Micro acoustic spectrum analyzer
Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.
2004-11-23
A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.
Signal Identification and Isolation Utilizing Radio Frequency Photonics
2017-09-01
analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
Non Debye approximation on specific heat of solids
NASA Astrophysics Data System (ADS)
Bhattacharjee, Ruma; Das, Anamika; Sarkar, A.
2018-05-01
A simple non Debye frequency spectrum is proposed. The normalized frequency spectrum is compared to that of Debye spectrum. The proposed spectrum, provides a good account of low frequency phonon density of states, which gives a linear temperature variation at low temperature in contrast to Debye T3 law. It has been analyzed that the proposed model provides a good account of excess specific heat for nanostructure solid.
Frequency spectrum analyzer with phase-lock
Boland, Thomas J.
1984-01-01
A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.
NASA Astrophysics Data System (ADS)
Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng
2008-01-01
This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.
Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.
1994-01-01
Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.
1995-01-01
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
A wideband, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer.
Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J
1988-12-01
This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.
Laser velocimeter application to oscillatory liquid flows
NASA Technical Reports Server (NTRS)
Gartrell, L. R.
1978-01-01
A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.
Terahertz Josephson spectral analysis and its applications
NASA Astrophysics Data System (ADS)
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
Frequency spectrum analysis of laser generated ultrasonic waves in ablative regime
NASA Astrophysics Data System (ADS)
Mi, Bao; Ume, I. Charles
2002-05-01
In this paper, laser ultrasonic signals generated in ablative regime are measured in a number of metal samples (2024 Al, 6061 Al, 7075 Al, mild steel, and copper) with a broadband laser interferometer. The frequency spectra are analyzed and compared for different thicknesses (50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm), and for different power densities. Hanning windowing is applied before frequency analysis is performed. The experimental data match the theoretical predictions very well. The results show that the frequency spectrum extends from 0 to 15 MHz, while the center frequency occurs near 2 MHz. The detailed distribution of the spectrum is dependent on the material, thickness, and laser power density.
Cosic, Irena; Cosic, Drasko; Lazar, Katarina
2016-06-29
The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
Cosic, Irena; Cosic, Drasko; Lazar, Katarina
2016-01-01
The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714
A frequency standard via spectrum analysis and direct digital synthesis
NASA Astrophysics Data System (ADS)
Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong
2014-11-01
We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.
[EMD Time-Frequency Analysis of Raman Spectrum and NIR].
Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe
2016-02-01
This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
New results on the generation of broadband electrostatic waves in the magnetotail
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1985-01-01
The theory of the generation of broadband electrostatic noise (BEN) in the magnetotail is extended through numerical solution of the dispersion relation under conditions that exist in the plasma sheet boundary layer. It is found that the low-frequency portion of the spectrum has a broad angular spectrum but a fairly sharp peak near 75 deg with respect to the magnetic field, while the high-frequency portion has a narrower angular spectrum that is strongly concentrated along the magnetic field line. These results are in excellent agreement with observations of the broadband wave spectrum and a recent measurement of the propagation direction. The effect of a second cold component of electrons is analyzed, and it is found that it can increase the upper cutoff frequency of BEN to the observed value at about the plasma frequency.
Injection Locking Techniques for Spectrum Analysis
NASA Astrophysics Data System (ADS)
Gathma, Timothy D.; Buckwalter, James F.
2011-04-01
Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.
A wide-band, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Wilck, H. C.; Quirk, M. P.; Grimm, M. J.
1985-01-01
A million-channel, 20 MHz-bandwidth, digital spectrum analyzer under evelopment for use in the SETI Sky Survey and other applications in the Deep Space Network is described. The analyzer digitizes an analog input, performs a 2(20)-point Radix-2, Fast Fourier Transform, accumulates the output power, and normalizes the output to remove frequency-dependent gain. The effective speed of the real-time hardware is 2.2 GigaFLOPS.
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Anderson, R. R.; Odem, D. L.
1975-01-01
This document describes the University of Iowa solar wind plasma wave experiment for the Helios missions (Experiment 5a). The objective of this experiment is the investigation of naturally occurring plasma instabilities and electromagnetic waves in the solar wind. To carry out this investigation, the experiment consists primarily of a 16-channel spectrum analyzer connected to the electric field antennas. The spectrum analyzer covers the frequency range from 20 Hz to 200 kHz and has an amplitude dynamic range which extends from .3 microvolts/m to 30 mV/m per channel. This spectrum analyzer, the antenna potential measurements, the shock alarm system and the supporting electronics are discussed in detail.
Resonant ultrasound spectroscopy
Migliori, Albert
1991-01-01
A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.
ERIC Educational Resources Information Center
Hattier, Megan A.; Matson, Johnny L.; Tureck, Kimberly; Horovitz, Max
2011-01-01
Frequency of repetitive and/or restricted behaviors and interests (RRBIs) was assessed in 140 adults with autism spectrum disorders (ASDs) and severe or profound intellectual disability (ID). The associations of gender and age range were analyzed with RRBI frequency which was obtained using the Stereotypies subscale of the "Diagnostic…
Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis
NASA Technical Reports Server (NTRS)
Murty, A. N.
1978-01-01
The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.
Fault diagnosis of rolling element bearings with a spectrum searching method
NASA Astrophysics Data System (ADS)
Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo
2017-09-01
Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.
Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2001-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.
Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Hamory, Philip J.; Diamond, John K.; Bertelrud, Arild
1999-01-01
This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.
NASA Astrophysics Data System (ADS)
Li, Hanyu; Syed, Mubashir; Yao, Yu-Dong; Kamakaris, Theodoros
2009-12-01
This paper investigates spectrum sharing issues in the unlicensed industrial, scientific, and medical (ISM) bands. It presents a radio frequency measurement setup and measurement results in 2.4 GHz. It then develops an analytical model to characterize the coexistence interference in the ISM bands, based on radio frequency measurement results in the 2.4 GHz. Outage performance using the interference model is examined for a hybrid direct-sequence frequency-hopping spread spectrum system. The utilization of beamforming techniques in the system is also investigated, and a simplified beamforming model is proposed to analyze the system performance using beamforming. Numerical results show that beamforming significantly improves the system outage performance. The work presented in this paper provides a quantitative evaluation of signal outages in a spectrum sharing environment. It can be used as a tool in the development process for future dynamic spectrum access models as well as engineering designs for applications in unlicensed bands.
Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang
2017-04-03
Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.
Geodesic acoustic modes in noncircular cross section tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.
2017-03-15
The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.
A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings
Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang
2017-01-01
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about −0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%. PMID:28417925
A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings.
Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang
2017-04-12
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about -0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%.
NASA Astrophysics Data System (ADS)
Golovanova, T. M.; Gryaznov, Yu M.; Dianov, Evgenii M.; Dobryakova, N. G.; Kiselev, A. V.; Prokhorov, A. M.; Shcherbakov, E. A.
1989-08-01
An investigation was made of the parameters of an integrated-optical spectrum analyzer consisting of a Ti:LiNbO3 crystal and a semiconductor laser with a built-in microobjective, spherical geodesic lenses, and an optimized system of interdigital (opposed-comb) transducers. The characteristics of this spectrum analyzer were as follows: the band of operating frequencies was 181 MHz (at the 3 dB level); the resolution was 2.8 MHz; the signal/noise ratio (under a control voltage of 4 V) was 20 dB.
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2002-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.
Geosynchronous platform definition study. Volume 3: Geosynchronous mission characteristics
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the study were to examine the nature of currently planned and new evolutionary geosynchronous programs, to analyze alternative ways of conducting missions, to establish concepts for new systems to support geosynchronous programs in an effective and economical manner, and to define the logistic support to carry out these programs. In order to meet these objectives, it was necessary to define and examine general geosynchronous mission characteristics and the potentially applicable electromagnetic spectrum characteristics. An organized compilation of these data is given with emphasis on the development and use of the data. Fundamental geosynchronous orbit time histories, mission profile characteristics, and delivery system characteristics are presented. In addition, electromagnetic spectrum utilization is discussed in terms of the usable frequency spectrum, the spectrum potentially available considering established frequency allocations, and the technology status as it affects the ability to operate within specific frequency bands.
Real time analysis of voiced sounds
NASA Technical Reports Server (NTRS)
Hong, J. P. (Inventor)
1976-01-01
A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.
Digital processing of signals from femtosecond combs
NASA Astrophysics Data System (ADS)
Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej
2012-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.
Heterodyne laser diagnostic system
Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.
1990-01-01
The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.
Oscillation spectrum of WASP-33 from the MOST photometry
NASA Astrophysics Data System (ADS)
Mkrtichian, David
2015-08-01
We present results of extended continuous time series photometry of the Delta Scuti type pulsating exoplanet host star WASP-33 obtained in two seasons (2011 and 2013) with the MOST space telescope. Our frequency analysis yealds rich, low-amplitude multi-frequency spectrum of oscillation modes. We discuss possible resonances between the orbiital period of the planet and frequencies of the oscillation modes. We present results of our measurements of planets orbital O-C variations and analyze possible existence of invisible planets in the system. We review recent results of the high-resolution spectroscopic campaign on WASP-33 and confirm the retrograde orbital motion of the planet WASP-33b.
System and method of detecting cavitation in pumps
Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.
2017-10-03
A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.
Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham
2017-06-21
A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
Frequency Management Engineering Principles--Spectrum Measurements (Reference Order 6050.23).
1982-08-01
Interference 22 (a) Dielectric Heater Example 22 (b) High Power FM Interference Examle 22 (c) Radar Interference Example 22 (d) ARSR Interference Example...Localizer 23 (i) Dielectric Heaters 23 (j) High Power TV/FM 23 (k) Power Line Noise 23 (1) Incidental Radiating Devices 23 (m) Super-regenerative...employing broad band power amplifiers or and random spectrum analyzer instabilities traveling wave tubes. The "cleanest" spectrums create drift problems
Millimeter wave spectra of carbonyl cyanide ⋆
Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.
2016-01-01
Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349
Airborne system for detection and location of radio interference sources
NASA Astrophysics Data System (ADS)
Audone, Bruno; Pastore, Alberto
1992-11-01
The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.
Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard
2017-01-01
Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811
Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.
Characterization of an Outdoor Ambient Radio Frequency Environment
2016-02-16
radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization
Detection of main tidal frequencies using least squares harmonic estimation method
NASA Astrophysics Data System (ADS)
Mousavian, R.; Hossainali, M. Mashhadi
2012-11-01
In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.
Aida, Kazuo; Sugie, Toshihiko
2011-12-12
We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f(1) and f(2) periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f(1)-f(2)) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as -78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Ha, Tri T.; Pratt, Timothy
1989-01-01
The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.
High-frequency acoustic spectrum analyzer based on polymer integrated optics
NASA Astrophysics Data System (ADS)
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.
2017-12-01
Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.
The spectrum of the geoid from altimeter data
NASA Technical Reports Server (NTRS)
Wagner, C. A.
1977-01-01
A variety of sources of detailed information has been analyzed to arrive at a geoid power spectrum from global altimeter data. Using the equivalent of only two revolutions of data (mostly from GEOS-3) from all the major oceans, the high frequency geoid power (rms) is estimated (most simply) to be 80.7 n to the minus 1.47th power meters, where n is in cycles/global revolutions. This law is valid for all frequencies above 19 cycles but includes sea state. The (simple) law has more power than predicted by Kaula's rule for the geopotential. However, the data shows significantly less power for frequencies below 100 cycles. A closer approximation to the altimetry accumulates 2.18m (rss) for all frequencies higher than 19 cycles/rev. (including sea state), somewhat less power than predicted by the rule. The data permits up to 1.25 (rms) non-gravitational departures from the high frequency marine geoid.
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1984-01-01
The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.
Wave-field decay rate estimate from the wavenumber-frequency spectra
NASA Astrophysics Data System (ADS)
Comisel, H.; Narita, Y.; Voros, Z.
2017-12-01
Observational data for wave or turbulent fields are conveniently analyzed and interpreted in the Fourier domain spanning the frequencies and the wavenumbers. If a wave field has not only oscillatory components (characterized by real parts of frequency) but also temporally decaying components (characterized by imaginary parts of frequency), the energy spectrum shows a frequency broadening around the peak due to the imaginary parts of frequency (or the decay rate). The mechanism of the frequency broadening is the same as that of the Breit-Wigner spectrum in nuclear resonance phenomena. We show that the decay rate can observationally and directly be estimated once multi-point data are available, and apply the method to Cluster four-point magnetometer data in the solar wind on a spatial scale of about 1000 km. The estimated decay rate is larger than the eddy turnover time, indicating that the decay profile of solar wind turbulence is more plasma physical such as excitation of whistler waves and other modes rather than hydrodynamic turbulence behavior.
Speech Spectrum's Correlation with Speakers' Eysenck Personality Traits
Hu, Chao; Wang, Qiandong; Short, Lindsey A.; Fu, Genyue
2012-01-01
The current study explored the correlation between speakers' Eysenck personality traits and speech spectrum parameters. Forty-six subjects completed the Eysenck Personality Questionnaire. They were instructed to verbally answer the questions shown on a computer screen and their responses were recorded by the computer. Spectrum parameters of /sh/ and /i/ were analyzed by Praat voice software. Formant frequencies of the consonant /sh/ in lying responses were significantly lower than that in truthful responses, whereas no difference existed on the vowel /i/ speech spectrum. The second formant bandwidth of the consonant /sh/ speech spectrum was significantly correlated with the personality traits of Psychoticism, Extraversion, and Neuroticism, and the correlation differed between truthful and lying responses, whereas the first formant frequency of the vowel /i/ speech spectrum was negatively correlated with Neuroticism in both response types. The results suggest that personality characteristics may be conveyed through the human voice, although the extent to which these effects are due to physiological differences in the organs associated with speech or to a general Pygmalion effect is yet unknown. PMID:22439014
Multipath interference test method for distributed amplifiers
NASA Astrophysics Data System (ADS)
Okada, Takahiro; Aida, Kazuo
2005-12-01
A method for testing distributed amplifiers is presented; the multipath interference (MPI) is detected as a beat spectrum between the multipath signal and the direct signal using a binary frequency shifted keying (FSK) test signal. The lightwave source is composed of a DFB-LD that is directly modulated by a pulse stream passing through an equalizer, and emits the FSK signal of the frequency deviation of about 430MHz at repetition rate of 80-100 kHz. The receiver consists of a photo-diode and an electrical spectrum analyzer (ESA). The base-band power spectrum peak appeared at the frequency of the FSK frequency deviation can be converted to amount of MPI using a calibration chart. The test method has improved the minimum detectable MPI as low as -70 dB, compared to that of -50 dB of the conventional test method. The detailed design and performance of the proposed method are discussed, including the MPI simulator for calibration procedure, computer simulations for evaluating the error caused by the FSK repetition rate and the fiber length under test and experiments on singlemode fibers and distributed Raman amplifier.
Analysis and design of a class-D amplifier
NASA Technical Reports Server (NTRS)
1968-01-01
Analysis of a basic class-D amplifier circuit configuration shows its adaptability to a variety of applications. The feedback, input and output configuration and the frequency spectrum of the pulse-width-modulated signal are analyzed.
Linewidth and tuning characteristics of terahertz quantum cascade lasers.
Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A
2004-03-15
We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
Optical and microwave control of resonance fluorescence and squeezing spectra in a polar molecule
NASA Astrophysics Data System (ADS)
Antón, M. A.; Maede-Razavi, S.; Carreño, F.; Thanopulos, I.; Paspalakis, E.
2017-12-01
A two-level quantum emitter with broken inversion symmetry simultaneously driven by an optical field and a microwave field that couples to the permanent dipole's moment is presented. We focus to a situation where the angular frequency of the microwave field is chosen such that it closely matches the Rabi frequency of the optical field, the so-called Rabi resonance condition. Using a series of unitary transformations we obtain an effective Hamiltonian in the double-dressed basis which results in easily solvable Bloch equations which allow us to derive analytical expressions for the spectrum of the scattered photons. We analyze the steady-state population inversion of the system which shows a distinctive behavior at the Rabi resonance with regard to an ordinary two-level nonpolar system. We show that saturation can be produced even in the case that the optical field is far detuned from the transition frequency, and we demonstrate that this behavior can be controlled through the intensity and the angular frequency of the microwave field. The spectral properties of the scattered photons are analyzed and manifest the emergence of a series of Mollow-like triplets which may be spectrally broadened or narrowed for proper values of the amplitude and/or frequency of the low-frequency field. We also analyze the phase-dependent spectrum which reveals that a significant enhancement or suppression of the squeezing at certain sidebands can be produced. These quantum phenomena are illustrated in a recently synthesized molecular complex with high nonlinear optical response although they can also occur in other quantum systems with broken inversion symmetry.
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
New method of writing long-period fiber gratings using high-frequency CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Gao-Ran; Song, Ying; Zhang, Wen-Tao; Jiang, Yue; Li, Fang
2016-11-01
In the paper, the Long period fiber gratings (LPFG) were fabricated in a single-mode fiber using a high frequency CO2 laser system with the point-to-point technique. The experimental setup consists of a CO2 laser controlling system, a focusing system located at a motorized linear stage, a fiber alignment stage, and an optical spectrum analyzer to monitor the transmission spectrum of the LPFG. The period of the LPFG is precisely inscribed by periodically turning on/off the laser shutter while the motorized linear stage is driven to move at a constant speed. The efficiency of fiber writing process is improved.
Tafreshi, Azadeh Kamali; Top, Can Barış; Gençer, Nevzat Güneri
2017-06-21
Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a [Formula: see text] mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.
NASA Astrophysics Data System (ADS)
Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat
2017-06-01
Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Method and apparatus for assessing cardiovascular risk
NASA Technical Reports Server (NTRS)
Albrecht, Paul (Inventor); Bigger, J. Thomas (Inventor); Cohen, Richard J. (Inventor)
1998-01-01
The method for assessing risk of an adverse clinical event includes detecting a physiologic signal in the subject and determining from the physiologic signal a sequence of intervals corresponding to time intervals between heart beats. The long-time structure of fluctuations in the intervals over a time period of more than fifteen minutes is analyzed to assess risk of an adverse clinical event. In a preferred embodiment, the physiologic signal is an electrocardiogram and the time period is at least fifteen minutes. A preferred method for analyzing the long-time structure variability in the intervals includes computing the power spectrum and fitting the power spectrum to a power law dependence on frequency over a selected frequency range such as 10.sup.-4 to 10.sup.-2 Hz. Characteristics of the long-time structure fluctuations in the intervals is used to assess risk of an adverse clinical event.
Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.
Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga
2016-08-01
Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.
Airborne RF Measurement System and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.
High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs
NASA Astrophysics Data System (ADS)
Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.
2017-06-01
Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.
Crack detection using resonant ultrasound spectroscopy
Migliori, A.; Bell, T.M.; Rhodes, G.W.
1994-10-04
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.
Crack detection using resonant ultrasound spectroscopy
Migliori, Albert; Bell, Thomas M.; Rhodes, George W.
1994-01-01
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.
A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1976-01-01
An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.
0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1976-01-01
An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.
A novel method for detecting airway narrowing using breath sound spectrum analysis in children.
Tabata, Hideyuki; Hirayama, Mariko; Enseki, Mayumi; Nukaga, Mariko; Hirai, Kota; Furuya, Hiroyuki; Mochizuki, Hiroyuki
2016-01-01
Using a breath sound analyzer, we investigated new clinical parameters that are rarely affected by airflow in young children. A total of 65 children with asthma participated in this study (mean age 9.6 years). In Study 1, the intra- and inter-observer variability was measured. Common breath sound parameters, frequency at 99%, 75%, and 50% of the maximum frequency (F99, F75, and F50) and the highest frequency of inspiratory breath sounds were calculated. In addition, new parameters obtained using the ratio of sound spectra parameters, i.e., the spectrum curve indexes including the ratio of the third and fourth area to the total area and the ratio of power and frequency at F75 and F50, were calculated. In Study 2, 51 children underwent breath sound analyses. In Study 3, breath sounds were studied before and after methacholine inhalation. In Study 1, the data showed good inter- and intra-observer reliability. In Study 2, there were significant relationships between the airflow rate, age, height, and spirometric and common breath sound parameters. However, there were no significant relationships between the airflow rate and the spectrum curve indexes. Moreover, the spectrum curve indexes showed no relationships with age, height, or spirometric parameters. In Study 3, all parameters significantly changed after methacholine inhalation. Some spectrum curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully indicate airway narrowing. These parameters may play a role in the assessment of bronchoconstriction in children. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha
2007-04-01
We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Spectral analysis of highly aliased sea-level signals
NASA Astrophysics Data System (ADS)
Ray, Richard D.
1998-10-01
Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.
Magnetic Search Coil (MSC) of Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite
NASA Astrophysics Data System (ADS)
Ozaki, Mitsunori; Yagitani, Satoshi; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Sasaki, Takashi; Yumoto, Takahiro
2018-05-01
This paper presents detailed performance values of the Magnetic Search Coil (MSC) that is part of the Plasma Wave Experiment on board the Arase (ERG) satellite. The MSC consists of a three-axis search coil magnetometer with a 200-mm-long magnetic core. The MSC plays a central role in the magnetic field observations, particularly for whistler mode chorus and hiss waves in a few kHz frequency range, which may cause local acceleration and/or rapid loss of radiation belt electrons. Accordingly, the MSC was carefully designed and developed to operate well in harsh radiation environments. To ascertain the wave-normal vectors, polarizations, and refractive indices of the plasma waves in a wide frequency band, the output signals detected by the MSC are fed into the two different wave receivers: one is the WaveForm Capture/Onboard Frequency Analyzer for waveform and spectrum observations in the frequency range from a few Hz up to 20 kHz, and the other is the High Frequency Analyzer for spectrum observations in the frequency range from 10 to 100 kHz. The noise equivalent magnetic induction of the MSC is 20 {fT/Hz}^{1/2} at a frequency of 2 kHz, and the null depth of directionality is - 40 dB, which is equivalent to an angular error less than 1°. The MSC on board the Arase satellite is the first experiment using a current-sensitive preamplifier for probing the plasma waves in the radiation belts.[Figure not available: see fulltext.
Demodulation processes in auditory perception
NASA Astrophysics Data System (ADS)
Feth, Lawrence L.
1994-08-01
The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.
Impact induced response spectrum for the safety evaluation of the high flux isotope reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.J.
1997-05-01
The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less
NASA Astrophysics Data System (ADS)
Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.
2015-08-01
In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime. It is noted that the profile and dynamics of the ELF perturbation frequency spectrum conform to the assumption of their connection with quasistatic small-scale electron-density inhomogeneities occurring in the heated region and having lifetimes of a few seconds or more. The possible mechanisms of the ELF/VLF perturbation formation in the ionospheric plasma above the high-latitude HAARP facility at the DEMETER flyby altitudes are discussed.
Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.
2014-01-01
A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.
Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.
2014-01-01
A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.
[Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].
Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin
2008-02-01
To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
Methodologies for Analyzing Remotely Piloted Aircraft in Future Roles and Missions
2012-01-01
flight paths, and other mission tasks. Geolocating targets based on signals intelligence (SIGINT) collections can be used as a means of cuing... properties of the target (emitter) and the sensor (receiver)—in this case, frequency and power—to deter- mine the likelihood of detection using standard...dB. Signals may use communications protocols to divide the spectrum by frequency or time; this may be used to prevent interference. Receiver
NASA Technical Reports Server (NTRS)
1975-01-01
Signal processing equipment specifications, operating and test procedures, and systems design and engineering are described. Five subdivisions of the overall circuitry are treated: (1) the spectrum analyzer; (2) the spectrum integrator; (3) the velocity discriminator; (4) the display interface; and (5) the formatter. They function in series: (1) first in analog form to provide frequency resolution, (2) then in digital form to achieve signal to noise improvement (video integration) and frequency discrimination, and (3) finally in analog form again for the purpose of real-time display of the significant velocity data. The formatter collects binary data from various points in the processor and provides a serial output for bi-phase recording. Block diagrams are used to illustrate the system.
Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions
NASA Astrophysics Data System (ADS)
Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.
2016-10-01
The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (<0.1 cm-1) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.
A detector for high frequency modulation in auroral particle fluxes
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.
1974-01-01
A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.
