds to minutes has helped define the autonomic contributions to beat-to-beat control of heart rate. We used similar techniques to quantify the entire spectrum (0.00003-1.0 Hz) of heart rate variability during 24 hour ambulatory ECG monitoring. The ECG from standard Holter monitor recordings from normal subjects was sampled with the use of a phase locked loop, and a heart rate time series was constructed at 3 Hz. Frequency analysis of the heart rate signal was performed after a nonlinear filtering algorithm was used to eliminate artifacts. A power spectrum of the entire 24 hour record revealed power that was inversely proportional to frequency, 1/f, over 4 decades from 0.00003 to 0.1 Hz (period approximately 10 hours to 10 seconds). Displaying consecutive spectra calculated at 5 minute intervals revealed marked variability in the peaks at all frequencies throughout the 24 hours, probably accounting for the lack of distinct peaks in the spectra of the entire records.
Vibration detection of component health and operability
NASA Technical Reports Server (NTRS)
Baird, B. C.
1975-01-01
In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.
Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts
NASA Astrophysics Data System (ADS)
Goyal, R.; Sharma, R. P.; Gupta, D. N.
2017-12-01
A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.
NASA Astrophysics Data System (ADS)
Reynders, Edwin P. B.; Langley, Robin S.
2018-08-01
The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.
2018-03-01
ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain
Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited
NASA Astrophysics Data System (ADS)
Ni, Yicun; Skinner, J. L.
2016-07-01
Before 2015, heterodyne-detected sum-frequency-generation experiments on the air-water interface showed the presence of a positive feature at low frequency in the imaginary part of the susceptibility. However, three very recent experiments indicate that this positive feature is in fact absent. Armed with a better understanding, developed by others, of how to calculate sum-frequency spectra, we recalculate the spectrum and find good agreement with these new experiments. In addition, we provide a revised interpretation of the spectrum.
Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions
NASA Astrophysics Data System (ADS)
Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.
2016-10-01
The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (<0.1 cm-1) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.
1988-01-01
The initial frequency splitting results of solar p-mode oscillations obtained from the 1988 helioseismology program at the Mt. Wilson Observatory are presented. The frequency splittings correspond to the rotational splittings of sectoral harmonics which range in degree between 10 and 598. They were obtained from a cross-correlation analysis of the prograde and retrograde portions of a two-dimensional (t - v) power spectrum. This power spectrum was computed from an eight-hour sequence of full-disk Dopplergrams obtained on July 2, 1988, at the 60-foot tower telescope with a Na magneto-optical filter and a 1024x1024 pixel CCD camera. These frequency splittings have an inherently larger scatter than did the splittings obtained from earlier 16-day power spectra. These splittings are consistent with an internal solar rotational velocity which is independent of radius along the equatorial plane. The normalized frequency splittings averaged 449 + or - 3 nHz, a value which is very close to the observed equatorial rotation rate of the photospheric gas of 451.7 nHz.
Analysis of Factors Affecting Output Levels and Frequencies of MP3 Players.
Kim, Jinsook
2013-09-01
Exposure to high levels of music that could lead to music induced hearing loss (MIHL) has been of recent interest especially for young adults, considering their excessive use of personal listening devices such as MP3 player. More attention should be drawn to MIHL for noting that early noise exposure leads to earlier onset of presbycusis. In search of appropriate and safe listening habits for young adults, this investigation was aimed to evaluate output levels and frequencies generated by the Samsung galaxy note MP3 player depending on two earphone types; ear-bud and over-the-ear earphones and three music genres; rock, hip-hop, ballade. A sound level meter was used to measure output level and frequency spectrum between 12.5 and 16000 Hz at all 1/3-octave bands. The following results can be summarized. 1) The earphone styles did not produce significant difference in output levels, but the music genres did. However, the results of music genres varied. 2) Neither earphone styles nor music genres produced significant difference in frequency response spectrum, except music genres at the volume settings we usually listen to. Additionally, volume levels should be lower than 50% for usual listening situation. Through this investigation, it was noted that the frequency range was substantial between 50 and 1000 Hz regardless of the styles of earphones and music genres, implying that we should be cautious of this frequency range when we listen to music. Researchers should give more attention to the effects of the mixture of output level and frequency spectrum, considering that the auditory system has frequency specificity from the periphery to the central to provide refined methods for protecting our ears from MIHL.
Analysis of Factors Affecting Output Levels and Frequencies of MP3 Players
2013-01-01
Exposure to high levels of music that could lead to music induced hearing loss (MIHL) has been of recent interest especially for young adults, considering their excessive use of personal listening devices such as MP3 player. More attention should be drawn to MIHL for noting that early noise exposure leads to earlier onset of presbycusis. In search of appropriate and safe listening habits for young adults, this investigation was aimed to evaluate output levels and frequencies generated by the Samsung galaxy note MP3 player depending on two earphone types; ear-bud and over-the-ear earphones and three music genres; rock, hip-hop, ballade. A sound level meter was used to measure output level and frequency spectrum between 12.5 and 16000 Hz at all 1/3-octave bands. The following results can be summarized. 1) The earphone styles did not produce significant difference in output levels, but the music genres did. However, the results of music genres varied. 2) Neither earphone styles nor music genres produced significant difference in frequency response spectrum, except music genres at the volume settings we usually listen to. Additionally, volume levels should be lower than 50% for usual listening situation. Through this investigation, it was noted that the frequency range was substantial between 50 and 1000 Hz regardless of the styles of earphones and music genres, implying that we should be cautious of this frequency range when we listen to music. Researchers should give more attention to the effects of the mixture of output level and frequency spectrum, considering that the auditory system has frequency specificity from the periphery to the central to provide refined methods for protecting our ears from MIHL. PMID:24653908
Multitaper Spectral Analysis and Wavelet Denoising Applied to Helioseismic Data
NASA Technical Reports Server (NTRS)
Komm, R. W.; Gu, Y.; Hill, F.; Stark, P. B.; Fodor, I. K.
1999-01-01
Estimates of solar normal mode frequencies from helioseismic observations can be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra from the time series, then using wavelet denoising of the log spectra. MTSA leads to a power spectrum estimate with reduced variance and better leakage properties than the conventional periodogram. Under the assumption of stationarity and mild regularity conditions, the log multitaper spectrum has a statistical distribution that is approximately Gaussian, so wavelet denoising is asymptotically an optimal method to reduce the noise in the estimated spectra. We find that a single m-upsilon spectrum benefits greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself can be used to improve m-averaged spectra. We compare estimates using two different 5-taper estimates (Stepian and sine tapers) and the periodogram estimate, for GONG time series at selected angular degrees l. We compare those three spectra with and without wavelet-denoising, both visually, and in terms of the mode parameters estimated from the pre-processed spectra using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger (depending on l and the temporal frequency) when applied to the multitaper estimates than when applied to the periodogram. The estimated mode parameters (frequency, amplitude and width) are comparable for the three power spectrum estimates, except for modes with very small mode widths (a few frequency bins), where the multitaper spectra broadened the modest compared with the periodogram. We tested the influence of the number of tapers used and found that narrow modes at low n values are broadened to the extent that they can no longer be fit if the number of tapers is too large. For helioseismic time series of this length and temporal resolution, the optimal number of tapers is less than 10.
Electromagnetic fields from mobile phone base station - variability analysis.
Bienkowski, Pawel; Zubrzak, Bartlomiej
2015-09-01
The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezler, P.; Hartzman, M.; Reich, M.
1980-08-01
A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
NASA Astrophysics Data System (ADS)
Chapman, Martin Colby
1998-12-01
The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression modeling does not resolve significant effects due to site class at frequencies greater than approximately 5 Hz. Disaggregation of general seismic hazard models using Vsbea indicates that the modal magnitudes for the higher frequency oscillators tend to be larger, and vary less with oscillator frequency, than those derived using PSV. Insofar as the elastic input energy may be a better parameter for quantifying the damage potential of ground motion, its use in probabilistic seismic hazard analysis could provide an improved means for selecting earthquake scenarios and establishing design earthquakes for many types of engineering analyses.
Linearized spectrum correlation analysis for line emission measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
[Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].
Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin
2008-02-01
To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
NASA Astrophysics Data System (ADS)
Matsuda, T. S.; Nakamura, T.; Ejiri, M. K.; Tsutsumi, M.; Shiokawa, K.
2014-12-01
Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs around mesopause. There are many airglow imagers operated all over the world, and a large amount of data which could improve our understanding of AGWs propagation direction and source distribution in the MLT region. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain (phase velocity spectrum), from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. From a series of images projected onto the geographic coordinates, 3-D Fourier transform is applied and 3-D power spectrum in horizontal wavenumber and frequency domain is obtained. Then, it is converted into phase velocity and frequency domain. Finally, the spectrum is integrated along the frequency for the range of interest and 2-D spectrum in horizontal phase velocity is calculated. This method was applied to the data obtained at Syowa Station (69ºS, 40ºE), Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal propagation characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. Airglow imaging observation has been operated with various sampling intervals. We also presents how the images with different sample interval should be treated.
Methods and apparatuses using filter banks for multi-carrier spread spectrum signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2017-01-31
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less
Methods and apparatuses using filter banks for multi-carrier spread spectrum signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.
2016-06-14
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less
Bispectral analysis of equatorial spread F density irregularities
NASA Technical Reports Server (NTRS)
Labelle, J.; Lund, E. J.
1992-01-01
Bispectral analysis has been applied to density irregularities at frequencies 5-30 Hz observed with a sounding rocket launched from Peru in March 1983. Unlike the power spectrum, the bispectrum contains statistical information about the phase relations between the Fourier components which make up the waveform. In the case of spread F data from 475 km the 5-30 Hz portion of the spectrum displays overall enhanced bicoherence relative to that of the background instrumental noise and to that expected due to statistical considerations, implying that the observed f exp -2.5 power law spectrum has a significant non-Gaussian component. This is consistent with previous qualitative analyses. The bicoherence has also been calculated for simulated equatorial spread F density irregularities in approximately the same wavelength regime, and the resulting bispectrum has some features in common with that of the rocket data. The implications of this analysis for equatorial spread F are discussed, and some future investigations are suggested.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2007-01-01
A treatment of the modal decomposition of the pressure field in a combustor as determined by two pressure time history measurements is developed herein. It is applied to a Pratt and Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the assumption is made that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present then circumferential mode m-2 is not. In the analysis used herein at frequencies above the first cutoff mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. As part of the analysis one specifies mode cut-on frequencies. This creates a set of frequencies that each mode spans. One finding was the successful use of the same modal span frequencies over a range of operating conditions for this particular engine. This suggests that for this case the cut-on frequencies are in proximity at each operating condition. Consequently, the combustion noise spectrum related to the circumferential modes might not change much with operating condition.
The Complete, Temperature Resolved Experimental Spectrum of Methanol (CH3OH) between 560 and 654 GHz
NASA Astrophysics Data System (ADS)
Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.
2014-02-01
The complete spectrum of methanol (CH3OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from vt = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the 13C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.
Optical parametric amplifiers using chirped quasi-phase-matching (QPM) gratings offer the possibility of engineering the gain and group delay spectra. We give practical formulas for the design of such amplifiers. We consider linearly chirped QPM gratings providing constant gain over a broad bandwidth, sinusoidally modulated profiles for selective frequency amplification and a pair of QPM gratings working in tandem to ensure constant gain and constant group delay at the same time across the spectrum. Finally, the analysis is carried out in the frequency domain using Wentzel–Kramers–Brillouin analysis.
Frequency Estimator Performance for a Software-Based Beacon Receiver
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Morse, Jacquelynne R.; Nessel, James A.
2014-01-01
As propagation terminals have evolved, their design has trended more toward a software-based approach that facilitates convenient adjustment and customization of the receiver algorithms. One potential improvement is the implementation of a frequency estimation algorithm, through which the primary frequency component of the received signal can be estimated with a much greater resolution than with a simple peak search of the FFT spectrum. To select an estimator for usage in a Q/V-band beacon receiver, analysis of six frequency estimators was conducted to characterize their effectiveness as they relate to beacon receiver design.
Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.
2014-05-01
Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.
NASA Technical Reports Server (NTRS)
1975-01-01
Signal processing equipment specifications, operating and test procedures, and systems design and engineering are described. Five subdivisions of the overall circuitry are treated: (1) the spectrum analyzer; (2) the spectrum integrator; (3) the velocity discriminator; (4) the display interface; and (5) the formatter. They function in series: (1) first in analog form to provide frequency resolution, (2) then in digital form to achieve signal to noise improvement (video integration) and frequency discrimination, and (3) finally in analog form again for the purpose of real-time display of the significant velocity data. The formatter collects binary data from various points in the processor and provides a serial output for bi-phase recording. Block diagrams are used to illustrate the system.
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Zakharova, Irina G.; Zagursky, Dmitry Yu.
2017-01-01
Using an experiment with thin paper layers and computer simulation, we demonstrate the principal limitations of standard Time Domain Spectroscopy (TDS) based on using a broadband THz pulse for the detection and identification of a substance placed inside a disordered structure. We demonstrate the spectrum broadening of both transmitted and reflected pulses due to the cascade mechanism of the high energy level excitation considering, for example, a three-energy level medium. The pulse spectrum in the range of high frequencies remains undisturbed in the presence of a disordered structure. To avoid false absorption frequencies detection, we apply the spectral dynamics analysis method (SDA-method) together with certain integral correlation criteria (ICC). PMID:29186849
Noise produced by turbulent flow into a rotor: Theory manual for noise calculation
NASA Technical Reports Server (NTRS)
Amiet, R. K.
1989-01-01
An analysis is presented for the calculation of noise produced by turbulent flow into a helicopter rotor. The method is based on the analysis of Amiet for the sound produced by an airfoil moving in rectilinear motion through a turbulent flow field. The rectilinear motion results are used in a quasi-steady manner to calculate the instantaneous spectrum of the rotor noise at any given rotor position; the overall spectrum is then found by averaging the instantaneous spectrum over all rotor azimuth angles. Account is taken of the fact that the rotor spends different amounts of retarded time at different rotor positions. Blade to blade correlation is included in the analysis, leading to harmonics of blade passing frequency. The spectrum of the turbulence entering the rotor is calculated by applying rapid distortion theory to an isotropic turbulence spectrum, assuming that the turbulence is stretched as it is pulled into the rotor. The inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. The analytical basis is provided for a module which was incorporated in NASA's ROTONET helicopter noise prediction program.
NASA Astrophysics Data System (ADS)
Tsumaki, Masanao; Ito, Tsuyohito
2016-09-01
We study plasma processing with water/solution microdroplets for a new nanoparticle synthesis method. In the process, it is important to know gas temperature (Tg) for understanding the mechanism of the particle growth and controlling its properties. Since OH emissions are naturally observed in such plasma, the rotational temperature (Tr) of OH (A-X) is estimated and compared with Tr from N2 (C-B). The plasma is generated by dielectric barrier discharges in He with N2 (2.6%) gas flow, and microdroplets are generated by an ultrasonic atomizer and carried into He/N2 plasma. Optical emission spectroscopy revealed that with the increase of voltage and frequency of plasma generation, the Tr of N2 increases. While the good theoretical spectrum fit on N2 experimental spectrum could be achieved, it was hard to obtain a reasonable fit for the OH spectrum with a single rotational energy distribution. On the other hand, two rotational distribution analysis could reproduce the experimental spectrum of OH and the lower Tr agrees to Tr by N2. The results suggest that the lower Tr obtained with the two rotational temperature analysis of OH spectrum represents Tg of the environment.
Device for frequency modulation of a laser output spectrum
Beene, James R.; Bemis, Jr., Curtis E.
1986-01-01
A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.
Device for frequency modulation of a laser output spectrum
Beene, J.R.; Bemis, C.E. Jr.
1984-07-17
A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.
Rapid determination of nanowires electrical properties using a dielectrophoresis-well based system
NASA Astrophysics Data System (ADS)
Constantinou, Marios; Hoettges, Kai F.; Krylyuk, Sergiy; Katz, Michael B.; Davydov, Albert; Rigas, Grigorios-Panagiotis; Stolojan, Vlad; Hughes, Michael P.; Shkunov, Maxim
2017-03-01
The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable growth variability of electrical properties of one-dimensional nanomaterials, such as nanowires and nanotubes, thus highlighting the need for the characterization of efficient semiconducting nanomaterials. In this study, we demonstrate a low-cost, industrially scalable dielectrophoretic (DEP) nanowire assembly method for the rapid analysis of the electrical properties of inorganic single crystalline nanowires, by identifying key features in the DEP frequency response spectrum from 1 kHz to 20 MHz in just 60 s. Nanowires dispersed in anisole were characterized using a three-dimensional DEP chip (3DEP), and the resultant spectrum demonstrated a sharp change in nanowire response to DEP signal in 1-20 MHz frequency range. The 3DEP analysis, directly confirmed by field-effect transistor data, indicates that nanowires of higher quality are collected at high DEP signal frequency range above 10 MHz, whereas lower quality nanowires, with two orders of magnitude lower current per nanowire, are collected at lower DEP signal frequencies. These results show that the 3DEP platform can be used as a very efficient characterization tool of the electrical properties of rod-shaped nanoparticles to enable dielectrophoretic selective deposition of nanomaterials with superior conductivity properties.
ERIC Educational Resources Information Center
Skuk, Verena G.; Schweinberger, Stefan R.
2014-01-01
Purpose: To determine the relative importance of acoustic parameters (fundamental frequency [F0], formant frequencies [FFs], aperiodicity, and spectrum level [SL]) on voice gender perception, the authors used a novel parameter-morphing approach that, unlike spectral envelope shifting, allows the application of nonuniform scale factors to transform…
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang;
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180
Yu, Chengzhu; Hansen, John H L
2017-03-01
Human physiology has evolved to accommodate environmental conditions, including temperature, pressure, and air chemistry unique to Earth. However, the environment in space varies significantly compared to that on Earth and, therefore, variability is expected in astronauts' speech production mechanism. In this study, the variations of astronaut voice characteristics during the NASA Apollo 11 mission are analyzed. Specifically, acoustical features such as fundamental frequency and phoneme formant structure that are closely related to the speech production system are studied. For a further understanding of astronauts' vocal tract spectrum variation in space, a maximum likelihood frequency warping based analysis is proposed to detect the vocal tract spectrum displacement during space conditions. The results from fundamental frequency, formant structure, as well as vocal spectrum displacement indicate that astronauts change their speech production mechanism when in space. Moreover, the experimental results for astronaut voice identification tasks indicate that current speaker recognition solutions are highly vulnerable to astronaut voice production variations in space conditions. Future recommendations from this study suggest that successful applications of speaker recognition during extended space missions require robust speaker modeling techniques that could effectively adapt to voice production variation caused by diverse space conditions.
Analysis of the backscatter spectrum in an ionospheric modification experiment
NASA Technical Reports Server (NTRS)
Kim, H.
1973-01-01
Predictions of the backscatter spectrum are compared, including effects of ionospheric inhomogeneity with experimental observations of incoherent backscatter from an artificially heated region. Calculations show that the strongest backscatter echo received is not, in fact, from the reflection level, but from a region some distance below (about 0.5 km for an experiment carried out at Arecibo), where the pump wave from a HF transmitter approximately 100 kW) is below the threshold for parametric amplification. By taking the standing wave pattern of the pump into account, asymmetry is explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several peaks typically observed in the region of the spectrum near the HF transmitter frequency.
NASA Astrophysics Data System (ADS)
Panteleev, Ivan; Bayandin, Yuriy; Naimark, Oleg
2017-12-01
This work performs a correlation analysis of the statistical properties of continuous acoustic emission recorded in different parts of marble and fiberglass laminate samples under quasi-static deformation. A spectral coherent measure of time series, which is a generalization of the squared coherence spectrum on a multidimensional series, was chosen. The spectral coherent measure was estimated in a sliding time window for two parameters of the acoustic emission multifractal singularity spectrum: the spectrum width and the generalized Hurst exponent realizing the maximum of the singularity spectrum. It is shown that the preparation of the macrofracture focus is accompanied by the synchronization (coherent behavior) of the statistical properties of acoustic emission in allocated frequency intervals.
47 CFR 90.683 - EA-based SMR system operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...
47 CFR 90.683 - EA-based SMR system operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...
47 CFR 90.683 - EA-based SMR system operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...
The influence of tortuosity on the spectrum of radiation from lightning return strokes
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.
Removing non-stationary noise in spectrum sensing using matrix factorization
NASA Astrophysics Data System (ADS)
van Bloem, Jan-Willem; Schiphorst, Roel; Slump, Cornelis H.
2013-12-01
Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.
Bazzotti, L
1999-01-01
On a population of 52 subjects surface electromyographic recordings of temporals and masseters, simultaneously with mandible dynamic of closure and clenching, were performed, in order to study tension and frequency behaviour in three postural conditions: rest, isotonic and isometric contractions. Frequency was studied using the median resulting from FFT calculation, and a new computing method, which presents the proportion of frequencies making up the whole EMG signal, by steps of 50 Hz. Tension was calculated as well. The results permit us to draw the following conclusions: 1. a period of EMG silence was present in 51 of 52 subjects at mandible closure (SPA--Silent Period Area); 2. SPA onset was before teeth contact (22.5 msec., during the motion of the mandible), while its end was after closure (10.2 msec., during motionless phase of clenching). This allowed to use the SPA as a tool to clearly distinguish isotonic from isometric contraction; 3. the comparison of tension and frequency, expressed as median, showed that at rest a muscle presents low frequency and low tension. In active contraction both increase their values. Nevertheless, in active contraction, while no differences were found in frequency behaviour, tension showed a difference: although higher than at rest, isotonic contraction presented lower values than during isometric contraction; 4. the study performed by the new program showed that the low frequency at rest was due to the high proportion (30-40%) of frequencies of less than 50 Hz, while the increase at function was due to the parallel increase of frequencies comprised between 100 and 250 Hz. Because it is known that muscles are composed of fibers at low frequency and at high frequency of discharge, which play different functional roles, the last finding suggests that the mathematical analysis of the spectrum of frequencies, could provide a functional-histological image of the muscle.
Adaptive multitaper time-frequency spectrum estimation
NASA Astrophysics Data System (ADS)
Pitton, James W.
1999-11-01
In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.
NASA Astrophysics Data System (ADS)
Hassan Mohammed, Mohammed Ahmed
For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.
Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing
2015-11-01
In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended materials with tide. The tower-based high-frequency water-spectrum observing system provided rich in situ spectral data for the validation of ocean color remote sensing in turbid waters, especially for validation of the high temporal-resolution geostationary satellite ocean color remote sensing.
Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum
NASA Astrophysics Data System (ADS)
Guan, Shan; Song, Weijie; Pang, Hongyang
2017-09-01
In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.
NASA Astrophysics Data System (ADS)
Cai, Jianhua
2017-05-01
The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.
Radio astronomy Explorer-1 observations of the Gum nebula
NASA Technical Reports Server (NTRS)
Alexander, J. K.
1971-01-01
Complicating factors in the spectrum analysis of the Gum nebula are discussed. These include accounting for the spectrum of supernova remnants in the direction of the nebula, the different absorption laws for radiation from beyond and within the nebula, and the Razin effect. This last results in a low frequency cutoff to the spectrum of synchrotron radiation by particles in a thermal plasma. These factors cause the observer to overestimate the amount of absorption occurring in the nebula. Data from the Explorer 38 satellite are presented for 3.93 and 6.55 MHz. Average optical depth for the nebula at 4 MHz was calculated.
Millimeter wave spectrum of nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim
2018-03-01
A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.
X-ray variability of Cygnus X-1 in its soft state
NASA Technical Reports Server (NTRS)
Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.
1997-01-01
Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.
Audio frequency in vivo optical coherence elastography
NASA Astrophysics Data System (ADS)
Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.
2009-05-01
We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.
Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines
NASA Astrophysics Data System (ADS)
Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.
1983-09-01
The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.
Detecting scaling in the period dynamics of multimodal signals: Application to Parkinsonian tremor
NASA Astrophysics Data System (ADS)
Sapir, Nir; Karasik, Roman; Havlin, Shlomo; Simon, Ely; Hausdorff, Jeffrey M.
2003-03-01
Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spectrum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical processes. In general, this type of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear oscillation or a superposition of (multiple) independent modes of oscillation. A broad peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the correlation (scaling) properties in the period dynamics of multimodal oscillations, in order to distinguish between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not be simple harmonics, as might be initially assumed.
Colored spectrum characteristics of thermal noise on the molecular scale.
Zhu, Zhi; Sheng, Nan; Fang, Haiping; Wan, Rongzheng
2016-11-02
Thermal noise is of fundamental importance to many processes. Traditionally, thermal noise has been treated as white noise on the macroscopic scale. Using molecular dynamics simulations and power spectrum analysis, we show that the thermal noise of solute molecules in water is non-white on the molecular scale, which is in contrast to the conventional theory. In the frequency domain from 2 × 10 11 Hz to 10 13 Hz, the power spectrum of thermal noise for polar solute molecules resembles the spectrum of 1/f noise. The power spectrum of thermal noise for non-polar solute molecules deviates only slightly from the spectrum of white noise. The key to this phenomenon is the existence of hydrogen bonds between polar solute molecules and solvent water molecules. Furthermore, for polar solute molecules, the degree of power spectrum deviation from that of white noise is associated with the average lifetime of the hydrogen bonds between the solute and the solvent molecules.
Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data
NASA Technical Reports Server (NTRS)
Sree, David
1992-01-01
Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.
Detection and analysis of diamond fingerprinting feature and its application
NASA Astrophysics Data System (ADS)
Li, Xin; Huang, Guoliang; Li, Qiang; Chen, Shengyi
2011-01-01
Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the "Diamond ID" and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.
Frequency Allocation; The Radio Spectrum.
ERIC Educational Resources Information Center
Federal Communications Commission, Washington, DC.
The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
NASA Astrophysics Data System (ADS)
Melosso, Mattia; Degli Esposti, Claudio; Dore, Luca
2017-11-01
The deuteration mechanism of molecules in the interstellar medium is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. The doubly deuterated form of the astrophysically interesting amidogen radical could be a target of detection in space. In this work, the rotational spectrum of the ND2 radical in its ground vibrational and electronic {X}2{B}1 state has been investigated between 588 and 1131 GHz using a frequency modulation millimeter/submillimeter-wave spectrometer. The ND2 molecule has been produced in a free-space glass absorption cell by discharging a mixture of ND3 and Ar. Sixty-four new transition frequencies involving J values from 2 to 5 and K a values from 0 to 4 have been measured. A global analysis including all the previous field-free pure rotational data has been performed, allowing for a more precise determination of a very large number of spectroscopic parameters. Accurate predictions of rotational transition frequencies of ND2 are now available from a few gigahertz up to several terahertz.
Method of detecting system function by measuring frequency response
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2013-01-08
Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.
Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef
2016-05-23
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies
Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef
2016-01-01
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286
Full waveform inversion in the frequency domain using classified time-domain residual wavefields
NASA Astrophysics Data System (ADS)
Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan
2017-04-01
We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.
Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime
NASA Astrophysics Data System (ADS)
Cheng, Tin Kei; Lau, Denvid
2014-04-01
As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.
Observation of proton chorus waves close to the equatorial plane by Cluster
NASA Astrophysics Data System (ADS)
Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.
2009-12-01
Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.
Power cepstrum technique with application to model helicopter acoustic data
NASA Technical Reports Server (NTRS)
Martin, R. M.; Burley, C. L.
1986-01-01
The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-06-09
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
Semiconductor nanomembrane-based sensors for high frequency pressure measurements
NASA Astrophysics Data System (ADS)
Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing
2017-04-01
This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.
Lock-in amplifier error prediction and correction in frequency sweep measurements.
Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose
2007-01-01
This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Full Duplex, Spread Spectrum Radio System
NASA Technical Reports Server (NTRS)
Harvey, Bruce A.
2000-01-01
The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.
Analysis of Over-the-Horizon Tactical Communications in an Immature Theater
2014-06-13
frequency bands, capacity, costs, and mobility, the research examines both alternate portions of the electromagnetic spectrum and rising technologies...IMMATURE THEATER, by Major Samuel Eugene Sinclair, 75 pages. This qualitative research in the field of over-the-horizon (OTH) voice communications
Ichimaru, Y; Yanaga, T
1989-06-01
Spectral analysis of heart rates during 24-hr ambulatory electrocardiographic monitoring has been carried out to characterize the heart rate spectral components of Cheyne-Stokes respiration (CSR) by using fast Fourier transformation (FFT). Eight patients with congestive heart failure were selected for the study. FFT analyses have been performed for 614.4 sec. Out of the power spectrum, five parameters were extracted to characterize the CSR. The low peak frequencies in eight subjects were between 0.0179 Hz (56 sec) and 0.0081 Hz (123 sec). The algorithms used to detect CSR are the followings: (i) if the LFPA/ULFA ratios were above the absolute value of 1.0, and (ii) the LFPP/MLFP ratios were above the absolute values of 4.0, then the power spectrum is suggestive of CSR. We conclude that the automatic detection of CSR by heart rate spectral analysis during ambulatory ECG monitoring may afford a tool for the evaluation of the patients with congestive heart failure.
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.
Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng
2018-02-26
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.
Dynamic fair node spectrum allocation for ad hoc networks using random matrices
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry
2015-05-01
Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.
Rotational spectroscopy of methylamine up to 2.6 THz
NASA Astrophysics Data System (ADS)
Motiyenko, R. A.; Ilyushin, V. V.; Drouin, B. J.; Yu, S.; Margulès, L.