Spectrum Situational Awareness Capability: The Military Need and Potential Implementation Issues
2006-10-01
Management Sensor Systems Frequency Management EW Systems Frequency Management Allied Battlespace Spectrum Management Restricted Frequency List Frequency...Management Restricted Frequency List Frequency Allocation Table Civil Frequency Use Data Inputs Negotiation and allocation process © Dstl 2006 26th...Management Restricted Frequency List Data Inputs Negotiation and allocation process Frequency Allocation Table SSA ES INT COP etc WWW Spectrum
Delay Tracking of Spread-Spectrum Signals for Indoor Optical Ranging
Salido-Monzú, David; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José Luis; Martos-Naya, Eduardo; Wieser, Andreas
2014-01-01
Delay tracking of spread-spectrum signals is widely used for ranging in radio frequency based navigation. Its use in non-coherent optical ranging, however, has not been extensively studied since optical channels are less subject to narrowband interference situations where these techniques become more useful. In this work, an early-late delay-locked loop adapted to indoor optical ranging is presented and analyzed. The specific constraints of free-space infrared channels in this context substantially differ from those typically considered in radio frequency applications. The tracking stage is part of an infrared differential range measuring system with application to mobile target indoor localization. Spread-spectrum signals are used in this context to provide accurate ranging while reducing the effect of multipath interferences. The performance of the stage regarding noise and dynamic errors is analyzed and validated, providing expressions that allow an adequate selection of the design parameters depending on the expected input signal characteristics. The behavior of the stage in a general multipath scenario is also addressed to estimate the multipath error bounds. The results, evaluated under realistic conditions corresponding to an 870 nm link with 25 MHz chip-rate, built with low-cost up-to-date devices, show that an overall error below 6% of a chip time can be achieved. PMID:25490585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Linda M.; Omitaomu, Olufemi A.; Parish, Esther S.
2016-09-01
Modeled daily precipitation values are used to determine changes in percentile rainfall event depths, for planning and mitigation of stormwater runoff, over past (1980-2005) and future (2025-2050) periods for Knoxville, Tennessee and the surrounding area.
Soul and Musical Theater: A Comparison of Two Vocal Styles.
Hallqvist, Hanna; Lã, Filipa M B; Sundberg, Johan
2017-03-01
The phonatory and resonatory characteristics of nonclassical styles of singing have been rarely analyzed in voice research. Six professional singers volunteered to sing excerpts from two songs pertaining to the musical theater and to the soul styles of singing. Voice source parameters and formant frequencies were analyzed by inverse filtering tones, sung at the same fundamental frequencies in both excerpts. As compared with musical theater, the soul style was characterized by significantly higher subglottal pressure and maximum flow declination rate. Yet sound pressure level was lower, suggesting higher glottal resistance. The differences would be the effects of firmer glottal adduction and a greater frequency separation between the first formant and its closest spectrum partial in soul than in musical theater. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P W
1989-06-01
As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.
Device for recording the 20 Hz - 200 KHz sound frequency spectrum using teletransmission
NASA Technical Reports Server (NTRS)
Baciu, I.
1974-01-01
The device described consists of two distinct parts: (1) The sound pickup system consisting of the wide-frequency band condenser microphone which contains in the same assembly the frequency-modulated oscillator and the output stage. Being transistorized and small, this system can be easily moved, so that sounds can be picked up even in places that are difficult to reach with larger devices. (2) The receiving and recording part is separate and can be at a great distance from the sound pickup system. This part contains a 72 MHz input stage, a frequency changer that gives an intermediate frequency of 30 MHz and a multichannel analyzer coupled to an oscilloscope and a recorder.
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
47 CFR 2.1057 - Frequency spectrum to be investigated.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequency spectrum to be investigated. 2.1057... Frequency spectrum to be investigated. (a) In all of the measurements set forth in §§ 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without...
Enseki, Mayumi; Nukaga, Mariko; Tabata, Hideyuki; Hirai, Kota; Matsuda, Shinichi; Mochizuki, Hiroyuki
2017-05-01
Using a breath sound analyzer, we investigated clinical parameters for detecting bronchial reversibility in infants. A total of 59 infants (4-39 months, mean age 7.8 months) were included. In Study 1, the intra- and inter-observer variability was measured in 23 of 59 infants. Breath sound parameters, the frequency at 99% of the maximum frequency (F 99 ), frequency at 25%, 50%, and 75% of the power spectrum (Q 25 , Q 50 , and Q 75 ), and highest frequency of inspiratory breath sounds (HFI), and parameters obtained using the ratio of parameters, i.e. spectrum curve indices, the ratio of the third and fourth area to total area (A 3 /A T and B 4 /A T , respectively) and ratio of power and frequency at F 75 and F 50 (RPF 75 and RPF 50 ), were calculated. In Study 2, the relationship between parameters of breath sounds and age and stature were studied. In Study 3, breath sounds were studied before and after β 2 agonist inhalation. In Study 1, the data showed statistical intra- and inter-observer reliability in A 3 /A T (p=0.042 and 0.034, respectively) and RPF 50 (p=0.001 and 0.001, respectively). In Study 2, there were no significant relationships between age, height, weight, and BMI. In Study 3, A 3 /A T and RPF 50 significantly changed after β 2 agonist inhalation (p=0.001 and p<0.001, respectively). Breath sound analysis can be performed in infants, as in older children, and the spectrum curve indices are not significantly affected by age-related factors. These sound parameters may play a role in the assessment of bronchial reversibility in infants. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Yu, Chengzhu; Hansen, John H L
2017-03-01
Human physiology has evolved to accommodate environmental conditions, including temperature, pressure, and air chemistry unique to Earth. However, the environment in space varies significantly compared to that on Earth and, therefore, variability is expected in astronauts' speech production mechanism. In this study, the variations of astronaut voice characteristics during the NASA Apollo 11 mission are analyzed. Specifically, acoustical features such as fundamental frequency and phoneme formant structure that are closely related to the speech production system are studied. For a further understanding of astronauts' vocal tract spectrum variation in space, a maximum likelihood frequency warping based analysis is proposed to detect the vocal tract spectrum displacement during space conditions. The results from fundamental frequency, formant structure, as well as vocal spectrum displacement indicate that astronauts change their speech production mechanism when in space. Moreover, the experimental results for astronaut voice identification tasks indicate that current speaker recognition solutions are highly vulnerable to astronaut voice production variations in space conditions. Future recommendations from this study suggest that successful applications of speaker recognition during extended space missions require robust speaker modeling techniques that could effectively adapt to voice production variation caused by diverse space conditions.
Noise Properties of Rectifying Nanopore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlassiouk, Ivan V
2011-01-01
Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wallmore » dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.« less
Millimeter wave spectrum of nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim
2018-03-01
A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.
A new multifunction acousto-optic signal processor
NASA Technical Reports Server (NTRS)
Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.
1984-01-01
An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.
Apparatus and methods for continuous beam fourier transform mass spectrometry
McLuckey, Scott A.; Goeringer, Douglas E.
2002-01-01
A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.
Unruh, W.P.
1987-03-23
Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.
NASA Technical Reports Server (NTRS)
Moser, D. T.
1972-01-01
The power spectrum of phase modulation imposed upon satellite radio signals by the inhomogeneous F-region of the ionosphere (100 - 500 km) was studied. Tapes of the S-66 Beacon B Satellite recorded during the period 1964 - 1966 were processed to yield or record the frequency of modulation induced on the signals by ionospheric dispersion. This modulation is produced from the sweeping across the receiving station as the satellite transits of the two dimensional spatial phase pattern are produced on the ground. From this a power spectrum of structure sizes comprising the diffracting mechanism was determined using digital techniques. Fresnel oscillations were observed and analyzed along with some comments on the statistical stationarity of the shape of the power spectrum observed.
Study of dust in the vicinity of Dione using the Voyager 1 plasma wave instrument
NASA Technical Reports Server (NTRS)
Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.
1995-01-01
The flyby of Voyager 1 at Saturn yielded the detection of a large variety of plasma waves, for example, chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement in signal levels. Initially, it was thought that this enhancement was due to plasma waves, but more recently it was suggested that dust impacts might be at least partial contributors. In this report we present evidence that dust impacts are partly responsible for the low-frequency enhancement. A new method of analysis which relies mainly on the 16-channel spectrum analyzer has been used to derive the dust impact rate. The available wideband waveform observations (which have been used previously to study dust impacts) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and hence size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum and analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to a few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is of the order of 10(exp -3)/cu m. The optical depth of the region sampled by the spacecraft is approximately 10(exp -6). The particle population is centered at 2470 (+/- 150) km south of the equatorial plane and has a north-south FWHM (full-width, half-maximum) thickness of 4130 (+/- 450) km. The dust may be part of the E ring or a localized ringlet assoicated with Dione.
Low-frequency noise from large wind turbines.
Møller, Henrik; Pedersen, Christian Sejer
2011-06-01
As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America
Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2002-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.
A breath sound analysis in children with cough variant asthma.
Enseki, Mayumi; Nukaga, Mariko; Tadaki, Hiromi; Tabata, Hideyuki; Hirai, Kota; Kato, Masahiko; Mochizuki, Hiroyuki
2018-05-29
Cough variant asthma (CVA) is characterized by a chronic cough and bronchial hyperresponsiveness without confirmation of wheezing. Using a breath sound analyzer, we evaluate the characteristics of breath sound in children with CVA. Nine children with CVA (median age, 7.0 years) participated. The existence of breath sounds was confirmed by sound spectrogram. Breath sound parameters, the frequency limiting 50% and 99% of the power spectrum (F 50 and F 99 ), the roll-off from 600 to 1200 Hz (Slope) and spectrum curve indices, the ratio of the third and fourth area to the total area of the power spectrum (P 3 /P T and P 4 /P T ) and the ratio of power and frequency at 50% and 75% of the highest frequency of the power spectrum (RPF 75 and RPF 50 ) were calculated before and after β 2 agonist inhalation. A spirogram and/or forced oscillation technique were performed in all subjects. On a sound spectrogram, wheezing was confirmed in seven of nine patients. All wheezing on the image was polyphonic, and they almost disappeared after β 2 agonist inhalation. An analysis of the breath sound spectrum showed that P T , P 3 /P T , P 4 /P T , RPF 50 and RPF 75 were significantly increased after β 2 agonist inhalation. Children with CVA showed a high rate of inaudible wheezing that disappeared after β 2 agonist inhalation. Changes in the spectrum curve indices also indicated the bronchial reversibility. These results may suggest the characteristics of CVA in children. Copyright © 2018 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Maxey, L.C.; Simpson, M.L.
1995-01-17
A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.
de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie
2011-12-14
We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics
Maxey, Lonnie C.; Simpson, Marc L.
1995-01-01
A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.
Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes
NASA Astrophysics Data System (ADS)
Zhou, Yuzhe
2016-11-01
The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.
Laboratory measurements of the millimeter-wave spectra of calcium isocyanide
NASA Astrophysics Data System (ADS)
Steimle, Timothy C.; Saito, Shuji; Takano, Shuro
1993-06-01
The ground state of CaNC is presently characterized by mm-wave spectroscopy, using a standard Hamiltonian linear molecule model to analyze the spectrum. The resulting spectroscopic parameters were used to predict the transition frequencies and Einstein A-coefficients, which should make possible a quantitative astrophysical search for CaNC.
The Multisensory Sound Lab: Sounds You Can See and Feel.
ERIC Educational Resources Information Center
Lederman, Norman; Hendricks, Paula
1994-01-01
A multisensory sound lab has been developed at the Model Secondary School for the Deaf (District of Columbia). A special floor allows vibrations to be felt, and a spectrum analyzer displays frequencies and harmonics visually. The lab is used for science education, auditory training, speech therapy, music and dance instruction, and relaxation…
Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D
2018-02-22
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).
Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.
2018-01-01
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burmer, G.C.; Rabinovitch, P.S.; Loeb, L.A.
1991-06-01
Sporadic colon carcinomas, carcinomas arising in chronic ulcerative colitis, and pancreatic adenocarcinomas have been analyzed for the presence of c-Ki-ras mutations by a combination of histological enrichment, cell sorting, polymerase chain reaction, and direct sequencing. Although 60% (37/61) of sporadic colon carcinomas contained mutations in codon 12, only 1 of 17 specimens of dysplasia or carcinoma from ulcerative colitis patients contained c-Ki-ras mutations, despite a high frequency of aneuploid tumors. In contrast, a higher percentage (16/20 = 80%) of pancreatic adenocarcinomas contained mutations in c-Ki-ras 2, despite a lower frequency of DNA aneuploidy in these neoplasms. Moreover, the spectrum ofmore » mutations differed between sporadic colon carcinoma, where the predominant mutation was a G to A transition, and pancreatic carcinomas, which predominantly contained G to C or T transversions. These results suggest that the etiology of ras mutations is different in these three human neoplasms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, A. A., E-mail: frolov@ihed.ras.ru
2016-12-15
A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less
A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance
NASA Technical Reports Server (NTRS)
Steffes, Paul G.; DeBoer, David R.
1994-01-01
The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.
Characterization of bone microstructure using photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding
2015-03-01
Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.
Sensitivity of Hawking radiation to superluminal dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, C.; Garay, L. J.; Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid
2009-01-15
We analyze the Hawking radiation process due to collapsing configurations in the presence of superluminal modifications of the dispersion relation. With such superluminal dispersion relations, the horizon effectively becomes a frequency-dependent concept. In particular, at every moment of the collapse, there is a critical frequency above which no horizon is experienced. We show that, as a consequence, the late-time radiation suffers strong modifications, both quantitative and qualitative, compared to the standard Hawking picture. Concretely, we show that the radiation spectrum becomes dependent on the measuring time, on the surface gravities associated with different frequencies, and on the critical frequency. Evenmore » if the critical frequency is well above the Planck scale, important modifications still show up.« less
Seismology and geodesy of the sun: Low-frequency oscillations.
Dicke, R H
1981-04-01
The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu < 0.5 hr(-1). Nothing significant is found for frequencies nu > 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.
Study on time-frequency analysis method of very fast transient overvoltage
NASA Astrophysics Data System (ADS)
Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun
2018-04-01
The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.
Fast focus estimation using frequency analysis in digital holography.
Oh, Seungtaik; Hwang, Chi-Young; Jeong, Il Kwon; Lee, Sung-Keun; Park, Jae-Hyeung
2014-11-17
A novel fast frequency-based method to estimate the focus distance of digital hologram for a single object is proposed. The focus distance is computed by analyzing the distribution of intersections of smoothed-rays. The smoothed-rays are determined by the directions of energy flow which are computed from local spatial frequency spectrum based on the windowed Fourier transform. So our method uses only the intrinsic frequency information of the optical field on the hologram and therefore does not require any sequential numerical reconstructions and focus detection techniques of conventional photography, both of which are the essential parts in previous methods. To show the effectiveness of our method, numerical results and analysis are presented as well.
Full waveform inversion in the frequency domain using classified time-domain residual wavefields
NASA Astrophysics Data System (ADS)
Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan
2017-04-01
We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.
Method and apparatus for frequency spectrum analysis
NASA Technical Reports Server (NTRS)
Cole, Steven W. (Inventor)
1992-01-01
A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
Tailoring noise frequency spectrum to improve NIR determinations.
Xie, Shaofei; Xiang, Bingren; Yu, Liyan; Deng, Haishan
2009-12-15
Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.
Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong
2017-01-01
The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952
Hassan, Suha M; Harteveld, Cornelis L; Bakker, Egbert; Giordano, Piero C
2015-01-01
The objective of this study was to expand and study the molecular spectrum of β-thalassemia (β-thal) mutations in Oman by examining cases from seven different regions and comparing the prevalence with neighboring countries. A total of 446 cases of β hemoglobinopathies was obtained and analyzed to determine the frequency and distribution of the different β alleles. The molecular spectrum of β-thal in Oman revealed the presence of 32 mutations from different origins and 11 alleles are reported for the first time in the Omani population. The wide heterogeneous spectrum of β-thal mutations found can be associated with the history of trade and migration as well as the past domination from other countries. The presented data will facilitate the development of a comprehensive prevention strategy in Oman.
[Effects of noise and music on EEG power spectrum].
Yuan, Q; Liu, X H; Li, D C; Wang, H L; Liu, Y S
2000-12-01
Objective. To observe the effect of noise and music on EEG power spectrum. Method. 12 healthy male pilots aged 30 +/- 0.58 years served as the subjects. Dynamic EEG from 16 regions was recorded during quiet, under noise or when listening to music using Oxford MR95 Holter recorder. Changes of EEG power spectrum of delta, theta, alpha1, alpha2, beta1 and beta2, frequency components in 16 regions were analyzed. Result. The total alpha1 power was significantly decreased, while the total theta power was significantly increased when listening to music; It implies that the interhemispheric transmission of information in the frontotemporal areas might be involved. Conclusion. The changes of the EEG power spectrum were closely related to man's emotions; relaxation was associated with music; Individual difference exists in the influence of sound on EEG.
A general purpose wideband optical spatial frequency spectrum analyzer
NASA Technical Reports Server (NTRS)
Ballard, G. S.; Mellor, F. A.
1972-01-01
The light scattered at various angles by a transparent media is studied. An example of these applications is the optical Fourier spectrum measurement resulting from various spatial frequencies which were recorded on a photographic emulsion. A method for obtaining these measurements consists of illuminating the test object with parallel monochromatic light. A stationary lens, placed in the resulting wavefield at a distance of one focal length from the object, will focus parallel waves emanating from the test object at a point lying in the focal plane of the lens. A light detector with a small filtering aperture is then used to measure the intensity variation of the light in the focal or transform plane of the lens. Such measurements require the use of a lens which is highly corrected for all of the common aberrations except chromatic aberration.
How can epidemiological studies contribute to understanding autism spectrum disorders?
Honda, Hideo
2013-02-01
More and more studies on the frequency of autism spectrum disorders (ASD) have been published recently, most of which show the increase in prevalence data. In this review, the author pointed out factors and parameters to be considered in analyzing frequency data, i.e., the enlargement of the concept of autism, prevalence and incidence, accuracy and precision in the initial screening, and the effect of the "vaccine debate". The proportion of high-functioning ASD has been growing higher and higher due to better recognition in the last few years, and the apparent increase might still be the tip of an iceberg. Future epidemiological studies should include themes on diversity of the longitudinal course and re-conceptualization of ASD by dimensional diagnosis. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
An illustrative analysis of technological alternatives for satellite communications
NASA Technical Reports Server (NTRS)
Metcalfe, M. R.; Cazalet, E. G.; North, D. W.
1979-01-01
The demand for satellite communications services in the domestic market is discussed. Two approaches to increasing system capacity are the expansion of service into frequencies presently allocated but not used for satellite communications, and the development of technologies that provide a greater level of service within the currently used frequency bands. The development of economic models and analytic techniques for evaluating capacity expansion alternatives such as these are presented. The satellite orbit spectrum problem, and also outlines of some suitable analytic approaches are examined. Illustrative analysis of domestic communications satellite technology options for providing increased levels of service are also examined. The analysis illustrates the use of probabilities and decision trees in analyzing alternatives, and provides insight into the important aspects of the orbit spectrum problem that would warrant inclusion in a larger scale analysis.
Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong
2016-12-01
In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Effect of water depth on wind-wave frequency spectrum I. Spectral form
NASA Astrophysics Data System (ADS)
Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo
1996-06-01
Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
Simulation of a 5MW wind turbine in an atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Meister, Konrad; Lutz, Thorsten; Krämer, Ewald
2014-12-01
This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown.
The ISEE-C plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.
1978-01-01
The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.
Infrared spectra of molecules and materials of astrophysical interest
NASA Technical Reports Server (NTRS)
Durig, J. R.
1972-01-01
Vibrational spectra were studied from 400 to 33/cm for molecules which may be present in the atmosphere of Jovian planets. The microwave spectrum of cis glyoxal was studied. Sources of color variation in the Jovian atmosphere were analyzed in relation to molecular crystals. The low frequency modes of acetaldehyde and acetaldehyde-d sub 4 are discussed.
NASA Astrophysics Data System (ADS)
Kiuchi, R.; Mori, J. J.
2015-12-01
As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.
Quantum synchronization of a driven self-sustained oscillator.
Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph
2014-03-07
Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.
Electromagnetic fields from mobile phone base station - variability analysis.
Bienkowski, Pawel; Zubrzak, Bartlomiej
2015-09-01
The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.
NASA Astrophysics Data System (ADS)
Blázquez-Salcedo, Jose Luis; Eickhoff, Kevin
2018-05-01
We study axial quasinormal modes of static neutron stars in the nonminimal derivative coupling sector of Horndeski theory. We focus on the fundamental curvature mode, which we analyze for 10 different equations of state with different matter content. A comparison with the results obtained in pure general relativity reveals that, apart from modifying the spectrum of the frequencies and the damping times of the stars, this theory modifies several universal relations between the modes and physical parameters of the stars that are otherwise matter independent.
NASA Astrophysics Data System (ADS)
Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi
2018-07-01
We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.
[Aging explosive detection using terahertz time-domain spectroscopy].
Meng, Kun; Li, Ze-ren; Liu, Qiao
2011-05-01
Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
Unimodular sequence design under frequency hopping communication compatibility requirements
NASA Astrophysics Data System (ADS)
Ge, Peng; Cui, Guolong; Kong, Lingjiang; Yang, Jianyu
2016-12-01
The integrated design for both radar and anonymous communication has drawn more attention recently since wireless communication system appeals to enhance security and reliability. Given the frequency hopping (FH) communication system, an effective way to realize integrated design is to meet the spectrum compatibility between these two systems. The paper deals with a unimodular sequence design technique which considers optimizing both the spectrum compatibility and peak sidelobes levels (PSL) of auto-correlation function (ACF). The spectrum compatibility requirement realizes anonymous communication for the FH system and provides this system lower probability of intercept (LPI) since the spectrum of the FH system is hidden in that of the radar system. The proposed algorithm, named generalized fitting template (GFT) technique, converts the sequence optimization design problem to a iterative fitting process. In this process, the power spectrum density (PSD) and PSL behaviors of the generated sequences fit both PSD and PSL templates progressively. Two templates are established based on the spectrum compatibility requirement and the expected PSL. As noted, in order to ensure the communication security and reliability, spectrum compatibility requirement is given a higher priority to achieve in the GFT algorithm. This algorithm realizes this point by adjusting the weight adaptively between these two terms during the iteration process. The simulation results are analyzed in terms of bit error rate (BER), PSD, PSL, and signal-interference rate (SIR) for both the radar and FH systems. The performance of GFT is compared with SCAN, CAN, FRE, CYC, and MAT algorithms in the above aspects, which shows its good effectiveness.
Communication: Probing anomalous diffusion in frequency space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachura, Sławomir; Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette; Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecularmore » dynamics simulations of molecular diffusion in a lipid POPC bilayer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O.
2014-01-13
We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-lockingmore » holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karoff, C.; Campante, T. L.; Ballot, J.
2013-04-10
Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-modemore » oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.« less
[Design of flat field holographic concave grating for near-infrared spectrophotometer].
Xiang, Xian-Yi; Wen, Zhi-Yu
2008-07-01
Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.
Noise Properties of Rectifying Nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, M R; Sa, N; Davenport, M
2011-02-18
Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, includingmore » intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.« less
The Galileo plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.
1992-01-01
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.
Development of a system for measurement and analysis of tremor using a three-axis accelerometer.
Mamorita, N; Iizuka, T; Takeuchi, A; Shirataka, M; Ikeda, N
2009-01-01
The aim of the study was to develop a low-cost and compact system for analysis of tremor using a three-axis accelerometer (the Wii Remote (Nintendo)). To analyze tremor, we hypothesized that the influence of gravitational acceleration should be separated from that of movement. This hypothesis was tested experimentally and we also attempted to record and analyze tremor using our system in a clinical ward. A system for tremor measurement and analysis was developed using the three-axis accelerometer built into the Wii Remote. The frequency and amplitude of mechanical oscillation were calculated using methods for frequency analysis of the axis of largest variance and an estimation of tremor amplitude. The system consists of a program for measurement and analysis of Wii Remote acceleration (Tremor Analyzer), a Wii Remote, a Bluetooth USB adapter and a Web camera. The Tremor Analyzer has a GUI (graphical user interface) that is divided into five seg- ments. The sampling period of the analyzer is 30 msec. To confirm the hypothesis, mechanical oscillations were fed to the Wii Remote. The peak frequency of the power spectrum and the frequency of the oscillation generator were in good agreement, except at 1 Hz (0.01 G) and 2 Hz (0.02 G). With a change in the sum of squares of the three axes from 1.0 to 1.8 (G), the estimated and generated amplitude (0.3 cm) were in close agreement. This system using a Wii Remote is capable of analyzing frequency and estimated amplitude of tremor between 3 Hz and 15 Hz.
A Cognitive Agent for Spectrum Monitoring and Informed Spectrum Access
2017-06-01
electromagnetic environments (EMEs) to understand what spectrum bands are accessed, when those bands are accessed, and how much energy is...recall. The cognitive agent in this report uses the second approach. The knowledge domain of the cognitive agent is the electromagnetic spectrum. The...Knowledge DTV digital television EME electromagnetic environments FM frequency modulated RF radio frequency VHF very high frequency
My, T-H; Robin, O; Mhibik, O; Drag, C; Bretenaker, F
2009-03-30
The evolution of the spectrum of a singly resonant optical parametric oscillator based on an MgO-doped periodically poled stoichiometric lithium tantalate crystal is observed when the pump power is varied. The onset of cascade Raman lasing due to stimulated Raman scattering in the nonlinear crystal is analyzed. Spurious frequency doubling and sum-frequency generation phenomena are observed and understood. A strong reduction of the intracavity Raman scattering is obtained by a careful adjustment of the cavity losses.
Seismology and geodesy of the sun: low-frequency oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dicke, R.H.
1981-04-01
The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers ofmore » hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.« less
Detector power linearity requirements and verification techniques for TMI direct detection receivers
NASA Technical Reports Server (NTRS)
Reinhardt, Victor S. (Inventor); Shih, Yi-Chi (Inventor); Toth, Paul A. (Inventor); Reynolds, Samuel C. (Inventor)
1997-01-01
A system (36, 98) for determining the linearity of an RF detector (46, 106). A first technique involves combining two RF signals from two stable local oscillators (38, 40) to form a modulated RF signal having a beat frequency, and applying the modulated RF signal to a detector (46) being tested. The output of the detector (46) is applied to a low frequency spectrum analyzer (48) such that a relationship between the power levels of the first and second harmonics generated by the detector (46) of the beat frequency of the modulated RF signal are measured by the spectrum analyzer (48) to determine the linearity of the detector (46). In a second technique, an RF signal from a local oscillator (100) is applied to a detector (106) being tested through a first attenuator (102) and a second attenuator (104). The output voltage of the detector (106) is measured when the first attenuator (102) is set to a particular attenuation value and the second attenuator (104) is switched between first and second attenuation values. Further, the output voltage of the detector (106) is measured when the first attenuator (102) is set to another attenuation value, and the second attenuator (104) is again switched between the first and second attenuation values. A relationship between the voltage outputs determines the linearity of the detector (106).
A mechanism to explain the spectrum of Hessdalen Lights phenomenon
NASA Astrophysics Data System (ADS)
Paiva, G. S.; Taft, C. A.
2012-07-01
In this work, we present a model to explain the apparently contradictory spectrum observed in Hessdalen Lights (HL) phenomenon. According to our model, its nearly flat spectrum on the top with steep sides is due to the effect of optical thickness on the bremsstrahlung spectrum. At low frequencies self-absorption modifies the spectrum to follow the Rayleigh-Jeans part of the blackbody curve. This spectrum is typical of dense ionized gas. Additionally, spectrum produced in the thermal bremsstrahlung process is flat up to a cutoff frequency, ν cut, and falls off exponentially at higher frequencies. This sequence of events forms the typical spectrum of HL phenomenon when the atmosphere is clear, with no fog.
VizieR Online Data Catalog: Jekyll & Hyde galaxies ALMA cube & spectrum (Schreiber+, 2018)
NASA Astrophysics Data System (ADS)
Schreiber, C.; Labbe, I.; Glazebrook, K.; Bekiaris, G.; Papovich, C.; Costa, T.; Elbaz, D.; Kacprzak, G. G.; Nanayakkara, T.; Oesch, P.; Pannella, M.; Spitler, L.; Straatman, C.; Tran, K.-V.; Wang, T.
2017-11-01
These files consist of the full ALMA data cube for the galaxies Jekyll and Hyde, together with the extracted continuum image and the spectrum of Hyde. The data cube was produced by CASA (v4.7.0), the continuum image was constructed as the weighted average in line-free channels, and the spectrum was extracted at the peak flux position of Hyde. The data cube and spectrum files contain two extensions, one for the flux, and another for the uncertainty. This uncertainty was determined from the RMS of the cube data between 2 and 8" away from the center. All fluxes are in units of Jansky, and the spectral axis is given in observed frequency (GHz). The images were not CLEANed, therefore the dirty beam (which is also provided here) is the correct point-spread function to use when analyzing these images. (2 data files).
Interpreting Quasi-Thermal Effects in Ultrafast Spectroscopy of Hydrogen-Bonded Systems.
Stingel, Ashley M; Petersen, Poul B
2018-03-15
Vibrational excitation of molecules in the condensed phase relaxes through vibrational modes of decreasing energy to ultimately generate an equilibrium state in which the energy is distributed among low-frequency modes. In ultrafast vibrational spectroscopy, changes in the vibrational features of hydrogen-bonded NH and OH stretch modes are typically observed to persist long after these high-frequency vibrations have relaxed. Due to the resemblance to the spectral changes caused by heating the sample, these features are typically described as arising from a hot ground state. However, these spectral features appear on ultrafast time scales that are much too fast to result from a true thermal state, and significant differences between the thermal difference spectrum and the induced quasi-thermal changes in ultrafast spectroscopy are often observed. Here, we examine and directly compare the thermal and quasi-thermal responses of the hydrogen-bonded homodimer of 7-azaindole with temperature-dependent FTIR spectroscopy and ultrafast mid-IR continuum spectroscopy. We find that the thermal difference spectra contain contributions from both dissociation of the hydrogen bonds and from frequency shifts due to changes in the thermal population of low-frequency modes. The transient spectra in ultrafast vibrational spectroscopy are also found to contain two contributions: initial frequency shifts over 2.3 ± 0.11 ps associated with equilibration of the initial excitation, and frequency shifts associated with the excitation of several fingerprint modes, which decay over 21.8 ± 0.11 ps, giving rise to a quasi-thermal response caused by a distribution of fingerprint modes being excited within the sample ensemble. This resembles the thermal frequency shifts due to population changes of low-frequency modes, but not the overall thermal spectrum, which is dominated by features caused by dimer dissociation. These findings provide insight into the changes in the vibrational spectrum from different origins and are important for assigning, analyzing, and comparing features in thermal and ultrafast vibrational spectroscopy of hydrogen-bonded complexes.
Millimeter Wave Spectrum of Nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, V.
2016-06-01
A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.
FTIR Spectrum of the ν 4Band of DCOOD
NASA Astrophysics Data System (ADS)
Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.
1999-06-01
The FTIR spectrum of the ν4band of deuterated formic acid (DCOOD) has been measured with a resolution of 0.004 cm-1in the frequency range of 1120 to 1220 cm-1. A total of 1866 assigned transitions have been analyzed and fitted using a Watson'sA-reduced Hamiltonian in theIrrepresentation to derive rovibrational constants for the upper state (v4= 1) with a standard deviation of 0.00036 cm-1. In the course of the analysis, the constants for the ground state were improved by a simultaneous fit of microwave frequencies and combination differences from the infrared measurements. Due to the relatively unperturbed nature of the band, the constants can be used to accurately calculate the infrared line positions for the whole band. Although the band is a hybrid typeAandB, onlya-type transitions were strong enough to be observed. The band center is at 1170.79980 ± 0.00002 cm-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.
2012-12-29
In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less
Solid-state modeling of the terahertz spectrum of the high explosive HMX.
Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M
2006-02-09
The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
Short wind waves on the ocean: Wavenumber-frequency spectra
NASA Astrophysics Data System (ADS)
Plant, William J.
2015-03-01
Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.
The frequency spectrum crisis - Issues and answers
NASA Astrophysics Data System (ADS)
Armes, G. L.
The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.
Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki
2017-04-06
We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.
[The spectrum studies of structure characteristics in magma contact metamorphic coal].
Wu, Dun; Sun, Ruo-Yu; Liu, Gui-Jian; Yuan, Zi-Jiao
2013-10-01
The structural parameters evolution of coal due to the influence of intrusions of hot magma was investigated and analyzed. X-ray diffraction and laser confocal microscope Raman spectroscopy were used to test and analyze 4 coal samples undergoing varying contact-metamorphism by igneous magmas in borehole No. 13-4 of Zhuji coal mine, Huainan coalfield. The result showed that coal XRD spectrum showed higher background intensity, with the 26 degrees and 42 degrees nearby apparent graphite diffraction peak. Two significant vibration peaks of coal Raman spectra were observed in the 1 000-2 000 cm(-1) frequency range: broad "D" peak at 1 328-1 369 cm(-1) and sharp "G" peak at 1 564-1 599 cm(-1). With the influence of magma intrusion, the relationship between coal structural parameters and coal ranks was excellent.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.20 Definitions... spectrum frequencies or the reallocation of spectrum frequencies from Federal use to exclusive non-Federal...
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.20 Definitions... spectrum frequencies or the reallocation of spectrum frequencies from Federal use to exclusive non-Federal...
The Statistical Loop Analyzer (SLA)
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1985-01-01
The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.
Time Correlations and the Frequency Spectrum of Sound Radiated by Turbulent Flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye
1997-01-01
Theories of turbulent time correlations are applied to compute frequency spectra of sound radiated by isotropic turbulence and by turbulent shear flows. The hypothesis that Eulerian time correlations are dominated by the sweeping action of the most energetic scales implies that the frequency spectrum of the sound radiated by isotropic turbulence scales as omega(exp 4) for low frequencies and as omega(exp -3/4) for high frequencies. The sweeping hypothesis is applied to an approximate theory of jet noise. The high frequency noise again scales as omega(exp -3/4), but the low frequency spectrum scales as omega(exp 2). In comparison, a classical theory of jet noise based on dimensional analysis gives omega(exp -2) and omega(exp 2) scaling for these frequency ranges. It is shown that the omega(exp -2) scaling is obtained by simplifying the description of turbulent time correlations. An approximate theory of the effect of shear on turbulent time correlations is developed and applied to the frequency spectrum of sound radiated by shear turbulence. The predicted steepening of the shear dominated spectrum appears to be consistent with jet noise measurements.
NASA Astrophysics Data System (ADS)
Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo
2018-03-01
As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.
Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V
2016-10-28
Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02) THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.
Improving the signal analysis for in vivo photoacoustic flow cytometry
NASA Astrophysics Data System (ADS)
Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin
2015-03-01
At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.
Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator
Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca
2015-01-01
The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900
NASA Astrophysics Data System (ADS)
Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi
2002-12-01
We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.
NASA Technical Reports Server (NTRS)
Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.
1980-01-01
Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.
Detection and classification of concealed weapons using a magnetometer-based portal
NASA Astrophysics Data System (ADS)
Kotter, Dale K.; Roybal, Lyle G.; Polk, Robert E.
2002-08-01
A concealed weapons detection technology was developed through the support of the National Institute of Justice (NIJ) to provide a non intrusive means for rapid detection, location, and archiving of data (including visual) of potential suspects and weapon threats. This technology, developed by the Idaho National Engineering and Environmental Laboratory (INEEL), has been applied in a portal style weapons detection system using passive magnetic sensors as its basis. This paper will report on enhancements to the weapon detection system to enable weapon classification and to discriminate threats from non-threats. Advanced signal processing algorithms were used to analyze the magnetic spectrum generated when a person passes through a portal. These algorithms analyzed multiple variables including variance in the magnetic signature from random weapon placement and/or orientation. They perform pattern recognition and calculate the probability that the collected magnetic signature correlates to a known database of weapon versus non-weapon responses. Neural networks were used to further discriminate weapon type and identify controlled electronic items such as cell phones and pagers. False alarms were further reduced by analyzing the magnetic detector response by using a Joint Time Frequency Analysis digital signal processing technique. The frequency components and power spectrum for a given sensor response were derived. This unique fingerprint provided additional information to aid in signal analysis. This technology has the potential to produce major improvements in weapon detection and classification.
A Study of Saturn's E-Ring Particles Using the Voyager 1 Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.
1993-01-01
The flyby of Voyager 1 at Saturn resulted in the detection of a large variety of plasma waves, e.g., chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, at about 6.1 R(sub s), the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement. Initially it was suggested that plasma waves might be responsible for the spectral feature but more recently dust was suggested as at least a partial contributor to the enhancement. In this report we present evidence which supports the conclusion that dust contributes to the low-frequency enhancement. A new method has been used to derive the dust impact rate. The method relies mainly on the 16-channel spectrum analyzer data. The few wide band waveform observations available (which have been used to study dust impacts during the Voyager 2 ring plane crossing) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and, hence, the size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is on the order of 10(exp -3) m(exp 3). The optical depth of the region sampled by the spacecraft is 1.04 x 10(exp -6). The particle population is centered about 2500 km south of the equatorial plane and has a north-south thickness of about 4000 km. Possible sources of these particles are the moons Enceladus and Tethys whose orbits lie within the E-ring radial extent. These results are in reasonable agreement with photometric studies and numerical simulations.
Millimeter wave spectra of carbonyl cyanide
NASA Astrophysics Data System (ADS)
Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.
2016-07-01
Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).The full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A43
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
Analysis of dispersion relation in three-dimensional single gyroid
NASA Astrophysics Data System (ADS)
Jheng, Pei-Lun; Hung, Yu-Chueh
2016-03-01
Gyroid is a type of three-dimensional chiral structures and has been found in many insect species. Besides the photonic crystal properties exhibited by gyroid structures, the chirality and gyroid network morphology also provide unique opportunities for manipulating propagation of light. In this work, we present studies based on finite-difference time domain (FDTD) method for analyzing the dispersion relation characteristics of dielectric single gyroid (SG) metamaterials. The band structures, transmission spectrum, dispersion surfaces, equifrequency contours (EFCs) of SG metamaterials are examined. Some interesting wave guiding characteristics, such as negative refraction and collimation, are presented and discussed. We also show how these optical properties are predicted by analyzing the EFCs at different frequencies. These results are crucial for the design of functional devices at optical frequencies based on dielectric single gyroid metamaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Dian; Fu Panming; Wang Bingbing
2010-11-15
We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of a few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off-resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multiphoton transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand themore » sensitivity of the CEP effect to the laser's carrier frequency. Multilevel influence on the CEP effect is also discussed.« less
Detecting chaos in irregularly sampled time series.
Kulp, C W
2013-09-01
Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.
Joint Bayesian Component Separation and CMB Power Spectrum Estimation
NASA Technical Reports Server (NTRS)
Eriksen, H. K.; Jewell, J. B.; Dickinson, C.; Banday, A. J.; Gorski, K. M.; Lawrence, C. R.
2008-01-01
We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground- CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3 deg FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.
The Spectrum Orbit Utilization Program (SOUP) used for DBS plan analysis at RARC '83
NASA Technical Reports Server (NTRS)
Davidson, J.; Ottey, H. R.; Sawitz, P.; Zusman, F. S.
1985-01-01
This paper describes the history, functions, and usage of the program that was used to analyze the plans for direct broadcast satellite service developed in the course of the 1983 Regional Administrative Radio Conference for ITU Region 2. Given the requirements for direct broadcast service by the administrations, the conference delegates (1) developed the appropriate technical parameters; (2) made tentative assignments to the orbit locations, frequencies, and polarizations of space stations, (3) calculated the interferences and margins of such assignments through the use of the Spectrum Orbit Utilization Program (SOUP); and (4) iterated this procedure until an acceptable plan was found.
Determining Aliasing in Isolated Signal Conditioning Modules
NASA Technical Reports Server (NTRS)
2009-01-01
The basic concept of aliasing is this: Converting analog data into digital data requires sampling the signal at a specific rate, known as the sampling frequency. The result of this conversion process is a new function, which is a sequence of digital samples. This new function has a frequency spectrum, which contains all the frequency components of the original signal. The Fourier transform mathematics of this process show that the frequency spectrum of the sequence of digital samples consists of the original signal s frequency spectrum plus the spectrum shifted by all the harmonics of the sampling frequency. If the original analog signal is sampled in the conversion process at a minimum of twice the highest frequency component contained in the analog signal, and if the reconstruction process is limited to the highest frequency of the original signal, then the reconstructed signal accurately duplicates the original analog signal. It is this process that can give birth to aliasing.
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J
2009-01-01
High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.
Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.
2009-01-01
High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747
Improved Measurement of Dispersion in an Optical Fiber
NASA Technical Reports Server (NTRS)
Huang, Shouhua; Le, Thanh; Maleki, Lute
2004-01-01
An improved method of measuring chromatic dispersion in an optical fiber or other device affords a lower (relative to prior such methods) limit of measurable dispersion. This method is a modified version of the amplitude-modulation (AM) method, which is one of the prior methods. In comparison with the other prior methods, the AM method is less complex. However, the AM method is limited to dispersion levels . 160 ps/nm and cannot be used to measure the symbol of the dispersion. In contrast, the present modified version of the AM method can be used to measure the symbol of the symbol of the dispersion and affords a measurement range from about 2 ps/nm to several thousand ps/nm with a resolution of 0.27 ps/nm or finer. The figure schematically depicts the measurement apparatus. The source of light for the measurement is a laser, the wavelength of which is monitored by an optical spectrum analyzer. A light-component analyzer amplitude-modulates the light with a scanning radio-frequency signal. The modulated light is passed through a buffer (described below) and through the device under test (e.g., an optical fiber, the dispersion of which one seeks to measure), then back to the light-component analyzer for spectrum analysis. Dispersion in the device under test gives rise to phase shifts among the carrier and the upper and lower sideband components of the modulated signal. These phase shifts affect the modulation-frequency component of the output of a photodetector exposed to the signal that emerges from the device under test. One of the effects is that this component goes to zero periodically as the modulation frequency is varied.
Probing large-scale magnetism with the cosmic microwave background
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2018-04-01
Prior to photon decoupling magnetic random fields of comoving intensity in the nano-Gauss range distort the temperature and the polarization anisotropies of the microwave background, potentially induce a peculiar B-mode power spectrum and may even generate a frequency-dependent circularly polarized V-mode. We critically analyze the theoretical foundations and the recent achievements of an interesting trialogue involving plasma physics, general relativity and astrophysics.
NASA SETI microwave observing project: Sky Survey element
NASA Technical Reports Server (NTRS)
Klein, M. J.
1991-01-01
The SETI Sky Survey Observing Program is one of two complimentary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the sky survey is to search the entire sky over the frequency range of 1.0 to 10.0 GHz for evidence of narrow band signals of extraterrestrial intelligent origin. Frequency resolutions of 30 Hz or narrower will be used across the entire band. Spectrum analyzers with upwards of ten million channels are required to keep the survey time approximately 6 years. Data rates in excess of 10 megabits per second will be generated in the data taking process. Sophisticated data processing techniques will be required to determine the ever changing receiver baselines, and to detect and archive potential SETI signals. Existing radio telescopes, including several of NASA's Deep Space Network (DSN) 34 meter antennas located at Goldstone, CA and Tidbinbilla, Australia will be used for the observations. The JPL has the primary responsibility to develop and carry out the sky survey. In order to lay the foundation for the full scale SETI Sky Survey, a prototype system is being developed at the JPL. The system will be installed at the new 34-m high efficiency antenna at the Deep Space Station (DSS) 13 research and development station, Goldstone, CA, where it will be used to initiate the observational phase of the NASA SETI Sky Survey. It is anticipated that the early observations will be useful to test signal detection algorithms, scan strategies, and radio frequency interference rejection schemes. The SETI specific elements of the prototype system are: (1) the Wide Band Spectrum Analyzer (WBSA); a 2-million channel fast Fourier transformation (FFT) spectrum analyzer which covers an instantaneous bandpass of 40 MHz; (2) the signal detection processor; and (3) the SETI Sky Survey Manager, a network-based C-language environment that provides observatory control, performs data acquisition and analysis algorithms. A high level description of the prototype hardware and software systems will be given and the current status of the system development will be reported.
Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2012-01-01
We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.
NASA Astrophysics Data System (ADS)
Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-12-01
Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.
Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2014-10-14
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.
Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2014-05-20
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.
High resolution SETI: Experiences and prospects
NASA Astrophysics Data System (ADS)
Horowitz, Paul; Clubok, Ken
Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.
Budget Allocation in a Competitive Communication Spectrum Economy
NASA Astrophysics Data System (ADS)
Lin, Ming-Hua; Tsai, Jung-Fa; Ye, Yinyu
2009-12-01
This study discusses how to adjust "monetary budget" to meet each user's physical power demand, or balance all individual utilities in a competitive "spectrum market" of a communication system. In the market, multiple users share a common frequency or tone band and each of them uses the budget to purchase its own transmit power spectra (taking others as given) in maximizing its Shannon utility or pay-off function that includes the effect of interferences. A market equilibrium is a budget allocation, price spectrum, and tone power distribution that independently and simultaneously maximizes each user's utility. The equilibrium conditions of the market are formulated and analyzed, and the existence of an equilibrium is proved. Computational results and comparisons between the competitive equilibrium and Nash equilibrium solutions are also presented, which show that the competitive market equilibrium solution often provides more efficient power distribution.
FBMC receiver for multi-user asynchronous transmission on fragmented spectrum
NASA Astrophysics Data System (ADS)
Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri
2014-12-01
Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
A New Proof of the Expected Frequency Spectrum under the Standard Neutral Model.
Hudson, Richard R
2015-01-01
The sample frequency spectrum is an informative and frequently employed approach for summarizing DNA variation data. Under the standard neutral model the expectation of the sample frequency spectrum has been derived by at least two distinct approaches. One relies on using results from diffusion approximations to the Wright-Fisher Model. The other is based on Pólya urn models that correspond to the standard coalescent model. A new proof of the expected frequency spectrum is presented here. It is a proof by induction and does not require diffusion results and does not require the somewhat complex sums and combinatorics of the derivations based on urn models.
Achieving spectrum conservation for the minimum-span and minimum-order frequency assignment problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1992-01-01
Effective and efficient solutions of frequency assignment problems assumes increasing importance as the radiofrequency spectrum experiences ever increasing utilization by diverse communications services, requiring that the most efficient use of this resource be achieved. The research presented explores a general approach to the frequency assignment problem, in which such problems are categorized by the appropriate spectrum conserving objective function, and are each treated as an N-job, M-machine scheduling problem appropriate for the objective. Results obtained and presented illustrate that such an approach presents an effective means of achieving spectrum conserving frequency assignments for communications systems in a variety of environments.
Pop-Jordanova, Nada; Zorcec, Tatjana; Demerdzieva, Aneta; Gucev, Zoran
2010-09-30
Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests.The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes.Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal.Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higherQEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities.Brain rate measured in CZ shows slow brain activity related to under arousal.Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements.
Salomons, Erik M; Janssen, Sabine A
2011-06-01
In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.
[Continuum based fast Fourier transform processing of infrared spectrum].
Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai
2009-12-01
To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2004-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome.
Kätsyri, Jari; Saalasti, Satu; Tiippana, Kaisa; von Wendt, Lennart; Sams, Mikko
2008-01-01
The theory of 'weak central coherence' [Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25] implies that persons with autism spectrum disorders (ASDs) have a perceptual bias for local but not for global stimulus features. The recognition of emotional facial expressions representing various different levels of detail has not been studied previously in ASDs. We analyzed the recognition of four basic emotional facial expressions (anger, disgust, fear and happiness) from low-spatial frequencies (overall global shapes without local features) in adults with an ASD. A group of 20 participants with Asperger syndrome (AS) was compared to a group of non-autistic age- and sex-matched controls. Emotion recognition was tested from static and dynamic facial expressions whose spatial frequency contents had been manipulated by low-pass filtering at two levels. The two groups recognized emotions similarly from non-filtered faces and from dynamic vs. static facial expressions. In contrast, the participants with AS were less accurate than controls in recognizing facial emotions from very low-spatial frequencies. The results suggest intact recognition of basic facial emotions and dynamic facial information, but impaired visual processing of global features in ASDs.