2014-03-01
Context. Methylamine (CH3NH2) is the simplest primary alkylamine that has been detected in the interstellar medium. The molecule is relatively light, with the 50 K Boltzmann peak appearing near 800 GHz. However, reliable predictions for its rotational spectrum are available only up to 500 GHz. Spectroscopic analyses have been complicated by the two large-amplitude motions: internal rotation of the methyl top and inversion of the amino group. Aims: To provide reliable predictions of the methylamine ground state rotational spectrum above 500 GHz, we studied its rotational spectrum in the frequency range from 500 to 2650 GHz. Methods: The spectra of methylamine were recorded using the spectrometers based on Schottky diode frequency multiplication chains in the Lille laboratory (500-945 GHz) and in JPL (1060-2660 GHz). The analysis of the rotational spectrum of methylamine in the ground vibrational state was performed on the basis of the group-theoretical high barrier tunneling Hamiltonian developed for methylamine by Ohashi and Hougen. Results: In the recorded spectra, we have assigned 1849 new rotational transitions of methylamine. They were fitted together with previously published data, to a Hamiltonian model that uses 76 parameters with an overall weighted rms deviation of 0.87. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 3 THz with J ≤ 50 and Ka ≤ 20 are presented. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.frftp://130.79.128.5 or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A137
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.
Method and apparatus configured for identification of a material
Slater, John M.; Crawford, Thomas M.
2000-01-01
The present invention includes an apparatus configured for identification of a material, and methods of identifying a material. One embodiment of the invention provides an apparatus including a first region configured to receive a first sample, the first region being configured to output a first spectrum corresponding to the first sample and responsive to exposure of the first sample to radiation; a modulator configured to modulate the first spectrum according to a first frequency; a second region configured to receive a second sample, the second region being configured to output a second spectrum corresponding to the second sample and responsive to exposure of the second sample to the modulated first spectrum; and a detector configured to detect the second spectrum having a second frequency greater than the first frequency.
NASA Technical Reports Server (NTRS)
Burnel, S.; Gougat, P.; Martin, F.
1981-01-01
The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.
Twagirayezu, Sylvestre; Cich, Matthew J.; Sears, Trevor J.; ...
2015-07-14
Doppler-free transition frequencies for v₄₋ and v₅₋excited hot bands have been measured in the v₁ + v₃ band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the v₁ + v₃ band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infraredmore » absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100–7600 cm⁻¹ energy region.« less
The hazard of exposure to impulse noise as a function of frequency, volume 1
NASA Astrophysics Data System (ADS)
Patterson, James H., Jr.; Carrier, Melvin, Jr.; Bordwell, Kevin; Gautier, Ilia M.; Hamernik, Roger P.
1991-06-01
The energy spectrum of a noise is known to be an important variable in determining the effects of a traumatic exposure. However, existing criteria for exposure to impulse noise do not consider the frequency spectrum of an impulse as a variable in the evaluation of the hazards to the auditory system. This report presents the results of a study that was designed to determine the relative potential that impulsive energy concentrated at different frequencies has in causing auditory system trauma. One hundred and eighteen (118) chinchilla, divided into 20 groups with 5 to 7 animals per group, were used in these experiments. Pre- and post-exposure hearing thresholds were measured at 10 test frequencies between 0.125 and 8 kHz on each animal using avoidance conditioning procedures. Quantitative histology (cochleograms) was used to determine the extent and pattern of the sensory cell damage. The noise exposure stimuli consisted of six different computer-generated narrow band tone bursts having center frequencies located at 0.260, 0.775, 1.350, 2.450, and 3.550 kHz. Each narrow band exposure stimulus was presented at two to four different intensities. An analysis of the audiometric and histological data allowed frequency weighing functions to be derived.
Study on time-frequency analysis method of very fast transient overvoltage
NASA Astrophysics Data System (ADS)
Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun
2018-04-01
The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.
NASA Technical Reports Server (NTRS)
Mehitretter, R.
1996-01-01
Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module performed using the Meteorological Operational (METOP) Qualification Level 9.66 grms Random Vibration PSD Spectrum is presented. The random vibration structural margins of safety and natural frequency predictions are summarized.
Extragalactic Peaked-spectrum Radio Sources at Low Frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.
We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less
NASA Astrophysics Data System (ADS)
Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.
2018-04-01
We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.
An echolocation model for the restoration of an acoustic image from a single-emission echo
NASA Astrophysics Data System (ADS)
Matsuo, Ikuo; Yano, Masafumi
2004-12-01
Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .
Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.
Deng, Hong-Zhu; You, Cong; Xing, Yu; Chen, Kai-Yun; Zou, Xiao-Bing
2016-05-01
Autism spectrum disorder is a group of neurodevelopmental disorders with the higher prevalence in males. Our previous studies have indicated lower progesterone levels in the children with autism spectrum disorder, suggesting involvement of the cytochrome P-450scc gene (CYP11A1) and cytochrome P-45011beta gene (CYP11B1) as candidate genes in autism spectrum disorder. The aim of this study was to investigate the family-based genetic association between single-nucleotide polymorphisms, rs2279357 in the CYP11A1 gene and rs4534 and rs4541 in the CYP11B1 gene and autism spectrum disorder in Chinese children, which were selected according to the location in the coding region and 5' and 3' regions and minor allele frequencies of greater than 0.05 in the Chinese populations. The transmission disequilibrium test and case-control association analyses were performed in 100 Chinese Han autism spectrum disorder family trios. The genotype and allele frequency of the 3 single-nucleotide polymorphisms had no statistical difference between the children with autism spectrum disorder and their parents (P> .05). Transmission disequilibrium test analysis showed transmission disequilibrium of CYP11A1 gene rs2279357 single-nucleotide polymorphisms (χ(2)= 5.038,P< .001). Our findings provide further support for the hypothesis that a susceptibility gene for autism spectrum disorder exists within or near the CYP11A1 gene in the Han Chinese population. © The Author(s) 2015.
Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.
Beach, James M; Uertz, James L; Eckhardt, Lori G
2015-10-01
A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.
New results on the generation of broadband electrostatic waves in the magnetotail
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1985-01-01
The theory of the generation of broadband electrostatic noise (BEN) in the magnetotail is extended through numerical solution of the dispersion relation under conditions that exist in the plasma sheet boundary layer. It is found that the low-frequency portion of the spectrum has a broad angular spectrum but a fairly sharp peak near 75 deg with respect to the magnetic field, while the high-frequency portion has a narrower angular spectrum that is strongly concentrated along the magnetic field line. These results are in excellent agreement with observations of the broadband wave spectrum and a recent measurement of the propagation direction. The effect of a second cold component of electrons is analyzed, and it is found that it can increase the upper cutoff frequency of BEN to the observed value at about the plasma frequency.
Spectrum of hemoglobinopathies among the primitive tribes: a multicentric study in India.
Mohanty, Dipika; Mukherjee, Malay B; Colah, Roshan B; Wadia, Mahrukh; Ghosh, Kanjaksha; Chottray, Guru Prasad; Jain, Dipty; Italia, Yazdi; Ashokan, Kumar S; Kaul, Rajni; Shukla, Deepak K; Muthuswamy, Vasantha
2015-03-01
We evaluated the spectrum of hemoglobinopathies among the primitive tribal groups from 4 states in India. A total of 15,200 individuals from 14 primitive tribal groups were studied by automated high-performance liquid chromatography. The hemoglobin S (HbS) allele frequency varied from 0.011 to 0.120 and the β-thalassemia allele frequency from 0.005 to 0.024. It is interesting to note that a very high HbS allele frequency was observed among the Dravidian (0.060-0.120) and Indo-European (0.060-0.076) as compared with Austro-Asiatic (0.011-0.022) speaking tribal groups. Although statistical analysis of the data did not show any ethnic differences within the states, regional differences were observed between the states for both HbS and β-thalassemia traits. HbS was found to be the most common hemoglobinopathy followed by β-thalassemia. A health plan for identifying sickle-cell homozygotes in the neonatal period with proper medical intervention is desirable. © 2013 APJPH.
Frequency analysis of tangential force measurements on a vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Rossander, Morgan; Goude, Anders; Bernhoff, Hans; Eriksson, Sandra
2016-09-01
This paper presents experimental results of the torque ripple obtained from a three bladed 12 kW experimental H-rotor prototype. The measurements are performed by means of load cells installed on the base of the struts and by electrical measurements on the generator. The resulting torques are analysed in terms of frequency spectrum and order spectrum (synchronized with rotation). The measurements are compared to aerodynamic simulations of the turbine. The expected large torque ripple at three times the rotational speed (3 p) is only weakly represented at the hub and in the generator. This suggests that the system is filtering the ripple and/or that the simulations are overestimating the 3 p component. The torque ripple loads on the drive train are therefore lower than anticipated. Even if highly attenuated, most of the low frequencies correlating to aerodynamics are still represented in the generator electrical torque. Given a certain baseline, this opens for possible online monitoring of unbalances in the turbine by electrical measurements.
Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita
2007-06-16
The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yi-Hao; Chou, Yi; Hu, Chin-Ping
We present time-frequency analysis results based on the Hilbert–Huang transform (HHT) for the evolution of a 4-Hz low-frequency quasi-periodic oscillation (LFQPO) around the black hole X-ray binary XTE J1550–564. The origin of LFQPOs is still debated. To understand the cause of the peak broadening, we utilized a recently developed time-frequency analysis, HHT, for tracking the evolution of the 4-Hz LFQPO from XTE J1550–564. By adaptively decomposing the ∼4-Hz oscillatory component from the light curve and acquiring its instantaneous frequency, the Hilbert spectrum illustrates that the LFQPO is composed of a series of intermittent oscillations appearing occasionally between 3 and 5more » Hz. We further characterized this intermittency by computing the confidence limits of the instantaneous amplitudes of the intermittent oscillations, and constructed both the distributions of the QPO’s high- and low-amplitude durations, which are the time intervals with and without significant ∼4-Hz oscillations, respectively. The mean high-amplitude duration is 1.45 s and 90% of the oscillation segments have lifetimes below 3.1 s. The mean low-amplitude duration is 0.42 s and 90% of these segments are shorter than 0.73 s. In addition, these intermittent oscillations exhibit a correlation between the oscillation’s rms amplitude and mean count rate. This correlation could be analogous to the linear rms-flux relation found in the 4-Hz LFQPO through Fourier analysis. We conclude that the LFQPO peak in the power spectrum is broadened owing to intermittent oscillations with varying frequencies, which could be explained by using the Lense–Thirring precession model.« less
De Brouwer, Sara; De Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; Van Maerken, Tom; De Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H; Schramm, Alexander; Van Den Broecke, Caroline; Vermeulen, Joëlle; Van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank
2010-09-01
Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang
2011-10-20
The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both themore » time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.« less
NASA Astrophysics Data System (ADS)
Zheng, Jie; Tian, Jiwei; Liang, Hui
2017-04-01
Based on nearly 3 months of moored acoustic Doppler current profiler records on the continental slope in the northwestern South China Sea (SCS) in 2006, this study examines temporal and vertical characteristics of near-inertial internal waves (NIW). Rotary frequency spectrum indicates that motions in the near-inertial frequency are strongly polarized, with clockwise (CW) energy exceeding counterclockwise (CCW) by about a factor of 10. Wavelet analysis exhibits an energy peak exceeding the 95% confidence level at the frequency of local inertial during the passage of typhoon Xangsane (24 September to 4 October). This elevated near-inertial kinetic energy (NIKE) event possesses about a 4 days delay correlation with the time integral of energy flux induced by typhoon, indicating an energy source of wind. Further analysis shows that the upward phase velocity of this event is 3.8 m h-1 approximately, corresponding to a vertical wavelength of about 125 m if not taking the redshift of local inertial frequency into account. Rotary vertical wavenumber spectrum exhibits the dominance of clockwise-with-depth energy, indicating downward energy propagation and implying a surface energy source. Dynamical modes suggest that mode 1 plays a dominant role at the growth stage of NIW, whereas major contribution is from higher modes during the penetration of NIKE into the ocean interior.
47 CFR 0.31 - Functions of the Office.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communications, and special projects to obtain theoretical and experimental data on new or improved techniques... work of the Commission. (f) To advise and represent the Commission on frequency allocation and spectrum... Planning and Policy Analysis, advice to the Commission, participate in and coordinate staff work with...
NASA Technical Reports Server (NTRS)
Alexander, Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Technical Reports Server (NTRS)
Alexander, M. Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
Rotational Spectroscopy of 4-HYDROXY-2-BUTYNENITRILE
NASA Astrophysics Data System (ADS)
Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.
2015-06-01
Recently we studied the rotational spectrum of hydroxyacetonitrile (HOCH_2CN, HAN) in order to provide a firm basis for its possible detection in the interstellar medium Different plausible pathways of the formation of HAN in the interstellar conditions were proposed; however, up to now, the searches for this molecule were unsuccessful. To continue the study of nitriles that represent an astrophysical interest we present in this talk the analysis of the rotational spectrum of 4-hydroxy-2-butynenitrile (HOCH_2CC-CN, HBN), the next molecule in the series of hydroxymethyl nitriles. Using the Lille spectrometer the spectrum of HBN was measured in the frequency range 50 -- 500 GHz. From the spectroscopic point of view HBN molecule is rather similar to HAN, because of -OH group tunnelling in gauche conformation. As it was previously observed for HAN, due to this large amplitude motion, the splittings in the rotational spectra of HBN are easily resolved making the spectral analysis more difficult. Additional difficulties arise from the near symmetric top character of HBN (κ = -0.996), and very dense spectrum because of relatively small values of rotational constants and a number of low-lying excited vibrational states. The analysis carried out in the frame of reduced axis system approach of Pickett allows to fit within experimental accuracy all the rotational transitions in the ground vibrational state. Thus, the results of the present study provide a reliable catalog of frequency predictions for HBN. The support of the Action sur Projets de l'INSU PCMI, and ANR-13-BS05-0008-02 IMOLABS is gratefully acknowledged Margulès L., Motiyenko R.A., Guillemin J.-C. 68th ISMS, 2013, TI12. Danger G. et al. Phys. Chem. Chem. Phys. 2014, 16, 3360. Pickett H.M. J. Chem. Phys. 1972, 56, 1715.
Urbańczyk, T; Krośnicki, M; Kędziorski, A; Koperski, J
2018-05-05
Revisited study of the E 3 Σ 1 + (6 3 S 1 )←A 3 Π 0+ (5 3 P 1 ) transition in CdAr using both theoretical and experimental approach is presented. Systematic detection of the E 3 Σ 1 + in ,υ'←A 3 Π 0+ ,υ″=6 transition frequencies with higher accuracy and spectrally narrower laser extended and improved analysis and simulation of the LIF excitation spectrum. More consistent characterization of the E 3 Σ 1 + in -Rydberg state inner well using inversed perturbation approach methodology was achieved. Free←bound transitions in the E 3 Σ 1 + in ←A 3 Π 0+ ,υ″=6 excitation were taken into account in the analysis and simulation of the recorded spectrum. The updated spectroscopic characterization of the A 3 Π 0+ state was also revisited. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Urbańczyk, T.; Krośnicki, M.; Kędziorski, A.; Koperski, J.
2018-05-01
Revisited study of the E3Σ1+ (63S1) ← A3Π0+(53P1) transition in CdAr using both theoretical and experimental approach is presented. Systematic detection of the E3Σ1+in,υ' ← A3Π0+,υ″ = 6 transition frequencies with higher accuracy and spectrally narrower laser extended and improved analysis and simulation of the LIF excitation spectrum. More consistent characterization of the E3Σ1+in-Rydberg state inner well using inversed perturbation approach methodology was achieved. Free ← bound transitions in the E3Σ1+in ← A3Π0+,υ″ = 6 excitation were taken into account in the analysis and simulation of the recorded spectrum. The updated spectroscopic characterization of the A3Π0+ state was also revisited.
Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths
NASA Astrophysics Data System (ADS)
Melnikov, V. F.; Magun, A.
The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial
The hazard of exposure to impulse noise as a function of frequency, volume 2
NASA Astrophysics Data System (ADS)
Patterson, James H., Jr.; Carrier, Melvin, Jr.; Bordwell, Kevin; Lomba, Ilia M.; Gautier, Roger P.
1991-06-01
The energy spectrum of a noise is known to be an important variable in determining the effects of a traumatic exposure. However, existing criteria for exposure to impulse noise do not consider the frequency spectrum of an impulse as a variable in the evaluation of the hazards to the auditory system. This report presents the results of a study that was designed to determine the relative potential that impulsive energy concentrated at different frequencies has in causing auditory systems trauma. One hundred and eighteen (118) chinchilla, divided into 20 groups with 5 to 7 animals per group, were used in these experiments. Pre- and post-exposure hearing thresholds were measured at 10 test frequencies between 0.125 and 8 kHz on each animal using avoidance conditioning procedures. Quantitative histology (cochleograms) was used to determine the extent and pattern of the sensory cell damage. The noise exposure stimuli consisted of six different computer-generated narrow band tone bursts having center frequencies located at 0.260, 0.775, 1.025, 1.350, 2.450, and 3.550 kHz. Each narrow band exposure stimulus was presented at two to four different intensities. An analysis of the audiometric and histological data allowed a frequency weighting function to be derived. The weighting function clearly demonstrates that equivalent amounts of impulsive energy concentrated at different frequencies is not equally hazardous to auditory function.
Window of visibility - A psychophysical theory of fidelity in time-sampled visual motion displays
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.
1986-01-01
A film of an object in motion presents on the screen a sequence of static views, while the human observer sees the object moving smoothly across the screen. Questions related to the perceptual identity of continuous and stroboscopic displays are examined. Time-sampled moving images are considered along with the contrast distribution of continuous motion, the contrast distribution of stroboscopic motion, the frequency spectrum of continuous motion, the frequency spectrum of stroboscopic motion, the approximation of the limits of human visual sensitivity to spatial and temporal frequencies by a window of visibility, the critical sampling frequency, the contrast distribution of staircase motion and the frequency spectrum of this motion, and the spatial dependence of the critical sampling frequency. Attention is given to apparent motion, models of motion, image recording, and computer-generated imagery.
Apparatus configured for identification of a material and method of identifying a material
Slater, John M.; Crawford, Thomas M.; Frickey, Dean A.
2001-01-01
The present invention relates to an apparatus configured for identification of a material and method of identifying a material. One embodiment of the present invention provides an apparatus configured for identification of a material including a first region configured to receive a first sample and output a first spectrum responsive to exposure of the first sample to radiation; a signal generator configured to provide a reference signal having a reference frequency and a modulation signal having a modulation frequency; a modulator configured to selectively modulate the first spectrum using the modulation signal according to the reference frequency; a second region configured to receive a second sample and output a second spectrum responsive to exposure of the second sample to the first spectrum; and a detector configured to detect the second spectrum.
A binaural beat constructed from a noise
Akeroyd, Michael A
2012-01-01
The binaural beat has been used for over one hundred years as a stimulus for generating the percept of motion. Classically the beat consists of a pure tone at one ear (e.g. 500 Hz) and the same pure tone at the other ear but shifted upwards or downwards in frequency (e.g., 501 Hz). An experiment and binaural computational analysis are reported which demonstrate that a more powerful motion percept can be obtained by applying the concept of the frequency shift to a noise, via an upwards or downwards shift in the frequency of the Fourier components of its spectrum. PMID:21218863
NASA Astrophysics Data System (ADS)
Sturrock, P. A.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Javorsek, D.; Jenkins, J. H.; Lee, R. H.; Mattes, J. J.; Newport, J. R.
2010-12-01
Evidence for an anomalous annual periodicity in certain nuclear-decay data has led to speculation on a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of 36Cl and 32Si, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18 year-1, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of 226Ra acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21 year-1, and a peak in the BNL dataset at 11.25 year-1. The change in the BNL result is not significant, since the uncertainties in the BNL and PTB analyses are estimated to be 0.13 year-1 and 0.07 year-1, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23 year-1. We will briefly comment on the possible implications of these results for solar physics and for particle physics.
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shaposhnikov, Nickolai
2005-01-01
Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic open field lines). We also show that the presence of Fe K(sub alpha), emission-line strengths, QPOs, and the link between them does not depend on radio flux in 4U 1728-34.
Why is CDMA the solution for mobile satellite communication
NASA Technical Reports Server (NTRS)
Gilhousen, Klein S.; Jacobs, Irwin M.; Padovani, Roberto; Weaver, Lindsay A.
1989-01-01
It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented.
THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, K. G.; Howes, G. G.; TenBarge, J. M.
2014-08-01
Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less
Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions
NASA Astrophysics Data System (ADS)
Wrench, Alan A.
Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).
Seismic low-frequency-based calculation of reservoir fluid mobility and its applications
NASA Astrophysics Data System (ADS)
Chen, Xue-Hua; He, Zhen-Hua; Zhu, Si-Xin; Liu, Wei; Zhong, Wen-Li
2012-06-01
Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.
Infrared fluorescence from PAHs in the laboratory
NASA Technical Reports Server (NTRS)
Cherchneff, Isabelle; Barker, John R.
1989-01-01
Several celestial objects, including UV rich regions of planetary and reflection nebulae, stars, H II regions, and extragalactic sources, are characterized by the unidentified infrared emission bands (UIR bands). A few years ago, it was proposed that polycyclic aromatic hydrocarbon species (PAHs) are responsible for most of the UIR bands. This hypothesis is based on a spectrum analysis of the observed features. Comparisons of observed IR spectra with lab absorption spectra of PAHs support the PAH hypothesis. An example spectrum is represented, where the Orion Bar 3.3 micron spectrum is compared with the absorption frequencies of the PAHs Chrysene, Pyrene, and Coronene. The laser excited 3.3 micron emission spectrum is presented from a gas phase PAH (azulen). The infrared fluorescence theory (IRF) is briefly explained, followed by a description of the experimental apparatus, a report of the results, and discussion.
Kao, Wei-Fong; Hou, Sen-Kuang; Huang, Chun-Yao; Chao, Chun-Chieh; Cheng, Chung-Chih; Chen, Yi-Jung
2018-01-01
Atrial fibrillation (AF) is the most common arrhythmia. The most common diagnostic method, 12-lead electrocardiogram (ECG), can record episodes of arrhythmia from which the type and severity can be determined. The Heart Spectrum Blood Pressure Monitor (P2; OSTAR Meditech Corp., New Taipei City, Taiwan) is used to measure cardiovascular pressure change with fast Fourier transform (FFT) analysis to obtain heart rate frequency variability and accurate blood pressure data. We compared the diagnostic efficacy of the Heart Spectrum Blood Pressure Monitor to a 12-lead ECG (gold standard) for patients with AF. Three measurement methods were used in this study to analyze the heart index and compare the results with simultaneous 12-lead ECG: blood pressure; mean arterial pressure, which was calculated from individual blood pressure as a constant pressure; and a constant pressure of 60 mmHg. The physician used a 12-lead ECG and the Heart Spectrum Blood Pressure Monitor simultaneously. The Heart Spectrum Blood Pressure Monitor used FFT analysis to diagnose AF, and the findings were compared to the 12-lead ECG readings. This unblinded clinical trial was conducted in the emergency department of Taipei Medical University Hospital. Twenty-nine subjects with AF and 33 without AF aged 25 to 97 y (mean, 63.5 y) were included. Subjects who were exposed to high-frequency surgical equipment during testing, those with cardiac pacemakers or implantable defibrillators, and pregnant women were excluded. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 97%, 97%, 97%, and 97%, respectively, for method 1; 90%, 100%, 100%, and 91%, respectively, for method 2; and 100%, 94%, 94%, and 100%, respectively, for method 3. The sensitivity, specificity, PPV, and NPV for both methods ranged between 90% and 100%, indicating that the Heart Spectrum Blood Pressure Monitor can be effectively applied for AF detection.
Kao, Wei-Fong; Hou, Sen-Kuang; Huang, Chun-Yao; Cheng, Chung-Chih; Chen, Yi-Jung
2018-01-01
Atrial fibrillation (AF) is the most common arrhythmia. The most common diagnostic method, 12-lead electrocardiogram (ECG), can record episodes of arrhythmia from which the type and severity can be determined. The Heart Spectrum Blood Pressure Monitor (P2; OSTAR Meditech Corp., New Taipei City, Taiwan) is used to measure cardiovascular pressure change with fast Fourier transform (FFT) analysis to obtain heart rate frequency variability and accurate blood pressure data. We compared the diagnostic efficacy of the Heart Spectrum Blood Pressure Monitor to a 12-lead ECG (gold standard) for patients with AF. Three measurement methods were used in this study to analyze the heart index and compare the results with simultaneous 12-lead ECG: blood pressure; mean arterial pressure, which was calculated from individual blood pressure as a constant pressure; and a constant pressure of 60 mmHg. The physician used a 12-lead ECG and the Heart Spectrum Blood Pressure Monitor simultaneously. The Heart Spectrum Blood Pressure Monitor used FFT analysis to diagnose AF, and the findings were compared to the 12-lead ECG readings. This unblinded clinical trial was conducted in the emergency department of Taipei Medical University Hospital. Twenty-nine subjects with AF and 33 without AF aged 25 to 97 y (mean, 63.5 y) were included. Subjects who were exposed to high-frequency surgical equipment during testing, those with cardiac pacemakers or implantable defibrillators, and pregnant women were excluded. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 97%, 97%, 97%, and 97%, respectively, for method 1; 90%, 100%, 100%, and 91%, respectively, for method 2; and 100%, 94%, 94%, and 100%, respectively, for method 3. The sensitivity, specificity, PPV, and NPV for both methods ranged between 90% and 100%, indicating that the Heart Spectrum Blood Pressure Monitor can be effectively applied for AF detection. PMID:29902218
NASA Astrophysics Data System (ADS)
Li, Hanyu; Syed, Mubashir; Yao, Yu-Dong; Kamakaris, Theodoros
2009-12-01
This paper investigates spectrum sharing issues in the unlicensed industrial, scientific, and medical (ISM) bands. It presents a radio frequency measurement setup and measurement results in 2.4 GHz. It then develops an analytical model to characterize the coexistence interference in the ISM bands, based on radio frequency measurement results in the 2.4 GHz. Outage performance using the interference model is examined for a hybrid direct-sequence frequency-hopping spread spectrum system. The utilization of beamforming techniques in the system is also investigated, and a simplified beamforming model is proposed to analyze the system performance using beamforming. Numerical results show that beamforming significantly improves the system outage performance. The work presented in this paper provides a quantitative evaluation of signal outages in a spectrum sharing environment. It can be used as a tool in the development process for future dynamic spectrum access models as well as engineering designs for applications in unlicensed bands.
Vlahovicek, K; Munteanu, M G; Pongor, S
1999-01-01
Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).
Cornish, B H; Ward, L C; Thomas, B J; Jebb, S A; Elia, M
1996-03-01
To assess the application of a Cole-Cole analysis of multiple frequency bioelectrical impedance analysis (MFBIA) measurements to predict total body water (TBW) and extracellular water (ECW) in humans. This technique has previously been shown to produce accurate and reliable estimates in both normal and abnormal animals. The whole body impedance of 60 healthy humans was measured at 496 frequencies (ranging from 4 kHz to 1 MHz) and the impedance at zero frequency, Ro, and at the characteristic frequency, Zc, were determined from the impedance spectrum, (Cole-Cole plot). TBW and ECW were independently determined using deuterium and bromide tracer dilution techniques. At the Dunn Clinical Nutrition Centre and The Department of Biochemistry, University of Queensland. 60 healthy adult volunteers (27 men and 33 women, aged 18-45 years). The results presented suggest that the swept frequency bioimpedance technique estimates total body water, (SEE = 5.2%), and extracellular water, (SEE = 10%), only slightly better in normal, healthy subjects than a method based on single frequency bioimpedance or anthropometric estimates based on weight, height and gender. This study has undertaken the most extensive analysis to date of relationships between TBW (and ECW) and individual impedances obtained at different frequencies ( > 400 frequencies), and has shown marginal advantages of using one frequency over another, even if values predicted from theoretical bioimpedance models are used in the estimations. However in situations where there are disturbances of fluid distribution, values predicted from the Cole-Cole analysis of swept frequency bioimpedance measurements could prove to be more useful.
Stachiv, Ivo; Sittner, Petr
2018-01-01
Nanocantilevers have become key components of nanomechanical sensors that exploit changes in their resonant frequencies or static deflection in response to the environment. It is necessary that they can operate at a given, but adjustable, resonant frequency and/or static deflection ranges. Here we propose a new class of nanocantilevers with a significantly tunable spectrum of the resonant frequencies and changeable static deflection utilizing the unique properties of a phase-transforming NiTi film sputtered on the usual nanotechnology cantilever materials. The reversible frequency tuning and the adjustable static deflection are obtained by intentionally changing the Young’s modulus and the interlayer stress of the NiTi film during its phase transformation, while the usual cantilever elastic materials guarantee a high frequency actuation (up to tens of MHz). By incorporating the NiTi phase transformation characteristic into the classical continuum mechanics theory we present theoretical models that account for the nanocantilever frequency shift and variation in static deflection caused by a phase transformation of NiTi film. Due to the practical importance in nanomechanical sensors, we carry out a complete theoretical analysis and evaluate the impact of NiTi film on the cantilever Young’s modulus, static deflection, and the resonant frequencies. Moreover, the importance of proposed NiTi nanocantilever is illustrated on the nanomechanical based mass sensors. Our findings will be of value in the development of advanced nanotechnology sensors with intentionally-changeable physical and mechanical properties. PMID:29462996
NASA Astrophysics Data System (ADS)
Patel, Gnansagar B.; Bhavsar, Shilpa; Singh, N. L.; Singh, F.; Kulriya, P. K.
2016-07-01
Poly ethylene oxide (PEO) films were synthesized by solution cast method. These self-standing films were exposed with 60 MeV C+5 ion and 100 MeV Ni+7 ion at different fluences. SHI induced effect was investigated by employing various techniques. The crystalline size decreased upon irradiation as observed from XRD analysis. FTIR analysis reveals the decrement in the peak intensity upon irradiation. Tauc's method was used to determine the optical band gap (Eg), which shows decreasing trends with increase of fluence. The dielectric properties were investigated in the frequency range 10 Hz to 10 MHz for unirradiated and irradiated films. The dielectric constant remains same for the broad-spectrum of frequency and increases at lower frequency. The dielectric loss also moderately influence as a function of frequency due to irradiation. DSC analysis validated the results of XRD. Scanning electron microscopy (SEM) reveals that there is significant change in the surface morphology due to irradiation.
NASA Astrophysics Data System (ADS)
Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi
2018-07-01
We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.
Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study
NASA Astrophysics Data System (ADS)
Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin
2011-03-01
Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.