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Bond, Emilia
2005-09-01
Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2002-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
Radio frequency spectrum management
NASA Astrophysics Data System (ADS)
Sujdak, E. J., Jr.
1980-03-01
This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.
Elastomer degradation sensor using a piezoelectric material
Olness, Dolores U.; Hirschfeld, deceased, Tomas B.
1990-01-01
A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.
Ramanujan sums for signal processing of low-frequency noise.
Planat, Michel; Rosu, Haret; Perrine, Serge
2002-11-01
An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums c(q)(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.
Ramanujan sums for signal processing of low-frequency noise
NASA Astrophysics Data System (ADS)
Planat, Michel; Rosu, Haret; Perrine, Serge
2002-11-01
An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums cq(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.
MSL-2 accelerometer data results
NASA Technical Reports Server (NTRS)
Henderson, Fred
1990-01-01
The Materials Science Laboratory-2 (MSL-2) mission flew the Marshall Space Flight Center-developed Linear Triaxial Accelerometer (LTA) on the Space Transportation System (STS) 61-C Shuttle mission launched January 21, 1986. Flight data were analyzed to verify the quietness of the MSL carrier and to characterize the acceleration environment for future MSL users. The MSL was found to introduce no significant experiment acceleration; and the effects of crew treadmill exercise, Orbiter vernier engine firings, and other routine flight occurrences were established. The LTA was found to be well suited for measuring nominal to very quiet STS acceleration levels at frequencies below 50 Hz. Special processing was used to examine the low-frequency spectrum and to establish the effective rms amplitude associated with dominant frequencies.
2018-03-01
ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain
Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited
NASA Astrophysics Data System (ADS)
Ni, Yicun; Skinner, J. L.
2016-07-01
Before 2015, heterodyne-detected sum-frequency-generation experiments on the air-water interface showed the presence of a positive feature at low frequency in the imaginary part of the susceptibility. However, three very recent experiments indicate that this positive feature is in fact absent. Armed with a better understanding, developed by others, of how to calculate sum-frequency spectra, we recalculate the spectrum and find good agreement with these new experiments. In addition, we provide a revised interpretation of the spectrum.
NASA Astrophysics Data System (ADS)
Sherin Percy Prema Leela, J.; Hemamalini, R.; Muthu, S.; Al-Saadi, Abdulaziz A.
2015-07-01
Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm-1 and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.
An Effective Method for Substance Detection Using the Broad Spectrum THz Signal: A “Terahertz Nose”
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.
2015-01-01
We propose an effective method for the detection and identification of dangerous substances by using the broadband THz pulse. This pulse excites, for example, many vibrational or rotational energy levels of molecules simultaneously. By analyzing the time-dependent spectrum of the THz pulse transmitted through or reflected from a substance, we follow the average response spectrum dynamics. Comparing the absorption and emission spectrum dynamics of a substance under analysis with the corresponding data for a standard substance, one can detect and identify the substance under real conditions taking into account the influence of packing material, water vapor and substance surface. For quality assessment of the standard substance detection in the signal under analysis, we propose time-dependent integral correlation criteria. Restrictions of usually used detection and identification methods, based on a comparison between the absorption frequencies of a substance under analysis and a standard substance, are demonstrated using a physical experiment with paper napkins. PMID:26020281
Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.
Analyzing mobile WiMAX base station deployment under different frequency planning strategies
NASA Astrophysics Data System (ADS)
Salman, M. K.; Ahmad, R. B.; Ali, Ziad G.; Aldhaibani, Jaafar A.; Fayadh, Rashid A.
2015-05-01
The frequency spectrum is a precious resource and scarce in the communication markets. Therefore, different techniques are adopted to utilize the available spectrum in deploying WiMAX base stations (BS) in cellular networks. In this paper several types of frequency planning techniques are illustrated, and a comprehensive comparative study between conventional frequency reuse of 1 (FR of 1) and fractional frequency reuse (FFR) is presented. These techniques are widely used in network deployment, because they employ universal frequency (using all the available bandwidth) in their base station installation/configuration within network system. This paper presents a network model of 19 base stations in order to be employed in the comparison of the aforesaid frequency planning techniques. Users are randomly distributed within base stations, users' resource mapping and their burst profile selection are based on the measured signal to interference plus-noise ratio (SINR). Simulation results reveal that the FFR has advantages over the conventional FR of 1 in various metrics. 98 % of downlink resources (slots) are exploited when FFR is applied, whilst it is 81 % at FR of 1. Data rate of FFR has been increased to 10.6 Mbps, while it is 7.98 Mbps at FR of 1. The spectral efficiency is better enhanced (1.072 bps/Hz) at FR of 1 than FFR (0.808 bps/Hz), since FR of 1 exploits all the Bandwidth. The subcarrier efficiency shows how many data bits that can be carried by subcarriers under different frequency planning techniques, the system can carry more data bits under FFR (2.40 bit/subcarrier) than FR of 1 (1.998 bit/subcarrier). This study confirms that FFR can perform better than conventional frequency planning (FR of 1) which made it a strong candidate for WiMAX BS deployment in cellular networks.
NASA Astrophysics Data System (ADS)
Di Matteo, Simone; Villante, Umberto
2016-04-01
The possible occurrence of oscillations at discrete frequencies in the solar wind and their possible correspondence with magnetospheric field oscillations represent an interesting aspect of the solar wind/magnetopheric research. We analyze a large set of high velocity streams following interplanetary shocks in order to ascertain the possible occurrence of preferential sets of discrete frequencies in the oscillations of the solar wind pressure in such structures. We evaluate, for each event, the power spectrum of the dynamic pressure by means of two methods (Welch and multitaper windowing) and accept the common spectral peaks that also pass a harmonic F-test at the 95% confidence level. We compare these frequencies with those detected at geosynchronous orbit in the magnetospheric field components soon after the manifestation of the corresponding Sudden Impulses.
On the use of The Bio-Impedance technique for Body Composition Measurements
NASA Astrophysics Data System (ADS)
Huerta-Franco, R.; Vargas-Luna, M.; González-Solís, J. L.; Gutiérrez-Juárez, G.
2003-09-01
Reviewing the methods and physical principles used in body composition measurements (BCM), it is evident that more accurate, reliable, and easily handled methods are required. The use of bio-impedance analysis (BIA) has been very useful in BCM. This technique, in the single frequency mode, has some commercial versions to perform BCM. However these apparatus have significant variability in the BCM values. The multi-frequency option of the bio-impedance technique has still a lot of challenges to overcome. We studied the variability of the body impedance spectrum (from 1 Hz to 1 MHz) in a group of subjects compared to the values obtained from commercial apparatus. We compared different anatomical body regions, some of them with less subcutaneous body fat (frontal, anterior tibial, knee, and frontal regions); others with more subcutaneous body fat (pectoral, abdominal, and internal calf regions). In order to model the bio-impedance spectrum, we analyzed layered samples with different thickness and material composition.
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.
Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng
2018-02-26
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.
Methods and apparatuses using filter banks for multi-carrier spread spectrum signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2017-01-31
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less
Methods and apparatuses using filter banks for multi-carrier spread spectrum signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.
2016-06-14
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
47 CFR 90.663 - MTA-based SMR system operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... stations using any frequency identified in their spectrum block anywhere within their authorized MTA... rules and international agreements that restrict use of frequencies identified in their spectrum block... for a previously authorized co-channel station within the MTA licensee's authorized spectrum block is...
Phonons and their dispersion in model ferroelastics Hg2Hal2
NASA Astrophysics Data System (ADS)
Roginskii, E. M.; Kvasov, A. A.; Markov, Yu. F.; Smirnov, M. B.
2012-05-01
Dispersion relations of the acoustic and optical phonon frequencies have been calculated and plotted, and the density of states of the phonon spectrum of Hg2Cl2 and Hg2Br2 crystals has been derived. The effect of hydrostatic pressure on the frequencies of acoustic and optical phonons and their dispersion has been theoretically analyzed. It has been found that an increase in the pressure leads to a strong softening of the slowest acoustic TA branch (the soft mode) at the X point of the Brillouin zone boundary, which is consistent with the phenomenological Landau theory and correlates with experiment.
Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.
Gravitational waves from relativistic neutron-star mergers with microphysical equations of state.
Oechslin, R; Janka, H-T
2007-09-21
The gravitational wave (GW) emission from a set of relativistic neutron-star (NS) merger simulations is analyzed and characteristic signal features are identified. The distinct peak in the GW energy spectrum that is associated with the formation of a hypermassive merger remnant has a frequency that depends strongly on the properties of the nuclear equation of state (EOS) and on the total mass of the binary system, whereas the mass ratio and the NS spins have a weak influence. If the total mass can be determined from the inspiral chirp signal, the peak frequency of the post-merger signal is a sensitive indicator of the EOS.
Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field
NASA Astrophysics Data System (ADS)
Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.
2014-03-01
The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.
Device for frequency modulation of a laser output spectrum
Beene, James R.; Bemis, Jr., Curtis E.
1986-01-01
A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.
Device for frequency modulation of a laser output spectrum
Beene, J.R.; Bemis, C.E. Jr.
1984-07-17
A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.
Research on Influencing Factors and Generalized Power of Synthetic Artificial Seismic Wave
NASA Astrophysics Data System (ADS)
Jiang, Yanpei
2018-05-01
Start your abstract here… In this paper, according to the trigonometric series method, the author adopts different envelope functions and the acceleration design spectrum in Seismic Code For Urban Bridge Design to simulate the seismic acceleration time history which meets the engineering accuracy requirements by modifying and iterating the initial wave. Spectral analysis is carried out to find out the the distribution law of the changing frequencies of the energy of seismic time history and to determine the main factors that affect the acceleration amplitude spectrum and energy spectrum density. The generalized power formula of seismic time history is derived from the discrete energy integral formula and the author studied the changing characteristics of generalized power of the seismic time history under different envelop functions. Examples are analyzed to illustrate that generalized power can measure the seismic performance of bridges.
Digital FMCW for ultrawideband spectrum sensing
NASA Astrophysics Data System (ADS)
Cheema, A. A.; Salous, S.
2016-08-01
An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.
Ehmler, Hartmut; Köppen, Matthias
2007-10-01
The impedance spectrum test was employed for detection of short circuits within Wendelstein 7-X (W7-X) superconducting magnetic field coils. This test is based on measuring the complex impedance over several decades of frequency. The results are compared to predictions of appropriate electrical equivalent circuits of coils in different production states or during cold test. When the equivalent circuit is not too complicated the impedance can be represented by an analytic function. A more detailed analysis is performed with a network simulation code. The overall agreement of measured and calculated or simulated spectra is good. Two types of short circuits which appeared are presented and analyzed. The detection limit of the method is discussed. It is concluded that combined high-voltage ac and low-voltage impedance spectrum tests are ideal means to rule out short circuits in the W7-X coils.
ERIC Educational Resources Information Center
Skuk, Verena G.; Schweinberger, Stefan R.
2014-01-01
Purpose: To determine the relative importance of acoustic parameters (fundamental frequency [F0], formant frequencies [FFs], aperiodicity, and spectrum level [SL]) on voice gender perception, the authors used a novel parameter-morphing approach that, unlike spectral envelope shifting, allows the application of nonuniform scale factors to transform…
47 CFR 90.683 - EA-based SMR system operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...
47 CFR 90.683 - EA-based SMR system operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...
47 CFR 90.683 - EA-based SMR system operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... operate base stations using any of the base station frequencies identified in their spectrum block... use of frequencies identified in their spectrum block, including the provisions of § 90.619 relating... authorization for a previously authorized co-channel station within the EA licensee's spectrum block is...
The influence of tortuosity on the spectrum of radiation from lightning return strokes
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.
Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-03-15
As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less
Frequency Arrangement For 700 MHz Band
NASA Astrophysics Data System (ADS)
Ancans, G.; Bobrovs, V.; Ivanovs, G.
2015-02-01
The 694-790 MHz (700 MHz) band was allocated by the 2012 World Radiocommunication Conference (WRC-12) in ITU Region 1 (Europe included), to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT). At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15). In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.
Adaptive multitaper time-frequency spectrum estimation
NASA Astrophysics Data System (ADS)
Pitton, James W.
1999-11-01
In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.
Free Vibrations of Nonthin Elliptic Cylindrical Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Grigorenko, A. Ya.; Efimova, T. L.; Korotkikh, Yu. A.
2017-11-01
The problem of the free vibrations of nonthin elliptic cylindrical shells of variable thickness under various boundary conditions is solved using the refined Timoshenko-Mindlin theory. To solve the problem, an effective numerical approach based on the spline-approximation and discrete-orthogonalization methods is used. The effect of the cross-sectional shape, thickness variation law, material properties, and boundary conditions on the natural frequency spectrum of the shells is analyzed.
Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing
2015-11-01
In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended materials with tide. The tower-based high-frequency water-spectrum observing system provided rich in situ spectral data for the validation of ocean color remote sensing in turbid waters, especially for validation of the high temporal-resolution geostationary satellite ocean color remote sensing.
Application of Wave Distribution Function Method to the ERG/PWE Data
NASA Astrophysics Data System (ADS)
Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.
2017-12-01
The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.
Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites
NASA Astrophysics Data System (ADS)
Sahu, Truptimayee; Behera, Banarji
2018-02-01
In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.
High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.
2015-02-02
We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Kato, Shigeki
2007-12-01
Low-frequency infrared (IR) and depolarized Raman scattering (DRS) spectra of acetonitrile, methylene chloride, and acetone liquids are simulated via molecular dynamics calculations with the charge response kernel (CRK) model obtained at the second order Møller-Plesset perturbation (MP2) level. For this purpose, the analytical second derivative technique for the MP2 energy is employed to evaluate the CRK matrices. The calculated IR spectra reasonably agree with the experiments. In particular, the agreement is excellent for acetone because the present CRK model well reproduces the experimental polarizability in the gas phase. The importance of interaction induced dipole moments in characterizing the spectral shapes is stressed. The DRS spectrum of acetone is mainly discussed because the experimental spectrum is available only for this molecule. The calculated spectrum is close to the experiment. The comparison of the present results with those by the multiple random telegraph model is also made. By decomposing the polarizability anisotropy time correlation function to the contributions from the permanent, induced polarizability and their cross term, a discrepancy from the previous calculations is observed in the sign of permanent-induce cross term contribution. The origin of this discrepancy is discussed by analyzing the correlation functions for acetonitrile.
Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.
Farrell, W E; Munk, Walter
2013-10-01
In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature.
Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy
NASA Astrophysics Data System (ADS)
Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis
2015-07-01
Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.
Effect on LTAS of vocal loudness variation.
Nordenberg, Maria; Sundberg, Johan
2004-01-01
Long-term-average spectrum (LTAS) is an efficient method for voice analysis, revealing both voice source and formant characteristics. However, the LTAS contour is non-uniformly affected by vocal loudness. This variation was analyzed in 15 male and 16 female untrained voices reading a text 7 times at different degrees of vocal loudness, mean change in overall equivalent sound level (Leq) amounting to 27.9 dB and 28.4 dB for the female and male subjects. For all frequency values up to 4 kHz, spectrum level was strongly and linearly correlated with Leq for each subject. The gain factor, that is to say, the rate of level increase, varied with frequency, from about 0.5 at low frequencies to about 1.5 in the frequency range 1.5-3 kHz. Using the gain factors for a subject, LTAS contours could be predicted at any Leq within the measured range, with an average accuracy of 2-3 dB below 4 kHz. Mean LTAS calculated for an Leq of 70 dB for each subject showed considerable individual variation for both males and females, SD of the level varying between 7 dB and 4 dB depending on frequency. On the other hand, the results also suggest that meaningful comparisons of LTAS, recorded for example before and after voice therapy, can be made, provided that the documentation includes a set of recordings at different loudness levels from one recording session.
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.
2018-03-01
Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.
Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings
Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N.
2013-01-01
To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12C6+), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12C6+. Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12C6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12C6+, however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. PMID:23728320
2010-01-01
Background Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests. The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes. Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal. Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Conclusions Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higher QEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities. Brain rate measured in CZ shows slow brain activity related to under arousal. Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements PMID:20920283
SPECTRAL-TIMING ANALYSIS OF THE LOWER kHz QPO IN THE LOW-MASS X-RAY BINARY AQUILA X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troyer, Jon S.; Cackett, Edward M., E-mail: jon.troyer@wayne.edu
2017-01-10
Spectral-timing products of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binary (LMXB) systems, including energy- and frequency-dependent lags, have been analyzed previously in 4U 1608-52, 4U 1636-53, and 4U 1728-34. Here, we study the spectral-timing properties of the lower kHz QPO of the neutron star LMXB Aquila X-1 for the first time. We compute broadband energy lags as well as energy-dependent lags and the covariance spectrum using data from the Rossi X-ray Timing Explorer . We find characteristics similar to those of previously studied systems, including soft lags of ∼30 μ s between the 3.0–8.0 keV and 8.0–20.0 keVmore » energy bands at the average QPO frequency. We also find lags that show a nearly monotonic trend with energy, with the highest-energy photons arriving first. The covariance spectrum of the lower kHz QPO is well fit by a thermal Comptonization model, though we find a seed photon temperature higher than that of the mean spectrum, which was also seen in Peille et al. and indicates the possibility of a composite boundary layer emitting region. Lastly, we see in one set of observations an Fe K component in the covariance spectrum at 2.4- σ confidence, which may raise questions about the role of reverberation in the production of lags.« less
A new fractional wavelet transform
NASA Astrophysics Data System (ADS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.
NASA Astrophysics Data System (ADS)
Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.
2013-05-01
In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).
Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor
NASA Astrophysics Data System (ADS)
Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi
2018-02-01
Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.
Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping
1999-01-01
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
Amniotic fluid MMP-9 and neurotrophins in autism spectrum disorders: an exploratory study.
Abdallah, Morsi W; Pearce, Brad D; Larsen, Nanna; Greaves-Lord, Kirstin; Nørgaard-Pedersen, Bent; Hougaard, David M; Mortensen, Erik L; Grove, Jakob
2012-12-01
Evidence suggests that some developmental disorders, such as autism spectrum disorders (ASDs), are caused by errors in brain plasticity. Given the important role of matrix metalloproteinases (MMPs) and neurotrophins (NTs) in neuroplasticity, amniotic fluid samples for 331 ASD cases and 698 frequency-matched controls were analyzed for levels of MMP-9, brain-derived neurotrophic factor, NT-4 and transforming growth factor-β utilizing a Danish historic birth cohort and Danish nationwide health registers. Laboratory measurements were performed using an in-house multiplex sandwich immunoassay Luminex xMAP method, and measurements were analyzed using tobit and logistic regression. Results showed elevated levels of MMP-9 in ASD cases compared with controls (crude and adjusted tobit regression P-values: 0.01 and 0.06). Our results highlight the importance of exploring the biologic impact of MMP-9 and potential therapeutic roles of its inhibitors in ASD and may indicate that neuroplastic impairments in ASD may present during pregnancy. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chiu, Alan W. L.; Jahromi, Shokrollah S.; Khosravani, Houman; Carlen, Peter L.; Bardakjian, Berj L.
2006-03-01
The existence of hippocampal high-frequency electrical activities (greater than 100 Hz) during the progression of seizure episodes in both human and animal experimental models of epilepsy has been well documented (Bragin A, Engel J, Wilson C L, Fried I and Buzsáki G 1999 Hippocampus 9 137-42 Khosravani H, Pinnegar C R, Mitchell J R, Bardakjian B L, Federico P and Carlen P L 2005 Epilepsia 46 1-10). However, this information has not been studied between successive seizure episodes or utilized in the application of seizure classification. In this study, we examine the dynamical changes of an in vitro low Mg2+ rat hippocampal slice model of epilepsy at different frequency bands using wavelet transforms and artificial neural networks. By dividing the time-frequency spectrum of each seizure-like event (SLE) into frequency bins, we can analyze their burst-to-burst variations within individual SLEs as well as between successive SLE episodes. Wavelet energy and wavelet entropy are estimated for intracellular and extracellular electrical recordings using sufficiently high sampling rates (10 kHz). We demonstrate that the activities of high-frequency oscillations in the 100-400 Hz range increase as the slice approaches SLE onsets and in later episodes of SLEs. Utilizing the time-dependent relationship between different frequency bands, we can achieve frequency-dependent state classification. We demonstrate that activities in the frequency range 100-400 Hz are critical for the accurate classification of the different states of electrographic seizure-like episodes (containing interictal, preictal and ictal states) in brain slices undergoing recurrent spontaneous SLEs. While preictal activities can be classified with an average accuracy of 77.4 ± 6.7% utilizing the frequency spectrum in the range 0-400 Hz, we can also achieve a similar level of accuracy by using a nonlinear relationship between 100-400 Hz and <4 Hz frequency bands only.
NASA Astrophysics Data System (ADS)
Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.
2017-12-01
In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.
Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water.
P, Sudheer Kumar; Genova, Alessandro; Pavanello, Michele
2017-10-19
The optical spectrum of liquid water is analyzed by subsystem time-dependent density functional theory. We provide simple explanations for several important (and so far elusive) features. Due to the disordered environment surrounding each water molecule, the joint density of states of the liquid is much broader than that of the vapor, thus explaining the red-shifted Urbach tail of the liquid compared to the gas phase. Confinement effects provided by the first solvation shell are responsible for the blue shift of the first absorption peak compared to the vapor. In addition, we also characterize many-body excitonic effects. These dramatically affect the spectral weights at low frequencies, contributing to the refractive index by a small but significant amount.
Two Interrogated FBG Spectral Linewidth for Strain Sensing through Correlation.
Hsu, Shih-Hsiang; Chuang, Kuo-Wei; Chen, Ci-Syu; Lin, Ching-Yu; Chang, Che-Chang
2017-12-07
The spectral linewidth from two cross-correlated fiber Bragg gratings (FBGs) are interrogated and characterized using a delayed self-homodyne method for fiber strain sensing. This approach employs a common higher frequency resolution instead of wavelength. A sensitivity and resolution of 166 MHz/με and 50 nε were demonstrated from 4 GHz spectral linewidth characterization on the electric spectrum analyzer. A 10 nε higher resolution can be expected through random noise analyses when the spectral linewidth from two FBG correlations is reduced to 1 GHz. Moreover, the FBG spectrum is broadened during strain and experimentally shows a 0.44 pm/με sensitivity, which is mainly caused by the photo elastic effect from the fiber grating period stretch.
Hédoux, Alain; Guinet, Yannick; Descamps, Marc
2011-09-30
We show in this paper the contribution of the whole Raman spectrum including the phonon spectrum, to detect, identify and characterize polymorphic forms of molecular compounds, and study their stability and transformation. Obtaining these kinds of information is important in the area of pharmaceutical compounds. Two different polymorphic systems are analyzed through investigations in indomethacin and caffeine exposed to variable environmental conditions and various stresses, as possibly throughout the production cycle of the active pharmaceutical ingredient. It is shown the capability of the low-frequency Raman spectroscopy to reveal disorder in the crystalline state, to detect small amorphous or crystalline material, and to elucidate ambiguous polymorphic or polyamorphic situations. Copyright © 2011 Elsevier B.V. All rights reserved.
Frequency Allocation; The Radio Spectrum.
ERIC Educational Resources Information Center
Federal Communications Commission, Washington, DC.
The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…
Method of detecting system function by measuring frequency response
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2013-01-08
Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.