Laser Scattering from the Dense Plasma Focus.
plasma focus (DPF) illuminated by a pulse of laser light. Scattering was observable from 10 nanoseconds prior to arrival of the collapse on axis and for an additional 50 nanoseconds. The frequency spectrum is markedly asymmetric about the laser frequency, a feature which is inconsistent with spectral expectations based on thermal particle distributions even if particle drifts or waves excitations are included. A model is postulated which attributes the asymmetry to lateral displacement of scattering region from the axis of the focus. Analysis based on this model yields
Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra
NASA Astrophysics Data System (ADS)
Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.
2018-03-01
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.
Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daniel
2011-04-19
A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achievedmore » by on-board microcontroller.« less
NASA Astrophysics Data System (ADS)
Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela
1995-03-01
We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Katz, R.; Wilson, J. W.
1998-01-01
An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir
2015-02-01
Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data atmore » multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.« less
Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
Santa Maria, Odilyn L.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Fault diagnosis of rolling element bearings with a spectrum searching method
NASA Astrophysics Data System (ADS)
Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo
2017-09-01
Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.
A new fractional wavelet transform
NASA Astrophysics Data System (ADS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng
2015-04-15
We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negativemore » resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.« less
Viscoelastic effect on acoustic band gaps in polymer-fluid composites
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.
2009-10-01
In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-01-01
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928
Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, R. Ramesh; Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@yahoo.com
Benzotriazolium p-toluene sulfonate (BTPTS) was grown by solution growth technique. The powder X-ray diffraction analysis was carried out to evaluate crystal system of the compound. LeBail Profile fitting analysis was performed to extract the individual peak intensities. FTIR spectrum analysis was recorded to study vibration frequencies of the prepared organic salt. Thermal studies were carried out using TG-DSC analysis. Optical absorption and energy band gap of the title compound was evaluated by UV-Vis spectral study.
NASA Astrophysics Data System (ADS)
Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.
2017-02-01
Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.
Classification images for localization performance in ramp-spectrum noise.
Abbey, Craig K; Samuelson, Frank W; Zeng, Rongping; Boone, John M; Eckstein, Miguel P; Myers, Kyle
2018-05-01
This study investigates forced localization of targets in simulated images with statistical properties similar to trans-axial sections of x-ray computed tomography (CT) volumes. A total of 24 imaging conditions are considered, comprising two target sizes, three levels of background variability, and four levels of frequency apodization. The goal of the study is to better understand how human observers perform forced-localization tasks in images with CT-like statistical properties. The transfer properties of CT systems are modeled by a shift-invariant transfer function in addition to apodization filters that modulate high spatial frequencies. The images contain noise that is the combination of a ramp-spectrum component, simulating the effect of acquisition noise in CT, and a power-law component, simulating the effect of normal anatomy in the background, which are modulated by the apodization filter as well. Observer performance is characterized using two psychophysical techniques: efficiency analysis and classification image analysis. Observer efficiency quantifies how much diagnostic information is being used by observers to perform a task, and classification images show how that information is being accessed in the form of a perceptual filter. Psychophysical studies from five subjects form the basis of the results. Observer efficiency ranges from 29% to 77% across the different conditions. The lowest efficiency is observed in conditions with uniform backgrounds, where significant effects of apodization are found. The classification images, estimated using smoothing windows, suggest that human observers use center-surround filters to perform the task, and these are subjected to a number of subsequent analyses. When implemented as a scanning linear filter, the classification images appear to capture most of the observer variability in efficiency (r 2 = 0.86). The frequency spectra of the classification images show that frequency weights generally appear bandpass in nature, with peak frequency and bandwidth that vary with statistical properties of the images. In these experiments, the classification images appear to capture important features of human-observer performance. Frequency apodization only appears to have a significant effect on performance in the absence of anatomical variability, where the observers appear to underweight low spatial frequencies that have relatively little noise. Frequency weights derived from the classification images generally have a bandpass structure, with adaptation to different conditions seen in the peak frequency and bandwidth. The classification image spectra show relatively modest changes in response to different levels of apodization, with some evidence that observers are attempting to rebalance the apodized spectrum presented to them. © 2018 American Association of Physicists in Medicine.
A New Instantaneous Frequency Measure Based on The Stockwell Transform
NASA Astrophysics Data System (ADS)
yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.
2011-12-01
We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R.A., Lauzon, M.L. and Frayne, R. "General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly", IEEE Transactions on Signal Processing, 1:281-90 (2010).
THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, M. T.; Jones, M. L.; McLaughlin, M. A.
Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum formore » 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.« less
NASA Astrophysics Data System (ADS)
Bhat, Sheeraz Ahmad; Ahmad, Shabbir
2015-11-01
A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.
Computer implemented empirical mode decomposition method, apparatus and article of manufacture
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
1999-01-01
A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Amplitude variations in the sdBV star PG 1605+072: Another beating time scale?
NASA Astrophysics Data System (ADS)
Pereira, T. M. D.; Lopes, I. P.
2004-10-01
PG 1605+072 has an unique and complex oscillation spectrum amongst the pulsating members of the EC 14026 stars. It has the longest periods and the richest, most puzzling frequency spectrum. We present a quantitative analysis of the photometric time-series obtained at 1-m telescope of the South African Astronomical Observatory. Thirteen oscillation parameters, frequencies, amplitudes and initial phases were determined from a 45 h time-series. Our work confirm previous observational results. The observed frequencies are within a difference smaller than 2.7% of the theoretical values, and less than 0.1% of other previous studies. We also infer the existence of variation of a periodicity of 4-5 days on the amplitude of the observed modes, similar to the yearly time-scale variation found by previous studies. Furthermore, we found a new frequency of 2133 μ Hz which has not been previously reported, its origin being yet unclear. Based on observations obtained at the South African Astronomical Observatory (SAAO). This research was supported by a grant from Fundação da Ciência e Tecnologia, grant No. PESO/P/PRO/40142/2000.
NASA Astrophysics Data System (ADS)
Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui
2013-08-01
We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
Multi-frequency data analysis in AFM by wavelet transform
NASA Astrophysics Data System (ADS)
Pukhova, V.; Ferrini, G.
2017-10-01
Interacting cantilevers in AFM experiments generate non-stationary, multi-frequency signals consisting of numerous excited flexural and torsional modes and their harmonics. The analysis of such signals is challenging, requiring special methodological approaches and a powerful mathematical apparatus. The most common approach to the signal analysis is to apply Fourier transform analysis. However, FT gives accurate spectra for stationary signals, and for signals changing their spectral content over time, FT provides only an averaged spectrum. Hence, for non-stationary and rapidly varying signals, such as those from interacting cantilevers, a method that shows the spectral evolution in time is needed. One of the most powerful techniques, allowing detailed time-frequency representation of signals, is the wavelet transform. It is a method of analysis that allows representation of energy associated to the signal at a particular frequency and time, providing correlation between the spectral and temporal features of the signal, unlike FT. This is particularly important in AFM experiments because signals nonlinearities contains valuable information about tip-sample interactions and consequently surfaces properties. The present work is aimed to show the advantages of wavelet transform in comparison with FT using as an example the force curve analysis in dynamic force spectroscopy.
A variable ULX and possible IMBH candidate in M51a
NASA Astrophysics Data System (ADS)
Earnshaw, Hannah M.; Roberts, Timothy P.; Heil, Lucy M.; Mezcua, Mar; Walton, Dominic J.; Done, Chris; Harrison, Fiona A.; Lansbury, George B.; Middleton, Matthew J.; Sutton, Andrew D.
2016-03-01
Ultraluminous X-ray source (ULX)-7, in the northern spiral arm of M51, demonstrates unusual behaviour for an ULX, with a hard X-ray spectrum but very high short-term variability. This suggests that it is not in a typical ultraluminous state. We analyse the source using archival data from XMM-Newton, Chandra and NuSTAR, and by examining optical and radio data from HST and Very Large Array. Our X-ray spectral analysis shows that the source has a hard power-law spectral shape with a photon index Γ ˜ 1.5, which persists despite the source's X-ray luminosity varying by over an order of magnitude. The power spectrum of the source features a break at 6.5^{+0.5}_{-1.1} × 10-3 Hz, from a low-frequency spectral index of α _1={-}0.1^{+0.5}_{-0.2} to a high-frequency spectral index of α _2=6.5^{+0.05}_{-0.14}, making it analogous to the low-frequency break found in the power spectra of low/hard state black holes (BHs). We can take a lower frequency limit for a corresponding high-frequency break to calculate a BH mass upper limit of 1.6 × 103 M⊙. Using the X-ray/radio Fundamental Plane, we calculate another upper limit to the BH mass of 3.5 × 104 M⊙ for a BH in the low/hard state. The hard spectrum, high rms variability and mass limits are consistent with ULX-7 being an intermediate-mass BH; however we cannot exclude other interpretations of this source's interesting behaviour, most notably a neutron star with an extreme accretion rate.
Accounting for mean-flow periodicity in turbulence closures
NASA Astrophysics Data System (ADS)
Younis, Bassam A.; Zhou, Ye
2006-01-01
Measurements of the turbulence energy spectrum in the unsteady wakes of bodies in uniform incident streams clearly show the presence of a distinct peak in energy supply that occurs at the Strouhal frequency and whose presence implies a strong and direct interaction between the organized mean-flow unsteadiness and the random turbulence motions. It is argued here that the well-documented failure of conventional turbulence closures in capturing the main features of unsteady flows is largely due to their inability to properly account for the modifications in the energy spectrum wrought by these interactions. We derive a simple modification to the turbulence length-scale determining equation based on analysis of a distorted energy spectrum, and verify the result by computations of vortex shedding behind a square cylinder.
Compton interaction of free electrons with intense low frequency radiation
NASA Technical Reports Server (NTRS)
Illarionov, A. F.; Kompaneyets, D. A.
1978-01-01
Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.
Acoustic emission spectral analysis of fiber composite failure mechanisms
NASA Technical Reports Server (NTRS)
Egan, D. M.; Williams, J. H., Jr.
1978-01-01
The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moscicki, J. K.; Sokolowska, D.; Dziob, D.
2014-02-15
A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.
Resonant ultrasound spectroscopy
Migliori, Albert
1991-01-01
A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.
Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan
2012-01-01
Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.
Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Juhyung; Terry, P. W.
2013-10-15
The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less
[The application of wavelet analysis of remote detection of pollution clouds].
Zhang, J; Jiang, F
2001-08-01
The discrete wavelet transform (DWT) is used to analyse the spectra of pollution clouds in complicated environment and extract the small-features. The DWT is a time-frequency analysis technology, which detects the subtle small changes in the target spectrum. The results show that the DWT is a quite effective method to extract features of target-cloud and improve the reliability of monitoring alarm system.
Micro-mirror arrays for Raman spectroscopy
NASA Astrophysics Data System (ADS)
Duncan, W. M.
2015-03-01
In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of Texas Instruments Incorporated) for analyzing dispersed light as needed in Raman and fluorescent applications.
Shiraishi, Yasuyuki; Katsumata, Yoshinori; Sadahiro, Taketaro; Azuma, Koichiro; Akita, Keitaro; Isobe, Sarasa; Yashima, Fumiaki; Miyamoto, Kazutaka; Nishiyama, Takahiko; Tamura, Yuichi; Kimura, Takehiro; Nishiyama, Nobuhiro; Aizawa, Yoshiyasu; Fukuda, Keiichi; Takatsuki, Seiji
2018-01-07
It has never been possible to immediately evaluate heart rate variability (HRV) during exercise. We aimed to visualize the real-time changes in the power spectrum of HRV during exercise and to investigate its relationship to the ventilatory threshold (VT). Thirty healthy subjects (29.1±5.7 years of age) and 35 consecutive patients (59.0±13.2 years of age) with myocardial infarctions underwent cardiopulmonary exercise tests with an RAMP protocol ergometer. The HRV was continuously assessed with power spectral analyses using the maximum entropy method and projected on a screen without delay. During exercise, a significant decrease in the high frequency (HF) was followed by a drastic shift in the power spectrum of the HRV with a periodic augmentation in the low frequency/HF (L/H) and steady low HF. When the HRV threshold (HRVT) was defined as conversion from a predominant high frequency (HF) to a predominant low frequency/HF (L/H), the VO 2 at the HRVT (HRVT-VO 2 ) was substantially correlated with the VO 2 at the lactate threshold and VT) in the healthy subjects ( r =0.853 and 0.921, respectively). The mean difference between each threshold (0.65 mL/kg per minute for lactate threshold and HRVT, 0.53 mL/kg per minute for VT and HRVT) was nonsignificant ( P >0.05). Furthermore, the HRVT-VO 2 was also correlated with the VT-VO 2 in these myocardial infarction patients ( r =0.867), and the mean difference was -0.72 mL/kg per minute and was nonsignificant ( P >0.05). A HRV analysis with our method enabled real-time visualization of the changes in the power spectrum during exercise. This can provide additional information for detecting the VT. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min
2007-08-17
This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.
NASA Astrophysics Data System (ADS)
Semaan, T.; Hubert, A. M.; Zorec, J.; Gutiérrez-Soto, J.; Frémat, Y.; Martayan, C.; Fabregat, J.; Eggenberger, P.
2018-06-01
Context. The class of Be stars are the epitome of rapid rotators in the main sequence. These stars are privileged candidates for studying the incidence of rotation on the stellar internal structure and on non-radial pulsations. Pulsations are considered possible mechanisms to trigger mass-ejection phenomena required to build up the circumstellar disks of Be stars. Aims: Time series analyses of the light curves of 15 faint Be stars observed with the CoRoT satellite were performed to obtain the distribution of non-radial pulsation (NRP) frequencies in their power spectra at epochs with and without light outbursts and to discriminate pulsations from rotation-related photometric variations. Methods: Standard Fourier techniques were employed to analyze the CoRoT light curves. Fundamental parameters corrected for rapid-rotation effects were used to study the power spectrum as a function of the stellar location in the instability domains of the Hertzsprung-Russell (H-R) diagram. Results: Frequencies are concentrated in separate groups as predicted for g-modes in rapid B-type rotators, except for the two stars that are outside the H-R instability domain. In five objects the variations in the power spectrum are correlated with the time-dependent outbursts characteristics. Time-frequency analysis showed that during the outbursts the amplitudes of stable main frequencies within 0.03 c d-1 intervals strongly change, while transients and/or frequencies of low amplitude appear separated or not separated from the stellar frequencies. The frequency patterns and activities depend on evolution phases: (i) the average separations between groups of frequencies are larger in the zero-age main sequence (ZAMS) than in the terminal age main sequence (TAMS) and are the largest in the middle of the MS phase; (ii) a poor frequency spectrum with f ≲ 1 cd-1 of low amplitude characterizes the stars beyond the TAMS; and (iii) outbursts are seen in stars hotter than B4 spectral type and in the second half of the MS. Conclusions: The two main frequency groups are separated by δf = (1.24 ± 0.28) × frot in agreement with models of prograde sectoral g-modes (m = -1, -2) of intermediate-mass rapid rotators. The changes of amplitudes of individual frequencies and the presence of transients correlated with the outburst events deserve further studies of physical conditions in the subatmospheric layers to establish the relationship between pulsations and sporadic mass-ejection events. Tables 7 to 22 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A70
Bernardi, L; Wdowczyk-Szulc, J; Valenti, C; Castoldi, S; Passino, C; Spadacini, G; Sleight, P
2000-05-01
To assess whether talking or reading (silently or aloud) could affect heart rate variability (HRV) and to what extent these changes require a simultaneous recording of respiratory activity to be correctly interpreted. Sympathetic predominance in the power spectrum obtained from short- and long-term HRV recordings predicts a poor prognosis in a number of cardiac diseases. Heart rate variability is often recorded without measuring respiration; slow breaths might artefactually increase low frequency power in RR interval (RR) and falsely mimic sympathetic activation. In 12 healthy volunteers we evaluated the effect of free talking and reading, silently and aloud, on respiration, RR and blood pressure (BP). We also compared spontaneous breathing to controlled breathing and mental arithmetic, silent or aloud. The power in the so called low- (LF) and high-frequency (HF) bands in RR and BP was obtained from autoregressive power spectrum analysis. Compared with spontaneous breathing, reading silently increased the speed of breathing (p < 0.05), decreased mean RR and RR variability and increased BP. Reading aloud, free talking and mental arithmetic aloud shifted the respiratory frequency into the LF band, thus increasing LF% and decreasing HF% to a similar degree in both RR and respiration, with decrease in mean RR but with minor differences in crude RR variability. Simple mental and verbal activities markedly affect HRV through changes in respiratory frequency. This possibility should be taken into account when analyzing HRV without simultaneous acquisition and analysis of respiration.