NASA Astrophysics Data System (ADS)
Liu, Tzu-Chi; Wu, Hau-Tieng; Chen, Ya-Hui; Chen, Ya-Han; Fang, Te-Yung; Wang, Pa-Chun; Liu, Yi-Wen
2018-05-01
The presence of click-evoked (CE) otoacoustic emissions (OAEs) has been clinically accepted as an indicator of normal cochlear processing of sounds. For treatment and diagnostic purposes, however, clinicians do not typically pay attention to the detailed spectrum and waveform of CEOAEs. A possible reason is due to the lack of noise-robust signal processing tools to estimate physiologically meaningful time-frequency properties of CEOAEs, such as the latency of spectral components. In this on-going study, we applied a modern tool called concentration of frequency and time (ConceFT, [1]) to analyze CEOAE waveforms. Randomly combined orthogonal functions are used as windowing functions for time-frequency analysis. The resulting spectrograms are subject to nonlinear time-frequency reassignment so as to enhance the concentration of time-varying sinusoidal components. The results after reassignment could be further averaged across the random choice of windows. CEOAE waveforms are acquired by a linear averaging paradigm, and longitudinal data are currently being collected from patients with Ménière's disease (MD) and a control group of normal hearing subjects. When CEOAE is present, the ConceFT plots show traces of decreasing but fluctuating instantaneous frequency against time. For comparison purposes, same processing methods are also applied to analyze CEOAE data from cochlear mechanics simulation.
Diffraction analysis of sidelobe characteristics of optical elements with ripple error
NASA Astrophysics Data System (ADS)
Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie
2018-03-01
The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.
First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.
2003-01-01
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.
Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.
Roman-Liu, Danuta; Konarska, Maria
2009-10-01
The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMS(max) and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue. Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMS(max) registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction. The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76-140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMS(max). The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low frequency bands up to 25 Hz are especially feasible for type of muscle.
A generalization of the theory of fringe patterns containing displacement information
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Bhat, G.
The theory that provides the interpretation of interferometric fringes as frequency modulated signals, is used to show that the electrooptical system used to analyze fringe patterns can be considered as a simultaneous Fourier spectrum analyzer. This interpretation generalizes the quasi-heterodyning techniques. It is pointed out that the same equations that yield the discrete Fourier transform as summations, yield correct values for a reduced number of steps. Examples of application of the proposed technique to electronic holography are given. It is found that for a uniform field the standard deviation of the individual readings is 1/20 of the fringe spacing.
Method and apparatus configured for identification of a material
Slater, John M.; Crawford, Thomas M.
2000-01-01
The present invention includes an apparatus configured for identification of a material, and methods of identifying a material. One embodiment of the invention provides an apparatus including a first region configured to receive a first sample, the first region being configured to output a first spectrum corresponding to the first sample and responsive to exposure of the first sample to radiation; a modulator configured to modulate the first spectrum according to a first frequency; a second region configured to receive a second sample, the second region being configured to output a second spectrum corresponding to the second sample and responsive to exposure of the second sample to the modulated first spectrum; and a detector configured to detect the second spectrum having a second frequency greater than the first frequency.
Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle
NASA Astrophysics Data System (ADS)
Carreño, F.; Antón, M. A.; Arrieta-Yáñez, Francisco
2013-11-01
The resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized by engineering the shape of the MNP.
Radiation transport around Kerr black holes
NASA Astrophysics Data System (ADS)
Schnittman, Jeremy David
This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable effects: the inverse-Compton process alters the photon spectrum by adding a high energy power-law tail, and the random scattering of each photon effectively damps out the highest frequency modulations in the X-ray light curve. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617- 253-5668; Fax 617-253-1690.)
Extragalactic Peaked-spectrum Radio Sources at Low Frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.
We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less
NASA Astrophysics Data System (ADS)
Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu
2015-10-01
Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Anirban; Patra, Puneet Kumar; Bhattacharya, Baidurya, E-mail: baidurya@civil.iitkgp.ernet.in
A nanomechanical resonator based sensor works by detecting small changes in the natural frequency of the device in presence of external agents. In this study, we address the length and the temperature-dependent sensitivity of precompressed armchair Boron-Nitride nanotubes towards their use as sensors. The vibrational data, obtained using molecular dynamics simulations, are analyzed for frequency content through the fast Fourier transformation. As the temperature of the system rises, the vibrational spectrum becomes noisy, and the modal frequencies show a red-shift irrespective of the length of the nanotube, suggesting that the nanotube based sensors calibrated at a particular temperature may notmore » function desirably at other temperatures. Temperature-induced noise becomes increasingly pronounced with the decrease in the length of the nanotube. For the shorter nanotube at higher temperatures, we observe multiple closely spaced peaks near the natural frequency, that create a masking effect and reduce the sensitivity of detection. However, longer nanotubes do not show these spurious frequencies, and are considerably more sensitive than the shorter ones.« less
The internal gravity wave spectrum in two high-resolution global ocean models
NASA Astrophysics Data System (ADS)
Arbic, B. K.; Ansong, J. K.; Buijsman, M. C.; Kunze, E. L.; Menemenlis, D.; Müller, M.; Richman, J. G.; Savage, A.; Shriver, J. F.; Wallcraft, A. J.; Zamudio, L.
2016-02-01
We examine the internal gravity wave (IGW) spectrum in two sets of high-resolution global ocean simulations that are forced concurrently by atmospheric fields and the astronomical tidal potential. We analyze global 1/12th and 1/25th degree HYCOM simulations, and global 1/12th, 1/24th, and 1/48th degree simulations of the MITgcm. We are motivated by the central role that IGWs play in ocean mixing, by operational considerations of the US Navy, which runs HYCOM as an ocean forecast model, and by the impact of the IGW continuum on the sea surface height (SSH) measurements that will be taken by the planned NASA/CNES SWOT wide-swath altimeter mission. We (1) compute the IGW horizontal wavenumber-frequency spectrum of kinetic energy, and interpret the results with linear dispersion relations computed from the IGW Sturm-Liouville problem, (2) compute and similarly interpret nonlinear spectral kinetic energy transfers in the IGW band, (3) compute and similarly interpret IGW contributions to SSH variance, (4) perform comparisons of modeled IGW kinetic energy frequency spectra with moored current meter observations, and (5) perform comparisons of modeled IGW kinetic energy vertical wavenumber-frequency spectra with moored observations. This presentation builds upon our work in Muller et al. (2015, GRL), who performed tasks (1), (2), and (4) in 1/12th and 1/25th degree HYCOM simulations, for one region of the North Pacific. New for this presentation are tasks (3) and (5), the inclusion of MITgcm solutions, and the analysis of additional ocean regions.
Estimates of the solar internal angular velocity obtained with the Mt. Wilson 60-foot solar tower
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Woodard, Martin; Tomczyk, Steven; Korzennik, Sylvain
1987-01-01
Estimates are obtained of the solar internal angular velocity from measurements of the frequency splittings of p-mode oscillations. A 16-day time series of full-disk Dopplergrams obtained during July and August 1984 at the 60-foot tower telescope of the Mt. Wilson Observatory is analyzed. Power spectra were computed for all of the zonal, tesseral, and sectoral p-modes from l = 0 to 89 and for all of the sectoral p-modes from l = 90 to 200. A mean power spectrum was calculated for each degree up to 89. The frequency differences of all of the different nonzonal modes were calculated for these mean power spectra.
An echolocation model for the restoration of an acoustic image from a single-emission echo
NASA Astrophysics Data System (ADS)
Matsuo, Ikuo; Yano, Masafumi
2004-12-01
Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
Multispectral photoacoustic method for the early detection and diagnosis of osteoporosis
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Eyal, Avishay; Gannot, Israel
2013-03-01
Osteoporosis is a major health problem worldwide, with healthcare costs of billions of dollars annually. The risk of fracture depends on the bone mineral density (measured in clinical practice) as well as on the bone microstructure and functional status. Since pure ultrasonic methods can measure bone strength and spectroscopic optical methods can provide valuable functional information, a hybrid multispectral photoacoustic technique can be of great value. We have developed such a system based on a tunable Ti:Sapph laser at 750 - 950 nm, followed by an acousto-optic modulator to generate photoacoustic signals with frequencies of 0.5 - 2.5 MHz. Another system was based on two directly modulated 830nm laser diodes. The systems were used to photoacoustically excite the proximal end of a rat tibia. Spectrum analyzer with tracking generator was used for measuring both the amplitude and the phase at the distal end. Scanning along both the optical wavelength as well as the acoustic frequency enables full mapping of the bone transfer function. Analyzing this function along the wavelength axis allows deducing the gross biochemical composition related to the bone functional and pathological state. Analyzing the amplitude and phase along the acoustic frequency axis yields the speed of sound dispersion and the broadband ultrasonic attenuation - both have shown clinical relevance.
Intelligent cognitive radio jamming - a game-theoretical approach
NASA Astrophysics Data System (ADS)
Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.
2014-12-01
Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.
Soliton Turbulence in Shallow Water Ocean Surface Waves
NASA Astrophysics Data System (ADS)
Costa, Andrea; Osborne, Alfred R.; Resio, Donald T.; Alessio, Silvia; Chrivı, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E.
2014-09-01
We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ˜ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ˜ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.
Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S
2015-02-01
With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.
Detection and analysis of diamond fingerprinting feature and its application
NASA Astrophysics Data System (ADS)
Li, Xin; Huang, Guoliang; Li, Qiang; Chen, Shengyi
2011-01-01
Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the "Diamond ID" and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.
Spectral analysis of the UFBG-based acousto—optical modulator in V-I transmission matrix formalism
NASA Astrophysics Data System (ADS)
Wu, Liang-Ying; Pei, Li; Liu, Chao; Wang, Yi-Qun; Weng, Si-Jun; Wang, Jian-Shuai
2014-11-01
In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto—optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-1) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.
Ma, Xiaolu; Thompson, Richard S
2017-12-01
We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.
Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System
NASA Astrophysics Data System (ADS)
Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung
At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.
Window of visibility - A psychophysical theory of fidelity in time-sampled visual motion displays
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.
1986-01-01
A film of an object in motion presents on the screen a sequence of static views, while the human observer sees the object moving smoothly across the screen. Questions related to the perceptual identity of continuous and stroboscopic displays are examined. Time-sampled moving images are considered along with the contrast distribution of continuous motion, the contrast distribution of stroboscopic motion, the frequency spectrum of continuous motion, the frequency spectrum of stroboscopic motion, the approximation of the limits of human visual sensitivity to spatial and temporal frequencies by a window of visibility, the critical sampling frequency, the contrast distribution of staircase motion and the frequency spectrum of this motion, and the spatial dependence of the critical sampling frequency. Attention is given to apparent motion, models of motion, image recording, and computer-generated imagery.
Temperature effects on wavelength calibration of the optical spectrum analyzer
NASA Astrophysics Data System (ADS)
Mongkonsatit, Kittiphong; Ranusawud, Monludee; Srikham, Sitthichai; Bhatranand, Apichai; Jiraraksopakun, Yuttapong
2018-03-01
This paper presents the investigation of the temperature effects on wavelength calibration of an optical spectrum analyzer or OSA. The characteristics of wavelength dependence on temperatures are described and demonstrated under the guidance of the IEC 62129-1:2006, the international standard for the Calibration of wavelength/optical frequency measurement instruments - Part 1: Optical spectrum analyzer. Three distributed-feedback lasers emit lights with wavelengths of 1310 nm, 1550 nm, and 1600 nm were used as light sources in this work. Each light was split by a 1 x 2 fiber splitter whereas one end was connected to a standard wavelength meter and the other to an under-test OSA. Two Experiment setups were arranged for the analysis of the wavelength reading deviations between a standard wavelength meter and an OSA under a variety of circumstances of different temperatures and humidity conditions. The experimental results showed that, for wavelengths of 1550 nm and 1600 nm, the wavelength deviations were proportional to the value of temperature with the minimum and maximum of -0.015 and 0.030 nm, respectively. While the deviations of 1310 nm wavelength did not change much with the temperature as they were in the range of -0.003 nm to 0.010 nm. The measurement uncertainty was also evaluated according to the IEC 62129-1:2006. The main contribution of measurement uncertainty was caused by the wavelength deviation. The uncertainty of measurement in this study is 0.023 nm with coverage factor, k = 2.
Apparatus configured for identification of a material and method of identifying a material
Slater, John M.; Crawford, Thomas M.; Frickey, Dean A.
2001-01-01
The present invention relates to an apparatus configured for identification of a material and method of identifying a material. One embodiment of the present invention provides an apparatus configured for identification of a material including a first region configured to receive a first sample and output a first spectrum responsive to exposure of the first sample to radiation; a signal generator configured to provide a reference signal having a reference frequency and a modulation signal having a modulation frequency; a modulator configured to selectively modulate the first spectrum using the modulation signal according to the reference frequency; a second region configured to receive a second sample and output a second spectrum responsive to exposure of the second sample to the first spectrum; and a detector configured to detect the second spectrum.
Haris, K; Chakraborty, Bishwajit; Menezes, A; Sreepada, R A; Fernandes, W A
2014-10-01
Nonlinear phenomena in animal vocalizations fundamentally includes known features, namely, frequency jump, subharmonics, biphonation, and deterministic chaos. In the present study, the multifractal detrended fluctuation analysis (MFDFA) has been employed to characterize the phase couplings revealed in the feeding clicks of Hippocampus kuda yellow seahorse. The fluctuation function Fq(s), generalized Hurst exponent h(q), multifractal scaling exponent τ(q), and the multifractal spectrum f(α) calculated in the procedure followed were analyzed to comprehend the underlying nonlinearities in the seahorse clicks. The analyses carried out reveal long-range power-law correlation properties in the data, substantiating the multifractal behavior. The resulting h(q) spectrum exhibits a distinct characteristic pattern in relation to the seahorse sex and size, and reveals a spectral blind spot in the data that was not possible to detect by conventional spectral analyses. The corresponding multifractal spectrum related width parameter Δh(q) is well clustered, defining the individual seahorse clicks. The highest degree of multifractality is evident in the 18 cm male seahorse, signifying greater heterogeneity. A further comparison between the seahorse body size and weight (wet) with respect to the width parameter Δh(q) and the second-order Hurst exponent h(q=2) underscores the versatility of MFDFA as a robust statistical tool to analyze bioacoustic observations.
Deuschle, M; Paul, F; Brosz, M; Bergemann, N; Franz, M; Kammerer-Ciernioch, J; Lautenschlager, M; Lederbogen, F; Roesch-Ely, D; Weisbrod, M; Kahl, K G; Reichmann, J; Gross, J; Umbreit, J
2013-08-01
Patients with severe mental illness are at high risk for metabolic and cardiac disorders. Thus, monitoring of cardiovascular risks is imperative and schedules for screening for lipids, glucose, body mass index (BMI), waist-hip ratio and blood pressure have been developed. We intended to analyze screening for metabolic disorders in German patients with schizophrenia spectrum disorders in routine psychiatric care. We included 674 patients with any F2 diagnosis in out- and inpatient settings and analyzed metabolic screening procedures as practiced under conditions of usual care. Except BMI (54 %), all other values were documented only in a minority of patients: waist circumference (23 %), cholesterol (28 %), fasting glucose (19 %), triglycerides (25 %) and blood pressure (37 %). We found evidence for less than perfect quality of blood pressure measures. The group of patients who met the individual metabolic syndrome ATP III criteria was comparable to the US CATIE trial. We conclude that frequency and quality of metabolic monitoring in German in- and outpatients settings are not in accordance with the respective recommendations. Similar to previous reports we found evidence for a high prevalence of metabolic disturbances in German patients with schizophrenia spectrum disorders.
Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis
NASA Astrophysics Data System (ADS)
Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe
2013-07-01
The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the spectrum for the radially constrained bearing and only visible in the envelope spectrum for the "load-free" bearing. Concerning results in flight conditions, frequency readjustment demonstrates good performances when applied on the spectrum, showing that a fully automated bearing decision procedure is applicable for operational helicopter monitoring.
Frequency domain analysis of errors in cross-correlations of ambient seismic noise
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri
2016-12-01
We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.
Kao, Wei-Fong; Hou, Sen-Kuang; Huang, Chun-Yao; Chao, Chun-Chieh; Cheng, Chung-Chih; Chen, Yi-Jung
2018-01-01
Atrial fibrillation (AF) is the most common arrhythmia. The most common diagnostic method, 12-lead electrocardiogram (ECG), can record episodes of arrhythmia from which the type and severity can be determined. The Heart Spectrum Blood Pressure Monitor (P2; OSTAR Meditech Corp., New Taipei City, Taiwan) is used to measure cardiovascular pressure change with fast Fourier transform (FFT) analysis to obtain heart rate frequency variability and accurate blood pressure data. We compared the diagnostic efficacy of the Heart Spectrum Blood Pressure Monitor to a 12-lead ECG (gold standard) for patients with AF. Three measurement methods were used in this study to analyze the heart index and compare the results with simultaneous 12-lead ECG: blood pressure; mean arterial pressure, which was calculated from individual blood pressure as a constant pressure; and a constant pressure of 60 mmHg. The physician used a 12-lead ECG and the Heart Spectrum Blood Pressure Monitor simultaneously. The Heart Spectrum Blood Pressure Monitor used FFT analysis to diagnose AF, and the findings were compared to the 12-lead ECG readings. This unblinded clinical trial was conducted in the emergency department of Taipei Medical University Hospital. Twenty-nine subjects with AF and 33 without AF aged 25 to 97 y (mean, 63.5 y) were included. Subjects who were exposed to high-frequency surgical equipment during testing, those with cardiac pacemakers or implantable defibrillators, and pregnant women were excluded. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 97%, 97%, 97%, and 97%, respectively, for method 1; 90%, 100%, 100%, and 91%, respectively, for method 2; and 100%, 94%, 94%, and 100%, respectively, for method 3. The sensitivity, specificity, PPV, and NPV for both methods ranged between 90% and 100%, indicating that the Heart Spectrum Blood Pressure Monitor can be effectively applied for AF detection.
Kao, Wei-Fong; Hou, Sen-Kuang; Huang, Chun-Yao; Cheng, Chung-Chih; Chen, Yi-Jung
2018-01-01
Atrial fibrillation (AF) is the most common arrhythmia. The most common diagnostic method, 12-lead electrocardiogram (ECG), can record episodes of arrhythmia from which the type and severity can be determined. The Heart Spectrum Blood Pressure Monitor (P2; OSTAR Meditech Corp., New Taipei City, Taiwan) is used to measure cardiovascular pressure change with fast Fourier transform (FFT) analysis to obtain heart rate frequency variability and accurate blood pressure data. We compared the diagnostic efficacy of the Heart Spectrum Blood Pressure Monitor to a 12-lead ECG (gold standard) for patients with AF. Three measurement methods were used in this study to analyze the heart index and compare the results with simultaneous 12-lead ECG: blood pressure; mean arterial pressure, which was calculated from individual blood pressure as a constant pressure; and a constant pressure of 60 mmHg. The physician used a 12-lead ECG and the Heart Spectrum Blood Pressure Monitor simultaneously. The Heart Spectrum Blood Pressure Monitor used FFT analysis to diagnose AF, and the findings were compared to the 12-lead ECG readings. This unblinded clinical trial was conducted in the emergency department of Taipei Medical University Hospital. Twenty-nine subjects with AF and 33 without AF aged 25 to 97 y (mean, 63.5 y) were included. Subjects who were exposed to high-frequency surgical equipment during testing, those with cardiac pacemakers or implantable defibrillators, and pregnant women were excluded. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 97%, 97%, 97%, and 97%, respectively, for method 1; 90%, 100%, 100%, and 91%, respectively, for method 2; and 100%, 94%, 94%, and 100%, respectively, for method 3. The sensitivity, specificity, PPV, and NPV for both methods ranged between 90% and 100%, indicating that the Heart Spectrum Blood Pressure Monitor can be effectively applied for AF detection. PMID:29902218
Choy, G.L.; Boatwright, J.
2007-01-01
The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Loehnert, U.; Maahn, M.
2015-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.
2014-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.
2015-06-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.
THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, K. G.; Howes, G. G.; TenBarge, J. M.
2014-08-01
Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less
Method of estimating pulse response using an impedance spectrum
Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G
2014-10-21
Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.
Acousto-Optic Spectrum Analyzer: Temporal Response and Detection of Pulsed Signals.
1986-12-01
ACOUSTO - OPTIC SPECTRUM ANALYZER: TEMPORAL RESPONSE AND I/i DETECTION OF PULSED SIGUALS(U) DEFENCE RESEARCH ESTABLISHMENT OTTANA (ONTARIO) J...8217:. -.....:.-...............--.. - ---:-..--.-..,. ,: i’,.. IJT~c FILE C P National Defe’ se + Deence nationale 0 0 ACOUSTO - OPTIC SPECTRUM ANALYZER: TEMPORAL RESPONSE AND DETECTION 0 OF PULSED...Ottawa |S, .±~ |-----------------------..,---.-- -- - - - rNatiorna! Defen~se Deterice r dornale ACOUSTO - OPTIC SPECTRUM ANALYZER: TEMPORAL RESPONSE
A performance analysis of DS-CDMA and SCPC VSAT networks
NASA Technical Reports Server (NTRS)
Hayes, David P.; Ha, Tri T.
1990-01-01
Spread-spectrum and single-channel-per-carrier (SCPC) transmission techniques work well in very small aperture terminal (VSAT) networks for multiple-access purposes while allowing the earth station antennas to remain small. Direct-sequence code-division multiple-access (DS-CDMA) is the simplest spread-spectrum technique to use in a VSAT network since a frequency synthesizer is not required for each terminal. An examination is made of the DS-CDMA and SCPC Ku-band VSAT satellite systems for low-density (64-kb/s or less) communications. A method for improving the standardf link analysis of DS-CDMA satellite-switched networks by including certain losses is developed. The performance of 50-channel full mesh and star network architectures is analyzed. The selection of operating conditions producing optimum performance is demonstrated.
The effect of internal rotation in p-methyl anisole studied by microwave spectroscopy
NASA Astrophysics Data System (ADS)
Ferres, Lynn; Stahl, Wolfgang; Kleiner, Isabelle; Nguyen, Ha Vinh Lam
2018-01-01
The Fourier transform microwave spectrum of p-methyl anisole, CH3C6H4OCH3, was measured in the frequency range from 2 to 26.5 GHz under molecular jet conditions. The conformational analysis yielded only one stable conformer, in which all heavy atoms are co-planar, and which was identified after analyzing the spectrum by comparison with the results from quantum chemical calculations. The barrier of the V3 potential of the ring methyl rotor was found to be 49.6370(1) cm-1, and was compared with that found in other para-substituted toluenes as well as in o-methyl anisole. A comparison between two theoretical approaches treating internal rotations, the rho axis method (program BELGI-Cs) and combined axis method (program XIAM), was also performed.
The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space.
Kolesniková, L; Alonso, J L; Bermúdez, C; Alonso, E R; Tercero, B; Cernicharo, J; Guillemin, J-C
2016-07-01
The recent discovery of methyl isocyanate (CH 3 NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH 3 OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A - E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 - 35 and [Formula: see text] and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided.
Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra
NASA Astrophysics Data System (ADS)
Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.
2018-03-01
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.
Chang, Yen-Liang; Hung, Chao-Ho; Chen, Po-Yueh; Chen, Wei-Chang; Hung, Shih-Han
2015-10-01
Acoustic analysis is often used in speech evaluation but seldom for the evaluation of oral prostheses designed for reconstruction of surgical defect. This study aimed to introduce the application of acoustic analysis for patients with velopharyngeal insufficiency (VPI) due to oral surgery and rehabilitated with oral speech-aid prostheses. The pre- and postprosthetic rehabilitation acoustic features of sustained vowel sounds from two patients with VPI were analyzed and compared with the acoustic analysis software Praat. There were significant differences in the octave spectrum of sustained vowel speech sound between the pre- and postprosthetic rehabilitation. Acoustic measurements of sustained vowels for patients before and after prosthetic treatment showed no significant differences for all parameters of fundamental frequency, jitter, shimmer, noise-to-harmonics ratio, formant frequency, F1 bandwidth, and band energy difference. The decrease in objective nasality perceptions correlated very well with the decrease in dips of the spectra for the male patient with a higher speech bulb height. Acoustic analysis may be a potential technique for evaluating the functions of oral speech-aid prostheses, which eliminates dysfunctions due to the surgical defect and contributes to a high percentage of intelligible speech. Octave spectrum analysis may also be a valuable tool for detecting changes in nasality characteristics of the voice during prosthetic treatment of VPI. Copyright © 2014. Published by Elsevier B.V.
Acoustical study of classical Peking Opera singing.