Spectral analysis of the UFBG-based acousto—optical modulator in V-I transmission matrix formalism
NASA Astrophysics Data System (ADS)
Wu, Liang-Ying; Pei, Li; Liu, Chao; Wang, Yi-Qun; Weng, Si-Jun; Wang, Jian-Shuai
2014-11-01
In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto—optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-1) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.
The Pulsation Spectrum of VX Hydrae
NASA Astrophysics Data System (ADS)
Templeton, M. R.; Samolyk, G.; Dvorak, S.; Poklar, R.; Butterworth, N.; Gerner, H.
2009-10-01
We present the results of a two-year, multisite observing campaign investigating the high-amplitude δ Scuti star VX Hydrae during the 2006 and 2007 observing seasons. The final data set consists of nearly 8500 V-band observations spanning HJD 2453763.6 to 2454212.7 (2006 January 28 to 2007 April 22). Separate analyses of the two individual seasons of data yield 25 confidently detected frequencies common to both data sets, of which two are pulsation modes, and the remaining 23 are Fourier harmonics or beat frequencies of these two modes. The 2006 data set had five additional frequencies with amplitudes less than 1.5 mmag, and the 2007 data had one additional frequency. Analysis of the full 2006-2007 data set yields 22 of the 25 frequencies found in the individual seasons of data. There are no significant peaks in the spectrum other than these between 0 and 60 cycles day-1. The frequencies of the two main pulsation modes derived from the 2006 and 2007 observing seasons individually do not differ at the level of 3σ, and thus we find no conclusive evidence for period change over the span of these observations. However, the amplitude of changed significantly between the two seasons, while the amplitude of remained constant; amplitudes of the Fourier harmonics and beat frequencies of f1 also changed. Similar behavior was seen in the 1950s, and it is clear that VX Hydrae undergoes significant amplitude changes over time.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
[Discussion of scattering in THz time domain spectrum tests].
Yan, Fang; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Li, Zhi; Zhang, Han
2014-06-01
Using THz-TDS to extract the absorption spectrum of a sample is an important branch of various THz applications. Basically, we believe that the THz radiation scatters from sample particles, leading to an obvious baseline increasing with frequencies in its absorption spectrum. The baseline will affect the measurement accuracy due to ambiguous height and pattern of the spectrum. The authors should try to remove the baseline, and eliminate the effects of scattering. In the present paper, we investigated the causes of baselines, reviewed some of scatter mitigating methods and summarized some of research aspects in the future. In order to validate the correctness of these methods, we designed a series of experiments to compare the computational accuracy of molar concentration. The result indicated that the computational accuracy of molar concentration can be improved, which can be the basis of quantitative analysis in further researches. Finally, with comprehensive experimental results, we presented further research directions on THz absorption spectrum that is needed for the removal of scattering effects.
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
NASA Astrophysics Data System (ADS)
Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.
2018-03-01
Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy
NASA Astrophysics Data System (ADS)
Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam
2018-03-01
The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.
NASA Astrophysics Data System (ADS)
Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.
2018-04-01
We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.
Quantum Entanglement Molecular Absorption Spectrum Simulator
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.
Hybrid spread spectrum radio system
Smith, Stephen F.; Dress, William B.
2010-02-02
Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.
Marine asset security and tracking (MAST) system
Hanson, Gregory Richard [Clinton, TN; Smith, Stephen Fulton [Loudon, TN; Moore, Michael Roy [Corryton, TN; Dobson, Eric Lesley [Charleston, SC; Blair, Jeffrey Scott [Charleston, SC; Duncan, Christopher Allen [Marietta, GA; Lenarduzzi, Roberto [Knoxville, TN
2008-07-01
Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.
NASA Radio Frequency Spectrum Management Manual
NASA Technical Reports Server (NTRS)
1989-01-01
The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1979-01-01
This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…
Normal mode and experimental analysis of TNT Raman spectrum
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Perkins, Richard; Liu, Yucheng; Tzeng, Nianfeng
2017-04-01
In this study, a Raman spectrum of TNT was characterized through experiments and simulated using 22 hybrid density functional theory (DFT) methods. Among the different hybrid DFT methods, it was found that the most accurate simulation results of the Raman shift frequency were calculated by the O3LYP method. However, the deviations of the calculated Raman frequencies from the experimental value showed no dependency on the abilities of the DFT methods in recovering the correlation energy. The accuracies of the DFT methods in predicting the Raman bands are probably determined by the numerical grid and convergence criteria for optimizations of each DFT method. It was also decided that the prominent Raman shift 1362 cm-1 is mainly caused by symmetric stretching of the 4-nitro groups. Findings of this study can facilitate futuristic development of more effective surface enhanced Raman spectroscopy/scattering (SERS) substrates for explosive characterization and detection.
Applications of surface acoustic and shallow bulk acoustic wave devices
NASA Astrophysics Data System (ADS)
Campbell, Colin K.
1989-10-01
Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.
FTIR Spectrum of the ν 4Band of DCOOD
NASA Astrophysics Data System (ADS)
Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.
1999-06-01
The FTIR spectrum of the ν4band of deuterated formic acid (DCOOD) has been measured with a resolution of 0.004 cm-1in the frequency range of 1120 to 1220 cm-1. A total of 1866 assigned transitions have been analyzed and fitted using a Watson'sA-reduced Hamiltonian in theIrrepresentation to derive rovibrational constants for the upper state (v4= 1) with a standard deviation of 0.00036 cm-1. In the course of the analysis, the constants for the ground state were improved by a simultaneous fit of microwave frequencies and combination differences from the infrared measurements. Due to the relatively unperturbed nature of the band, the constants can be used to accurately calculate the infrared line positions for the whole band. Although the band is a hybrid typeAandB, onlya-type transitions were strong enough to be observed. The band center is at 1170.79980 ± 0.00002 cm-1.
Caccia, M R; Osio, M; Galimberti, V; Cataldi, G; Mangoni, A
1989-05-01
Accelerometric tremorgrams were recorded from 25 subjects affected by essential tremor and analysed by a Berg-Fourier frequency analyser before and during venous infusion of the following drugs: propranolol (beta-blocker), clonidine (alpha-presynaptic adrenergic agonist), urapidil (alpha-postsynaptic blocker), trazodone (adrenolytic agent) and placebo. The washout interval between infusions was 3 days. Recordings and data analyses were performed in a double-blind crossover trial. Tremor was classified as: at rest; postural (arms hyperextended); and intention (finger-nose test). Analysis of the results showed that propranolol and clonidine reduced significantly (P = 0.01 and P = 0.009, respectively) the power spectrum of postural tremor, but left at rest and intention tremors unchanged. No significant effects on the tremor power spectrum were observed after placebo, urapidil or trazodone administration. None of the drugs had any effect on tremor frequency.
A new transform for the analysis of complex fractionated atrial electrograms
2011-01-01
Background Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction. Method A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE. Results The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%. Conclusions The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively robust to jitter in periodic events. Thus the ensemble method can provide a useful alternative for quantitative characterization of CFAE during clinical study. PMID:21569421
Brain-computer interface using wavelet transformation and naïve bayes classifier.
Bassani, Thiago; Nievola, Julio Cesar
2010-01-01
The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal's information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.
NASA Astrophysics Data System (ADS)
Nolta, M. R.; Devlin, M. J.; Dorwart, W. B.; Miller, A. D.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.
2003-11-01
We present a measurement of the angular spectrum of the cosmic microwave background from l=26 to 225 from the 30 and 40 GHz channels of the MAT/TOCO experiment based on two seasons of observations. At comparable frequencies, the data extend to a lower l than the recent Very Small Array and DASI results. After accounting for known foreground emission in a self-consistent analysis, a rise from the Sachs-Wolfe plateau to a peak of δTl~80 μK near l~200 is observed.
Damping properties of fiber reinforced composite suitable for stayed cable
NASA Astrophysics Data System (ADS)
Li, Jianzhi; Sun, Baochen; Du, Yanliang
2011-11-01
Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.
Damping properties of fiber reinforced composite suitable for stayed cable
NASA Astrophysics Data System (ADS)
Li, Jianzhi; Sun, Baochen; Du, Yanliang
2012-04-01
Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.
Heunis, Tosca-Marie; Aldrich, Chris; de Vries, Petrus J
2016-08-01
Electroencephalography (EEG) has been used for almost a century to identify seizure-related disorders in humans, typically through expert interpretation of multichannel recordings. Attempts have been made to quantify EEG through frequency analyses and graphic representations. These "traditional" quantitative EEG analysis methods were limited in their ability to analyze complex and multivariate data and have not been generally accepted in clinical settings. There has been growing interest in identification of novel EEG biomarkers to detect early risk of autism spectrum disorder, to identify clinically meaningful subgroups, and to monitor targeted intervention strategies. Most studies to date have, however, used quantitative EEG approaches, and little is known about the emerging multivariate analytical methods or the robustness of candidate biomarkers in the context of the variability of autism spectrum disorder. Here, we present a targeted review of methodological and clinical challenges in the search for novel resting-state EEG biomarkers for autism spectrum disorder. Three primary novel methodologies are discussed: (1) modified multiscale entropy, (2) coherence analysis, and (3) recurrence quantification analysis. Results suggest that these methods may be able to classify resting-state EEG as "autism spectrum disorder" or "typically developing", but many signal processing questions remain unanswered. We suggest that the move to novel EEG analysis methods is akin to the progress in neuroimaging from visual inspection, through region-of-interest analysis, to whole-brain computational analysis. Novel resting-state EEG biomarkers will have to evaluate a range of potential demographic, clinical, and technical confounders including age, gender, intellectual ability, comorbidity, and medication, before these approaches can be translated into the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.
FPGA-based RF spectrum merging and adaptive hopset selection
NASA Astrophysics Data System (ADS)
McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.
The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
High-frequency filtering of strong-motion records
Douglas, J.; Boore, D.M.
2011-01-01
The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.
NASA Astrophysics Data System (ADS)
Han, Jian; Jiang, Nan
2012-07-01
The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.
Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2
NASA Astrophysics Data System (ADS)
Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang
2018-02-01
Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.
FSD: Frequency Space Differential measurement of CMB spectral distortions
NASA Astrophysics Data System (ADS)
Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.
2018-07-01
Although the cosmic microwave background (CMB) agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody that can be modelled for known sources of spectral distortions like y and μ. Our technique uses FSD information for the CMB blackbody, y, μ, or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.
NASA Technical Reports Server (NTRS)
Woodring, D. G.; Nichols, S. A.; Swanson, R.
1979-01-01
During 1978 and 1979, an Air Force C-135 test aircraft was flown to various locations in the North and South Atlantic and Pacific Oceans for satellite communications experiments. A part of the equipment tested on the aircraft was the SEACOM spread spectrum modem. The SEACOM modem operated at X band frequency from the aircraft via the DSCS II satellite to a ground station. For data to be phased successfully, it was necessary to maintain independent time and frequency accuracy over relatively long periods of time (up to two weeks) on the aircraft and at the ground station. To achieve this goal, two Efratom atomic frequency standards were used. The performance of these frequency standards as used in the spread spectrum modem is discussed, including the effects of high relative velocity, synchronization and the effects of the frequency standards on data performance is discussed. The aircraft environment, which includes extremes of temperature, as well as long periods of shutdown followed by rapid warmup requirements, is also discussed.
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
Spectrum of coherent transition radiation generated by a modulated electron beam
NASA Astrophysics Data System (ADS)
Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P. V.; Shipulya, M. A.; Bleko, V. V.
2017-07-01
The spectrum of coherent transition radiation has been recorded with the use of a Martin-Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.
Gutenkunst, Ryan N.; Hernandez, Ryan D.; Williamson, Scott H.; Bustamante, Carlos D.
2009-01-01
Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand years ago (95% confidence interval: 40–270 kya). This is earlier than other genetic studies, in part because we incorporate migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17–43 kya), long after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB) and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3–26.9 kya), and our analysis yields no evidence for subsequent migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations accurately predicts the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU). PMID:19851460
Cosic, Irena; Cosic, Drasko; Lazar, Katarina
2016-06-29
The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
Cosic, Irena; Cosic, Drasko; Lazar, Katarina
2016-01-01
The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
Retrieval of methanol absorption parameters at terahertz frequencies using multispectral fitting
NASA Astrophysics Data System (ADS)
Slocum, David M.; Xu, Li-Hong; Giles, Robert H.; Goyette, Thomas M.
2015-12-01
A high-resolution broadband study of the methanol absorption spectrum was performed at 1.480-1.495 THz. The transmittance was recorded under both self- and air-broadening conditions for multiple pressures at a resolution of 500 kHz. A multispectral fitting analysis was then performed. The transition frequency, absolute intensity, self- and air-broadening coefficients, and self- and air-induced pressure shifts were retrieved for 221 absorption lines using the multispectral fitting routine. Observed in the data were two different series of transitions, both a b-type Q-branch with K = - 7 ← - 6 and an a-type R-branch with J = 31 ← 30 . The retrieved frequency position values were compared with values from spectral databases and trends within the different series were identified. An analysis of the precision of the fitting routine was also performed.
Rydberg states of chloroform studied by VUV photoabsorption spectroscopy
NASA Astrophysics Data System (ADS)
Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.
2013-11-01
The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.
Chan, H L; Lin, J L; Huang, H H; Wu, C P
1997-09-01
A new technique for interference-term suppression in Wigner-Ville distribution (WVD) is proposed for the signal with 1/f spectrum shape. The spectral characteristic of the signal is altered by f alpha filtering before time-frequency analysis and compensated after analysis. With the utilization of the proposed technique in smoothed pseudo Wigner-Ville distribution, an excellent suppression of interference component can be achieved.
[The spectrum of human chromosomal aberrations detected by routine and differential (GTG) staining].
Ponomareva, A V; Matveeva, V G; Osipova, L P
2001-01-01
As a result of sample cytogenetic studies of 23 persons living on the territory of Yamal-Nentsy Autonomous District and chronically exposed to the small doses of radiation the data on the frequency and spectrum of chromosome aberrations, detected by the routine and differential (GTG) staining were obtained. Comparative efficiency of these methods was determined. The absence of significant differences for the spectrum and frequencies of chromosome aberrations revealed by both methods was shown.
Radio Frequency Survey of the 21-cm Wavelength(l.4 GHz) Allocation for Passive Microwave Observing
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.; Midon, M.; Caroglanian, A.; Ugweje, O. C.
2003-01-01
Because of the need to develop 1.4-GHz radiometers, a set of RF surveys was conducted in and around our laboratories. In this paper, a measurement campaign and analysis of radio frequency interference (RFI) in the 21 cm wavelength allocation for passive microwave observing, was undertaken. The experimental setup and measurement procedure are outlined and measured data are interpreted. Significant signals were discovered within and surrounding the allocated spectrum at 1.4 GHz. Some implications for remote sensing are discussed.
Spatial-frequency spectra of printed characters and human visual perception.
Põder, Endel
2003-06-01
It is well known that certain spatial frequency (SF) bands are more important than others for character recognition. Solomon and Pelli [Nature 369 (1994) 395-397] have concluded that human pattern recognition mechanism is able to use only a narrow band from available SF spectrum of letters. However, the SF spectra of letters themselves have not been studied carefully. Here I report the results of an analysis of SF spectra of printed characters and discuss their relationship to the observed band-pass nature of letter recognition.
Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding
2014-03-01
To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Weiler, Markus; Pfister, Laurent; Klaus, Julian
2014-05-01
In recent years, several limitations as to the application of end member mixing analysis with isotope and geochemical tracers have been revealed: unstable end member solutions, inputs varying in space and time, and unrealistic mixing assumptions. In addition, the necessary high-frequency sampling using conventional methods is time and resources consuming, and hence most sampling rates are not suitable for capturing the response times of the majority of observed headwater catchments. However, high-frequency observations are considered fundamental for gaining new insights into hydrological systems. In our study, we have used two portable, in situ, high-frequency UV-Vis spectrometers (spectro::lyser; scan Messtechnik GmbH) to investigate the variability of several signatures in streamflow and end member stability. The spectro::lyser measures TOC, DOC, nitrate and the light absorption spectrum from 220 to 720 nm with 2.5 nm increment. The Weierbach catchment (0.45 km2) in the Attert basin (297 km2) in Luxemburg is a small headwater research catchment (operated by the CRP Gabriel Lippmann), which is completely forested and underlain by schist bedrock. The catchment is equipped with a dense network of hydrological instruments and for this study, the outlet of the Weierbach catchment was equipped with one spectro::lyser, permanently sensing stream water at a 15 minutes time step over several months. Hydrometric and meteorologic data was compared with the high-frequency spectro::lyser time series of TOC, DOC, nitrate and the light absorption spectrum, to get a first insight into the behaviour of the catchment under different environmental conditions. As a preliminary step for a successful end member mixing analysis, the stability of rainfall, soil water, and groundwater was tested with one spectro::lyser, both temporally and spatially. Thereby, we focused on the investigation of changes and patterns of the light absorption spectrum of the different end members and the stream water. Besides using DOC and nitrate for characterizing the end members, our idea is to use the light absorption spectrum as a fingerprint of various constituents of the water. To get a better understanding on how to handle the in situ spectro::lyser, the instrument was compared to conventionally analysed water samples with a special focus on fundamental technical issues: Is there a general difference between in situ and lab measurements and does it make a difference whether the samples are analysed immediately in the field or after days and weeks in the lab and/or again with the spectro::lyser? First results indicate the value of using in situ spectrometers to capture high-frequency variations of hydro-chemistry and end member mixing during runoff events in a small headwater catchment.
Estimation of spectral kurtosis
NASA Astrophysics Data System (ADS)
Sutawanir
2017-03-01
Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to visualize the pattern of each fault. Keywords: frequency domain Fourier transform, spectral kurtosis, bearing fault
Structure and dynamics of cyclic amides: The rotational spectrum of 1,3-dimethyl-2-imidazolidinone
NASA Astrophysics Data System (ADS)
Vigorito, Annalisa; Paoloni, Lorenzo; Calabrese, Camilla; Evangelisti, Luca; Favero, Laura B.; Melandri, Sonia; Maris, Assimo
2017-12-01
The structure and the internal dynamics of the lactam 1,3-dimethyl-2-imidazolidinone, also known as N,N‧-dimethylethyleneurea, have been investigated through the analysis of its free-jet absorption rotational spectrum. One conformer has been assigned. The pure μb-type spectrum, recorded in the 59.6-74.4 GHz frequency range entails an inertial defect Δc = -16.39 uÅ2, indicating that the molecule has C2 symmetry with a twisted arrangement of the ring. The methyl internal rotation barrier V3 = 7.181 (3) kJ mol-1 and the 14N diagonal nuclear quadrupole coupling constants χaa = 2.14 (14) and (χbb-χcc) = 7.26 (6) MHz were determined from the analysis of the hyperfine structure. They are in good agreement with the ab initio MP2/6-311++G(d,p) calculations which also estimate the electric dipole moment value as 3.9 D.
Characteristics of motive force derived from trajectory analysis of Amoeba proteus.
Masaki, Noritaka; Miyoshi, Hiromi; Tsuchiya, Yoshimi
2007-01-01
We used a monochromatic charge-coupled-device camera to observe the migration behavior of Amoeba proteus every 5 s over a time course of 10000 s in order to investigate the characteristics of its centroid movement (cell velocity) over the long term. Fourier transformation of the time series of the cell velocity revealed that its power spectrum exhibits a Lorentz type profile with a relaxation time of a few hundred seconds. Moreover, some sharp peaks were found in the power spectrum, where the ratios of any two frequencies corresponding to the peaks were expressed as simple rational numbers. Analysis of the trajectory using a Langevin equation showed that the power spectrum reflects characteristics of the cell's motive force. These results suggest that some phenomena relating to the cell's motility, such as protoplasmic streaming and the sol-gel transformation of actin filaments, which seem to be independent phenomena and have different relaxation times, interact with each other and cooperatively participate in the generation process of the motive force.
Impaired Timing and Frequency Discrimination in High-Functioning Autism Spectrum Disorders
ERIC Educational Resources Information Center
Bhatara, Anjali; Babikian, Talin; Laugeson, Elizabeth; Tachdjian, Raffi; Sininger, Yvonne S.
2013-01-01
Individuals with autism spectrum disorders (ASD) frequently demonstrate preserved or enhanced frequency perception but impaired timing perception. The present study investigated the processing of spectral and temporal information in 12 adolescents with ASD and 15 age-matched controls. Participants completed two psychoacoustic tasks: one determined…
NASA Astrophysics Data System (ADS)
Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina
2017-03-01
The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Deluca, Marco; Yamamoto, Shinsuke; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-06-01
The stress dependence of the Raman spectrum of polycrystalline barium titanate (BaTiO3, BT) ceramics has been examined with microprobe polarized Raman spectroscopy. The angular dependence of the Raman spectrum of the tetragonal BT crystal has been theoretically established, enabling us to assess the stress dependence of selected spectral modes without the influence of crystallographic domain orientation. Upon considering the frequency shift of selected Raman modes as a function of orientation between the crystallographic axis and the polarization vector of incident and scattered light, a suitable instrumental configuration has been selected, which allowed a direct residual stress measurement according to a modified piezospectroscopic procedure. The analysis is based on the selection of mixed photostimulated spectral modes in two perpendicular angular orientations.
The Influence of Boundary Layer Parameters on Interior Noise
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Rocha, Joana
2012-01-01
Predictions of the wall pressure in the turbulent boundary of an aerospace vehicle can differ substantially from measurement due to phenomena that are not well understood. Characterizing the phenomena will require additional testing at considerable cost. Before expending scarce resources, it is desired to quantify the effect of the uncertainty in wall pressure predictions and measurements on structural response and acoustic radiation. A sensitivity analysis is performed on four parameters of the Corcos cross spectrum model: power spectrum, streamwise and cross stream coherence lengths and Mach number. It is found that at lower frequencies where high power levels and long coherence lengths exist, the radiated sound power prediction has up to 7 dB of uncertainty in power spectrum levels with streamwise and cross stream coherence lengths contributing equally to the total.
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.
Samaitis, Vykintas; Mažeika, Liudas
2017-01-01
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924
High-frequency acoustic spectrum analyzer based on polymer integrated optics
NASA Astrophysics Data System (ADS)
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data
NASA Astrophysics Data System (ADS)
Dias, Nelson Luís
2018-01-01
A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.
Sensory Clusters of Adults with and without Autism Spectrum Conditions
ERIC Educational Resources Information Center
Elwin, Marie; Schröder, Agneta; Ek, Lena; Wallsten, Tuula; Kjellin, Lars
2017-01-01
We identified clusters of atypical sensory functioning adults with ASC by hierarchical cluster analysis. A new scale for commonly self-reported sensory reactivity was used as a measure. In a low frequency group (n = 37), all subscale scores were relatively low, in particular atypical sensory/motor reactivity. In the intermediate group (n = 17)…
The Shock and Vibration Bulletin. Part 3. Dynamic Analysis, Design Techniques
1980-09-01
response at certain discrete frequen- nique for dynamic analysis was pioneered by cies, not over a random-frequence spectrum. Myklestad[l]. Later Pestel and...34Fundamentals of Vibra- v’ angle of rotation due to tion Analysis ," McGraw-Hill, New York, 1956. bending 2. E.C. Pestel and F.A. Leckie, "Matrix o’ angle of...Bulletin 50IC FILE COPY (Part 03ofP,) to THE SHOCK AND VIBRATION BULLETIN Part 3 Dynamic Analysis , Design Techniques IELECTE SEPTEMBER 1980 S NOV 1
Detection and Characteristics of Rifampicin-Resistant Isolates of Mycobacterium tuberculosis.
Cherednichenko, A G; Dymova, M A; Solodilova, O A; Petrenko, T I; Prozorov, A I; Filipenko, M L
2016-03-01
Genotyping and analysis the drug resistance of 59 isolates of M. tuberculosis obtained from patients living in Altai Territory were performed using a BACTEC MGIT 960 fluorometric system by means of VNTR typing (variable number tandem repeat), PCR-RFLP analysis, and sequence analysis. The occurrence frequency was highest for isolates of the Beijing family (n=30, 50.8%). Analysis of mutation spectrum in the rpoB gene associated with rifampicin resistance revealed the major mutation (codon 531 of the rpoB gene) in 93% samples, which allows us to use rapid test systems.
Investigation of orifice aeroacoustics by means of multi-port methods
NASA Astrophysics Data System (ADS)
Sack, Stefan; Åbom, Mats
2017-10-01
Comprehensive methods to cascade active multi-ports, e.g., for acoustic network prediction, have until now only been available for plane waves. This paper presents procedures to combine multi-ports with an arbitrary number of considered duct modes. A multi-port method is used to extract complex mode amplitudes from experimental data of single and tandem in-duct orifice plates for Helmholtz numbers up to around 4 and, hence, beyond the cut-on of several higher order modes. The theory of connecting single multi-ports to linear cascades is derived for the passive properties (the scattering of the system) and the active properties (the source cross-spectrum matrix of the system). One scope of this paper is to investigate the influence of the hydrodynamic near field on the accuracy of both the passive and the active predictions in multi-port cascades. The scattering and the source cross-spectrum matrix of tandem orifice configurations is measured for three cases, namely, with a distance between the plates of 10 duct diameter, for which the downstream orifice is outside the jet of the upstream orifice, 4 duct diameter, and 2 duct diameter (both inside the jet). The results are compared with predictions from single orifice measurements. It is shown that the scattering is only sensitive to disturbed inflow in certain frequency ranges where coupling between the flow and sound field exists, whereas the source cross-spectrum matrix is very sensitive to disturbed inflow for all frequencies. An important part of the analysis is based on an eigenvalue analysis of the scattering matrix and the source cross-spectrum matrix to evaluate the potential of sound amplification and dominant source mechanisms.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong
2018-01-01
An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.
Tamura, Shinichi; Okada, Yasunori; Morimoto, Shigeru; Ohta, Mitsuaki; Uchida, Naoyuki
2010-01-01
In order to obtain information regarding the correlation between an electroencephalogram (EEG) and the state of a dolphin, we developed a noninvasive recording method of EEG of a bottlenose dolphin (Tursiops truncatus) and an extraction method of true-EEG (EEG) from recorded-EEG (R-EEG) based on a human EEG recording method, and then carried out frequency analysis during transportation by truck. The frequency detected in the EEG of dolphin during apparent awakening was divided conveniently into three bands (5–15, 15–25, and 25–40 Hz) based on spectrum profiles. Analyses of the relationship between power ratio and movement of the dolphin revealed that the power ratio of dolphin in a situation when it was being quiet was evenly distributed among the three bands. These results suggested that the EEG of a dolphin could be detected accurately by this method, and that the frequency analysis of the detected EEG seemed to provide useful information for understanding the central nerve activity of these animals. PMID:20429047
NASA Astrophysics Data System (ADS)
Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.
2014-05-01
The Army Research Laboratory (ARL) has developed an impulse-based vehicle-mounted forward-looking ultra- wideband (UWB) radar for imaging buried landmines and improvised explosive devices (IEDs). However, there is no control of the radiated spectrum in this system. As part of ARL's Partnerships in Research Transition (PIRT) program, the above deficiency is addressed by the design of a Stepped-Frequency Radar (SFR) which allows for precise control over the radiated spectrum, while still maintaining an effective ultra-wide bandwidth. The SFR utilizes a frequency synthesizer which can be configured to excise prohibited and interfering frequency bands and also implement frequency-hopping capabilities. The SFR is designed to be a forward-looking ground- penetrating (FLGPR) Radar utilizing a uniform linear array of sixteen (16) Vivaldi notch receive antennas and two (2) Quad-ridge horn transmit antennas. While a preliminary SFR consisting of four (4) receive channels has been designed, this paper describes major improvements to the system, and an analysis of expected system performance. The 4-channel system will be used to validate the SFR design which will eventually be augmented in to the full 16-channel system. The SFR has an operating frequency band which ranges from 300 - 2000 MHz, and a minimum frequency step-size of 1 MHz. The radar system is capable of illuminating range swaths that have maximum extents of 30 to 150 meters (programmable). The transmitter has the ability to produce approximately -2 dBm/MHz average power over the entire operating frequency range. The SFR will be used to determine the practicality of detecting and classifying buried and concealed landmines and IEDs from safe stand-off distances.
The anti-counterfeiting hologram of encryption processing in frequency domain
NASA Astrophysics Data System (ADS)
Bao, Nai K.; Chen, Zhongyu Y.
2004-09-01
This paper proposed a new encryption method using Computer Generated Fourier Hologram in frequency domain. When the main frequency spectrum, i.e. brand and an encrypted information frequency spectrum are mixed, it will not recognized and copied. We will use the methods of Dot Matrix (Digital) Hologram Modulation and the filter to get real signal. One new multi-modulated dot matrix hologram is introduced. It is encoded using several gratings. These gratings have different angles of inclination and different periods in same dot, to enable us in obtaining more information.