Sundberg, Johan; Gu, Lide; Huang, Qiang; Huang, Ping
2012-03-01
Acoustic characteristics of classical opera singing differ considerably between the Western and the Chinese cultures. Singers in the classical Peking opera tradition specialize on one out of a limited number of standard roles. Audio and electroglottograph signals were recorded for four performers of the Old Man role and three performers of the Colorful Face role. Recordings were made of the singers' speech and when they sang recitatives and songs from their roles. Sound pressure level, fundamental frequency, and spectrum characteristics were analyzed. Histograms showing the distribution of fundamental frequency showed marked peaks for the songs, suggesting a scale tone structure. Some of the intervals between these peaks were similar to those used in Western music. Vibrato rate was about 3.5Hz, that is, considerably slower than in Western classical singing. Spectra of vibrato-free tones contained unbroken series of harmonic partials sometimes reaching up to 17 000Hz. Long-term-average spectrum (LTAS) curves showed no trace of a singer's formant cluster. However, the Colorful Face role singers' LTAS showed a marked peak near 3300Hz, somewhat similar to that found in Western pop music singers. The mean LTAS spectrum slope between 700 and 6000Hz decreased by about 0.2dB/octave per dB of equivalent sound level. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Spectrum Management and Electromagnetic Compatibility Issues in the Department of Defense
1991-01-01
Interference JEWC Joint Electronic Warfare Center JRFL Joint Restricted Frequency List JSMS Joint Spectrum Management System JT&E Joint Test and Evaluation JTAC...Joint Restricted Frequency List (JRFL) is essentially a list of frequencies prohibited from use by ECM units. Creation and maintenance of the JRFL to...sponsored by CECOM, developed a prototype that primarily acted as an analysis of the restricted frequency list as a predecessor to DECON. Presently the Army
NASA Astrophysics Data System (ADS)
Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela
1995-03-01
We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute
Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.
Strangeway, Robert A; Hyde, James S; Camenisch, Theodore G; Sidabras, Jason W; Mett, Richard R; Anderson, James R; Ratke, Joseph J; Subczynski, Witold K
2017-12-01
A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T 1 values using pulse saturation recovery. An overview of that work is provided.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Katz, R.; Wilson, J. W.
1998-01-01
An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.
Bernardi, L; Wdowczyk-Szulc, J; Valenti, C; Castoldi, S; Passino, C; Spadacini, G; Sleight, P
2000-05-01
To assess whether talking or reading (silently or aloud) could affect heart rate variability (HRV) and to what extent these changes require a simultaneous recording of respiratory activity to be correctly interpreted. Sympathetic predominance in the power spectrum obtained from short- and long-term HRV recordings predicts a poor prognosis in a number of cardiac diseases. Heart rate variability is often recorded without measuring respiration; slow breaths might artefactually increase low frequency power in RR interval (RR) and falsely mimic sympathetic activation. In 12 healthy volunteers we evaluated the effect of free talking and reading, silently and aloud, on respiration, RR and blood pressure (BP). We also compared spontaneous breathing to controlled breathing and mental arithmetic, silent or aloud. The power in the so called low- (LF) and high-frequency (HF) bands in RR and BP was obtained from autoregressive power spectrum analysis. Compared with spontaneous breathing, reading silently increased the speed of breathing (p < 0.05), decreased mean RR and RR variability and increased BP. Reading aloud, free talking and mental arithmetic aloud shifted the respiratory frequency into the LF band, thus increasing LF% and decreasing HF% to a similar degree in both RR and respiration, with decrease in mean RR but with minor differences in crude RR variability. Simple mental and verbal activities markedly affect HRV through changes in respiratory frequency. This possibility should be taken into account when analyzing HRV without simultaneous acquisition and analysis of respiration.
Observing random walks of atoms in buffer gas through resonant light absorption
NASA Astrophysics Data System (ADS)
Aoki, Kenichiro; Mitsui, Takahisa
2016-07-01
Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.
NASA Astrophysics Data System (ADS)
Xiao, Ze-xin; Chen, Kuan
2008-03-01
Biochemical analyzer is one of the important instruments in the clinical diagnosis, and its optical system is the important component. The operation of this optical system can be regard as three parts. The first is transforms the duplicate colored light as the monochromatic light. The second is transforms the light signal of the monochromatic, which have the information of the measured sample, as the electric signal by use the photoelectric detector. And the last is to send the signal to data processing system by use the control system. Generally, there are three types monochromators: prism, optical grating and narrow-band pass filter. Thereinto, the narrow-band pass filter were widely used in the semi-auto biochemical analyzer. Through analysed the principle of biochemical analyzer base on the narrow-band pass filter, we known that the optical has three features. The first is the optical path of the optical system is a non- imaging system. The second, this system is wide spectrum region that contain visible light and ultraviolet spectrum. The third, this is a little aperture and little field monochromatic light system. Therefore, design idea of this optical system is: (1) luminous energy in the system less transmission loss; (2) detector coupled to the luminous energy efficient; mainly correct spherical aberration. Practice showed the point of Image quality evaluation: (1) dispersion circle diameter equal the receiving device pixel effective width of 125%, and the energy distribution should point target of 80% of energy into the receiving device pixel width of the effective diameter in this dispersion circle; (2) With MTF evaluation, the requirements in 20lp/ mm spatial frequency, the MTF values should not be lower than 0.6. The optical system should be fit in with ultraviolet and visible light width spectrum, and the detector image plane can but suited the majority visible light spectrum when by defocus optimization, and the image plane of violet and ultraviolet excursion quite large. Traditional biochemical analyzer optical design not fully consider this point, the authors introduce a effective image plane compensation measure innovatively, it greatly increased the reception efficiency of the violet and ultraviolet.
Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang
2012-03-12
The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.
Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation
NASA Astrophysics Data System (ADS)
Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.
2013-06-01
Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.
Eliminating Bias In Acousto-Optical Spectrum Analysis
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Lesh, James R.
1992-01-01
Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.
Topological phenomena in classical optical networks
Shi, T.; Kimble, H. J.; Cirac, J. I.
2017-01-01
We propose a scheme to realize a topological insulator with optical-passive elements and analyze the effects of Kerr nonlinearities in its topological behavior. In the linear regime, our design gives rise to an optical spectrum with topological features and where the bandwidths and bandgaps are dramatically broadened. The resulting edge modes cover a very wide frequency range. We relate this behavior to the fact that the effective Hamiltonian describing the system’s amplitudes is long range. We also develop a method to analyze the scheme in the presence of a Kerr medium. We assess robustness and stability of the topological features and predict the presence of chiral squeezed fluctuations at the edges in some parameter regimes. PMID:29073093
NASA Astrophysics Data System (ADS)
Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui
2013-08-01
We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.
Li, Guang; Wei, Jie; Huang, Hailiang; Gaebler, Carl Philipp; Yuan, Amy; Deasy, Joseph O
2015-12-01
To automatically estimate average diaphragm motion trajectory (ADMT) based on four-dimensional computed tomography (4DCT), facilitating clinical assessment of respiratory motion and motion variation and retrospective motion study. We have developed an effective motion extraction approach and a machine-learning-based algorithm to estimate the ADMT. Eleven patients with 22 sets of 4DCT images (4DCT1 at simulation and 4DCT2 at treatment) were studied. After automatically segmenting the lungs, the differential volume-per-slice (dVPS) curves of the left and right lungs were calculated as a function of slice number for each phase with respective to the full-exhalation. After 5-slice moving average was performed, the discrete cosine transform (DCT) was applied to analyze the dVPS curves in frequency domain. The dimensionality of the spectrum data was reduced by using several lowest frequency coefficients ( f v ) to account for most of the spectrum energy (Σ f v 2 ). Multiple linear regression (MLR) method was then applied to determine the weights of these frequencies by fitting the ground truth-the measured ADMT, which are represented by three pivot points of the diaphragm on each side. The 'leave-one-out' cross validation method was employed to analyze the statistical performance of the prediction results in three image sets: 4DCT1, 4DCT2, and 4DCT1 + 4DCT2. Seven lowest frequencies in DCT domain were found to be sufficient to approximate the patient dVPS curves ( R = 91%-96% in MLR fitting). The mean error in the predicted ADMT using leave-one-out method was 0.3 ± 1.9 mm for the left-side diaphragm and 0.0 ± 1.4 mm for the right-side diaphragm. The prediction error is lower in 4DCT2 than 4DCT1, and is the lowest in 4DCT1 and 4DCT2 combined. This frequency-analysis-based machine learning technique was employed to predict the ADMT automatically with an acceptable error (0.2 ± 1.6 mm). This volumetric approach is not affected by the presence of the lung tumors, providing an automatic robust tool to evaluate diaphragm motion.
Right and left partial iatrogenic injuries of the biliary tree. Therapeutic options.
Mercado, Miguel Angel; Domínguez, Ismael; Arriola, Juan Carlos; Ramirez-Del Val, Fernando; Urencio, Miguel; Sánchez-Fernández, Norberto
2010-01-01
Bile duct injuries (BDI) have a wide array of presentation. Left partial injuries (Strasberg D) of the hepatic duct are the result of excessive traction, which dissects the hepatic hilum and provokes medial perforations without continuity loss. Right partial injuries (Strasberg A, B and C) are produced by direct damage to the hepatic duct or isolated injury to the right and accessory ducts. It is important to determine frequency, spectrum and treatment outcome of this BDI in the surgical scenario. Patients with BDI who underwent surgical treatment in our hospital were reviewed, right and left partial injuries were selected. Demographic, clinical and therapeutic data were analyzed. In a 16-year period, 405 patients underwent surgical treatment of BDI. 31 (8%) were classified as a left partial injury (Strasberg D): 23 injuries at the common hepatic duct treated with a Hepatojejunostomy (HJ); four at the confluence level which received a HJ with neoconfluence construction; two partial injuries in the left hepatic duct underwent a selective left HJ; and two complete occlusions of the left hepatic duct, one treated with a partial hepatectomy and the last case underwent a partial HJ. Right partial injuries (Strasberg A, B or C) were identified in 21 cases (5%), their treatment was tailored according to the type of BDI (conservative, selective HJ, or hepatectomy). In our series the frequency of left and right partial BDI injuries was 8% and 5%, respectively. The spectrum of analyzed injuries included four subtypes for the left partial and eight for the right partial lesions. Most BDI in the two analyzed groups presented concomitant devascularization of the extra-hepatic ducts, therefore receiving surgical treatment rather than endoscopic treatment was done.
SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS
NASA Technical Reports Server (NTRS)
Brownlow, J. D.
1994-01-01
The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval are removed by least-squares detrending. As many as ten channels of data may be analyzed at one time. Both tabular and plotted output may be generated by the SPA program. This program is written in FORTRAN IV and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 142K (octal) of 60 bit words. This core requirement can be reduced by segmentation of the program. The SPA program was developed in 1978.
Otaki, Hiroki; Yagi, Kiyoshi; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Sugita, Yuji
2016-10-06
An accurate theoretical prediction of the vibrational spectrum of polypeptides remains to be a challenge due to (1) their conformational flexibility and (2) non-negligible anharmonic effects. The former makes the search for conformers that contribute to the spectrum difficult, and the latter requires an expensive, quantum mechanical calculation for both electrons and vibrations. Here, we propose a new theoretical approach, which implements an enhanced conformational sampling by the replica-exchange molecular dynamics method, a structural clustering to identify distinct conformations, and a vibrational structure calculation by the second-order vibrational quasi-degenerate perturbation theory (VQDPT2). A systematic mode-selection scheme is developed to reduce the cost of VQDPT2 and the generation of a potential energy surface by the electronic structure calculation. The proposed method is applied to a pentapeptide, SIVSF-NH 2 , for which the infrared spectrum has recently been measured in the gas phase with high resolution in the OH and NH stretching region. The theoretical spectrum of the lowest energy conformer is obtained with a mean absolute deviation of 11.2 cm -1 from the experimental spectrum. Furthermore, the NH stretching frequencies of the five lowest energy conformers are found to be consistent with the literature values measured for small peptides with a similar secondary structure. Therefore, the proposed method is a promising way to analyze the vibrational spectrum of polypeptides.
NASA Technical Reports Server (NTRS)
Pratt, K. G.
1975-01-01
A rigid airplane with an unswept wing is analyzed. The results show that the power spectrum, relative to that for a one-dimensional turbulence field, is significantly attenuated at the higher frequencies even for airplanes with arbitrarily small ratios of span to scale of turbulence. This attenuation is described by a simple weighting function of frequency that depends only on aspect ratio. The weighting function, together with the attenuation due to the unsteady flow of gust penetration, allows the determination of the average rate of zero crossings for airplanes having very small spans without recourse to an integral truncation which is often required in calculations based on a one-dimensional turbulence field.
Instantaneous lineshape analysis of Fourier domain mode-locked lasers.
Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian
2011-04-25
We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.
The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms
NASA Technical Reports Server (NTRS)
Pickett, H. M.
1979-01-01
The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
Compton interaction of free electrons with intense low frequency radiation
NASA Technical Reports Server (NTRS)
Illarionov, A. F.; Kompaneyets, D. A.
1978-01-01
Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.
Vector network analyzer ferromagnetic resonance spectrometer with field differential detection
NASA Astrophysics Data System (ADS)
Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.
2018-05-01
This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.
Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir
2018-01-01
Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.
Micro-mirror arrays for Raman spectroscopy
NASA Astrophysics Data System (ADS)
Duncan, W. M.
2015-03-01
In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of Texas Instruments Incorporated) for analyzing dispersed light as needed in Raman and fluorescent applications.
Studies of radio frequency interference at Parkes Observatory
NASA Astrophysics Data System (ADS)
Backus, Peter R.; Laroque, Sam; Tarter, Jill C.; Dreher, John; Gullers, Kent; Patrick, Alan; Heiligman, Gary
1997-01-01
From February through early June 1995, Project Phoenix conducted SETI observations of 209 stars over the frequency range from 1195 to 3005 MHz. A byproduct of this search is a unique data set suitable for studying the Radio Frequency Interference (RFI) environment at the Parkes 64-m telescope in New South Wales, Australia. RFI is an increasing problem for SETI and other radio astronomy observations conducted outside of the 'protected' frequency bands. The data analyzed for this paper were 'mean baseline' spectra in Left and Right Circular Polarization (LCP, RCP), integrated for either 138 or 276 s, covering a 10-MHz bandwidth with 15,552 channels at a resolution of 643 Hz. Channels were identified as contaminated by RFI when the power in the channel exceeded the mean noise by 3 percent. The 'spectral occupancy', the fraction of time RFI was seen, was determined for each channel. The RFI occupancy for LCP and RCP are distinctly different. Approximately 100 MHz of the spectrum was too heavily contaminated for SETI observations.
NASA Astrophysics Data System (ADS)
Chen, Huaiyu; Cao, Li
2017-06-01
In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.
Laser interferometer used for nanometer vibration measurements
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Yang, Jun; Liu, Zhihai; Yuan, Libo
2007-01-01
A novel laser interferometer which adopts alternating modulation phase tracking homodyne technique is proposed. The vibration of nanometer-accuracy is measured with the improved Michelson interferometer by adding cat's eye moving mirror and PZT phase modulation tracking structure. The working principle and the structure of the interferometer are analyzed and the demodulation scheme of alternating phase modulation and tracking is designed. The signal detection is changed from direct current detecting to alternating current detecting. The signal's frequency spectrum transform is achieved, the low-frequency noise jamming is abated, the Signal-to-Noise of the system is improved and the measured resolution is enhanced. Phase tracking technique effectively suppresses the low-frequency noise which is caused by outside environment factors such as temperature and vibration, and the stability of the system is enhanced. The experimental results indicate that for the signal with the frequency of 100Hz and the amplitude of 25nm, the output Signal-to-Noise is 30dB and the measured resolution is 1nm.
Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery
NASA Astrophysics Data System (ADS)
Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki
2016-05-01
A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.
Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei
2015-04-20
We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.
NASA Astrophysics Data System (ADS)
Mali, K. D.; Singru, P. M.
2018-03-01
In this work effect of the impact location and the type of hammer tip on the frequency response function (FRF) is studied. Experimental modal analysis of rectangular plates is carried out for this purpose by using impact hammer, accelerometer and fast Fourier transform (FFT) analyzer. It is observed that the impulse hammer hit location has, no effect on the eigenfrequency, yet a difference in amplitude of the eigenfrequencies is obtained. The effect of the hammer tip on the pulse and the force spectrum is studied for three types of tips metal, plastic and rubber. A solid rectangular plate was excited by using these tips one by one in three different tests. It is observed that for present experimental set up plastic tip excites the useful frequency range.
Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation
NASA Astrophysics Data System (ADS)
Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong
2018-05-01
According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.
Precise Ionosphere Monitoring via a DSFH Satellite TT&C Link
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Guangxia; Li, Zhiqiang; Yue, Chao
2014-11-01
A phase-coherent and frequency-hopped PN ranging system was developed, originally for the purpose of anti-jamming TT&C (tracking, telemetry and telecommand) of military satellites of China, including the Beidou-2 navigation satellites. The key innovation in the synchronization of this system is the unambiguous phase recovery of direct sequence and frequency hopping (DSFH) spread spectrum signal and the correction of frequency-dependent phase rotation caused by ionosphere. With synchronization achieved, a TEC monitoring algorithm based on maximum likelihood (ML) principle is proposed and its measuring precision is analyzed through ground simulation, onboard confirmation tests will be performed when transionosphere DSFH links are established in 2014. The measuring precision of TEC exceeds that obtained from GPS receiver data because the measurement is derived from unambiguous carrier phase estimates, not pseudorange estimates. The observation results from TT&C stations can provide real time regional ionosphere TEC estimation.
Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Juhyung; Terry, P. W.
2013-10-15
The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less
The Deep Space Network stability analyzer
NASA Technical Reports Server (NTRS)
Breidenthal, Julian C.; Greenhall, Charles A.; Hamell, Robert L.; Kuhnle, Paul F.
1995-01-01
A stability analyzer for testing NASA Deep Space Network installations during flight radio science experiments is described. The stability analyzer provides realtime measurements of signal properties of general experimental interest: power, phase, and amplitude spectra; Allan deviation; and time series of amplitude, phase shift, and differential phase shift. Input ports are provided for up to four 100 MHz frequency standards and eight baseband analog (greater than 100 kHz bandwidth) signals. Test results indicate the following upper bounds to noise floors when operating on 100 MHz signals: -145 dBc/Hz for phase noise spectrum further than 200 Hz from carrier, 2.5 x 10(exp -15) (tau =1 second) and 1.5 x 10(exp -17) (tau =1000 seconds) for Allan deviation, and 1 x 10(exp -4) degrees for 1-second averages of phase deviation. Four copies of the stability analyzer have been produced, plus one transportable unit for use at non-NASA observatories.
Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min
2007-08-17
This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.
Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa
2017-04-01
International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Krafty, Robert T; Rosen, Ori; Stoffer, David S; Buysse, Daniel J; Hall, Martica H
2017-01-01
This article considers the problem of analyzing associations between power spectra of multiple time series and cross-sectional outcomes when data are observed from multiple subjects. The motivating application comes from sleep medicine, where researchers are able to non-invasively record physiological time series signals during sleep. The frequency patterns of these signals, which can be quantified through the power spectrum, contain interpretable information about biological processes. An important problem in sleep research is drawing connections between power spectra of time series signals and clinical characteristics; these connections are key to understanding biological pathways through which sleep affects, and can be treated to improve, health. Such analyses are challenging as they must overcome the complicated structure of a power spectrum from multiple time series as a complex positive-definite matrix-valued function. This article proposes a new approach to such analyses based on a tensor-product spline model of Cholesky components of outcome-dependent power spectra. The approach exibly models power spectra as nonparametric functions of frequency and outcome while preserving geometric constraints. Formulated in a fully Bayesian framework, a Whittle likelihood based Markov chain Monte Carlo (MCMC) algorithm is developed for automated model fitting and for conducting inference on associations between outcomes and spectral measures. The method is used to analyze data from a study of sleep in older adults and uncovers new insights into how stress and arousal are connected to the amount of time one spends in bed.
Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser
NASA Astrophysics Data System (ADS)
Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun
2017-01-01
In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.
Interference graph-based dynamic frequency reuse in optical attocell networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan
2017-11-01
Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
NASA Astrophysics Data System (ADS)
Alexandar, A.; Lakshmanan, A.; Sakthy Priya, S.; Surendran, P.; Rameshkumar, P.
2017-09-01
Nonlinear optical single crystals of L-lysine p-nitrophenolate monohydrate (LLPNP) were grown in aqueous solution by the slow evaporation solution technique (SEST). The grown crystals were subjected to powder X-ray diffraction analysis, (PXRD) and it was found that the title compound was crystallized in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The vibrational frequencies of various functional groups present in the crystal were analyzed using the FTIR spectrum with a wavenumber range between 450 cm-1 and 4000 cm-1. The microhardness analysis of the sample revealed that the crystal belongs to the soft material category. Piezoelectric analysis was performed to measure the value of the piezoelectric (d33) coefficient. Blue light emission of the material was confirmed using the photoluminescence spectrum. Thermal stability of the grown crystal was analyzed using a melting point apparatus and it was found that the LLPNP is stable upto 175∘C. Etching analysis was performed at various durations, in order to identify the surface properties of the LLPNP crystal.
Paraneoplastic neurologic disorders in small cell lung carcinoma
Woodhall, Mark; Chapman, Caroline; Nibber, Anjan; Waters, Patrick; Vincent, Angela; Lang, Bethan; Maddison, Paul
2015-01-01
Objective: To determine the frequency and range of paraneoplastic neurologic disorders (PNDs) and neuronal antibodies in small cell lung carcinoma (SCLC). Methods: Two hundred sixty-four consecutive patients with biopsy-proven SCLC were recruited at the time of tumor diagnosis. All patients underwent full neurologic examination. Serum samples were taken prior to chemotherapy and analyzed for 15 neuronal antibodies. Thirty-eight healthy controls were analyzed in parallel. Results: PNDs were quite prevalent (n = 24, 9.4%), most frequently Lambert-Eaton myasthenic syndrome (3.8%), sensory neuronopathy (1.9%), and limbic encephalitis (1.5%). Eighty-seven percent of all patients with PNDs had antibodies to SOX2 (62.5%), HuD (41.7%), or P/Q VGCC (50%), irrespective of their syndrome. Other neuronal antibodies were found at lower frequencies (GABAb receptor [12.5%] and N-type VGCC [20.8%]) or very rarely (GAD65, amphiphysin, Ri, CRMP5, Ma2, Yo, VGKC complex, CASPR2, LGI1, and NMDA receptor [all <5%]). Conclusions: The spectrum of PNDs is broader and the frequency is higher than previously appreciated, and selected antibody tests (SOX2, HuD, VGCC) can help determine the presence of an SCLC. PMID:26109714
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
NASA Astrophysics Data System (ADS)
Chang, Chih-Chen; Poon, Chun-Wing
2004-07-01
Recently, the empirical mode decomposition (EMD) in combination with the Hilbert spectrum method has been proposed to identify the dynamic characteristics of linear structures. In this study, this EMD and Hilbert spectrum method is used to analyze the dynamic characteristics of a damaged reinforced concrete (RC) beam in the laboratory. The RC beam is 4m long with a cross section of 200mm X 250mm. The beam is sequentially subjected to a concentrated load of different magnitudes at the mid-span to produce different degrees of damage. An impact load is applied around the mid-span to excite the beam. Responses of the beam are recorded by four accelerometers. Results indicate that the EMD and Hilbert spectrum method can reveal the variation of the dynamic characteristics in the time domain. These results are also compared with those obtained using the Fourier analysis. In general, it is found that the two sets of results correlate quite well in terms of mode counts and frequency values. Some differences, however, can be seen in the damping values, which perhaps can be attributed to the linear assumption of the Fourier transform.
NASA Technical Reports Server (NTRS)
Lee, Jonggil
1990-01-01
High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.
Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu
2004-11-01
We have been studying LET and ion species dependence of RBE in mutation frequency and mutation spectrum of deletion pattern of exons in hprt locus. Normal human skin fibroblasts were irradiated with heavy-ion beams, such as carbon- (290 MeV/u and 135 MeV/u), neon- (230 MeV/u and 400 MeV/u), silicon- (490 MeV/u) and iron- (500 MeV/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at national Institute of Radiological Sciences (NIRS). Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies and deletion spectrum of exons was analyzed by multiplex PCR. The LET-RBE curves of mutation induction for carbon- and neon-ion beams showed a peak around 75 keV/micrometers and 155 keV/micrometers, respectively. On the other hand, there observed no clear peak for silicon-ion beams. The deletion spectrum of exons was different in induced mutants among different ion species. These results suggested that quantitative and qualitative difference in mutation occurred when using different ion species even if similar LET values.
Tran, Phuong K; Letowski, Tomasz R; McBride, Maranda E
2013-06-01
Speech signals can be converted into electrical audio signals using either conventional air conduction (AC) microphone or a contact bone conduction (BC) microphone. The goal of this study was to investigate the effects of the location of a BC microphone on the intensity and frequency spectrum of the recorded speech. Twelve locations, 11 on the talker's head and 1 on the collar bone, were investigated. The speech sounds were three vowels (/u/, /a/, /i/) and two consonants (/m/, /∫/). The sounds were produced by 12 talkers. Each sound was recorded simultaneously with two BC microphones and an AC microphone. Analyzed spectral data showed that the BC recordings made at the forehead of the talker were the most similar to the AC recordings, whereas the collar bone recordings were most different. Comparison of the spectral data with speech intelligibility data collected in another study revealed a strong negative relationship between BC speech intelligibility and the degree of deviation of the BC speech spectrum from the AC spectrum. In addition, the head locations that resulted in the highest speech intelligibility were associated with the lowest output signals among all tested locations. Implications of these findings for BC communication are discussed.
NASA Astrophysics Data System (ADS)
Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.
2018-04-01
We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.
Hybrid spread spectrum radio system
Smith, Stephen F.; Dress, William B.
2010-02-02
Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.
Marine asset security and tracking (MAST) system
Hanson, Gregory Richard [Clinton, TN; Smith, Stephen Fulton [Loudon, TN; Moore, Michael Roy [Corryton, TN; Dobson, Eric Lesley [Charleston, SC; Blair, Jeffrey Scott [Charleston, SC; Duncan, Christopher Allen [Marietta, GA; Lenarduzzi, Roberto [Knoxville, TN
2008-07-01
Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.
NASA Radio Frequency Spectrum Management Manual
NASA Technical Reports Server (NTRS)
1989-01-01
The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1979-01-01
This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…
A New Digital Signal Processing Method for Spectrum Interference Monitoring
NASA Astrophysics Data System (ADS)
Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.
2011-01-01
Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jégou, C.; Maroutian, T.; Pillard, V.
We describe a vector network analyzer-based method to study the electromagnetic properties of nanoscale dielectrics at microwave frequencies (1 MHz–40 GHz). The complex permittivity spectrum of a given dielectric can be determined by placing it in a capacitor accessed on its both electrodes by coplanar waveguides. However, inherent propagation delays along the signal paths together with frequency-dependent effective surface of the capacitor at microwave frequencies can lead to significant distortion in the measured permittivity, which in turn can give rise to artificial frequency variations of the complex permittivity. We detail a fully analytical rigorous correction sequence with neither recourse tomore » extrinsic loss mechanisms nor to arbitrary parasitic signal paths. We illustrate our method on 3 emblematic dielectrics: ferroelectric morphotropic lead zirconate titanate, its paraelectric pyrochlore counterpart, and strontium titanate. Permittivity spectra taken at various points along the hysteresis loop help shedding light onto the nature of the different dielectric energy loss mechanisms. Thanks to the analytical character of our method, we can discuss routes to extend it to higher frequencies and we can identify unambiguously the sources of potential artifacts.« less
Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
Santa Maria, Odilyn L.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Proofs for the Wave Theory of Plants
NASA Astrophysics Data System (ADS)
Wagner, Orvin E.
1997-03-01
Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.
Hui, Zhan-Qiang
2011-10-01
Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.
FPGA-based RF spectrum merging and adaptive hopset selection
NASA Astrophysics Data System (ADS)
McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.
The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.
NASA Astrophysics Data System (ADS)
Sturrock, P. A.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Javorsek, D.; Jenkins, J. H.; Lee, R. H.; Mattes, J. J.; Newport, J. R.
2010-12-01
Evidence for an anomalous annual periodicity in certain nuclear-decay data has led to speculation on a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of 36Cl and 32Si, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18 year-1, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of 226Ra acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21 year-1, and a peak in the BNL dataset at 11.25 year-1. The change in the BNL result is not significant, since the uncertainties in the BNL and PTB analyses are estimated to be 0.13 year-1 and 0.07 year-1, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23 year-1. We will briefly comment on the possible implications of these results for solar physics and for particle physics.
NASA Astrophysics Data System (ADS)
Semaan, T.; Hubert, A. M.; Zorec, J.; Gutiérrez-Soto, J.; Frémat, Y.; Martayan, C.; Fabregat, J.; Eggenberger, P.
2018-06-01
Context. The class of Be stars are the epitome of rapid rotators in the main sequence. These stars are privileged candidates for studying the incidence of rotation on the stellar internal structure and on non-radial pulsations. Pulsations are considered possible mechanisms to trigger mass-ejection phenomena required to build up the circumstellar disks of Be stars. Aims: Time series analyses of the light curves of 15 faint Be stars observed with the CoRoT satellite were performed to obtain the distribution of non-radial pulsation (NRP) frequencies in their power spectra at epochs with and without light outbursts and to discriminate pulsations from rotation-related photometric variations. Methods: Standard Fourier techniques were employed to analyze the CoRoT light curves. Fundamental parameters corrected for rapid-rotation effects were used to study the power spectrum as a function of the stellar location in the instability domains of the Hertzsprung-Russell (H-R) diagram. Results: Frequencies are concentrated in separate groups as predicted for g-modes in rapid B-type rotators, except for the two stars that are outside the H-R instability domain. In five objects the variations in the power spectrum are correlated with the time-dependent outbursts characteristics. Time-frequency analysis showed that during the outbursts the amplitudes of stable main frequencies within 0.03 c d-1 intervals strongly change, while transients and/or frequencies of low amplitude appear separated or not separated from the stellar frequencies. The frequency patterns and activities depend on evolution phases: (i) the average separations between groups of frequencies are larger in the zero-age main sequence (ZAMS) than in the terminal age main sequence (TAMS) and are the largest in the middle of the MS phase; (ii) a poor frequency spectrum with f ≲ 1 cd-1 of low amplitude characterizes the stars beyond the TAMS; and (iii) outbursts are seen in stars hotter than B4 spectral type and in the second half of the MS. Conclusions: The two main frequency groups are separated by δf = (1.24 ± 0.28) × frot in agreement with models of prograde sectoral g-modes (m = -1, -2) of intermediate-mass rapid rotators. The changes of amplitudes of individual frequencies and the presence of transients correlated with the outburst events deserve further studies of physical conditions in the subatmospheric layers to establish the relationship between pulsations and sporadic mass-ejection events. Tables 7 to 22 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A70
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
Discussion on the Modelling and Processing of Signals fom an Acousto-Optic Spectrum Analyzer.
1987-06-01
AD-AIBS 639 DISCUSSION ON THE MODELLING AND PROCESSIN OF SIGNALS 1/1 FOR RN ACOUSTO - OPTIC SPECTRUM ANALYZER(U)G DFENCE RESERCH ESTABGLISHMENT OTTANA...8217’~ AV - I National DefenseI Defence nationale DISCUSSION ON THE MODELLING AND PROCESSING OF SIGNALS FROM AN ACOUSTO - OPTIC SPECTRUM ANALYZER by Guy...signals generated by an Acousto - Optic Spectrum Analyzer (AOSA). It also shows how this calculation can be related to pulse modu- lated signals. In its
Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.
Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung
2014-06-02
The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.
Analysis of axial compressive loaded beam under random support excitations
NASA Astrophysics Data System (ADS)
Xiao, Wensheng; Wang, Fengde; Liu, Jian
2017-12-01
An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.
FSD: Frequency Space Differential measurement of CMB spectral distortions
NASA Astrophysics Data System (ADS)
Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.
2018-07-01
Although the cosmic microwave background (CMB) agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody that can be modelled for known sources of spectral distortions like y and μ. Our technique uses FSD information for the CMB blackbody, y, μ, or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.
NASA Technical Reports Server (NTRS)
Woodring, D. G.; Nichols, S. A.; Swanson, R.
1979-01-01
During 1978 and 1979, an Air Force C-135 test aircraft was flown to various locations in the North and South Atlantic and Pacific Oceans for satellite communications experiments. A part of the equipment tested on the aircraft was the SEACOM spread spectrum modem. The SEACOM modem operated at X band frequency from the aircraft via the DSCS II satellite to a ground station. For data to be phased successfully, it was necessary to maintain independent time and frequency accuracy over relatively long periods of time (up to two weeks) on the aircraft and at the ground station. To achieve this goal, two Efratom atomic frequency standards were used. The performance of these frequency standards as used in the spread spectrum modem is discussed, including the effects of high relative velocity, synchronization and the effects of the frequency standards on data performance is discussed. The aircraft environment, which includes extremes of temperature, as well as long periods of shutdown followed by rapid warmup requirements, is also discussed.
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
De Brouwer, Sara; De Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; Van Maerken, Tom; De Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H; Schramm, Alexander; Van Den Broecke, Caroline; Vermeulen, Joëlle; Van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank
2010-09-01
Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang
2011-10-20
The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both themore » time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.« less
Zandi, Hengameh; Tabatabaei, Seyed Mostafa; Ehsani, Fatemeh; Zarch, Mojtaba Babaei; Doosthosseini, Samira
2017-02-01
Frequency of extended-spectrum beta-lactamases (ESBLs) and its variants may vary in different geographical areas, as reports indicate their spread in some certain communities. The aim of this study was to determine the frequency of ESBLs in strains of Klebsiella and E. coli , isolated from patients hospitalized in teaching hospitals of Yazd. This cross-sectional study was carried out on samples including E. coli and Klebsiella strains collected from laboratories of Shahid Sadoughi and Shahid Rahnemoun hospitals in Yazd, Iran in the period of 2011-2012. The colonies which were positive in lactose Eosin methylene-blue (EMB) medium were identified by biochemical methods, and 270 strains of Klebsiella and E. coli were isolated. Collected data and information were analyzed using Fisher's exact test and descriptive statistics such as mean in SPSS software, version 15, at a significant level of 0.05. In this study, 270 samples were examined, including 152 samples of E. coli (56.3%) and 118 samples of Klebsiella pneumonia (43.7%). Among the 152 samples of E. coli , 45 strains (30%) were producers of ESBLs. In addition, among the 118 samples of Klebsiella pneumonia , 44 strains (37.3%) were producers of ESBLs. E. coli strains showed the most resistance to Cefotaxime (100%), Ceftazidime (97.7%), and Cefepime (75.5%) respectively and Klebsiella strains showed the most resistance to Cefotaxime (100%), Ceftazidime (100%) and Cefepime (79.5%), respectively. Frequency of ESBLs in Klebsiella strains was higher than E. coli strains. No significant relationship was found between frequency of ESBLs and age or gender. In addition, E. coli strains showed the highest sensitivity to Imipenem, Amoxicillin/clavulanate, and Ciprofloxacin, while the highest antibiotic sensitivity of Klebsiella strains was shown to be to Piperacillin, Imipenem, and Amoxicillin/clavulanate.
Spectrum of coherent transition radiation generated by a modulated electron beam
NASA Astrophysics Data System (ADS)
Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P. V.; Shipulya, M. A.; Bleko, V. V.
2017-07-01
The spectrum of coherent transition radiation has been recorded with the use of a Martin-Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.
Abdallah, Morsi W; Larsen, Nanna; Grove, Jakob; Nørgaard-Pedersen, Bent; Thorsen, Poul; Mortensen, Erik L; Hougaard, David M
2013-09-01
The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy. AF samples of 331 ASD cases and 698 controls were analyzed for inflammatory cytokines using Luminex xMAP technology utilizing a historic birth cohort. Clinical data were retrieved from nationwide registers, and case-control differences in AF cytokine levels were assessed using chi-square tests, logistic and tobit regression models. Overall, individuals with ASD had significantly elevated AF levels of TNF-α and TNF-β compared to controls. Analyzing individuals diagnosed only with ICD-10 codes yielded significantly elevated levels of IL-4, IL-10, TNF-α and TNF-β in ASD patients. Restricting analysis to infantile autism cases showed significantly elevated levels of IL-4, TNF-α and TNF-β compared to controls with no psychiatric comorbidities. Elevated levels of IL-6 and IL-5 were found in individuals with other childhood psychiatric disorders (OCPD) when compared to controls with no psychiatric comorbidities. AF samples of individuals with ASD or OCPD showed differential cytokine profiles compared to frequency-matched controls. Further studies to examine the specificity of the reported cytokine profiles in ASD and OCPD are required.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
Phase-sensitive spectral estimation by the hybrid filter diagonalization method.
Celik, Hasan; Ridge, Clark D; Shaka, A J
2012-01-01
A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions. Copyright © 2011. Published by Elsevier Inc.
Estimation of spectral kurtosis
NASA Astrophysics Data System (ADS)
Sutawanir
2017-03-01
Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to visualize the pattern of each fault. Keywords: frequency domain Fourier transform, spectral kurtosis, bearing fault
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
[The spectrum of human chromosomal aberrations detected by routine and differential (GTG) staining].
Ponomareva, A V; Matveeva, V G; Osipova, L P
2001-01-01
As a result of sample cytogenetic studies of 23 persons living on the territory of Yamal-Nentsy Autonomous District and chronically exposed to the small doses of radiation the data on the frequency and spectrum of chromosome aberrations, detected by the routine and differential (GTG) staining were obtained. Comparative efficiency of these methods was determined. The absence of significant differences for the spectrum and frequencies of chromosome aberrations revealed by both methods was shown.
High-field/ high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation.
Georgieva, Elka R; Pardi, Luca; Jeschke, Gunnar; Gatteschi, Dante; Sorace, Lorenzo; Yordanov, Nicola D
2006-06-01
The EPR spectrum of sucrose irradiated by high-energy radiation is complex due to the presence of more than one radical species. In order to decompose the spectrum and elucidate the radical magnetic parameters a high-field (HF(-)EPR) study on stable free radicals in gamma-irradiated polycrystalline sucrose (table sugar) was performed at three different high frequencies--94, 190 and 285 GHz as well as at the conventional X-band. We suggest a presence of three stable radicals R1, R2 and R3 as the main radical species. Due to the increase of g-factor resolution at high fields the g-tensors of these radicals could be extracted by accurate simulations. The moderate g-anisotropy suggests that all three radicals are carbon-centred. Results from an earlier ENDOR study on X-irradiated sucrose single crystals (Vanhaelewyn et al., Appl Radiat Isot, 52, 1221 (2000)) were used for analyzing of the spectra in more details. It was confirmed that the strongest hyperfine interaction has a relatively small anisotropy, which indicates either the absence of alpha-protons or a strongly distorted geometry of the radicals.
Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K
2015-02-05
The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
The Pioneer Venus Orbiter plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Taylor, W. W. L.; Virobik, P. F.
1980-01-01
The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits/sec) yields 4 spectral scans/sec. The total mass of 0.55 kg includes the electronics, the antenna, and the antenna deployment mechanism. This report contains a brief description of the instrument design and a discussion of the in-flight performance.
Dhumal, Nilesh R; Kiefer, Johannes; Turton, David; Wynne, Klaas; Kim, Hyung J
2017-05-11
Dielectric relaxation of the ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate (EMI + ETS - ), is studied using molecular dynamics (MD) simulations. The collective dynamics of polarization arising from cations and anions are examined. Characteristics of the rovibrational and translational components of polarization dynamics are analyzed to understand their respective roles in the microwave and terahertz regions of dielectric relaxation. The MD results are compared with the experimental low-frequency spectrum of EMI + ETS - , obtained via ultrafast optical Kerr effect (OKE) measurements.
Impaired Timing and Frequency Discrimination in High-Functioning Autism Spectrum Disorders
ERIC Educational Resources Information Center
Bhatara, Anjali; Babikian, Talin; Laugeson, Elizabeth; Tachdjian, Raffi; Sininger, Yvonne S.
2013-01-01
Individuals with autism spectrum disorders (ASD) frequently demonstrate preserved or enhanced frequency perception but impaired timing perception. The present study investigated the processing of spectral and temporal information in 12 adolescents with ASD and 15 age-matched controls. Participants completed two psychoacoustic tasks: one determined…
Recurrent bottlenecks in the malaria life cycle obscure signals of positive selection.
Chang, Hsiao-Han; Hartl, Daniel L
2015-02-01
Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright-Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.
Polarization of low-frequency electromagnetic radiation in the lobes of Jupiter's magnetotail
NASA Technical Reports Server (NTRS)
Moses, S. L.; Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Kurth, W. S.
1987-01-01
The plasma wave instruments on the Voyager spacecraft have detected intense electromagnetic radiation within the lobes of Jupiter's magnetic tail down to the lowest frequency of the detector (10 Hz). During a yaw maneuver performed by Voyager 1 in the lobe of the Jovian magnetotail, a modulation appeared in the amplitudes of waves detected in the 10-, 17.8- and 31.1-Hz channels of the plasma wave analyzer, well below the local electron cyclotron frequency of 260 Hz. The lowest amplitudes occurred when the antenna axis was most nearly parallel to the magnetic field. Wave amplitudes in the 56.2-Hz and higher frequency channels remained nearly constant during the maneuver. From the cold-plasma theory of electromagnetic waves, it is concluded that the plasma frequency was between the 56.2- and 31.1-Hz channels where the parallel-polarized component of the spectrum cuts off. This implies a tail-lobe density between 0.000032 and 0.000015/cu cm. The left-hand cutoff frequency would then be below 10 Hz, consistent with either the Z-mode (L, X) or whistlers (R-mode) in the modulated channels.
Statistical analysis of low frequency vibrations in variable speed wind turbines
NASA Astrophysics Data System (ADS)
Escaler, X.; Mebarki, T.
2013-12-01
The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.
Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.
Goldman, Geoffrey H
2013-02-01
A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.
Pattern-Recognition Algorithm for Locking Laser Frequency
NASA Technical Reports Server (NTRS)
Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George
2006-01-01
A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
47 CFR 27.601 - Authority and coordination requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement....2(b), a Guard Band licensee may allow a spectrum lessee, pursuant to a spectrum lease arrangement...) Frequency coordination.(1) A Guard Band licensee, or a spectrum lessee operating at 775-776 MHz and 805-806...
Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data
NASA Astrophysics Data System (ADS)
Dias, Nelson Luís
2018-01-01
A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Koda, S.
2010-03-01
The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.
The anti-counterfeiting hologram of encryption processing in frequency domain
NASA Astrophysics Data System (ADS)
Bao, Nai K.; Chen, Zhongyu Y.
2004-09-01
This paper proposed a new encryption method using Computer Generated Fourier Hologram in frequency domain. When the main frequency spectrum, i.e. brand and an encrypted information frequency spectrum are mixed, it will not recognized and copied. We will use the methods of Dot Matrix (Digital) Hologram Modulation and the filter to get real signal. One new multi-modulated dot matrix hologram is introduced. It is encoded using several gratings. These gratings have different angles of inclination and different periods in same dot, to enable us in obtaining more information.
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter; Andrews, John M.
2014-07-01
Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Ivan R.; De Lucia, Frank C.; Herbst, Eric
Since methyl formate (HCOOCH{sub 3}) is found to have a high abundance in hot molecular cores and other types of clouds in the galactic center, it is reasonable to search among such sources for detectable abundances of the more complex analog ethyl formate (HCOOC{sub 2}H{sub 5}). Following a previous study of the millimeter-wave spectrum of ethyl formate, we have extended the analysis of the vibrational ground state of the trans and gauche conformers of ethyl formate into the submillimeter-wave range. Over 2200 new spectral lines have been measured and analyzed at frequencies up to 380 GHz. Fitting the data formore » each conformer to a Watson A-reduced asymmetric-top Hamiltonian has allowed us to predict the frequencies and intensities of many more transitions through 380 GHz.« less
Real Time Phase Noise Meter Based on a Digital Signal Processor
NASA Technical Reports Server (NTRS)
Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario
2006-01-01
A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Christopher, I.; Granroth, L. J.
2001-01-01
We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.
Circular-polarization-sensitive metamaterial based on triple-quantum-dot molecules.
Kotetes, Panagiotis; Jin, Pei-Qing; Marthaler, Michael; Schön, Gerd
2014-12-05
We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.
AC Josephson effect applications in microwave systems
NASA Astrophysics Data System (ADS)
Larkin, Serguey Y.
1996-12-01
A complication of the tasks solving by the modem radliolocation, radionavigation and communication systems connected with the demand promotion to the resolution and accuracy of coordinates definition and increase in the volumes of transmitted information in satellite communication systems has resulted in boisterous mastering of millimeter wave bands. Success in microwave technology reached in 80' allowed such leading instrument developing companies as Hewlett Packard; EIP, lB millimeter etc. to set up an output of mm- and submm-wave bands devices and systems. It has streamlined Scientific Technological Progress in several spheres, since millimeter, through infra-red frequency range was closed to researchers for a long period of time because of the absence of necessary equipment. At present microwave devices of the short-wave part of mm- wave band and of submm- wave bands are used not only in radiolocation and communications. Unique diagnostic systems based on the analysis of the radiation parameters of different microwave sources were created. They have their application in medicine, thermonuclear energetics, radioastronomy, biology, nuclear physics, the physics of the solid state body, geology, etc. The above circumstances caused the beginning of the measuring microwave technology researches in 60 to 600 GHz frequency range: generators, power and frequency meters, spectrum analyzers. The task of working out equipment and techniques of the effective control as well as frequency and intensity measurements of the microwave signals in the investigated range is of the special interest. Here are some examples. The creation of a thermonuclear reactor in ITER project is considered to be the project of the century in the energetics sphere. One of the basic engineering tasks in the course of project realization is the creation of the diagnostic equipment realizing in real time spectrum analysis of thermonuclear plasma radiation at the so called cyclotron hannonics. Such analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.
Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser
NASA Astrophysics Data System (ADS)
Zhang, Shao-Hui; Shu-Lian, Zhang; Tan, Yi-Dong; Sun, Li-Qun
2015-12-01
We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4 microchip laser (ML). We find that low-frequency relaxation oscillation (RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4 ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well. Project supported by the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0086), the Tsinghua University Initiative Scientific Research Programme, China (Grant No. 2012Z02166), and the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China (Grant No. 2011YQ04013603).
High efficiency laser spectrum conditioner
Greiner, Norman R.
1980-01-01
A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials
NASA Astrophysics Data System (ADS)
Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang
2018-03-01
By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.
Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer
NASA Technical Reports Server (NTRS)
Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.
1982-01-01
A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.
Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.
2016-01-01
Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514
NASA Astrophysics Data System (ADS)
Hussain, M. S.; Mamun, Md.
2012-01-01
Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.
Magnetoplasmon spectrum for realistic off-plane structure of dissipative 2D system
NASA Astrophysics Data System (ADS)
Cheremisin, M. V.
2017-12-01
The rigorous analysis of the textbook result (Chiu and Quinn, 1974) gives unexpectedly the dramatic change of the magnetoplasmon spectrum taking into account both the arbitrary dissipation and asymmetric off-plane structure of 2D system. For given wave vector the dissipation enhancement leads to decrease(increase) of magnetoplasmon frequency at low(high) magnetic field. At certain range of disorder the purely relaxational mode appears in magnetoplasmon spectrum. In strong magnetic fields the magnetoplasmon frequency falls to cyclotron resonance line even in presence of finite dissipation. The observation of nonlinearity and, moreover, the mysterious zig-zag behavior 2D magnetoplasmon spectrum is consistent with our findings.