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.
Orestes, Ednilsom; Bistafa, Carlos; Rivelino, Roberto; Canuto, Sylvio
2015-05-28
The vibrational circular dichroism (VCD) spectrum of l-alanine amino acid in aqueous solution in ambient conditions has been studied. The emphasis has been placed on the inclusion of the thermal disorder of the solute-solvent hydrogen bonds that characterize the aqueous solution condition. A combined and sequential use of molecular mechanics and quantum mechanics was adopted. To calculate the average VCD spectrum, the DFT B3LYP/6-311++G(d,p) level of calculation was employed, over one-hundred configurations composed of the solute plus all water molecules making hydrogen bonds with the solute. Simplified considerations including only four explicit solvent molecules and the polarizable continuum model were also made for comparison. Considering the large number of vibration frequencies with only limited experimental results a direct comparison is presented, when possible, and in addition a statistical analysis of the calculated values was performed. The results are found to be in line with the experiment, leading to the conclusion that including thermal disorder may improve the agreement of the vibrational frequencies with experimental results, but the thermal effects may be of greater value in the calculations of the rotational strengths.
Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter; Andrews, John M.
2014-07-01
Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.
Frequency ranges of heart rate variability related to autonomic nerve activity in the mouse.
Tsai, Meng-Li; Chen, Chien-Chang; Yeh, Chang-Jyi; Chou, Li-Ming; Cheng, Chiung-Hsiang
2012-01-01
Mice have gained more and more attention in recent years and been widely used in transgenic experiments. Although the number of researches on the heart rate variability (HRV) of mice has been gradually increasing, a consensus on the frequency ranges of autonomic modulation has not been established. Therefore, the main purpose of this study was to find a HRV "prototype" for conscious mice in the state of being motionless and breathing regularly (called "genuinely resting"), and to determine the frequency ranges corresponding to the autonomic modulation. Further, whether these frequencies will change when the mice move freely was studied to evaluate the feasibility of the HRV spectrum as an index of the autonomic modulation of mice. The recording sites were specially arranged to simultaneously obtain the electrocardiography and electromyography data to be provided for the use of HRV analysis and motion monitoring, respectively. The states of being motionless and breathing regularly as judged from the electromyography results were selected as a genuine resting state of a conscious mouse. The frequencies related to autonomic modulation of HRV were determined by comparing the spectrum changes before and after blockades of the autonomic tone by different pharmaceutical agents in both the genuine resting state and freely moving states. Our results showed that the HRV of mice is not suitable for indexing sympathetic modulation; however, it is possible to use the spectral power in the frequency range between 0.1 and 1 Hz as an index of parasympathetic modulation.
Laboratory study of spectral waves over a muddy bottom
NASA Astrophysics Data System (ADS)
Maxeiner, E.; Dalrymple, R. A.
2010-12-01
The attenuation of water waves propagating over a muddy ocean floor has been studied extensively both analytically and experimentally over the past 30 years. Possible mechanisms for this include surface wave interactions with the bottom, surface wave interactions with waves formed at the water/mud interface (lutocline) and shear instability at the water/mud interface. Typically these studies have focused on monochromatic waves. Observations of wave attenuation in the field, however, are subject to a spectrum of wave frequencies and sizes. A few field studies (Sheremet and Stone, 2003; Elgar and Raubenheimer, 2008) have explored the possible effects that a wide spectrum of wave frequencies may have on wave damping mechanisms. In this study, the wave attenuation exhibited by a sea spectrum over a muddy bottom is studied experimentally in a laboratory for the first time. Using an 18 m-long wave tank at the Coastal Engineering Laboratory at Johns Hopkins University, a piston-style wave maker is used to create both monochromatic and spectral waves. A 10 m-long section of the tank floor incorporates a recessed layer of kaolinite clay which subsequently mixes with the overlying water in the presence of waves. Testing consists of three phases. First, a series of monochromatic wave trains are produced over a range of wave frequencies and in a range of water depths to assess the damping behavior with respect to a variety of parameters such as wave frequency, wave height and water depth. Damping is assessed by comparing wave height at various longitudinal locations in the tank. Second, “wave beats” are created by superimposing waves of two frequencies to create a longer envelope. Third, the wave maker is used to generate a representative random sea condition, based on the Pierson-Moskowitz sea spectrum. For this type of testing, damping is assessed by measuring wave energy flux over a period of time at various longitudinal locations in the tank. Spectral analysis is also performed at these locations to track changing spectral energy, as previous studies have hypothesized mechanisms of energy transfer between waves of different frequencies. This study is part of a Multidisciplinary University Research Initiative (MURI), which includes on computational, laboratory and field studies of wave damping in nearshore areas of the Gulf of Mexico along the coast of Louisiana.
Operating frequencies for educational satellite services
NASA Technical Reports Server (NTRS)
Singh, J. P.
1971-01-01
The factors affecting the choice of transmission frequencies are identified. These include international radio regulations, natural environment, man-made environment, hardware considerations, and interconnection and spectrum space considerations. An analysis is presented of international radio regulations with emphasis on 1963 EARC and 1971 WARC frequency allocations, powerflux density restrictions, and resolutions concerning introduction of broadcasting-satellite systems. Natural-environmental effects were divided into two categories: (1) those due to transionospheric propagation, and (2) those that can be credited to the earth's atmosphere and its constituents. The frequency dependence of the signal attenuation, signal distortion, and contributions to system noise temperature due to environmental effects are discussed, and comparisons were made for frequencies of interest. Man-made environmental effects were examined in terms of various sharing limitations as well as the indigenous noise contribution to the overall system noise.
Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser
NASA Astrophysics Data System (ADS)
Zhang, Shao-Hui; Shu-Lian, Zhang; Tan, Yi-Dong; Sun, Li-Qun
2015-12-01
We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4 microchip laser (ML). We find that low-frequency relaxation oscillation (RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4 ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well. Project supported by the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0086), the Tsinghua University Initiative Scientific Research Programme, China (Grant No. 2012Z02166), and the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China (Grant No. 2011YQ04013603).
Parametric instability and wave turbulence driven by tidal excitation of internal waves
NASA Astrophysics Data System (ADS)
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael
2018-04-01
We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.
Measuring stress variation with depth using Barkhausen signals
NASA Astrophysics Data System (ADS)
Kypris, O.; Nlebedim, I. C.; Jiles, D. C.
2016-06-01
Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.
Characterization of conductive Al-doped ZnO thin films for plasmonic applications
NASA Astrophysics Data System (ADS)
Masouleh, F. F.; Sinno, I.; Buckley, R. G.; Gouws, G.; Moore, C. P.
2018-02-01
Highly conductive and transparent Al-doped zinc oxide films were produced by RF magnetron sputtering for plasmonic applications in the infrared region of the spectrum. These films were characterized using Fourier transform infrared spectroscopy, the Hall effect, Rutherford backscattering spectroscopy and spectral data analysis. Analysis of the results shows a carrier concentration of up to 2.6 × 1020 cm-3, as well as transmission over 80% near the plasma frequency where plasmonic properties are expected. The plasma frequency was calculated from the spectroscopy measurements and subsequent data analysis, and was in agreement with the results from the Hall effect measurements and the free electron gas (Drude) model. Based on these results, the Al-doped zinc oxide thin films are well-suited for plasmonic applications in the infrared region.
High efficiency laser spectrum conditioner
Greiner, Norman R.
1980-01-01
A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2004-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2002-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
NASA Technical Reports Server (NTRS)
Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)
2003-01-01
A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Quantitative analysis of a frequency-domain nonlinearity indicator.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G
2016-05-01
In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.
Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.
Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre
2012-01-01
The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer. © 2012 Acoustical Society of America.
A performance analysis of DS-CDMA and SCPC VSAT networks
NASA Technical Reports Server (NTRS)
Hayes, David P.; Ha, Tri T.
1990-01-01
Spread-spectrum and single-channel-per-carrier (SCPC) transmission techniques work well in very small aperture terminal (VSAT) networks for multiple-access purposes while allowing the earth station antennas to remain small. Direct-sequence code-division multiple-access (DS-CDMA) is the simplest spread-spectrum technique to use in a VSAT network since a frequency synthesizer is not required for each terminal. An examination is made of the DS-CDMA and SCPC Ku-band VSAT satellite systems for low-density (64-kb/s or less) communications. A method for improving the standardf link analysis of DS-CDMA satellite-switched networks by including certain losses is developed. The performance of 50-channel full mesh and star network architectures is analyzed. The selection of operating conditions producing optimum performance is demonstrated.
Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.
Sherwin, W B; Chao, A; Jost, L; Smouse, P E
2017-12-01
Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Y. F.; Zhu, W.; Zhang, Q.; Zhang, W. T.
2018-04-01
InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.
Geosynchronous platform definition study. Volume 3: Geosynchronous mission characteristics
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the study were to examine the nature of currently planned and new evolutionary geosynchronous programs, to analyze alternative ways of conducting missions, to establish concepts for new systems to support geosynchronous programs in an effective and economical manner, and to define the logistic support to carry out these programs. In order to meet these objectives, it was necessary to define and examine general geosynchronous mission characteristics and the potentially applicable electromagnetic spectrum characteristics. An organized compilation of these data is given with emphasis on the development and use of the data. Fundamental geosynchronous orbit time histories, mission profile characteristics, and delivery system characteristics are presented. In addition, electromagnetic spectrum utilization is discussed in terms of the usable frequency spectrum, the spectrum potentially available considering established frequency allocations, and the technology status as it affects the ability to operate within specific frequency bands.
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials
NASA Astrophysics Data System (ADS)
Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang
2018-03-01
By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.
Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund Js
2007-12-10
It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) - below 0.5 Hz - which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.
Zhu, Li; Bharadwaj, Hari; Xia, Jing; Shinn-Cunningham, Barbara
2013-01-01
Two experiments, both presenting diotic, harmonic tone complexes (100 Hz fundamental), were conducted to explore the envelope-related component of the frequency-following response (FFRENV), a measure of synchronous, subcortical neural activity evoked by a periodic acoustic input. Experiment 1 directly compared two common analysis methods, computing the magnitude spectrum and the phase-locking value (PLV). Bootstrapping identified which FFRENV frequency components were statistically above the noise floor for each metric and quantified the statistical power of the approaches. Across listeners and conditions, the two methods produced highly correlated results. However, PLV analysis required fewer processing stages to produce readily interpretable results. Moreover, at the fundamental frequency of the input, PLVs were farther above the metric's noise floor than spectral magnitudes. Having established the advantages of PLV analysis, the efficacy of the approach was further demonstrated by investigating how different acoustic frequencies contribute to FFRENV, analyzing responses to complex tones composed of different acoustic harmonics of 100 Hz (Experiment 2). Results show that the FFRENV response is dominated by peripheral auditory channels responding to unresolved harmonics, although low-frequency channels driven by resolved harmonics also contribute. These results demonstrate the utility of the PLV for quantifying the strength of FFRENV across conditions. PMID:23862815
[Frequency of chromosome aberrations in residents of the Semipalatinsk Oblast].
Gubitskaia, E G; Akhmatullina, N B; Vsevolodov, E B; Bishnevskaia, S S; Sharipov, I K; Cherednichenko, O G
1999-06-01
Cytogenetic analysis of the population of the Beskaragai district of the Semipalatinsk oblast adjacent to the territory of the nuclear test site was conducted by means of an ecological genetic questionnaire and cytogenetic examination of metaphase chromosomes. An increase in the total mutation level in the region was observed. The frequency of chromosome aberrations among the population of the Beskaragai district (3.2%) was statistically significantly (about 1.5 times) higher than the background levels in the clear regions (from 1 to 2%). Furthermore, the frequency of aberrations in adolescents was comparable with that in the adults. The spectrum of chromosome aberrations pointed to a significant contribution of radiation component to the mutagenesis.
NASA Astrophysics Data System (ADS)
Vatsal, Manu; Devi, Vandna; Awasthi, Pamita
2018-04-01
The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.
NASA Technical Reports Server (NTRS)
Chen, Xingming; Taam, Ronald E.
1995-01-01
The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.
Benchmark Eye Movement Effects during Natural Reading in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Howard, Philippa L.; Liversedge, Simon P.; Benson, Valerie
2017-01-01
In 2 experiments, eye tracking methodology was used to assess on-line lexical, syntactic and semantic processing in autism spectrum disorder (ASD). In Experiment 1, lexical identification was examined by manipulating the frequency of target words. Both typically developed (TD) and ASD readers showed normal frequency effects, suggesting that the…
U.S. Military Operations Within the Electromagnetic Spectrum: Operational Critical Weakness
2008-04-23
the mistake only after we landed.”27 The primary tool used to coordinate friendly use of the spectrum with ES and EA is the Joint Restricted Frequency ... List (JRFL). Frequencies that are deemed “necessary for friendly forces to accomplish objectives”28 are listed and classified as guarded, protected
Review of measurements of the RF spectrum of radiation from lightning
NASA Technical Reports Server (NTRS)
Levine, D. M.
1986-01-01
Measurements reported in the literature of the spectrum of electromagnetic radiation from lightning in the frequency range from 1 kHz to 1 GHz are reviewed. Measurements have been made either by monitoring the power received at individual frequencies using a narrow bandwidth recording device tuned to the frequencies under investigation or by recording the transient (time dependent) radiation with a wide bandwidth device and then Fourier transforming the waveform to obtain a spectrum. Measurements of the first type were made extensively in the 1950's and 1960's and several composite spectra have been deduced by normalizing the data of different investigators to common units of bandwidth and distance. The composite spectra tend to peak near 5 kHz and then decrease roughly as (frequency) to the -1, up to nearly 100 MHz where scatter in the data make the behavior uncertain. Measurements of the second type have been reported for return strokes, the stepped leader and for some intracloud processes. The spectrum of first return strokes obtained in this manner is very similar to the composite spectra obtained from the narrow-band measurements.
Frequency spectrum analyzer with phase-lock
Boland, Thomas J.
1984-01-01
A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.
Water-waves frequency upshift of the spectral mean due to wind forcing
NASA Astrophysics Data System (ADS)
Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert
2017-04-01
The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial support from the Swiss National Science Foundation (project 200021-155970), the Labex MEC (French ANR-10-LABX-0092) and the A*MIDEX project (ANR-11-IDEX-0001-02). • Brunetti, M. and Kasparian, J. 2014 "Modulational instability in wind-forced waves". Physics Letters A, 378: 48, 3626-3630. • Brunetti, M., Marchiando, N., Berti, N. and Kasparian, J. 2014 "Nonlinear fast growth of water waves under wind forcing". Physics Letters A 378: 1415, 1025-1030. • Carter, J. D. and Govan, A. 2016 "Frequency downshift in a viscous fluid." Eur. Journ. Mech. - B/Fluids 59: 177-185. • Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D. and Socha, K. 2005 "Stabilizing the Benjamin-Feir instability". Journ. Fluid Mechanics, 539: 229-271.
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Koda, S.
2010-03-01
The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.
A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings
Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang
2017-01-01
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about −0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%. PMID:28417925
A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings.
Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang
2017-04-12
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about -0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%.