Benchmark Eye Movement Effects during Natural Reading in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Howard, Philippa L.; Liversedge, Simon P.; Benson, Valerie
2017-01-01
In 2 experiments, eye tracking methodology was used to assess on-line lexical, syntactic and semantic processing in autism spectrum disorder (ASD). In Experiment 1, lexical identification was examined by manipulating the frequency of target words. Both typically developed (TD) and ASD readers showed normal frequency effects, suggesting that the…
U.S. Military Operations Within the Electromagnetic Spectrum: Operational Critical Weakness
2008-04-23
the mistake only after we landed.”27 The primary tool used to coordinate friendly use of the spectrum with ES and EA is the Joint Restricted Frequency ... List (JRFL). Frequencies that are deemed “necessary for friendly forces to accomplish objectives”28 are listed and classified as guarded, protected
Review of measurements of the RF spectrum of radiation from lightning
NASA Technical Reports Server (NTRS)
Levine, D. M.
1986-01-01
Measurements reported in the literature of the spectrum of electromagnetic radiation from lightning in the frequency range from 1 kHz to 1 GHz are reviewed. Measurements have been made either by monitoring the power received at individual frequencies using a narrow bandwidth recording device tuned to the frequencies under investigation or by recording the transient (time dependent) radiation with a wide bandwidth device and then Fourier transforming the waveform to obtain a spectrum. Measurements of the first type were made extensively in the 1950's and 1960's and several composite spectra have been deduced by normalizing the data of different investigators to common units of bandwidth and distance. The composite spectra tend to peak near 5 kHz and then decrease roughly as (frequency) to the -1, up to nearly 100 MHz where scatter in the data make the behavior uncertain. Measurements of the second type have been reported for return strokes, the stepped leader and for some intracloud processes. The spectrum of first return strokes obtained in this manner is very similar to the composite spectra obtained from the narrow-band measurements.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
Spiousas, Ignacio; Etchemendy, Pablo E.; Eguia, Manuel C.; Calcagno, Esteban R.; Abregú, Ezequiel; Vergara, Ramiro O.
2017-01-01
Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1–6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it. PMID:28690556
Spiousas, Ignacio; Etchemendy, Pablo E; Eguia, Manuel C; Calcagno, Esteban R; Abregú, Ezequiel; Vergara, Ramiro O
2017-01-01
Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1-6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it.
NASA Astrophysics Data System (ADS)
Clark, D. C.; Spencer, E. A.; Gollapalli, R.; Kerrigan, B.
2016-12-01
A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. We have designed and developed a new Time Domain Impedance Probe (TDIP) capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 100 microseconds, which yields much higher spatial resolution than a frequency sweep method. This method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the new instrument was flown at 08:45 EST on March 1 2016 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility (Flight time was around 20 minutes). Here we analyze the data from the sounding rocket experiment, using an adaptive system identification technique to compare the measured data with analytical formulas obtained from a theoretical consideration of the time domain response. The analytical formula is calibrated to a plasma fluid finite difference time domain (PFFDTD) numerical computation before using it to analyze the rocket data from 85 km to 170 km on both upleg and downleg. Our results show that the technique works as advertised, but several issues including payload charging and signal rectification remains to be resolved. A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. We have designed and developed a new Time Domain Impedance Probe (TDIP) capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 100 microseconds, which yields much higher spatial resolution than a frequency sweep method. This method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the new instrument was flown at 08:45 EST on March 1 2016 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility (Flight time was around 20 minutes). Here we analyze the data from the sounding rocket experiment, using an adaptive system identification technique to compare the measured data with analytical formulas obtained from a theoretical consideration of the time domain response. The analytical formula is calibrated to a plasma fluid finite difference time domain (PFFDTD) numerical computation before using it to analyze the rocket data from 85 km to 170 km on both upleg and downleg. Our results show that the technique works as advertised, but several issues including payload charging and signal rectification remains to be resolved.
Kubo, N
1995-04-01
To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.
Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.
Hua, Wei; Wang, Jiasong; Zhao, Jian
2014-01-01
Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.
2017-12-01
The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument development and data analysis. The effects of density fluctuations and layered roughness are examined using a partially coherent model; we also report the results of applying such models to analyze the UWBRAD Greenland data. The approach of combining active L- band observations from PALSAR with UWBRAD Tb spectra is also discussed.
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).
Characteristics of EMG frequency bands in temporomandibullar disorders patients.
Politti, Fabiano; Casellato, Claudia; Kalytczak, Marcelo Martins; Garcia, Marilia Barbosa Santos; Biasotto-Gonzalez, Daniela Aparecida
2016-12-01
The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23±6.68years) and 27 TMD patients (20 women and seven men; mean age: 24±5.89years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p<0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100Hz of the normalized PSDF range was significantly lower (p<0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays. Copyright © 2016 Elsevier Ltd. All rights reserved.
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai
2016-01-01
Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.
NASA Technical Reports Server (NTRS)
Edelson, R. E.
1977-01-01
Some aspects of signal extraction in a microwave search for evidence of extraterrestrial intelligence are examined. Parametric relations are summarized which are applicable to a microwave search of constrained duration that employs FFT spectrum-analyzer receivers, with sensitivity enhancement by spectrum accumulation and detection by a threshold criterion. Three types of natural and man-made false alarms are identified, the probability of false alarm in a single data channel is computed, and the implications of false alarms for a constant-beamwidth sky survey are considered. It is shown that the key to an efficient search is the prompt and unambiguous elimination of false alarms. An experimental protocol is suggested which eliminates spurious signals primarily through procedural techniques involving antenna repointing, delayed repeated observations, and storage of particular historical parameters for suspect signals.
The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state
NASA Technical Reports Server (NTRS)
Plummer, G. M.; Herbst, E.; De Lucia, F. C.; Blake, G. A.
1986-01-01
Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH3) in its ground v(t) = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v(t) = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J not greater than 30 and rotational energy of not more than 350/cm. The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band.
Millimeter Wave Spectrum and Astronomical Search for Vinyl Formate
NASA Astrophysics Data System (ADS)
Alonso, E. R.; Kolesniková, L.; Tercero, B.; Cabezas, C.; Alonso, J. L.; Cernicharo, J.; Guillemin, J.-C.
2016-11-01
Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3-88 and K a = 0-28 were assigned to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.
On ɛ-mechanism driven pulsations in VV 47
NASA Astrophysics Data System (ADS)
Sowicka, Paulina; Handler, Gerald; Jones, David
2018-06-01
We report new observations of the central star of the planetary nebula VV 47 carried out to verify earlier assertions that the short-period pulsation modes detected in the star are driven by the ɛ mechanism. In our data, VV 47 was not variable up to a limit of 0.52 mmag in the Fourier amplitude spectrum up to the Nyquist frequency of 21.7 mHz. Given this null result we re-analyzed the data set in which oscillations were claimed. After careful data reduction, photometry, extinction correction, and analysis with a conservative criterion of S/N ≥ 4 in the Fourier amplitude spectrum, we found that the star was not variable during the original observations. The oscillations reported earlier were due to an over-optimistic detection criterion. We conclude that VV 47 did not pulsate during any measurements at hand; the observational detection of ɛ-driven pulsations remains arduous.
The High-Resolution Infrared Spectrum of the ν 5Band of Deuterated Formic Acid (DCOOH)
NASA Astrophysics Data System (ADS)
Goh, K. L.; Ong, P. P.; Tan, T. L.; Wang, W. F.; Teo, H. H.
1998-07-01
The Fourier transform infrared spectrum of the ν5band of deuterated formic acid (DCOOH) has been measured with a resolution of 0.004 cm-1in the frequency range of 1090-1180 cm-1. Using a Watson'sA-reduced Hamiltonian in theIrrepresentation, a total of 1731 assigned unperturbed transitions have been analyzed to provide rovibrational constants for the upper state (v5= 1) with a standard deviation of 0.000363 cm-1. The band isAtype with an unperturbed band center at 1142.31075 ± 0.00002 cm-1. The band is expected to be perturbed by a nearby ν4band through a Fermi resonance term and possibly a Coriolis term. The resonance is particularly noticeable forKa= 10, and 11, at highJvalues. About 215 perturbed lines were identified but they were not included in the final fit.
NASA Astrophysics Data System (ADS)
Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua
Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.
Characterizing resonant component in speech: A different view of tracking fundamental frequency
NASA Astrophysics Data System (ADS)
Dong, Bin
2017-05-01
Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
Evidence for a continuous spectrum of equatorial waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Eriksen, Charles C.
1980-06-01
Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Islam, A.; Lu, J.
2017-12-01
Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based monitoring technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, a site operator may identify the potential anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures ( 120psi). The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results were further analyzed by developing a 3D flow model, using which the model parameters were estimated through frequency domain inversion.
Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Respiratory motion influence on catheter contact force during radio frequency ablation procedures
NASA Astrophysics Data System (ADS)
Koch, Martin; Brost, Alexander; Hornegger, Joachim; Strobel, Norbert
2013-03-01
Minimally invasive catheter ablation is a common treatment option for atrial fibrillation. A common treatment strategy is pulmonary vein isolation. In this case, individual ablation points need to be placed around the ostia of the pulmonary veins attached to the left atrium to generate transmural lesions and thereby block electric signals. To achieve a durable transmural lesion, the tip of the catheter has to be stable with a sufficient tissue contact during radio-frequency ablation. Besides the steerable interface operated by the physician, the movement of the catheter is also influenced by the heart and breathing motion - particularly during ablation. In this paper we investigate the influence of breathing motion on different areas of the endocardium during radio frequency ablation. To this end, we analyze the frequency spectrum of the continuous catheter contact force to identify areas with increased breathing motion using a classification method. This approach has been applied to clinical patient data acquired during three pulmonary vein isolation procedures. Initial findings show that motion due to respiration is more pronounced at the roof and around the right pulmonary veins.
The very low frequency power spectrum of Centaurus X-3
NASA Technical Reports Server (NTRS)
Gruber, D. E.
1988-01-01
The long-term variability of Cen X-3 on time scales ranging from days to years has been examined by combining data obtained by the HEAO 1 A-4 instrument with data from Vela 5B. A simple interpretation of the data is made in terms of the standard alpha-disk model of accretion disk structure and dynamics. Assuming that the low-frequency variance represents the inherent variability of the mass transfer from the companion, the decline in power at higher frequencies results from the leveling of radial structure in the accretion disk through viscous mixing. The shape of the observed power spectrum is shown to be in excellent agreement with a calculation based on a simplified form of this model. The observed low-frequency power spectrum of Cen X-3 is consistent with a disk in which viscous mixing occurs about as rapidly as possible and on the largest scale possible.
Frequency spectrum of tantalum at temperatures of 293-2300 K
NASA Astrophysics Data System (ADS)
Semenov, V. A.; Kozlov, Zh. A.; Krachun, L.; Mateescu, G.; Morozov, V. M.; Oprea, A. I.; Oprea, K.; Puchkov, A. V.
2010-05-01
The temperature dependence of the frequency spectrum of tantalum in the temperature range from room temperature to 2300 K has been studied for the first time using inelastic slow-neutron scattering. The inelastic slow-neutron scattering spectra have been measured at different temperatures on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 nuclear reactor (Joint Institute for Nuclear Research, Dubna, Russia) with the use of a TS3000K high-temperature thermostat. From the measured spectra, the frequency spectra of the tantalum crystal lattice have been determined at temperatures of 293, 1584, and 2300 K by the iteration method. As the temperature increases, the frequency spectrum, on the whole, is softened and the specific features manifested themselves at room temperature are smoothed. The variations observed have been explained by the increase in the role of the effects of vibration anharmonism at high temperatures.
Noise and interference study for satellite lightning sensor
NASA Technical Reports Server (NTRS)
Herman, J. R.
1981-01-01
The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) lightning and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which lightning RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from lightning flashes is developed. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the lightning spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF lightning pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-04-20
We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52 GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.
Two general models that generate long range correlation
NASA Astrophysics Data System (ADS)
Gan, Xiaocong; Han, Zhangang
2012-06-01
In this paper we study two models that generate sequences with LRC (long range correlation). For the IFT (inverse Fourier transform) model, our conclusion is the low frequency part leads to LRC, while the high frequency part tends to eliminate it. Therefore, a typical method to generate a sequence with LRC is multiplying the spectrum of a white noise sequence by a decaying function. A special case is analyzed: the linear combination of a smooth curve and a white noise sequence, in which the DFA plot consists of two line segments. For the patch model, our conclusion is long subsequences leads to LRC, while short subsequences tend to eliminate it. Therefore, we can generate a sequence with LRC by using a fat-tailed PDF (probability distribution function) of the length of the subsequences. A special case is also analyzed: if a patch model with long subsequences is mixed with a white noise sequence, the DFA plot will consist of two line segments. We have checked known models and actual data, and found they are all consistent with this study.
NASA Technical Reports Server (NTRS)
Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.
2012-01-01
A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; ...
2018-05-21
We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.
We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
NASA Astrophysics Data System (ADS)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki
2018-05-01
In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.
Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test
NASA Astrophysics Data System (ADS)
Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.
2017-11-01
Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.
Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole
NASA Astrophysics Data System (ADS)
Huang, Lu; Chen, Juhua; Wang, Yongjiu
2018-04-01
We investigate the quasinormal modes and area/entropy spectrum for the noncommutative BTZ black hole. The exact expressions for QNM frequencies are presented by expanding the noncommutative parameter in horizon radius. We find that the noncommutativity does not affect conformal weights (hL, hR), but it influences the thermal equilibrium. The intuitive expressions of the area/entropy spectrum are calculated in terms of Bohr-Sommerfeld quantization, and our results show that the noncommutativity leads to a nonuniform area/entropy spectrum. We also find that the coupling constant ξ , which is the coupling between the scalar and the gravitational fields, shifts the QNM frequencies but not influences the structure of area/entorpy spectrum.
A mean-based filter to remove power line harmonic noise from seismic reflection data
NASA Astrophysics Data System (ADS)
Karslı, Hakan; Dondurur, Derman
2018-06-01
Power line harmonic noise generated by power lines during the seismic data acquisition in land and marine seismic surveys generally appears as a single frequency with 50/60 Hz (or multiples of these frequencies) and contaminates seismic data leading to complicate the identification of fine details in the data. Commonly applied method during seismic data processing to remove the harmonic noise is classical notch filter (or very narrow band-stop filter), however, it also attenuates all recorded data around the notch frequencies and results in a complete loss of available information which corresponds to fine details in the seismic data. In this study, we introduce an application of the algorithm of iterative trimmed and truncated mean filter method (ITTM) to remove the harmonic noise from seismic data, and here, we name the method as local ITTM (LITTM) since we applied it to the seismic data locally in spectral domain. In this method, an optimal value is iteratively searched depending on a threshold value by trimming and truncating process for the spectral amplitude samples within the specified spectral window. Therefore, the LITTM filter converges to the median, but, there is no need to sort the data as in the case of conventional median filters. On the other hand, the LITTM filtering process doesn't require any reference signal or a precise estimate of the fundamental frequency of the harmonic noise, and only approximate frequency band of the noise within the amplitude spectra is considered. The only required parameter of the method is the width of this frequency band in the spectral domain. The LITTM filter is first applied to synthetic data and then we analyze a real marine dataset to compare the quality of the output after removing the power line noise by classical notch, median and proposed LITTM filters. We observe that the power line harmonic noise is completely filtered out by LITTM filter, and unlike the conventional notch filter, without any damage on the available frequencies around the notch frequency band. It also provides a more balanced amplitude spectrum since it does not produce amplitude notches in the spectrum.
Dephasing effects on ac-driven triple quantum dot systems
NASA Astrophysics Data System (ADS)
Maldonado, I.; Villavicencio, J.; Contreras-Pulido, L. D.; Cota, E.; Maytorena, J. A.
2018-05-01
We analyze the effect of environmental dephasing on the electrical current in an ac-driven triple quantum dot system in a symmetric Λ configuration. The current is explored by solving the time evolution equation of the density matrix as a function of the frequency and amplitude of the driving field. Two characteristic spectra are observed depending on the field amplitude. At the resonance condition, when the frequency matches the interdot energy difference, one spectrum shows a distinctive Fano-type peak, while the other, occurring at larger values of the field amplitude, exhibits a strong current suppression due to dynamic localization. In the former case we observe that the current maximum is reduced due to dephasing, while in the latter it is shown that dephasing partially alleviates the localization. In both cases, away from resonance, we observe current oscillations which are dephasing-enhanced for a wide range of frequencies. These effects are also discussed using Floquet theory, and analytical expressions for the electrical current are obtained within the rotating wave approximation.
NASA Astrophysics Data System (ADS)
He, Lirong; Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2015-03-01
Coded exposure photography makes the motion de-blurring a well-posed problem. The integration pattern of light is modulated using the method of coded exposure by opening and closing the shutter within the exposure time, changing the traditional shutter frequency spectrum into a wider frequency band in order to preserve more image information in frequency domain. The searching method of optimal code is significant for coded exposure. In this paper, an improved criterion of the optimal code searching is proposed by analyzing relationship between code length and the number of ones in the code, considering the noise effect on code selection with the affine noise model. Then the optimal code is obtained utilizing the method of genetic searching algorithm based on the proposed selection criterion. Experimental results show that the time consuming of searching optimal code decreases with the presented method. The restoration image is obtained with better subjective experience and superior objective evaluation values.
Brain-computer interface using wavelet transformation and naïve bayes classifier.
Bassani, Thiago; Nievola, Julio Cesar
2010-01-01
The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal's information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.
NASA Astrophysics Data System (ADS)
Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko
2014-07-01
In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-09-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina.
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-01-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. In conclusion: a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina. PMID:28947987
NASA Astrophysics Data System (ADS)
Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan
2016-03-01
Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.
WMAP7 constraints on oscillations in the primordial power spectrum
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Wijers, Ralph A. M. J.; van der Schaar, Jan Pieter
2012-03-01
We use the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data to place constraints on oscillations supplementing an almost scale-invariant primordial power spectrum. Such oscillations are predicted by a variety of models, some of which amount to assuming that there is some non-trivial choice of the vacuum state at the onset of inflation. In this paper, we will explore data-driven constraints on two distinct models of initial state modifications. In both models, the frequency, phase and amplitude are degrees of freedom of the theory for which the theoretical bounds are rather weak: both the amplitude and frequency have allowed values ranging over several orders of magnitude. This requires many computationally expensive evaluations of the model cosmic microwave background (CMB) spectra and their goodness of fit, even in a Markov chain Monte Carlo (MCMC), normally the most efficient fitting method for such a problem. To search more efficiently, we first run a densely-spaced grid, with only three varying parameters: the frequency, the amplitude and the baryon density. We obtain the optimal frequency and run an MCMC at the best-fitting frequency, randomly varying all other relevant parameters. To reduce the computational time of each power spectrum computation, we adjust both comoving momentum integration and spline interpolation (in l) as a function of frequency and amplitude of the primordial power spectrum. Applying this to the WMAP7 data allows us to improve existing constraints on the presence of oscillations. We confirm earlier findings that certain frequencies can improve the fitting over a model without oscillations. For those frequencies we compute the posterior probability, allowing us to put some constraints on the primordial parameter space of both models.
Circuits Enhance Scientific Instruments and Safety Devices
NASA Technical Reports Server (NTRS)
2009-01-01
Since its founding in 1958, NASA has pioneered the use of different frequencies on the electromagnetic spectrum - including X-ray, microwave, and infrared wavelengths - to gather information about distant celestial bodies. During the 1962 Mariner 2 mission, NASA used microwave radiometers that operated in the range of 15-23 gigahertz (GHz) to assess the surface temperature of Venus and to determine the percentage of water vapor in its atmosphere. Today, there is another area on the spectrum proving uniquely useful to scientists: the terahertz (THz) range, spanning from about 100 GHz-10,000 GHz. (1 THz equals approximately 1,000 GHz.) Terahertz frequencies span the lesser-known gap on the electromagnetic spectrum between microwave radiation and infrared (and visible) light, falling within the spectral range where most simple molecules resonate. This molecular resonance makes terahertz particularly useful for chemical spectroscopy and the remote sensing of specific molecules. In the 1990s, NASA began using frequencies above 300 GHz (more than an order of magnitude higher than the instrumentation on Mariner 2) to perform spectral analysis of molecular clouds and planetary atmospheres. Instruments using these higher frequencies have included the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), deployed from 1991-2001, and the Microwave Instrument for the Rosetta Orbiter (MIRO), launched in 2004. With UARS-MLS, NASA used advanced terahertz receivers to measure the emission signatures from atmospheric molecules, providing researchers with valuable data about the changes in the Earth s protective ozone layer. MIRO, set to rendezvous with the comet 67P Churyumov-Gerasimenko in 2014, will use terahertz instrumentation to analyze the comet s dust and gases. Although NASA has been a driving force behind the development of terahertz technology, scientific equipment for terahertz research - including transmitters, receivers, and basic test and measurement equipment - is not widely available, making scientific experiments in this range between traditional electronics and quantum photonics more costly and greatly limiting commercial development in the field. Given NASA s interest in studying distant bodies in space as well as in improving life on Earth, the Agency has collaborated with private industry to develop terahertz technologies.
Ground vibration test results of a JetStar airplane using impulsive sine excitation
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Voracek, David F.
1989-01-01
Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.
Radio Frequency Compatibility of an RFID Tag on Glideslope Navigation Receivers
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Mielnik, John J.
2008-01-01
A process is demonstrated to show compatibility between a radio frequency identification (RFID) tag and an aircraft glideslope (GS) radio receiver. The particular tag chosen was previously shown to have significant peak spurious emission levels that far exceeded the emission limits in the GS aeronautical band. The spurious emissions are emulated in the study by capturing the RFID fundamental transmission and playing back the signal in the GS band. The signal capturing and playback are achieved with a vector signal generator and a spectrum analyzer that can output the in-phase and quadrature components (IQ). The simulated interference signal is combined with a desired GS signal before being injected into a GS receiver s antenna port for interference threshold determination. Minimum desired propagation loss values to avoid interference are then computed and compared against actual propagation losses for several aircraft.
Frequency spectral analysis of GPR data over a crude oil spill
Burton, B.L.; Olhoeft, G.R.; Powers, M.H.; ,
2004-01-01
A multi-offset ground penetrating radar (GPR) dataset was acquired by the U.S. Geological Survey (USGS) at a crude oil spill site near Bemidji, Minnesota, USA. The dataset consists of two, parallel profiles, each with 17 transmitter-receiver offsets ranging from 0.60 to 5.15m. One profile was acquired over a known oil pool floating on the water table, and the other profile was acquired over an uncontaminated area. The data appear to be more attenuated, or at least exhibit less reflectivity, in the area over the oil pool. In an attempt to determine the frequency dependence of this apparent attenuation, several attributes of the frequency spectra of the data were analyzed after accounting for the effects on amplitude of the radar system (radiation pattern), changes in antenna-ground coupling, and spherical divergence. The attributes analyzed were amplitude spectra peak frequency, 6 dB down, or half-amplitude, spectrum width, and the low and high frequency slopes between the 3 and 9 dB down points. The most consistent trend was observed for Fourier transformed full traces at offsets 0.81, 1.01, and 1.21m which displayed steeper low frequency slopes over the area corresponding to the oil pool. The Fourier-transformed time-windowed traces, where each window was equal to twice the airwave wavelet length, exhibited weakly consistent attribute trends from offset to offset and from window to window. The fact that strong, consistent oil indicators are not seen in this analysis indicates that another mechanism due to the presence of the oil, such as a gradient in the electromagnetic properties, may simply suppress reflections over the contaminated zone.
Fast Fourier Transform Spectral Analysis Program
NASA Technical Reports Server (NTRS)
Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.
1969-01-01
Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.
Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping
Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...
2016-03-18
Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.
Comprehensive Analysis of Interstellar Iso-PROPYL Cyanide up to 480 GHZ
NASA Astrophysics Data System (ADS)
Kolesniková, Lucie; Alonso, E. R.; Cabezas, Carlos; Mata, Santiago; Alonso, José L.
2016-06-01
Iso-propyl cyanide, also known as iso-butyronitrile, is a branched alkyl molecule recently detected in the interstellar medium. A combination of Stark-modulated microwave spectroscopy and frequency-modulated millimeter and submillimeter wave spectroscopy was used to analyze its rotational spectrum from 26 to 480 GHz. Spectral assignments and analysis include transitions from the ground state, eight excited vibrational states and 13C isotopologues. Results of this work should facilitate astronomers further observations of iso-propyl cyanide in the interstellar medium. A. Belloche, R. T. Garrod, H. S. P. Müller, K. M. Menten, Science, 2014, 345, 1584